Removed old hack of using Configuration Table entry ticks_per_timeslice

being set to 0 to indicate that there should be no Clock Tick.  This
was used by the Timing Tests to avoid clock tick overhead perturbing
execution times.  Now the Timing Tests simply leave the Clock Tick
Driver out of the Device Driver Table.
This commit is contained in:
Joel Sherrill
2000-01-11 17:34:20 +00:00
parent bdb289988a
commit 0dd1d44582
30 changed files with 447 additions and 617 deletions

View File

@@ -103,13 +103,10 @@ static void clockIsr()
+--------------------------------------------------------------------------*/
void clockOff(const rtems_irq_connect_data* unused)
{
if (BSP_Configuration.ticks_per_timeslice)
{
/* reset timer mode to standard (BIOS) value */
outport_byte(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
outport_byte(TIMER_CNTR0, 0);
outport_byte(TIMER_CNTR0, 0);
}
/* reset timer mode to standard (BIOS) value */
outport_byte(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
outport_byte(TIMER_CNTR0, 0);
outport_byte(TIMER_CNTR0, 0);
} /* Clock_exit */
@@ -158,7 +155,6 @@ static void clockOn(const rtems_irq_connect_data* unused)
Clock_isrs = Clock_isrs_per_tick; /* Initialize Clock_isrs */
if (BSP_Configuration.ticks_per_timeslice)
{
/* 105/88 approximates TIMER_TICK * 1e-6 */
rtems_unsigned32 count = US_TO_TICK(microseconds_per_isr);

View File

@@ -51,24 +51,20 @@ void Install_clock(
Clock_driver_ticks = 0;
Clock_isrs = BSP_Configuration.microseconds_per_tick / 1000;
if ( BSP_Configuration.ticks_per_timeslice ) {
Old_ticker = set_vector( clock_isr, CLOCK_VECTOR, 1 );
victimer = (volatile unsigned char *) 0xa00000c3;
*victimer = 0x12;
*victimer = 0x92; /* 1000 HZ */
}
Old_ticker = set_vector( clock_isr, CLOCK_VECTOR, 1 );
victimer = (volatile unsigned char *) 0xa00000c3;
*victimer = 0x12;
*victimer = 0x92; /* 1000 HZ */
}
void Clock_exit()
{
unsigned char *victimer;
if ( BSP_Configuration.ticks_per_timeslice ) {
victimer = (unsigned char *) 0xa00000c3;
*victimer = 0x12;
i960_mask_intr( 5 );
/* do not restore old vector */
}
victimer = (unsigned char *) 0xa00000c3;
*victimer = 0x12;
i960_mask_intr( 5 );
/* do not restore old vector */
}
rtems_device_driver Clock_initialize(

View File

@@ -65,12 +65,6 @@ void Install_clock(
Reload_Clock_isrs = BSP_Configuration.microseconds_per_tick / 1000;
Clock_isrs = Reload_Clock_isrs;
/* Not for our case
if ( BSP_Configuration.ticks_per_timeslice ) {
*icon = 0x6000;
Old_ticker = set_vector( (((unsigned int) clock_isr) | 0x2), CLOCK_VECTOR, 1 );
*/
#define BUS_CLOCK_1 0
#define TMR_WRITE_CNTL 8
#define TMR_AUTO_RELOAD 4
@@ -78,9 +72,6 @@ void Install_clock(
#define TMR_TERM_CNT_STAT 1
Old_ticker = set_vector( (((unsigned int) clock_isr) | 0x2), CLOCK_VECTOR, 1 );
/*
*(unsigned int *)(CLOCK_VECTOR >>2) = (unsigned int )clockHandler;
*/
/* initialize the i960RP timer 0 here */
@@ -102,13 +93,11 @@ void Clock_exit()
{
volatile unsigned int *tmr0 = (unsigned int *) TMR0_ADDR;
if ( BSP_Configuration.ticks_per_timeslice ) {
/* shut down the timer */
*tmr0 = *tmr0 & ~TMR_ENABLE;
/* shut down the timer */
*tmr0 = *tmr0 & ~TMR_ENABLE;
i960_mask_intr( 12 );
/* do not restore old vector */
}
i960_mask_intr( 12 );
/* do not restore old vector */
}
rtems_device_driver Clock_initialize(

View File

@@ -69,44 +69,38 @@ void Install_clock(
Clock_driver_ticks = 0;
Clock_isrs = BSP_Configuration.microseconds_per_tick / 1000;
if ( BSP_Configuration.ticks_per_timeslice ) {
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
Z8x36_WRITE( TIMER, MASTER_CFG, 0xd4 );
Z8x36_READ ( TIMER, MASTER_INTR, data );
Z8x36_WRITE( TIMER, MASTER_INTR, (data & 0x7E) );
Z8x36_WRITE( TIMER, CT1_TIME_CONST_MSB, 0x04 );
Z8x36_WRITE( TIMER, CT1_TIME_CONST_LSB, 0xCE );
Z8x36_WRITE( TIMER, CT1_MODE_SPEC, 0x83 );
Z8x36_WRITE( TIMER, CNT_TMR_VECTOR, CLOCK_VECTOR );
Z8x36_WRITE( TIMER, CT1_CMD_STATUS, 0x20 );
Z8x36_READ ( TIMER, MASTER_INTR, data );
Z8x36_WRITE( TIMER, MASTER_INTR, (data & 0xDA) | 0x80 );
Z8x36_WRITE( TIMER, MASTER_CFG, 0xd4 );
Z8x36_READ ( TIMER, MASTER_INTR, data );
Z8x36_WRITE( TIMER, MASTER_INTR, (data & 0x7E) );
Z8x36_WRITE( TIMER, CT1_TIME_CONST_MSB, 0x04 );
Z8x36_WRITE( TIMER, CT1_TIME_CONST_LSB, 0xCE );
Z8x36_WRITE( TIMER, CT1_MODE_SPEC, 0x83 );
Z8x36_WRITE( TIMER, CNT_TMR_VECTOR, CLOCK_VECTOR );
Z8x36_WRITE( TIMER, CT1_CMD_STATUS, 0x20 );
Z8x36_READ ( TIMER, MASTER_INTR, data );
Z8x36_WRITE( TIMER, MASTER_INTR, (data & 0xDA) | 0x80 );
/*
* ACC_IC54 - interrupt 5 will be vectored and mapped to level 6
*/
/*
* ACC_IC54 - interrupt 5 will be vectored and mapped to level 6
*/
data = (*(rtems_unsigned8 *)0x0D00000B);
(*(rtems_unsigned8 *)0x0D00000B) = (data & 0x7F) | 0x60;
data = (*(rtems_unsigned8 *)0x0D00000B);
(*(rtems_unsigned8 *)0x0D00000B) = (data & 0x7F) | 0x60;
Z8x36_WRITE( TIMER, CT1_CMD_STATUS, 0xC6 );
Z8x36_WRITE( TIMER, CT1_CMD_STATUS, 0xC6 );
atexit( Clock_exit );
}
atexit( Clock_exit );
}
void Clock_exit( void )
{
rtems_unsigned8 data;
if ( BSP_Configuration.ticks_per_timeslice ) {
Z8x36_READ ( TIMER, MASTER_INTR, data );
Z8x36_WRITE( TIMER, MASTER_INTR, (data & 0x01) );
/* do not restore old vector */
}
Z8x36_READ ( TIMER, MASTER_INTR, data );
Z8x36_WRITE( TIMER, MASTER_INTR, (data & 0x01) );
/* do not restore old vector */
}
rtems_device_driver Clock_initialize(

View File

@@ -57,31 +57,24 @@ void Install_clock(
Clock_driver_ticks = 0;
Clock_isrs = BSP_Configuration.microseconds_per_tick / 1000;
if ( BSP_Configuration.ticks_per_timeslice ) {
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
/* enable 1mS interrupts */
*PITR = (unsigned short int)( SAM(0x09,0,PITM) );/* load counter */
*PICR = (unsigned short int) /* enable interrupt */
( SAM(ISRL_PIT,8,PIRQL) | SAM(CLOCK_VECTOR,0,PIV) );
atexit( Clock_exit );
}
/* enable 1mS interrupts */
*PITR = (unsigned short int)( SAM(0x09,0,PITM) );/* load counter */
*PICR = (unsigned short int) /* enable interrupt */
( SAM(ISRL_PIT,8,PIRQL) | SAM(CLOCK_VECTOR,0,PIV) );
atexit( Clock_exit );
}
void Clock_exit( void )
{
/* shutdown the periodic interrupt */
*PICR = (unsigned short int)
( SAM(0,8,PIRQL) | SAM(CLOCK_VECTOR,0,PIV) );
/* ^^ zero disables interrupt */
if ( BSP_Configuration.ticks_per_timeslice ) {
/* shutdown the periodic interrupt */
*PICR = (unsigned short int)
( SAM(0,8,PIRQL) | SAM(CLOCK_VECTOR,0,PIV) );
/* ^^ zero disables interrupt */
/* do not restore old vector */
}
/* do not restore old vector */
}
rtems_device_driver Clock_initialize(

View File

@@ -82,27 +82,20 @@ void Install_clock(
Clock_driver_ticks = 0;
Clock_isrs = BSP_Configuration.microseconds_per_tick / 1000;
if ( BSP_Configuration.ticks_per_timeslice ) {
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
*MSR = RS; /* enable 1mS interrupts */
*ICR0 |= OME;
*MSR = RS; /* enable 1mS interrupts */
*ICR0 |= OME;
atexit( Clock_exit );
}
atexit( Clock_exit );
}
void Clock_exit( void )
{
if ( BSP_Configuration.ticks_per_timeslice ) {
/* shutdown periodic interrupt */
*MSR = RS;
*ICR0 &= 0xc0;
/* do not restore old vector */
}
/* shutdown periodic interrupt */
*MSR = RS;
*ICR0 &= 0xc0;
/* do not restore old vector */
}
rtems_device_driver Clock_initialize(

View File

@@ -83,30 +83,25 @@ void Install_clock(
rtems_isr_entry clock_isr
)
{
Clock_driver_ticks = 0;
Clock_isrs = BSP_Configuration.microseconds_per_tick / 1000;
if ( BSP_Configuration.ticks_per_timeslice ) {
set_vector( clock_isr, CLOCK_VECTOR, 1 );
set_vector( clock_isr, CLOCK_VECTOR, 1 );
m302.reg.trr1 = TRR1_VAL; /* set timer reference register */
m302.reg.tmr1 = TMR1_VAL; /* set timer mode register & enable */
/*
* Enable TIMER1 interrupts only.
*/
m302.reg.imr = RBIT_IMR_TIMER1; /* set 68302 int-mask to allow ints */
m302.reg.trr1 = TRR1_VAL; /* set timer reference register */
m302.reg.tmr1 = TMR1_VAL; /* set timer mode register & enable */
/*
* Enable TIMER1 interrupts only.
*/
m302.reg.imr = RBIT_IMR_TIMER1; /* set 68302 int-mask to allow ints */
atexit( Clock_exit );
}
atexit( Clock_exit );
}
void Clock_exit( void )
{
if ( BSP_Configuration.ticks_per_timeslice ) {
/* TODO: figure out what to do here */
/* do not restore old vector */
}
/* TODO: figure out what to do here */
/* do not restore old vector */
}
rtems_device_driver Clock_initialize(

View File

@@ -77,12 +77,10 @@ Clock_isr (rtems_vector_number vector)
void
Clock_exit (void)
{
if (BSP_Configuration.ticks_per_timeslice ) {
/*
* Turn off periodic interval timer
*/
SIMPITR = 0;
}
/*
* Turn off periodic interval timer
*/
SIMPITR = 0;
}
/******************************************************
@@ -96,34 +94,33 @@ static void
Install_clock (rtems_isr_entry clock_isr)
{
unsigned32 pitr_tmp;
unsigned32 usecs_per_tick;
Clock_driver_ticks = 0;
if ( BSP_Configuration.ticks_per_timeslice ) {
set_vector (clock_isr, CLOCK_VECTOR, 1);
set_vector (clock_isr, CLOCK_VECTOR, 1);
/* sets the Periodic Interrupt Control Register PICR */
/* voir a quoi correspond exactement le Clock Vector */
/* sets the Periodic Interrupt Control Register PICR */
/* voir a quoi correspond exactement le Clock Vector */
SIMPICR = ( CLOCK_IRQ_LEVEL << 8 ) | ( CLOCK_VECTOR );
/* sets the PITR count value */
/* this assumes a 32.765 kHz crystal */
SIMPICR = ( CLOCK_IRQ_LEVEL << 8 ) | ( CLOCK_VECTOR );
/* sets the PITR count value */
/* this assumes a 32.765 kHz crystal */
/* find out whether prescaler should be enabled or not */
if ( BSP_Configuration.microseconds_per_tick <= 31128 ) {
pitr_tmp = ( BSP_Configuration.microseconds_per_tick * 8192 ) / 1000000 ;
}
else {
pitr_tmp = ( BSP_Configuration.microseconds_per_tick / 1000000 ) * 16;
/* enable it */
pitr_tmp |= 0x100;
}
SIMPITR = (unsigned char) pitr_tmp;
atexit (Clock_exit);
usecs_per_tick = BSP_Configuration.microseconds_per_tick;
/* find out whether prescaler should be enabled or not */
if ( usecs_per_tick <= 31128 ) {
pitr_tmp = ( usecs_per_tick * 8192 ) / 1000000 ;
} else {
pitr_tmp = ( usecs_per_tick / 1000000 ) * 16;
/* enable it */
pitr_tmp |= 0x100;
}
SIMPITR = (unsigned char) pitr_tmp;
atexit (Clock_exit);
}
/******************************************************

View File

@@ -101,54 +101,50 @@ Clock_isr (rtems_vector_number vector)
void
Clock_exit (void)
{
if (BSP_Configuration.ticks_per_timeslice ) {
/*
* Turn off periodic interval timer
*/
m360.pitr &= ~0xFF;
}
/*
* Turn off periodic interval timer
*/
m360.pitr &= ~0xFF;
}
static void
Install_clock (rtems_isr_entry clock_isr)
{
Clock_driver_ticks = 0;
if ( BSP_Configuration.ticks_per_timeslice ) {
/*
* Choose periodic interval timer register value
* The rate at which the periodic interval timer
* can generate interrupts is almost certainly not
* the same as desired by the BSP configuration.
* Handle the difference by choosing the largest PIT
* interval which is less than or equal to the RTEMS
* interval and skipping some hardware interrupts.
* To reduce the jitter in the calls to RTEMS the
* hardware interrupt interval is never less than
* the maximum non-prescaled value from the PIT.
*
* For a 25 MHz external clock the basic clock rate is
* 40 nsec * 128 * 4 = 20.48 usec/tick
*/
int divisor;
extern int m360_clock_rate; /* This should be somewhere in a config file */
unsigned long nsec_per_chip_tick = 1000000000 / m360_clock_rate;
unsigned long nsec_per_pit_tick = 512 * nsec_per_chip_tick;
int divisor;
extern int m360_clock_rate; /* This should be somewhere in a config file */
unsigned long nsec_per_chip_tick = 1000000000 / m360_clock_rate;
unsigned long nsec_per_pit_tick = 512 * nsec_per_chip_tick;
rtems_nsec_per_tick = BSP_Configuration.microseconds_per_tick * 1000;
divisor = rtems_nsec_per_tick / nsec_per_pit_tick;
if (divisor >= 256) {
divisor = 255;
}
else if (divisor == 0) {
divisor = 1;
}
pit_nsec_per_tick = nsec_per_pit_tick * divisor;
m360.pitr &= ~0x1FF;
m360.picr = (CLOCK_IRQ_LEVEL << 8) | CLOCK_VECTOR;
set_vector (clock_isr, CLOCK_VECTOR, 1);
m360.pitr |= divisor;
atexit (Clock_exit);
Clock_driver_ticks = 0;
/*
* Choose periodic interval timer register value
* The rate at which the periodic interval timer
* can generate interrupts is almost certainly not
* the same as desired by the BSP configuration.
* Handle the difference by choosing the largest PIT
* interval which is less than or equal to the RTEMS
* interval and skipping some hardware interrupts.
* To reduce the jitter in the calls to RTEMS the
* hardware interrupt interval is never less than
* the maximum non-prescaled value from the PIT.
*
* For a 25 MHz external clock the basic clock rate is
* 40 nsec * 128 * 4 = 20.48 usec/tick
*/
rtems_nsec_per_tick = BSP_Configuration.microseconds_per_tick * 1000;
divisor = rtems_nsec_per_tick / nsec_per_pit_tick;
if (divisor >= 256) {
divisor = 255;
} else if (divisor == 0) {
divisor = 1;
}
pit_nsec_per_tick = nsec_per_pit_tick * divisor;
m360.pitr &= ~0x1FF;
m360.picr = (CLOCK_IRQ_LEVEL << 8) | CLOCK_VECTOR;
set_vector (clock_isr, CLOCK_VECTOR, 1);
m360.pitr |= divisor;
atexit (Clock_exit);
}
rtems_device_driver

View File

@@ -96,37 +96,35 @@ rtems_isr_entry clock_isr;
Clock_driver_ticks = 0;
Clock_isrs = (int)(Configuration.microseconds_per_tick / 1000);
if ( Configuration.ticks_per_timeslice ) {
/* led_putnum('c'); * for debugging purposes */
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
/* Disable timer for initialization */
MC68230_WRITE (TCR, 0x00);
/* Disable timer for initialization */
MC68230_WRITE (TCR, 0x00);
/* some PI/T initialization stuff here -- see comment in the ckisr.c
file in this directory to understand why I use the values that I do */
/* Set up the interrupt vector on the MC68230 chip:
TIVR = CLOCK_VECTOR; */
MC68230_WRITE (TIVR, CLOCK_VECTOR);
/* some PI/T initialization stuff here -- see comment in the ckisr.c
file in this directory to understand why I use the values that I do */
/* Set up the interrupt vector on the MC68230 chip:
TIVR = CLOCK_VECTOR; */
MC68230_WRITE (TIVR, CLOCK_VECTOR);
/* Set CPRH through CPRL to 193 (not 203) decimal for countdown--see ckisr.c
CPRH = 0x00;
CPRM = 0x00;
CPRL = 0xC1; */
MC68230_WRITE (CPRH, 0x00);
MC68230_WRITE (CPRM, 0x00);
MC68230_WRITE (CPRL, 0xC1);
/* Set CPRH through CPRL to 193 (not 203) decimal for countdown--see ckisr.c
CPRH = 0x00;
CPRM = 0x00;
CPRL = 0xC1; */
MC68230_WRITE (CPRH, 0x00);
MC68230_WRITE (CPRM, 0x00);
MC68230_WRITE (CPRL, 0xC1);
/* Enable timer and use it as an external periodic interrupt generator
TCR = 0xA1; */
/* Enable timer and use it as an external periodic interrupt generator
TCR = 0xA1; */
/* led_putnum('a'); * for debugging purposes */
MC68230_WRITE (TCR, 0xA1);
MC68230_WRITE (TCR, 0xA1);
/*
* Schedule the clock cleanup routine to execute if the application exits.
*/
atexit( Clock_exit );
}
/*
* Schedule the clock cleanup routine to execute if the application exits.
*/
atexit( Clock_exit );
}
/* The following was added for debugging purposes */
@@ -134,16 +132,13 @@ void Clock_exit( void )
{
rtems_unsigned8 data;
if ( Configuration.ticks_per_timeslice ) {
/* disable timer
data = TCR;
TCR = (data & 0xFE); */
MC68230_READ (TCR, data);
MC68230_WRITE (TCR, (data & 0xFE));
/* disable timer
data = TCR;
TCR = (data & 0xFE); */
MC68230_READ (TCR, data);
MC68230_WRITE (TCR, (data & 0xFE));
/* do not restore old vector */
}
/* do not restore old vector */
}
rtems_device_driver Clock_initialize(

View File

@@ -81,44 +81,39 @@ void Install_clock(
Clock_driver_ticks = 0;
Clock_isrs = BSP_Configuration.microseconds_per_tick / 1000;
if ( BSP_Configuration.ticks_per_timeslice ) {
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
timer = (struct z8036_map *) 0xfffb0000;
timer->MASTER_INTR = MICRVAL;
timer->CT1_MODE_SPEC = T1MSRVAL;
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
timer = (struct z8036_map *) 0xfffb0000;
timer->MASTER_INTR = MICRVAL;
timer->CT1_MODE_SPEC = T1MSRVAL;
*((rtems_unsigned16 *)0xfffb0016) = MS_COUNT; /* write countdown value */
*((rtems_unsigned16 *)0xfffb0016) = MS_COUNT; /* write countdown value */
/*
* timer->CT1_TIME_CONST_MSB = (MS_COUNT >> 8);
* timer->CT1_TIME_CONST_LSB = (MS_COUNT & 0xff);
*/
/*
* timer->CT1_TIME_CONST_MSB = (MS_COUNT >> 8);
* timer->CT1_TIME_CONST_LSB = (MS_COUNT & 0xff);
*/
timer->MASTER_CFG = MCCRVAL;
timer->CT1_CMD_STATUS = T1CSRVAL;
timer->MASTER_CFG = MCCRVAL;
timer->CT1_CMD_STATUS = T1CSRVAL;
/*
* Enable interrupt via VME interrupt mask register
*/
(*(rtems_unsigned8 *)0xfffb0038) &= 0xfd;
atexit( Clock_exit );
}
/*
* Enable interrupt via VME interrupt mask register
*/
(*(rtems_unsigned8 *)0xfffb0038) &= 0xfd;
atexit( Clock_exit );
}
void Clock_exit( void )
{
volatile struct z8036_map *timer;
if ( BSP_Configuration.ticks_per_timeslice ) {
timer = (struct z8036_map *) 0xfffb0000;
timer->MASTER_INTR = 0x62;
timer->CT1_MODE_SPEC = 0x00;
timer->MASTER_CFG = 0xf4;
timer->CT1_CMD_STATUS = 0x00;
/* do not restore old vector */
}
timer = (struct z8036_map *) 0xfffb0000;
timer->MASTER_INTR = 0x62;
timer->CT1_MODE_SPEC = 0x00;
timer->MASTER_CFG = 0xf4;
timer->CT1_CMD_STATUS = 0x00;
/* do not restore old vector */
}
rtems_device_driver Clock_initialize(

View File

@@ -67,26 +67,21 @@ void Install_clock(rtems_isr_entry clock_isr )
Clock_driver_ticks = 0;
Clock_isrs = BSP_Configuration.microseconds_per_tick / 1000;
if ( BSP_Configuration.ticks_per_timeslice ) {
Old_ticker =
(rtems_isr_entry) set_vector( clock_isr, TIMER_2_VECTOR, 1 );
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, TIMER_2_VECTOR, 1 );
pcc->timer2_int_control = 0x00; /* Disable T2 Interr. */
pcc->timer2_preload = MS_COUNT;
/* write preload value */
pcc->timer2_control = 0x07; /* clear T2 overflow counter, enable counter */
pcc->timer2_int_control = CLOCK_INT_LEVEL|0x08;
/* Enable Timer 2 and set its int. level */
pcc->timer2_int_control = 0x00; /* Disable T2 Interr. */
pcc->timer2_preload = MS_COUNT;
/* write preload value */
pcc->timer2_control = 0x07; /* clear T2 overflow counter, enable counter */
pcc->timer2_int_control = CLOCK_INT_LEVEL|0x08;
/* Enable Timer 2 and set its int. level */
atexit( Clock_exit );
}
atexit( Clock_exit );
}
void Clock_exit( void )
{
if ( BSP_Configuration.ticks_per_timeslice ) {
pcc->timer2_int_control = 0x00; /* Disable T2 Interr. */
}
pcc->timer2_int_control = 0x00; /* Disable T2 Interr. */
}
rtems_device_driver Clock_initialize(

View File

@@ -71,21 +71,18 @@ void Install_clock(rtems_isr_entry clock_isr )
Clock_driver_ticks = 0;
Clock_isrs = BSP_Configuration.microseconds_per_tick / 1000;
if ( BSP_Configuration.ticks_per_timeslice ) {
Old_ticker =
(rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
lcsr->vector_base |= MASK_INT; /* unmask VMEchip2 interrupts */
lcsr->to_ctl = 0xE7; /* prescaler to 1 MHz (see Appendix A1) */
lcsr->timer_cmp_2 = MS_COUNT;
lcsr->timer_cnt_2 = 0; /* clear counter */
lcsr->board_ctl |= 0x700; /* increment, reset-on-compare, and */
/* clear-overflow-cnt */
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
lcsr->vector_base |= MASK_INT; /* unmask VMEchip2 interrupts */
lcsr->to_ctl = 0xE7; /* prescaler to 1 MHz (see Appendix A1) */
lcsr->timer_cmp_2 = MS_COUNT;
lcsr->timer_cnt_2 = 0; /* clear counter */
lcsr->board_ctl |= 0x700; /* increment, reset-on-compare, and */
/* clear-overflow-cnt */
lcsr->intr_level[0] |= CLOCK_INT_LEVEL * 0x10; /* set int level */
lcsr->intr_ena |= 0x02000000; /* enable tick timer 2 interrupt */
lcsr->intr_level[0] |= CLOCK_INT_LEVEL * 0x10; /* set int level */
lcsr->intr_ena |= 0x02000000; /* enable tick timer 2 interrupt */
atexit( Clock_exit );
}
atexit( Clock_exit );
}
void Clock_exit( void )

View File

@@ -156,21 +156,19 @@ void VMEchip2_T2_initialize( void )
Clock_driver_ticks = 0;
Clock_isrs = BSP_Configuration.microseconds_per_tick / 1000;
if ( BSP_Configuration.ticks_per_timeslice ) {
lcsr->intr_ena &= 0xFDFFFFFF; /* Disable tick timer 2 interrupt */
lcsr->intr_clear = 0x02000000; /* Clear tick timer 2 interrupt */
lcsr->intr_level[0] = /* Set tick timer 2 interrupt level */
(lcsr->intr_level[0] & 0xFFFFFF0F ) | (CLOCK_INT_LEVEL << 4);
lcsr->timer_cmp_2 = MS_COUNT; /* Period in compare register */
lcsr->timer_cnt_2 = 0; /* Clear tick timer 2 counter */
Old_ticker = /* Install C ISR */
(rtems_isr_entry) set_vector( VMEchip2_T2_isr, CLOCK_VECTOR, 1 );
lcsr->board_ctl |= 0x700; /* Start tick timer 2, reset-on-compare, */
/* and clear tick timer 2 overflow counter */
lcsr->intr_ena |= 0x02000000; /* Enable tick timer 2 interrupt */
lcsr->vector_base |= 0x00800000;/* Unmask VMEchip2 interrupts */
atexit( clock_exit ); /* Turn off T2 interrupts when we exit */
}
lcsr->intr_ena &= 0xFDFFFFFF; /* Disable tick timer 2 interrupt */
lcsr->intr_clear = 0x02000000; /* Clear tick timer 2 interrupt */
lcsr->intr_level[0] = /* Set tick timer 2 interrupt level */
(lcsr->intr_level[0] & 0xFFFFFF0F ) | (CLOCK_INT_LEVEL << 4);
lcsr->timer_cmp_2 = MS_COUNT; /* Period in compare register */
lcsr->timer_cnt_2 = 0; /* Clear tick timer 2 counter */
Old_ticker = /* Install C ISR */
(rtems_isr_entry) set_vector( VMEchip2_T2_isr, CLOCK_VECTOR, 1 );
lcsr->board_ctl |= 0x700; /* Start tick timer 2, reset-on-compare, */
/* and clear tick timer 2 overflow counter */
lcsr->intr_ena |= 0x02000000; /* Enable tick timer 2 interrupt */
lcsr->vector_base |= 0x00800000;/* Unmask VMEchip2 interrupts */
atexit( clock_exit ); /* Turn off T2 interrupts when we exit */
}
@@ -189,13 +187,11 @@ void VMEchip2_T2_initialize( void )
*/
void clock_exit( void )
{
if ( BSP_Configuration.ticks_per_timeslice ) {
lcsr->board_ctl &= 0xFFFFFEFF; /* Stop tick timer 2 */
lcsr->intr_ena &= 0xFDFFFFFF; /* Disable tick timer 2 interrupt */
lcsr->intr_clear = 0x02000000; /* Clear tick timer 2 interrupt */
lcsr->board_ctl &= 0xFFFFFEFF; /* Stop tick timer 2 */
lcsr->intr_ena &= 0xFDFFFFFF; /* Disable tick timer 2 interrupt */
lcsr->intr_clear = 0x02000000; /* Clear tick timer 2 interrupt */
set_vector( Old_ticker, CLOCK_VECTOR, 1 );
}
set_vector( Old_ticker, CLOCK_VECTOR, 1 );
}

View File

@@ -87,26 +87,22 @@ void Install_clock(
Clock_driver_ticks = 0;
Clock_isrs = BSP_Configuration.microseconds_per_tick / 1000;
if ( BSP_Configuration.ticks_per_timeslice ) {
set_vector( clock_isr, CLOCK_VECTOR, 1 );
set_vector( clock_isr, CLOCK_VECTOR, 1 );
m302.reg.trr1 = TRR1_VAL; /* set timer reference register */
m302.reg.tmr1 = TMR1_VAL; /* set timer mode register & enable */
/*
* Enable TIMER1 interrupts only.
*/
m302.reg.imr = RBIT_IMR_TIMER1; /* set 68302 int-mask to allow ints */
m302.reg.trr1 = TRR1_VAL; /* set timer reference register */
m302.reg.tmr1 = TMR1_VAL; /* set timer mode register & enable */
/*
* Enable TIMER1 interrupts only.
*/
m302.reg.imr = RBIT_IMR_TIMER1; /* set 68302 int-mask to allow ints */
atexit( Clock_exit );
}
atexit( Clock_exit );
}
void Clock_exit( void )
{
if ( BSP_Configuration.ticks_per_timeslice ) {
/* TODO: figure out what to do here */
/* do not restore old vector */
}
/* TODO: figure out what to do here */
/* do not restore old vector */
}
rtems_device_driver Clock_initialize(

View File

@@ -98,19 +98,12 @@ void Install_clock(
Clock_driver_ticks = 0;
Clock_isrs = BSP_Configuration.microseconds_per_tick / 1000;
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
/*
* If ticks_per_timeslice is configured as non-zero, then the user
* wants a clock tick.
* Hardware specific initialize goes here
*/
if ( BSP_Configuration.ticks_per_timeslice ) {
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
/*
* Hardware specific initialize goes here
*/
/* XXX */
}
/* XXX */
/*
* Schedule the clock cleanup routine to execute if the application exits.
@@ -125,12 +118,9 @@ void Install_clock(
void Clock_exit( void )
{
if ( BSP_Configuration.ticks_per_timeslice ) {
/* XXX: turn off the timer interrupts */
/* XXX: turn off the timer interrupts */
/* XXX: If necessary, restore the old vector */
}
/* XXX: If necessary, restore the old vector */
}
/*

View File

@@ -119,13 +119,11 @@ void Install_clock(
{
Clock_driver_ticks = 0;
if ( BSP_Configuration.ticks_per_timeslice ) {
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
PPC_Set_decrementer( Clock_Decrementer_value );
PPC_Set_decrementer( Clock_Decrementer_value );
atexit( Clock_exit );
}
atexit( Clock_exit );
}
/*PAGE
@@ -145,12 +143,9 @@ void Install_clock(
void Clock_exit( void )
{
if ( BSP_Configuration.ticks_per_timeslice ) {
/* nothing to do */;
/* nothing to do */;
/* do not restore old vector */
}
/* do not restore old vector */
}
/*PAGE

View File

@@ -117,13 +117,11 @@ void Install_clock(
{
Clock_driver_ticks = 0;
if ( BSP_Configuration.ticks_per_timeslice ) {
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
PPC_Set_decrementer( Clock_Decrementer_value );
PPC_Set_decrementer( Clock_Decrementer_value );
atexit( Clock_exit );
}
atexit( Clock_exit );
}
/*
@@ -142,12 +140,9 @@ void Install_clock(
void Clock_exit( void )
{
if ( BSP_Configuration.ticks_per_timeslice ) {
/* nothing to do */;
/* nothing to do */;
/* do not restore old vector */
}
/* do not restore old vector */
}
/*

View File

@@ -122,14 +122,11 @@ void Install_clock(
{
Clock_driver_ticks = 0;
if ( BSP_Configuration.ticks_per_timeslice ) {
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
PPC_Set_decrementer( CPU_PPC_CLICKS_PER_TICK );
atexit( Clock_exit );
}
PPC_Set_decrementer( CPU_PPC_CLICKS_PER_TICK );
atexit( Clock_exit );
}
/*
@@ -148,12 +145,9 @@ void Install_clock(
void Clock_exit( void )
{
if ( BSP_Configuration.ticks_per_timeslice ) {
/* nothing to do */;
/* nothing to do */;
/* do not restore old vector */
}
/* do not restore old vector */
}
/*

View File

@@ -117,13 +117,11 @@ void Install_clock(
{
Clock_driver_ticks = 0;
if ( BSP_Configuration.ticks_per_timeslice ) {
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
PPC_Set_decrementer( Clock_Decrementer_value );
PPC_Set_decrementer( Clock_Decrementer_value );
atexit( Clock_exit );
}
atexit( Clock_exit );
}
/*
@@ -142,12 +140,9 @@ void Install_clock(
void Clock_exit( void )
{
if ( BSP_Configuration.ticks_per_timeslice ) {
/* nothing to do */;
/* nothing to do */;
/* do not restore old vector */
}
/* do not restore old vector */
}
/*

View File

@@ -128,27 +128,24 @@ void Install_clock(
{
Clock_driver_ticks = 0;
if ( BSP_Configuration.ticks_per_timeslice ) {
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
/* approximately 1 us per countdown */
ERC32_MEC.Real_Time_Clock_Scalar = CLOCK_SPEED - 1;
ERC32_MEC.Real_Time_Clock_Counter = CPU_SPARC_CLICKS_PER_TICK;
/* approximately 1 us per countdown */
ERC32_MEC.Real_Time_Clock_Scalar = CLOCK_SPEED - 1;
ERC32_MEC.Real_Time_Clock_Counter = CPU_SPARC_CLICKS_PER_TICK;
ERC32_MEC_Set_Real_Time_Clock_Timer_Control(
ERC32_MEC_TIMER_COUNTER_ENABLE_COUNTING |
ERC32_MEC_TIMER_COUNTER_LOAD_SCALER |
ERC32_MEC_TIMER_COUNTER_LOAD_COUNTER
);
ERC32_MEC_Set_Real_Time_Clock_Timer_Control(
ERC32_MEC_TIMER_COUNTER_ENABLE_COUNTING |
ERC32_MEC_TIMER_COUNTER_LOAD_SCALER |
ERC32_MEC_TIMER_COUNTER_LOAD_COUNTER
);
ERC32_MEC_Set_Real_Time_Clock_Timer_Control(
ERC32_MEC_TIMER_COUNTER_ENABLE_COUNTING |
ERC32_MEC_TIMER_COUNTER_RELOAD_AT_ZERO
);
atexit( Clock_exit );
}
ERC32_MEC_Set_Real_Time_Clock_Timer_Control(
ERC32_MEC_TIMER_COUNTER_ENABLE_COUNTING |
ERC32_MEC_TIMER_COUNTER_RELOAD_AT_ZERO
);
atexit( Clock_exit );
}
/*
@@ -167,15 +164,13 @@ void Install_clock(
void Clock_exit( void )
{
if ( BSP_Configuration.ticks_per_timeslice ) {
ERC32_Mask_interrupt( ERC32_INTERRUPT_REAL_TIME_CLOCK );
ERC32_Mask_interrupt( ERC32_INTERRUPT_REAL_TIME_CLOCK );
ERC32_MEC_Set_Real_Time_Clock_Timer_Control(
ERC32_MEC_TIMER_COUNTER_DISABLE_COUNTING
);
ERC32_MEC_Set_Real_Time_Clock_Timer_Control(
ERC32_MEC_TIMER_COUNTER_DISABLE_COUNTING
);
/* do not restore old vector */
}
/* do not restore old vector */
}
/*

View File

@@ -101,20 +101,18 @@ void Install_clock(rtems_isr_entry clock_isr)
Clock_isrs = rtems_configuration_get_milliseconds_per_tick();
if ( rtems_configuration_get_ticks_per_timeslice() ) {
/*
* initialize the interval here
* First tick is set to right amount of time in the future
* Future ticks will be incremented over last value set
* in order to provide consistent clicks in the face of
* interrupt overhead
*/
/*
* initialize the interval here
* First tick is set to right amount of time in the future
* Future ticks will be incremented over last value set
* in order to provide consistent clicks in the face of
* interrupt overhead
*/
Clock_clicks_interrupt = Clock_read_itimer() + CPU_HPPA_CLICKS_PER_TICK;
set_itimer((rtems_unsigned32) Clock_clicks_interrupt);
Clock_clicks_interrupt = Clock_read_itimer() + CPU_HPPA_CLICKS_PER_TICK;
set_itimer((rtems_unsigned32) Clock_clicks_interrupt);
(void) set_vector(clock_isr, HPPA_INTERRUPT_EXTERNAL_INTERVAL_TIMER, 1);
}
(void) set_vector(clock_isr, HPPA_INTERRUPT_EXTERNAL_INTERVAL_TIMER, 1);
atexit(Clock_exit);
}
@@ -186,9 +184,7 @@ Clock_isr(rtems_vector_number vector)
void
Clock_exit(void)
{
if ( rtems_configuration_get_ticks_per_timeslice() ) {
(void) set_vector(0, HPPA_INTERRUPT_EXTERNAL_INTERVAL_TIMER, 1);
}
(void) set_vector(0, HPPA_INTERRUPT_EXTERNAL_INTERVAL_TIMER, 1);
}
/*

View File

@@ -160,21 +160,15 @@ void Install_clock(
Clock_driver_ticks = 0;
Clock_isrs = rtems_configuration_get_milliseconds_per_tick();
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
/*
* If ticks_per_timeslice is configured as non-zero, then the user
* wants a clock tick.
* Hardware specific initialize goes here
*/
if ( rtems_configuration_get_ticks_per_timeslice() ) {
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
/*
* Hardware specific initialize goes here
*/
mips_timer_rate = rtems_configuration_get_microseconds_per_tick() * CLOCKS_PER_MICROSECOND;
mips_set_timer( mips_timer_rate );
enable_int(CLOCK_VECTOR_MASK);
}
mips_timer_rate =
rtems_configuration_get_microseconds_per_tick() * CLOCKS_PER_MICROSECOND;
mips_set_timer( mips_timer_rate );
enable_int(CLOCK_VECTOR_MASK);
/*
* Schedule the clock cleanup routine to execute if the application exits.
@@ -189,10 +183,8 @@ void Install_clock(
void Clock_exit( void )
{
if ( rtems_configuration_get_ticks_per_timeslice() ) {
/* mips: turn off the timer interrupts */
disable_int(~CLOCK_VECTOR_MASK);
}
/* mips: turn off the timer interrupts */
disable_int(~CLOCK_VECTOR_MASK);
}
/*

View File

@@ -160,21 +160,15 @@ void Install_clock(
Clock_driver_ticks = 0;
Clock_isrs = rtems_configuration_get_milliseconds_per_tick();
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
/*
* If ticks_per_timeslice is configured as non-zero, then the user
* wants a clock tick.
* Hardware specific initialize goes here
*/
if ( rtems_configuration_get_ticks_per_timeslice() ) {
Old_ticker = (rtems_isr_entry) set_vector( clock_isr, CLOCK_VECTOR, 1 );
/*
* Hardware specific initialize goes here
*/
mips_timer_rate = rtems_configuration_get_microseconds_per_tick() * CLOCKS_PER_MICROSECOND;
mips_set_timer( mips_timer_rate );
enable_int(CLOCK_VECTOR_MASK);
}
mips_timer_rate =
rtems_configuration_get_microseconds_per_tick() * CLOCKS_PER_MICROSECOND;
mips_set_timer( mips_timer_rate );
enable_int(CLOCK_VECTOR_MASK);
/*
* Schedule the clock cleanup routine to execute if the application exits.
@@ -189,10 +183,8 @@ void Install_clock(
void Clock_exit( void )
{
if ( rtems_configuration_get_ticks_per_timeslice() ) {
/* mips: turn off the timer interrupts */
disable_int(~CLOCK_VECTOR_MASK);
}
/* mips: turn off the timer interrupts */
disable_int(~CLOCK_VECTOR_MASK);
}
/*

View File

@@ -48,12 +48,10 @@ rtems_device_minor_number rtems_clock_minor;
void clockOff(void* unused)
{
if (BSP_Configuration.ticks_per_timeslice) {
/*
* Nothing to do as we cannot disable all interrupts and
* the decrementer interrupt enable is MSR_EE
*/
}
/*
* Nothing to do as we cannot disable all interrupts and
* the decrementer interrupt enable is MSR_EE
*/
}
void clockOn(void* unused)
{
@@ -116,9 +114,7 @@ int clockIsOn(void* unused)
void Clock_exit( void )
{
if ( BSP_Configuration.ticks_per_timeslice ) {
(void) BSP_disconnect_clock_handler ();
}
(void) BSP_disconnect_clock_handler ();
}
/*

View File

@@ -81,28 +81,26 @@ void Install_clock(rtems_isr_entry clock_isr)
if (pit_value > 0xffff) { /* pit is only 16 bits long */
rtems_fatal_error_occurred(-1);
}
if ( rtems_configuration_get_ticks_per_timeslice() ) {
/*
* initialize the interval here
* First tick is set to right amount of time in the future
* Future ticks will be incremented over last value set
* in order to provide consistent clicks in the face of
* interrupt overhead
*/
rtems_interrupt_catch(clock_isr, PPC_IRQ_LVL0, &previous_isr);
/*
* initialize the interval here
* First tick is set to right amount of time in the future
* Future ticks will be incremented over last value set
* in order to provide consistent clicks in the face of
* interrupt overhead
*/
m821.sccr &= ~(1<<24);
m821.pitc = pit_value;
rtems_interrupt_catch(clock_isr, PPC_IRQ_LVL0, &previous_isr);
/* set PIT irq level, enable PIT, PIT interrupts */
/* and clear int. status */
m821.piscr = M821_PISCR_PIRQ(0) |
M821_PISCR_PTE | M821_PISCR_PS | M821_PISCR_PIE;
m821.sccr &= ~(1<<24);
m821.pitc = pit_value;
/* set PIT irq level, enable PIT, PIT interrupts */
/* and clear int. status */
m821.piscr = M821_PISCR_PIRQ(0) |
M821_PISCR_PTE | M821_PISCR_PS | M821_PISCR_PIE;
m821.simask |= M821_SIMASK_LVM0;
}
m821.simask |= M821_SIMASK_LVM0;
atexit(Clock_exit);
}
@@ -127,12 +125,10 @@ ReInstall_clock(rtems_isr_entry new_clock_isr)
void
Clock_exit(void)
{
if ( rtems_configuration_get_ticks_per_timeslice() ) {
/* disable PIT and PIT interrupts */
m821.piscr &= ~(M821_PISCR_PTE | M821_PISCR_PIE);
(void) set_vector(0, PPC_IRQ_LVL0, 1);
}
/* disable PIT and PIT interrupts */
m821.piscr &= ~(M821_PISCR_PTE | M821_PISCR_PIE);
(void) set_vector(0, PPC_IRQ_LVL0, 1);
}
rtems_device_driver Clock_initialize(

View File

@@ -82,28 +82,26 @@ void Install_clock(rtems_isr_entry clock_isr)
if (pit_value > 0xffff) { /* pit is only 16 bits long */
rtems_fatal_error_occurred(-1);
}
if ( rtems_configuration_get_ticks_per_timeslice() ) {
/*
* initialize the interval here
* First tick is set to right amount of time in the future
* Future ticks will be incremented over last value set
* in order to provide consistent clicks in the face of
* interrupt overhead
*/
/*
* initialize the interval here
* First tick is set to right amount of time in the future
* Future ticks will be incremented over last value set
* in order to provide consistent clicks in the face of
* interrupt overhead
*/
rtems_interrupt_catch(clock_isr, PPC_IRQ_LVL0, &previous_isr);
rtems_interrupt_catch(clock_isr, PPC_IRQ_LVL0, &previous_isr);
m860.sccr &= ~(1<<24);
m860.pitc = pit_value;
m860.sccr &= ~(1<<24);
m860.pitc = pit_value;
/* set PIT irq level, enable PIT, PIT interrupts */
/* and clear int. status */
m860.piscr = M860_PISCR_PIRQ(0) |
M860_PISCR_PTE | M860_PISCR_PS | M860_PISCR_PIE;
/* set PIT irq level, enable PIT, PIT interrupts */
/* and clear int. status */
m860.piscr = M860_PISCR_PIRQ(0) |
M860_PISCR_PTE | M860_PISCR_PS | M860_PISCR_PIE;
m860.simask |= M860_SIMASK_LVM0;
}
m860.simask |= M860_SIMASK_LVM0;
atexit(Clock_exit);
}
@@ -128,12 +126,10 @@ ReInstall_clock(rtems_isr_entry new_clock_isr)
void
Clock_exit(void)
{
if ( rtems_configuration_get_ticks_per_timeslice() ) {
/* disable PIT and PIT interrupts */
m860.piscr &= ~(M860_PISCR_PTE | M860_PISCR_PIE);
/* disable PIT and PIT interrupts */
m860.piscr &= ~(M860_PISCR_PTE | M860_PISCR_PIE);
(void) set_vector(0, PPC_IRQ_LVL0, 1);
}
(void) set_vector(0, PPC_IRQ_LVL0, 1);
}
rtems_device_driver Clock_initialize(

View File

@@ -132,6 +132,7 @@ void Install_clock(rtems_isr_entry clock_isr)
{
rtems_isr_entry previous_isr;
rtems_unsigned32 pvr, iocr;
register rtems_unsigned32 tcr;
Clock_driver_ticks = 0;
@@ -164,31 +165,29 @@ void Install_clock(rtems_isr_entry clock_isr)
pit_value = rtems_configuration_get_microseconds_per_tick() *
rtems_cpu_configuration_get_clicks_per_usec();
if ( rtems_configuration_get_ticks_per_timeslice() ) {
register rtems_unsigned32 tcr;
/*
* initialize the interval here
* First tick is set to right amount of time in the future
* Future ticks will be incremented over last value set
* in order to provide consistent clicks in the face of
* interrupt overhead
*/
/*
* initialize the interval here
* First tick is set to right amount of time in the future
* Future ticks will be incremented over last value set
* in order to provide consistent clicks in the face of
* interrupt overhead
*/
rtems_interrupt_catch(clock_isr, PPC_IRQ_PIT, &previous_isr);
asm volatile ("mtspr 0x3db, %0" : : "r" (pit_value)); /* PIT */
rtems_interrupt_catch(clock_isr, PPC_IRQ_PIT, &previous_isr);
asm volatile ("mfspr %0, 0x3da" : "=r" ((tcr))); /* TCR */
asm volatile ("mtspr 0x3db, %0" : : "r" (pit_value)); /* PIT */
tcr &= ~ 0x04400000;
asm volatile ("mfspr %0, 0x3da" : "=r" ((tcr))); /* TCR */
tcr |= (auto_restart ? 0x04400000 : 0x04000000);
tcr &= ~ 0x04400000;
tick_time = get_itimer() + pit_value;
tcr |= (auto_restart ? 0x04400000 : 0x04000000);
tick_time = get_itimer() + pit_value;
asm volatile ("mtspr 0x3da, %0" : "=r" ((tcr)) : "0" ((tcr))); /* TCR */
}
asm volatile ("mtspr 0x3da, %0" : "=r" ((tcr)) : "0" ((tcr))); /* TCR */
atexit(Clock_exit);
}
@@ -214,18 +213,15 @@ ReInstall_clock(rtems_isr_entry new_clock_isr)
void
Clock_exit(void)
{
if ( rtems_configuration_get_ticks_per_timeslice() ) {
register rtems_unsigned32 tcr;
register rtems_unsigned32 tcr;
asm volatile ("mfspr %0, 0x3da" : "=r" ((tcr))); /* TCR */
asm volatile ("mfspr %0, 0x3da" : "=r" ((tcr))); /* TCR */
tcr &= ~ 0x04400000;
tcr &= ~ 0x04400000;
asm volatile ("mtspr 0x3da, %0" : "=r" ((tcr)) : "0" ((tcr))); /* TCR */
asm volatile ("mtspr 0x3da, %0" : "=r" ((tcr)) : "0" ((tcr))); /* TCR */
(void) set_vector(0, PPC_IRQ_PIT, 1);
}
(void) set_vector(0, PPC_IRQ_PIT, 1);
}
rtems_device_driver Clock_initialize(

View File

@@ -223,58 +223,50 @@ void Install_clock(
Clock_limit = cclicks_per_tick / Clock_isrs_const ;
Clock_isrs = Clock_isrs_const;
rtems_interrupt_catch( Clock_isr, CLOCK_VECTOR, &Old_ticker );
/*
* If ticks_per_timeslice is configured as non-zero, then the user
* wants a clock tick.
* Hardware specific initialize goes here
*/
/* stop Timer 0 */
temp8 = read8( ITU_TSTR) & ITU0_STARTMASK;
write8( temp8, ITU_TSTR);
if ( rtems_configuration_get_ticks_per_timeslice() ) {
rtems_interrupt_catch( Clock_isr, CLOCK_VECTOR, &Old_ticker );
/*
* Hardware specific initialize goes here
*/
/* set initial counter value to 0 */
write16( 0, ITU_TCNT0);
/* Timer 0 runs independent */
temp8 = read8( ITU_TSNC) & ITU0_SYNCMASK;
write8( temp8, ITU_TSNC);
/* Timer 0 normal mode */
temp8 = read8( ITU_TMDR) & ITU0_MODEMASK;
write8( temp8, ITU_TMDR);
/* TCNT is cleared by GRA ; internal clock /4 */
write8( ITU0_TCRMASK , ITU_TCR0);
/* use GRA without I/O - pins */
write8( ITU0_TIORVAL, ITU_TIOR0);
/* stop Timer 0 */
temp8 = read8( ITU_TSTR) & ITU0_STARTMASK;
write8( temp8, ITU_TSTR);
/* reset flags of the status register */
temp8 = read8( ITU_TSR0) & ITU_STAT_MASK;
write8( temp8, ITU_TSR0);
/* set initial counter value to 0 */
write16( 0, ITU_TCNT0);
/* Irq if is equal GRA */
temp8 = read8( ITU_TIER0) | ITU0_TIERMASK;
write8( temp8, ITU_TIER0);
/* Timer 0 runs independent */
temp8 = read8( ITU_TSNC) & ITU0_SYNCMASK;
write8( temp8, ITU_TSNC);
/* set interrupt priority */
if( sh_set_irq_priority( CLOCK_VECTOR, CLOCKPRIO ) != RTEMS_SUCCESSFUL)
rtems_fatal_error_occurred( RTEMS_NOT_CONFIGURED);
/* Timer 0 normal mode */
temp8 = read8( ITU_TMDR) & ITU0_MODEMASK;
write8( temp8, ITU_TMDR);
/* TCNT is cleared by GRA ; internal clock /4 */
write8( ITU0_TCRMASK , ITU_TCR0);
/* use GRA without I/O - pins */
write8( ITU0_TIORVAL, ITU_TIOR0);
/* reset flags of the status register */
temp8 = read8( ITU_TSR0) & ITU_STAT_MASK;
write8( temp8, ITU_TSR0);
/* Irq if is equal GRA */
temp8 = read8( ITU_TIER0) | ITU0_TIERMASK;
write8( temp8, ITU_TIER0);
/* set interrupt priority */
if( sh_set_irq_priority( CLOCK_VECTOR, CLOCKPRIO ) != RTEMS_SUCCESSFUL)
rtems_fatal_error_occurred( RTEMS_NOT_CONFIGURED);
/* set counter limits */
write16( Clock_limit, ITU_GRA0);
/* set counter limits */
write16( Clock_limit, ITU_GRA0);
/* start counter */
temp8 = read8( ITU_TSTR) |~ITU0_STARTMASK;
write8( temp8, ITU_TSTR);
}
/* start counter */
temp8 = read8( ITU_TSTR) |~ITU0_STARTMASK;
write8( temp8, ITU_TSTR);
/*
* Schedule the clock cleanup routine to execute if the application exits.
@@ -290,24 +282,22 @@ void Install_clock(
void Clock_exit( void )
{
unsigned8 temp8 = 0;
if ( rtems_configuration_get_ticks_per_timeslice() ) {
/* turn off the timer interrupts */
/* set interrupt priority to 0 */
if( sh_set_irq_priority( CLOCK_VECTOR, 0 ) != RTEMS_SUCCESSFUL)
rtems_fatal_error_occurred( RTEMS_UNSATISFIED);
/* turn off the timer interrupts */
/* set interrupt priority to 0 */
if( sh_set_irq_priority( CLOCK_VECTOR, 0 ) != RTEMS_SUCCESSFUL)
rtems_fatal_error_occurred( RTEMS_UNSATISFIED);
/*
* temp16 = read16( ITU_TIER0) & IPRC_ITU0_IRQMASK;
* write16( temp16, ITU_TIER0);
*/
/* stop counter */
temp8 = read8( ITU_TSTR) & ITU0_STARTMASK;
write8( temp8, ITU_TSTR);
/* stop counter */
temp8 = read8( ITU_TSTR) & ITU0_STARTMASK;
write8( temp8, ITU_TSTR);
/* old vector shall not be installed */
}
/* old vector shall not be installed */
}
/*

View File

@@ -161,61 +161,52 @@ void Install_clock(
Clock_MHZ = rtems_cpu_configuration_get_clicks_per_second() / 1000000 ;
rtems_interrupt_catch( Clock_isr, CLOCK_VECTOR, &Old_ticker );
/*
* If ticks_per_timeslice is configured as non-zero, then the user
* wants a clock tick.
* Hardware specific initialize goes here
*/
if ( rtems_configuration_get_ticks_per_timeslice() ) {
rtems_interrupt_catch( Clock_isr, CLOCK_VECTOR, &Old_ticker );
/*
* Hardware specific initialize goes here
*/
/* stop Timer 0 */
temp8 = read8( MTU_TSTR) & MTU0_STARTMASK;
write8( temp8, MTU_TSTR);
/* stop Timer 0 */
temp8 = read8( MTU_TSTR) & MTU0_STARTMASK;
write8( temp8, MTU_TSTR);
/* set initial counter value to 0 */
write16( 0, MTU_TCNT0);
/* set initial counter value to 0 */
write16( 0, MTU_TCNT0);
/* Timer 0 runs independent */
temp8 = read8( MTU_TSYR) & MTU0_SYNCMASK;
write8( temp8, MTU_TSYR);
/* Timer 0 runs independent */
temp8 = read8( MTU_TSYR) & MTU0_SYNCMASK;
write8( temp8, MTU_TSYR);
/* Timer 0 normal mode */
temp8 = read8( MTU_TMDR0) & MTU0_MODEMASK;
write8( temp8, MTU_TMDR0);
/* Timer 0 normal mode */
temp8 = read8( MTU_TMDR0) & MTU0_MODEMASK;
write8( temp8, MTU_TMDR0);
/* TCNT is cleared by GRA ; internal clock /4 */
write8( MTU0_TCRMASK , MTU_TCR0);
/* TCNT is cleared by GRA ; internal clock /4 */
write8( MTU0_TCRMASK , MTU_TCR0);
/* use GRA without I/O - pins */
write8( MTU0_TIORVAL, MTU_TIORL0);
/* use GRA without I/O - pins */
write8( MTU0_TIORVAL, MTU_TIORL0);
/* reset flags of the status register */
temp8 = read8( MTU_TSR0) & MTU0_STAT_MASK;
write8( temp8, MTU_TSR0);
/* reset flags of the status register */
temp8 = read8( MTU_TSR0) & MTU0_STAT_MASK;
write8( temp8, MTU_TSR0);
/* Irq if is equal GRA */
temp8 = read8( MTU_TIER0) | MTU0_TIERMASK;
write8( temp8, MTU_TIER0);
/* Irq if is equal GRA */
temp8 = read8( MTU_TIER0) | MTU0_TIERMASK;
write8( temp8, MTU_TIER0);
/* set interrupt priority */
if( sh_set_irq_priority( CLOCK_VECTOR, CLOCKPRIO ) != RTEMS_SUCCESSFUL)
rtems_fatal_error_occurred( RTEMS_NOT_CONFIGURED);
/* set interrupt priority */
if( sh_set_irq_priority( CLOCK_VECTOR, CLOCKPRIO ) != RTEMS_SUCCESSFUL)
rtems_fatal_error_occurred( RTEMS_NOT_CONFIGURED);
/* set counter limits */
write16( _MTU_COUNTER0_MICROSECOND *
rtems_configuration_get_microseconds_per_tick(),
MTU_GR0A);
/* set counter limits */
write16( _MTU_COUNTER0_MICROSECOND *
rtems_configuration_get_microseconds_per_tick(), MTU_GR0A);
/* start counter */
temp8 = read8( MTU_TSTR) |~MTU0_STARTMASK;
write8( temp8, MTU_TSTR);
}
/* start counter */
temp8 = read8( MTU_TSTR) |~MTU0_STARTMASK;
write8( temp8, MTU_TSTR);
/*
* Schedule the clock cleanup routine to execute if the application exits.
@@ -231,24 +222,22 @@ void Install_clock(
void Clock_exit( void )
{
unsigned8 temp8 = 0;
if ( rtems_configuration_get_ticks_per_timeslice() ) {
/* turn off the timer interrupts */
/* set interrupt priority to 0 */
if( sh_set_irq_priority( CLOCK_VECTOR, 0 ) != RTEMS_SUCCESSFUL)
rtems_fatal_error_occurred( RTEMS_UNSATISFIED);
/* turn off the timer interrupts */
/* set interrupt priority to 0 */
if( sh_set_irq_priority( CLOCK_VECTOR, 0 ) != RTEMS_SUCCESSFUL)
rtems_fatal_error_occurred( RTEMS_UNSATISFIED);
/*
* temp16 = read16( MTU_TIER0) & IPRC_MTU0_IRQMASK;
* write16( temp16, MTU_TIER0);
*/
/* stop counter */
temp8 = read8( MTU_TSTR) & MTU0_STARTMASK;
write8( temp8, MTU_TSTR);
/* stop counter */
temp8 = read8( MTU_TSTR) & MTU0_STARTMASK;
write8( temp8, MTU_TSTR);
/* old vector shall not be installed */
}
/* old vector shall not be installed */
}
/*