Compare commits

...

23 Commits

Author SHA1 Message Date
Luis Machado
5d63830fb4 Add memory tagging testcases
Add an AArch64-specific test and a more generic memory tagging test that
other architectures can run.

Even though architectures not supporting memory tagging can run the memory
tagging tests, the runtime check will make the tests bail out early, as it
would make no sense to proceed without proper support.

gdb/testsuite/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* gdb.arch/aarch64-mte.c: New file.
	* gdb.arch/aarch64-mte.exp: New test.
	* gdb.base/memtag.c: New file.
	* gdb.base/memtag.exp: New test.
	* lib/gdb.exp (supports_memtag): New function.
2020-06-25 13:23:39 -03:00
Luis Machado
a2bdbbe123 Add NEWS entry.
Mention the new packets and memory tagging features.

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* NEWS: Mention memory tagging changes.
2020-06-25 13:23:39 -03:00
Luis Machado
8d8848b104 Document new "x" and "print" memory tagging extensions
Document the changes to the "print" and "x" commands to support memory
tagging.

gdb/doc/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* gdb.texinfo (Data): Document memory tagging changes to the "print"
	command.
	(Examining Memory): Document memory tagging changes to the "x"
	command.
	(Memory Tagging): Update with more information on changes to the "x"
	and "print" commands.
2020-06-25 13:23:39 -03:00
Luis Machado
4167e8660e Extend "x" and "print" commands to support memory tagging
Extend the "x" and "print" commands to make use of memory tagging
functionality, if supported by the architecture.

The "print" command will point out any possible tag mismatches it finds
when dealing with pointers, in case such a pointer is tagged.  No additional
modifiers are needed.

Suppose we have a pointer "p" with value 0x1234 (logical tag 0x0) and that we
have an allocation tag of 0x1 for that particular area of memory. This is the
expected output:

(gdb) p/x p
Logical tag (0x0) does not match the allocation tag (0x1).
$1 = 0x1234

The "x" command has a new 'm' modifier that will enable displaying of
allocation tags alongside the data dump.  It will display one allocation
tag per line.

AArch64 has a tag granule of 16 bytes, which means we can have one tag for
every 16 bytes of memory. In this case, this is what the "x" command will
display with the new 'm' modifier:

(gdb) x/32bxm p
<Allocation Tag 0x1 for range [0x1230,0x1240)>
0x1234:	0x01	0x02	0x00	0x00	0x00	0x00	0x00	0x00
0x123c:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
<Allocation Tag 0x1 for range [0x1240,0x1250)>
0x1244:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
0x124c:	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00

(gdb) x/4gxm a
<Allocation Tag 0x1 for range [0x1230,0x1240)>
0x1234:	0x0000000000000201	0x0000000000000000
<Allocation Tag 0x1 for range [0x1240,0x1250)>
0x1244:	0x0000000000000000	0x0000000000000000

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* printcmd.c (decode_format): Handle the 'm' modifier.
	(do_examine): Display allocation tags when required/supported.
	(should_validate_memtags): New function.
	(print_command_1): Display memory tag mismatches.
	* valprint.h (struct format_data) <print_tags>: New field.
2020-06-25 13:23:39 -03:00
Luis Machado
8c6f8df50b Documentation for the new mtag commands
Document the new "mtag" command prefix and all of its subcommands.

gdb/doc/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* gdb.textinfo (Memory Tagging): New subsection.
	(AArch64 Memory Tagging Extension): New subsection.
2020-06-25 13:23:39 -03:00
Luis Machado
0b4abec09e New mtag commands
Add new commands under the "mtag" prefix to allow users to inspect, modify and
check memory tags in different ways.

The available subcommands are the following:

- mtag showltag <address>: Shows the logical tag for a particular address.

- mtag setltag <address> <tag>: Prints the address tagged with the logical tag
  <tag>

- mtag showatag <address>: Shows the allocation tag for a particular address.

- mtag setatag <address> <length> <tags>: Sets one or more allocation tags to
  the specified tags.

- mtag check <address>: Check if the logical tag in <address> matches its
  allocation tag.

These commands make use of the memory tagging gdbarch methods, and are still
available, but disabled, when memory tagging is not supported by the
architecture.

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* printcmd.c: Include gdbsupport/rsp-low.h.
	(mtaglist): New static global.
	(process_print_command_args): Factored out of
	print_command_1.
	(print_command_1): Use process_print_command_args.
	(show_addr_not_tagged, show_memtag_unsupported, mtag_command)
	(mtag_showtag_command, mtag_showltag_command, mtag_showatag_command)
	(parse_setltag_input, mtag_setltag_command, parse_setatag_input)
	(mtag_setatag_command, mtag_check_command): New functions.
	(_initialize_printcmd): Add "mtag" prefix and subcommands.

gdbsupport/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* rsp-low.cc (fromhex): Change error message text to not be
	RSP-specific.
2020-06-25 13:23:39 -03:00
Luis Machado
653bc1ffdd AArch64: Add gdbserver MTE support
Adds the AArch64-specific memory tagging support (MTE) by implementing the
required hooks and checks.

gdbserver/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* Makefile.in (SFILES): Add /../gdb/nat/aarch64-mte-linux-ptrace.c.
	* configure.srv (aarch64*-*-linux*): Add arch/aarch64-mte-linux.o and
	nat/aarch64-mte-linux-ptrace.o.
	* linux-aarch64-low.cc: Include nat/aarch64-mte-linux-ptrace.h.
	(class aarch64_target) <supports_memory_tagging>
	<fetch_memtags, store_memtags>: New method overrides.
	(aarch64_target::supports_memory_tagging)
	(aarch64_target::fetch_memtags)
	(aarch64_target::store_memtags): New methods.
2020-06-25 13:23:38 -03:00
Luis Machado
cd55085b07 AArch64: Report tag violation error information
Whenever a memory tag violation occurs, we get a SIGSEGV. Additional
information can be obtained through the siginfo data structure.

For AArch64 the Linux kernel may expose the fault address and tag
information, if we have a synchronous event. Otherwise there is
not fault address available.

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* aarch64-linux-tdep.c
	(aarch64_linux_handle_segmentation_fault): New function.
	(aarch64_linux_init_abi): Register
	aarch64_linux_handle_segmentation_fault as segmentation fault hook.
	* arch/aarch64-linux.h (SEGV_MTEAERR): Define.
	(SEGV_MTESERR): Define.
2020-06-25 13:23:38 -03:00
Luis Machado
dddcc4b5ee AArch64: Add unit testing for logical tag set/get operations
Add some unit testing to exercise setting/getting logical tags in the
AArch64 implementation.

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* aarch64-linux-tdep.c: Include gdbsupport/selftest.h.
	(aarch64_linux_ltag_tests): New function.
	(_initialize_aarch64_linux_tdep): Register aarch64_linux_ltag_tests.
2020-06-25 13:23:38 -03:00
Luis Machado
74e76b725d AArch64: Implement the memory tagging gdbarch hooks
This patch implements the memory tagging gdbarch hooks for AArch64, for
the MTE feature.

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* aarch64-linux-tdep.c: Include target.h, arch-utils.h, value.h.
	(aarch64_linux_get_atag, aarch64_linux_tagged_address_p)
	(aarch64_linux_memtag_mismatch_p, aarch64_linux_set_memtags)
	(aarch64_linux_get_memtag, aarch64_linux_memtag_to_string): New
	functions.
	(aarch64_linux_init_abi): Initialize MTE-related gdbarch hooks.
	* arch/aarch64-mte-linux.c (make_ltag_bits, make_ltag)
	(aarch64_linux_set_ltag, aarch64_linux_get_ltag): New functions.
	* arch/aarch64-mte-linux.h (MTE_LOGICAL_TAG_START_BIT)
	(MTE_LOGICAL_MAX_VALUE): Define.
	(make_ltag_bits, make_ltag, aarch64_linux_set_ltag)
	(aarch64_linux_get_ltag): New prototype.
2020-06-25 13:23:38 -03:00
Luis Machado
0c7c65e12f Refactor parsing of /proc/<pid>/smaps
The Linux kernel exposes the information about MTE-protected pages via the
proc filesystem, more specifically through the smaps file.

What we're looking for is a mapping with the 'mt' flag, which tells us that
mapping was created with a PROT_MTE flag and, thus, is capable of using memory
tagging.

We already parse that file for other purposes (core file
generation/filtering), so this patch refactors the code to make the parsing
of the smaps file reusable for memory tagging.

The function linux_address_in_memtag_page uses the refactored code to allow
querying for memory tag support in a particular address, and it gets used in the
next patch.

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* linux-tdep.c (struct smaps_vmflags) <memory_tagging>: New flag
	bit.
	(struct smaps_data): New struct.
	(decode_vmflags): Handle the 'mt' flag.
	(parse_smaps_data): New function, refactored from
	linux_find_memory_regions_full.
	(linux_address_in_memtag_page): New function.
	(linux_find_memory_regions_full): Refactor into parse_smaps_data.
	* linux-tdep.h (linux_address_in_memtag_page): New prototype.
2020-06-25 13:23:38 -03:00
Luis Machado
e5f4e60d49 AArch64: Implement memory tagging target methods for AArch64
The patch implements the memory tagging target hooks for AArch64, so we
can handle MTE.

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* Makefile.in (ALL_64_TARGET_OBS): Add arch/aarch64-mte-linux.o.
	(HFILES_NO_SRCDIR): Add arch/aarch64-mte-linux.h and
	nat/aarch64-mte-linux-ptrace.h.
	* aarch64-linux-nat.c: Include nat/aarch64-mte-linux-ptrace.h.
	(aarch64_linux_nat_target) <supports_memory_tagging>: New method
	override.
	<fetch_memtags>: New method override.
	<store_memtags>: New method override.
	(aarch64_linux_nat_target::supports_memory_tagging): New method.
	(aarch64_linux_nat_target::fetch_memtags): New method.
	(aarch64_linux_nat_target::store_memtags): New method.
	* arch/aarch64-mte-linux.c: New file.
	* arch/aarch64-mte-linux.h: Include gdbsupport/common-defs.h.
	(MTE_GRANULE_SIZE): Define.
	(get_tag_granules): New prototype.
	* configure.nat (NATDEPFILES): Add nat/aarch64-mte-linux-ptrace.o.
	* configure.tgt (aarch64*-*-linux*): Add arch/aarch64-mte-linux.o.
	* nat/aarch64-mte-linux-ptrace.c: New file.
	* nat/aarch64-mte-linux-ptrace.h: New file.
2020-06-25 13:23:38 -03:00
Luis Machado
5d523a6e60 AArch64: Add MTE ptrace requests
This patch adds the required ptrace request definitions into a new include
file that will be used by the next patches.

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* Makefile.in (HFILES_NO_SRCDIR): Add nat/aarch64-mte-linux-ptrace.h.
	* nat/aarch64-mte-linux-ptrace.h: New file.
2020-06-25 13:23:38 -03:00
Luis Machado
471cecca46 AArch64: Add MTE register set support for GDB and gdbserver
AArch64 MTE support in the Linux kernel exposes a couple new read-only registers
through ptrace.  This patch adds the required code to support them.

include/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* elf/common.h (NT_ARM_MTE): Define.

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* aarch64-linux-nat.c (fetch_mte_from_thread): New function.
	(aarch64_linux_nat_target::fetch_registers): Update to call
	fetch_mte_from_thread.
	* aarch64-linux-tdep.c
	(aarch64_linux_iterate_over_regset_sections): Handle MTE register
	section.
	* aarch64-tdep.c (aarch64_mte_register_names): New struct.
	(aarch64_cannot_store_register): Handle MTE registers.
	(aarch64_gdbarch_init): Initialize and setup MTE registers.
	* aarch64-tdep.h (gdbarch_tdep) <mte_reg_base>: New field.
	<has_mte>: New method.
	* arch/aarch64-linux.h (AARCH64_LINUX_SIZEOF_MTE): Define.

gdbserver/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* linux-aarch64-low.cc (aarch64_store_mteregset): New function.
	(aarch64_regsets): Add MTE register set entry.
	(aarch64_sve_regsets): Add MTE register set entry.
2020-06-25 13:23:38 -03:00
Luis Machado
156168cd70 AArch64: Add target description/feature for MTE registers
This patch adds a target description and feature "mte" for aarch64.

It includes a couple registers: sctlr and gcr. Both 64-bit in size.

The patch also adjusts the code that creates the target descriptions at
runtime based on CPU feature checks.

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* aarch64-linux-nat.c
	(aarch64_linux_nat_target::read_description): Take MTE flag into
	account.
	Slight refactor to hwcap flag checking.
	* aarch64-linux-tdep.c
	(aarch64_linux_core_read_description): Likewise.
	* aarch64-tdep.c (tdesc_aarch64_list): Add one more dimension for
	MTE.
	(aarch64_read_description): Add mte_p parameter and update to use it.
	Update the documentation.
	(aarch64_gdbarch_init): Update call to aarch64_read_description.
	* aarch64-tdep.h (aarch64_read_description): Add mte_p parameter.
	* arch/aarch64.c: Include ../features/aarch64-mte.c.
	(aarch64_create_target_description): Add mte_p parameter and update
	the code to use it.
	* arch/aarch64.h (aarch64_create_target_description): Add mte_p
	parameter.
	* features/Makefile (FEATURE_XMLFILES): Add aarch64-mte.xml.
	* features/aarch64-mte.c: New file, generated.
	* features/aarch64-mte.xml: New file.

gdbserver/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* linux-aarch64-ipa.cc (get_ipa_tdesc): Update call to
	aarch64_linux_read_description.
	(initialize_low_tracepoint): Likewise.
	* linux-aarch64-low.cc (aarch64_target::low_arch_setup): Take MTE flag
	into account.
	* linux-aarch64-tdesc.cc (tdesc_aarch64_list): Add one more dimension
	for MTE.
	(aarch64_linux_read_description): Add mte_p parameter and update to
	use it.
	* linux-aarch64-tdesc.h (aarch64_linux_read_description): Add mte_p
	parameter.
2020-06-25 13:23:38 -03:00
Luis Machado
04af1924d9 AArch64: Add MTE CPU feature check support
This patch is a preparation for the next patches implementing MTE. It just adds
a HWCAP2 constant for MTE, creates a new generic arch/aarch64-mte-linux.h file
and includes that file in the source files that will use it.

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* Makefile.in (HFILES_NO_SRCDIR): Add arch/aarch64-mte-linux.h.
	* aarch64-linux-nat.c: Include arch/aarch64-mte-linux.h.
	* aarch64-linux-tdep.c: Likewise
	* arch/aarch64-mte-linux.h: New file.

gdbserver/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* linux-aarch64-low.cc: Include arch/aarch64-mte-linux.h.
2020-06-25 13:23:38 -03:00
Luis Machado
d0c98d56c3 Documentation for memory tagging remote packets
Document the remote packet changes to support memory tagging.

gdb/doc/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* gdb.texinfo (General Query Packets): Document qMemTags and
	QMemTags.
	Document the "memory-tagging" feature.
2020-06-25 13:23:38 -03:00
Luis Machado
6f5bfe5344 Unit tests for gdbserver memory tagging remote packets
Add some unit testing to exercise the functions handling the qMemTags and
QMemTags packets as well as feature support.

gdbserver/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* server.cc (test_memory_tagging_functions): New function.
	(captured_main): Register test_memory_tagging_functions.
2020-06-25 13:23:38 -03:00
Luis Machado
9ffb8389d3 GDBserver remote packet support for memory tagging
This patch adds the generic remote bits to gdbserver so it can check for memory
tagging support and handle fetch tags and store tags requests.

gdbserver/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* remote-utils.cc (decode_m_packet_params): Renamed from ...
	(decode_m_packet): ... this, which now calls decode_m_packet_params.
	(decode_M_packet): Use decode_m_packet_params.
	* remote-utils.h (decode_m_packet_params): New prototype.
	* server.cc (create_fmemtags_reply, parse_smemtags_request): New
	functions.
	(handle_general_set): Handle the QMemTags packet.
	(parse_fmemtags_request): New function.
	(handle_query): Handle the qMemTags packet and advertise memory
	tagging support.
	(captured_main): Initialize memory tagging flag.
	* server.h (struct client_state): Initialize memory tagging flag.
	* target.cc (process_stratum_target::supports_memory_tagging)
	(process_stratum_target::fetch_memtags)
	(process_stratum_target::store_memtags): New methods.
	* target.h: Include gdbsupport/byte-vector.h.
	(class process_stratum_target) <supports_memory_tagging>
	<fetch_memtags, store_memtags>: New class virtual methods.
	(target_supports_memory_tagging): Define.
2020-06-25 13:23:38 -03:00
Luis Machado
ebd61ee8b5 Unit testing for GDB-side remote memory tagging handling
Include some unit testing for the functions handling the new qMemTags and
QMemTags packets.

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* remote: Include gdbsupport/selftest.h.
	(test_memory_tagging_functions): New function.
	(_initialize_remote): Register test_memory_tagging_functions.
2020-06-25 13:23:38 -03:00
Luis Machado
455ae6919e Add GDB-side remote target support for memory tagging
This patch adds memory tagging support to GDB's remote side, with
packet string checks, new packet support and an implementation of
the two new tags methods fetch_atags and store_atags.

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* remote.c (PACKET_memory_tagging_feature): New enum.
	(remote_memory_tagging_p): New function.
	(remote_protocol_features): New "memory-tagging" entry.
	(remote_target::remote_query_supported): Handle memory tagging
	support.
	(remote_target::supports_memory_tagging): Implement.
	(create_fmemtags_request, parse_fmemtags_reply)
	(create_smemtags_request): New functions.
	(remote_target::fetch_memtags): Implement.
	(remote_target::store_memtags): Implement.
	(_initialize_remote): Add new "memory-tagging-feature"
	config command.
2020-06-25 13:23:38 -03:00
Luis Machado
f8eaa6cb67 New gdbarch memory tagging hooks
This patch adds a couple gdbarch hooks:

gdbarch_tagged_address_p checks if a particular address is tagged or not.

gdbarch_address_tag returns the tag for a particular address, if tagged.

I've used struct value as opposed to straight CORE_ADDR so other architectures
can use the infrastructure without having to rely on fixed types.

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* arch-utils.c (default_memtag_to_string, +default_tagged_address_p)
	(default_memtag_mismatch_p, default_set_memtags)
	(default_get_memtag): New functions.
	* arch-utils.h (default_memtag_to_string, default_tagged_address_p)
	(default_memtag_mismatch_p, default_set_memtags)
	(default_get_memtag): New prototypes.
	* gdbarch.c: Regenerate.
	* gdbarch.h: Regenerate.
	* gdbarch.sh (memtag_to_string, tagged_address_p, memtag_mismatch_p)
	(set_memtags, get_memtag, memtag_granule_size): New gdbarch hooks.
	(enum memtag_type): New enum.
2020-06-25 13:23:38 -03:00
Luis Machado
193b282203 New target methods for memory tagging support
This patch starts adding some of the generic pieces to accomodate memory
tagging.

We have three new target methods:

- supports_memory_tagging: Checks if the target supports memory tagging. This
  defaults to false for targets that don't support memory tagging.

- fetch_memtags: Fetches the allocation tags associated with a particular
  memory range [address, address + length).

  The default is to return 1 without returning any tags. This should only
  be called if memory tagging is supported.

- store_memtags: Stores a set of allocation tags for a particular memory
  range [address, address + length).

  The default is to return 1, which indicates an error. This should only
  be called if memory tagging is supported.

It also adds a control option for enabling/disabling memory tagging
manually: set memory-tagging on/off.

The default is "on", with GDB making its use conditional to the
architecture supporting memory tagging.

gdb/ChangeLog:

YYYY-MM-DD  Luis Machado  <luis.machado@linaro.org>

	* printcmd.c (memtag): New static global.
	(show_memtag): New function.
	(_initialize_printcmd): Add set/show memory-tagging command.
	* remote.c (remote_target) <supports_memory_tagging>: New method
	override.
	<fetch_memtags>: New method override.
	<store_memtags>: New method override.
	(remote_target::supports_memory_tagging): New method.
	(remote_target::fetch_memtags): New method.
	(remote_target::store_memtags): New method.
	* target-delegates.c
	(dummy_target) <supports_memory_tagging>: New method override.
	<fetch_memtags>: New method override.
	<store_memtags>: New method override.
	(debug_target) <supports_memory_tagging>: New method override.
	<fetch_memtags>: New method override.
	<store_memtags>: New method override.
	(target_ops::supports_memory_tagging): New method.
	(target_ops::fetch_memtags): New method.
	(target_ops::store_memtags): New method.
	(dummy_target::supports_memory_tagging): New method.
	(dummy_target::fetch_memtags): New method.
	(dummy_target::store_memtags): New method.
	(debug_target::supports_memory_tagging): New method.
	(debug_target::fetch_memtags): New method.
	(debug_target::store_memtags): New method.
	* target.h (struct target_ops) <supports_memory_tagging>: New virtual
	method.
	<fetch_memtags: New virtual method.
	<store_memtags>: New virtual method.
	(target_supports_memory_tagging): Define.
	(target_fetch_memtags): Define.
	(target_store_memtags): Define.
2020-06-25 13:23:38 -03:00
49 changed files with 3337 additions and 191 deletions

View File

@@ -680,6 +680,7 @@ ALL_64_TARGET_OBS = \
amd64-windows-tdep.o \
arch/aarch64.o \
arch/aarch64-insn.o \
arch/aarch64-mte-linux.o \
arch/amd64.o \
ia64-linux-tdep.o \
ia64-tdep.o \
@@ -1444,6 +1445,7 @@ HFILES_NO_SRCDIR = \
arch/aarch32.h \
arch/aarch64.h \
arch/aarch64-insn.h \
arch/aarch64-mte-linux.h \
arch/arc.h \
arch/arm.h \
arch/i386.h \
@@ -1480,6 +1482,7 @@ HFILES_NO_SRCDIR = \
nat/aarch64-linux.h \
nat/aarch64-linux-hw-point.h \
nat/aarch64-sve-linux-ptrace.h \
nat/aarch64-mte-linux-ptrace.h \
nat/amd64-linux-siginfo.h \
nat/gdb_ptrace.h \
nat/gdb_thread_db.h \

View File

@@ -3,6 +3,19 @@
*** Changes since GDB 9
* GDB now supports general memory tagging functionality if the underlying
architecture supports the proper primitives and hooks. Currently this is
enabled only for AArch64 MTE.
This includes additional information when the inferior crashes with a
SIGSEGV caused by a memory tag violation.
* The "x" command supports the 'm' modifier to display allocation tags for
a particular memory range.
* The "print" command will display memory tag mismatches for addresses and
pointers, if memory tagging is supported by the architecture.
* Help and apropos commands will now show the documentation of a
command only once, even if that command has one or more aliases.
These commands now show the command name, then all of its aliases,
@@ -63,8 +76,27 @@
* On Windows targets, it is now possible to debug 32-bit programs with a
64-bit GDB.
* New remote packets
qMemTags
Request the remote to send allocation tags for a particular memory range.
QMemTags
Request the remote to store the specified allocation tags to the requested
memory range.
* New commands
mtag showltag ADDRESS
Show the logical tag for ADDRESS.
mtag setltag ADDRESS TAG
Set the logical tag for ADDRESS to TAG.
mtag showatag ADDRESS
Show the allocation tag for ADDRESS.
mtag setatag ADDRESS LENGTH TAGS
Set the allocation tag for [ADDRESS, ADDRESS + LENGTH) to TAGS.
mtag check ADDRESS
Validate that ADDRESS' logical tag matches the allocation tag.
set exec-file-mismatch -- Set exec-file-mismatch handling (ask|warn|off).
show exec-file-mismatch -- Show exec-file-mismatch handling (ask|warn|off).
Set or show the option 'exec-file-mismatch'. When GDB attaches to a

View File

@@ -50,6 +50,10 @@
#include "gdb_proc_service.h"
#include "arch-utils.h"
#include "arch/aarch64-mte-linux.h"
#include "nat/aarch64-mte-linux-ptrace.h"
#ifndef TRAP_HWBKPT
#define TRAP_HWBKPT 0x0004
#endif
@@ -100,6 +104,16 @@ public:
override;
struct gdbarch *thread_architecture (ptid_t) override;
bool supports_memory_tagging () override;
/* Read memory allocation tags from memory via PTRACE. */
int fetch_memtags (CORE_ADDR address, size_t len,
gdb::byte_vector &tags) override;
/* Write allocation tags to memory via PTRACE. */
int store_memtags (CORE_ADDR address, size_t len,
const gdb::byte_vector &tags) override;
};
static aarch64_linux_nat_target the_aarch64_linux_nat_target;
@@ -459,6 +473,29 @@ fetch_pauth_masks_from_thread (struct regcache *regcache)
&pauth_regset[1]);
}
/* Fill GDB's register array with the MTE register values from
the current thread. */
static void
fetch_mte_from_thread (struct regcache *regcache)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
int ret;
struct iovec iovec;
uint64_t mte_regset[2] = {0, 0};
int tid = regcache->ptid ().lwp ();
iovec.iov_base = &mte_regset;
iovec.iov_len = sizeof (mte_regset);
ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_MTE, &iovec);
if (ret != 0)
perror_with_name (_("unable to fetch MTE registers."));
regcache->raw_supply (tdep->mte_reg_base, &mte_regset[0]);
regcache->raw_supply (tdep->mte_reg_base + 1, &mte_regset[1]);
}
/* Implement the "fetch_registers" target_ops method. */
void
@@ -477,6 +514,9 @@ aarch64_linux_nat_target::fetch_registers (struct regcache *regcache,
if (tdep->has_pauth ())
fetch_pauth_masks_from_thread (regcache);
if (tdep->has_mte ())
fetch_mte_from_thread (regcache);
}
else if (regno < AARCH64_V0_REGNUM)
fetch_gregs_from_thread (regcache);
@@ -491,6 +531,11 @@ aarch64_linux_nat_target::fetch_registers (struct regcache *regcache,
|| regno == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base))
fetch_pauth_masks_from_thread (regcache);
}
/* Fetch individual MTE registers. */
if (tdep->has_mte ()
&& (regno == tdep->mte_reg_base || regno == (tdep->mte_reg_base + 1)))
fetch_mte_from_thread (regcache);
}
/* Implement the "store_registers" target_ops method. */
@@ -651,9 +696,12 @@ aarch64_linux_nat_target::read_description ()
return aarch32_read_description ();
CORE_ADDR hwcap = linux_get_hwcap (this);
CORE_ADDR hwcap2 = linux_get_hwcap2 (this);
return aarch64_read_description (aarch64_sve_get_vq (tid),
hwcap & AARCH64_HWCAP_PACA);
bool pauth_p = hwcap & AARCH64_HWCAP_PACA;
bool mte_p = hwcap2 & HWCAP2_MTE;
return aarch64_read_description (aarch64_sve_get_vq (tid), pauth_p, mte_p);
}
/* Convert a native/host siginfo object, into/from the siginfo in the
@@ -975,6 +1023,36 @@ aarch64_linux_nat_target::thread_architecture (ptid_t ptid)
return gdbarch_find_by_info (info);
}
/* Implement the "supports_memory_tagging" target_ops method. */
bool
aarch64_linux_nat_target::supports_memory_tagging ()
{
return (linux_get_hwcap2 (this) & HWCAP2_MTE) != 0;
}
/* Implement the "fetch_memtags" target_ops method. */
int
aarch64_linux_nat_target::fetch_memtags (CORE_ADDR address, size_t len,
gdb::byte_vector &tags)
{
int tid = inferior_ptid.lwp ();
return aarch64_mte_fetch_memtags (tid, address, len, tags);
}
/* Implement the "store_memtags" target_ops method. */
int
aarch64_linux_nat_target::store_memtags (CORE_ADDR address, size_t len,
const gdb::byte_vector &tags)
{
int tid = inferior_ptid.lwp ();
return aarch64_mte_store_memtags (tid, address, len, tags);
}
/* Define AArch64 maintenance commands. */
static void

View File

@@ -30,6 +30,7 @@
#include "symtab.h"
#include "tramp-frame.h"
#include "trad-frame.h"
#include "target.h"
#include "target/target.h"
#include "regcache.h"
@@ -44,6 +45,13 @@
#include "record-full.h"
#include "linux-record.h"
#include "arch/aarch64-mte-linux.h"
#include "arch-utils.h"
#include "value.h"
#include "gdbsupport/selftest.h"
/* Signal frame handling.
+------------+ ^
@@ -643,6 +651,27 @@ aarch64_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
AARCH64_LINUX_SIZEOF_PAUTH, &aarch64_linux_pauth_regset,
"pauth registers", cb_data);
}
/* Handle MTE register set. */
if (tdep->has_mte ())
{
/* FIXME: This is still a WIP, awaiting further details from the Linuxkernel. */
/* Create this on the fly in order to handle the variable location. */
const struct regcache_map_entry mte_regmap[] =
{
{ 2, tdep->mte_reg_base, 8},
{ 0 }
};
const struct regset aarch64_linux_mte_regset =
{
mte_regmap, regcache_supply_regset, regcache_collect_regset
};
cb (".reg-aarch-mte", AARCH64_LINUX_SIZEOF_MTE,
AARCH64_LINUX_SIZEOF_MTE, &aarch64_linux_mte_regset,
"MTE registers", cb_data);
}
}
/* Implement the "core_read_description" gdbarch method. */
@@ -652,9 +681,12 @@ aarch64_linux_core_read_description (struct gdbarch *gdbarch,
struct target_ops *target, bfd *abfd)
{
CORE_ADDR hwcap = linux_get_hwcap (target);
CORE_ADDR hwcap2 = linux_get_hwcap2 (target);
bool pauth_p = hwcap & AARCH64_HWCAP_PACA;
bool mte_p = hwcap2 & HWCAP2_MTE;
return aarch64_read_description (aarch64_linux_core_read_vq (gdbarch, abfd),
hwcap & AARCH64_HWCAP_PACA);
pauth_p, mte_p);
}
/* Implementation of `gdbarch_stap_is_single_operand', as defined in
@@ -1432,6 +1464,237 @@ aarch64_linux_gcc_target_options (struct gdbarch *gdbarch)
return {};
}
/* Helper to get the allocation tag from a 64-bit ADDRESS.
Return 0 for success and non-zero otherwise. */
static int
aarch64_linux_get_atag (CORE_ADDR address, CORE_ADDR *tag)
{
gdb::byte_vector tags;
/* Attempt to fetch the allocation tag. */
if (target_fetch_memtags (address, 0, tags) != 0)
return 1;
/* Only one tag should've been returned. Make sure we got exactly that. */
gdb_assert (tags.size () == 1);
/* Although our tags are 4 bits in size, they are stored in a
byte. */
*tag = tags[0];
return 0;
}
/* Implement the tagged_address_p gdbarch method. */
static bool
aarch64_linux_tagged_address_p (struct gdbarch *gdbarch, struct value *address)
{
gdb_assert (address != nullptr);
CORE_ADDR addr = value_as_address (address);
/* Remove the top byte for the memory range check. */
addr = address_significant (gdbarch, addr);
/* Check if the page that contains ADDRESS is mapped with PROT_MTE. */
if (!linux_address_in_memtag_page (addr))
return false;
/* We have a valid tag in the top byte of the 64-bit address. */
return true;
}
/* Implement the memtag_mismatch_p gdbarch method. */
static bool
aarch64_linux_memtag_mismatch_p (struct gdbarch *gdbarch,
struct value *address)
{
gdb_assert (address != nullptr);
/* Make sure we are dealing with a tagged address to begin with. */
if (!aarch64_linux_tagged_address_p (gdbarch, address))
return false;
CORE_ADDR addr = value_as_address (address);
/* Fetch the allocation tag for ADDRESS. */
CORE_ADDR atag = 0;
if (aarch64_linux_get_atag (addr, &atag) != 0)
return false;
/* Fetch the logical tag for ADDRESS. */
gdb_byte ltag = aarch64_linux_get_ltag (addr);
/* Are the tags the same? */
if (ltag == atag)
return false;
return true;
}
/* Implement the set_memtags gdbarch method. */
static int
aarch64_linux_set_memtags (struct gdbarch *gdbarch, struct value *address,
size_t length, const gdb::byte_vector &tags,
enum memtag_type tag_type)
{
gdb_assert (address != nullptr);
CORE_ADDR addr = value_as_address (address);
/* Set the logical tag or the allocation tag. */
if (tag_type == tag_logical)
{
/* When setting logical tags, we don't care about the length, since
we are only setting a single logical tag. */
addr = aarch64_linux_set_ltag (addr, tags[0]);
/* Update the value's content with the tag. */
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte *srcbuf = value_contents_raw (address);
store_unsigned_integer (srcbuf, sizeof (addr), byte_order, addr);
}
else
{
/* Make sure we are dealing with a tagged address to begin with. */
if (!aarch64_linux_tagged_address_p (gdbarch, address))
return 1;
/* With G being the number of tag granules and N the number of tags
passed in, we can have the following cases:
1 - G == N: Store all the N tags to memory.
2 - G < N : Warn about having more tags than granules, but write G
tags.
3 - G > N : This is a "fill tags" operation. We should use the tags
as a pattern to fill the granules repeatedly until we have
written G tags to memory.
*/
size_t g = get_tag_granules (addr, length, MTE_GRANULE_SIZE);
size_t n = tags.size ();
if (g < n)
{
warning (_("Got more tags than memory granules. Tags will be "
"truncated."));
}
else if (g > n)
warning (_("Using tag pattern to fill memory range."));
if (target_store_memtags (addr, length, tags) != 0)
return 1;
}
return 0;
}
/* Implement the get_memtag gdbarch method. */
static struct value *
aarch64_linux_get_memtag (struct gdbarch *gdbarch, struct value *address,
enum memtag_type tag_type)
{
gdb_assert (address != nullptr);
CORE_ADDR addr = value_as_address (address);
CORE_ADDR tag = 0;
/* Get the logical tag or the allocation tag. */
if (tag_type == tag_logical)
tag = aarch64_linux_get_ltag (addr);
else
{
/* Make sure we are dealing with a tagged address to begin with. */
if (!aarch64_linux_tagged_address_p (gdbarch, address))
return nullptr;
if (aarch64_linux_get_atag (addr, &tag) != 0)
return nullptr;
}
/* Convert the tag to a value. */
return value_from_ulongest (builtin_type (gdbarch)->builtin_unsigned_int,
tag);
}
/* Implement the memtag_to_string gdbarch method. */
static std::string
aarch64_linux_memtag_to_string (struct gdbarch *gdbarch,
struct value *address,
enum memtag_type tag_type)
{
gdb_assert (address != nullptr);
struct value *v_tag = aarch64_linux_get_memtag (gdbarch, address, tag_type);
if (v_tag == nullptr && tag_allocation)
error (_("Error getting tag from target"));
CORE_ADDR tag = value_as_address (v_tag);
return string_printf ("0x%s", phex_nz (tag, sizeof (tag)));
}
/* AArch64 Linux implementation of the handle_segmentation_fault gdbarch
hook. Displays information about possible memory tag violations. */
static void
aarch64_linux_handle_segmentation_fault (struct gdbarch *gdbarch,
struct ui_out *uiout)
{
CORE_ADDR fault_addr = 0;
long si_code = 0;
CORE_ADDR ltag;
CORE_ADDR atag;
try
{
/* Sigcode tells us if the segfault is actually a memory tag
violation. */
si_code = parse_and_eval_long ("$_siginfo.si_code\n");
fault_addr
= parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr");
}
catch (const gdb_exception &exception)
{
return;
}
/* If this is not a memory tag violation, just return. */
if (si_code != SEGV_MTEAERR && si_code != SEGV_MTESERR)
return;
uiout->text ("\n");
uiout->field_string ("sigcode-meaning", _("Memory tag violation"));
uiout->text (_(" while accessing address "));
uiout->field_core_addr ("fault-addr", gdbarch, fault_addr);
uiout->text ("\n");
uiout->text (_("Logical tag "));
ltag = aarch64_linux_get_ltag (fault_addr);
uiout->field_core_addr ("logical-tag", gdbarch, ltag);
uiout->text ("\n");
if (aarch64_linux_get_atag (fault_addr, &atag) != 0)
uiout->text (_("Allocation tag unavailable"));
else
{
uiout->text (_("Allocation tag "));
uiout->field_core_addr ("allocation-tag", gdbarch, atag);
}
}
static void
aarch64_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
@@ -1489,6 +1752,34 @@ aarch64_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
data associated with the address. */
set_gdbarch_significant_addr_bit (gdbarch, 56);
/* MTE-specific settings and hooks. */
if (tdep->has_mte ())
{
/* Register a hook for checking if an address is tagged or not. */
set_gdbarch_tagged_address_p (gdbarch, aarch64_linux_tagged_address_p);
/* Register a hook for checking if there is a memory tag mismatch. */
set_gdbarch_memtag_mismatch_p (gdbarch,
aarch64_linux_memtag_mismatch_p);
/* Register a hook for setting the logical/allocation tags for
a range of addresses. */
set_gdbarch_set_memtags (gdbarch, aarch64_linux_set_memtags);
/* Register a hook for extracting the logical/allocation tag from an
address. */
set_gdbarch_get_memtag (gdbarch, aarch64_linux_get_memtag);
/* Set the allocation tag granule size to 16 bytes. */
set_gdbarch_memtag_granule_size (gdbarch, MTE_GRANULE_SIZE);
/* Register a hook for converting a memory tag to a string. */
set_gdbarch_memtag_to_string (gdbarch, aarch64_linux_memtag_to_string);
set_gdbarch_handle_segmentation_fault (gdbarch,
aarch64_linux_handle_segmentation_fault);
}
/* Initialize the aarch64_linux_record_tdep. */
/* These values are the size of the type that will be used in a system
call. They are obtained from Linux Kernel source. */
@@ -1665,10 +1956,39 @@ aarch64_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
set_gdbarch_gcc_target_options (gdbarch, aarch64_linux_gcc_target_options);
}
#if GDB_SELF_TEST
namespace selftests {
/* Verify functions to read and write logical tags. */
static void
aarch64_linux_ltag_tests (void)
{
/* We have 4 bits of tags, but we test writing all the bits of the top
byte of address. */
for (int i = 0; i < 1 << 8; i++)
{
CORE_ADDR addr = ((CORE_ADDR) i << 56) | 0xdeadbeef;
SELF_CHECK (aarch64_linux_get_ltag (addr) == (i & 0xf));
addr = aarch64_linux_set_ltag (0xdeadbeef, i);
SELF_CHECK (addr = ((CORE_ADDR) (i & 0xf) << 56) | 0xdeadbeef);
}
}
} // namespace selftests
#endif /* GDB_SELF_TEST */
void _initialize_aarch64_linux_tdep ();
void
_initialize_aarch64_linux_tdep ()
{
gdbarch_register_osabi (bfd_arch_aarch64, 0, GDB_OSABI_LINUX,
aarch64_linux_init_abi);
#if GDB_SELF_TEST
selftests::register_test ("aarch64-linux-tagged-address",
selftests::aarch64_linux_ltag_tests);
#endif
}

View File

@@ -62,7 +62,7 @@
#define HA_MAX_NUM_FLDS 4
/* All possible aarch64 target descriptors. */
struct target_desc *tdesc_aarch64_list[AARCH64_MAX_SVE_VQ + 1][2/*pauth*/];
struct target_desc *tdesc_aarch64_list[AARCH64_MAX_SVE_VQ + 1][2/*pauth*/][2 /* mte */];
/* The standard register names, and all the valid aliases for them. */
static const struct
@@ -176,6 +176,14 @@ static const char *const aarch64_pauth_register_names[] =
"pauth_cmask"
};
static const char *const aarch64_mte_register_names[] =
{
/* System Control Top Level Register. */
"sctlr",
/* Tag Control Register. */
"gcr"
};
/* AArch64 prologue cache structure. */
struct aarch64_prologue_cache
{
@@ -3139,21 +3147,23 @@ aarch64_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
/* Get the correct target description for the given VQ value.
If VQ is zero then it is assumed SVE is not supported.
(It is not possible to set VQ to zero on an SVE system). */
(It is not possible to set VQ to zero on an SVE system).
MTE_P indicates the presence of the Memory Tagging Extension feature. */
const target_desc *
aarch64_read_description (uint64_t vq, bool pauth_p)
aarch64_read_description (uint64_t vq, bool pauth_p, bool mte_p)
{
if (vq > AARCH64_MAX_SVE_VQ)
error (_("VQ is %" PRIu64 ", maximum supported value is %d"), vq,
AARCH64_MAX_SVE_VQ);
struct target_desc *tdesc = tdesc_aarch64_list[vq][pauth_p];
struct target_desc *tdesc = tdesc_aarch64_list[vq][pauth_p][mte_p];
if (tdesc == NULL)
{
tdesc = aarch64_create_target_description (vq, pauth_p);
tdesc_aarch64_list[vq][pauth_p] = tdesc;
tdesc = aarch64_create_target_description (vq, pauth_p, mte_p);
tdesc_aarch64_list[vq][pauth_p][mte_p] = tdesc;
}
return tdesc;
@@ -3200,12 +3210,19 @@ aarch64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
if (!tdep->has_pauth ())
return 0;
/* Is this a PAC register? */
if (tdep->has_pauth ()
&& (regnum == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
|| regnum == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base)))
return 1;
/* Pointer authentication registers are read-only. */
return (regnum == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
|| regnum == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base));
/* Is this a MTE register? */
if (tdep->has_mte ()
&& (regnum == tdep->mte_reg_base || regnum == (tdep->mte_reg_base + 1)))
return 1;
/* No restrictions on register store. */
return 0;
}
/* Initialize the current architecture based on INFO. If possible,
@@ -3223,6 +3240,7 @@ aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
bool valid_p = true;
int i, num_regs = 0, num_pseudo_regs = 0;
int first_pauth_regnum = -1, pauth_ra_state_offset = -1;
int first_mte_regnum = -1;
/* Use the vector length passed via the target info. Here -1 is used for no
SVE, and 0 is unset. If unset then use the vector length from the existing
@@ -3253,13 +3271,15 @@ aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
value. */
const struct target_desc *tdesc = info.target_desc;
if (!tdesc_has_registers (tdesc) || vq != aarch64_get_tdesc_vq (tdesc))
tdesc = aarch64_read_description (vq, false);
tdesc = aarch64_read_description (vq, false, false);
gdb_assert (tdesc);
feature_core = tdesc_find_feature (tdesc,"org.gnu.gdb.aarch64.core");
feature_fpu = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu");
feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve");
feature_pauth = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.pauth");
const struct tdesc_feature *feature_mte
= tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.mte");
if (feature_core == nullptr)
return nullptr;
@@ -3330,6 +3350,20 @@ aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
num_pseudo_regs += 1; /* Count RA_STATE pseudo register. */
}
/* Add the MTE registers. */
if (feature_mte != NULL)
{
first_mte_regnum = num_regs;
/* Validate the descriptor provides the mandatory MTE registers and
allocate their numbers. */
for (i = 0; i < ARRAY_SIZE (aarch64_mte_register_names); i++)
valid_p &= tdesc_numbered_register (feature_mte, tdesc_data,
first_mte_regnum + i,
aarch64_mte_register_names[i]);
num_regs += i;
}
if (!valid_p)
{
tdesc_data_cleanup (tdesc_data);
@@ -3350,6 +3384,7 @@ aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
tdep->pauth_reg_base = first_pauth_regnum;
tdep->pauth_ra_state_regnum = (feature_pauth == NULL) ? -1
: pauth_ra_state_offset + num_regs;
tdep->mte_reg_base = first_mte_regnum;
set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call);
set_gdbarch_frame_align (gdbarch, aarch64_frame_align);

View File

@@ -100,9 +100,19 @@ struct gdbarch_tdep
{
return pauth_reg_base != -1;
}
/* First MTE register. This is -1 if no MTE registers are available. */
int mte_reg_base;
/* Returns true if the target supports MTE. */
bool has_mte () const
{
return mte_reg_base != -1;
}
};
const target_desc *aarch64_read_description (uint64_t vq, bool pauth_p);
const target_desc *aarch64_read_description (uint64_t vq, bool pauth_p,
bool mte_p);
extern int aarch64_process_record (struct gdbarch *gdbarch,
struct regcache *regcache, CORE_ADDR addr);

View File

@@ -78,6 +78,56 @@ legacy_register_sim_regno (struct gdbarch *gdbarch, int regnum)
return LEGACY_SIM_REGNO_IGNORE;
}
/* See arch-utils.h */
std::string
default_memtag_to_string (struct gdbarch *gdbarch, struct value *address,
enum memtag_type tag_type)
{
/* By default, assume the address is untagged. */
return "";
}
/* See arch-utils.h */
bool
default_tagged_address_p (struct gdbarch *gdbarch, struct value *address)
{
/* By default, assume the address is untagged. */
return false;
}
/* See arch-utils.h */
bool
default_memtag_mismatch_p (struct gdbarch *gdbarch, struct value *address)
{
/* By default, assume there is no mismatch. */
return false;
}
/* See arch-utils.h */
int
default_set_memtags (struct gdbarch *gdbarch, struct value *address,
size_t length, const gdb::byte_vector &tags,
enum memtag_type tag_type)
{
/* By default, return 0; */
return 0;
}
/* See arch-utils.h */
struct value *
default_get_memtag (struct gdbarch *gdbarch, struct value *address,
enum memtag_type tag_type)
{
/* By default, return no tag. */
return NULL;
}
CORE_ADDR
generic_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{

View File

@@ -134,6 +134,29 @@ extern const struct floatformat **
default_floatformat_for_type (struct gdbarch *gdbarch,
const char *name, int len);
/* Default implementation of gdbarch_tagged_address_p. */
extern std::string default_memtag_to_string (struct gdbarch *gdbarch,
struct value *address,
enum memtag_type tag_type);
/* Default implementation of gdbarch_tagged_address_p. */
bool default_tagged_address_p (struct gdbarch *gdbarch, struct value *address);
/* Default implementation of gdbarch_memtag_mismatch_p. */
extern bool default_memtag_mismatch_p (struct gdbarch *gdbarch,
struct value *address);
/* Default implementation of gdbarch_set_memtags. */
int default_set_memtags (struct gdbarch *gdbarch,
struct value *address, size_t length,
const gdb::byte_vector &tags,
enum memtag_type tag_type);
/* Default implementation of gdbarch_get_memtag. */
struct value *default_get_memtag (struct gdbarch *gdbarch,
struct value *address,
enum memtag_type tag_type);
extern CORE_ADDR generic_skip_trampoline_code (struct frame_info *frame,
CORE_ADDR pc);

View File

@@ -0,0 +1,70 @@
/* Common Linux target-dependent functionality for AArch64 MTE
Copyright (C) 2020 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "arch/aarch64-mte-linux.h"
/* See arch/aarch64-mte-linux.h */
int
get_tag_granules (CORE_ADDR addr, size_t len, unsigned int granule_size)
{
/* Start address */
CORE_ADDR s_addr = align_down (addr, granule_size);
/* End address */
CORE_ADDR e_addr = align_down (addr + len, granule_size);
/* We always have at least 1 granule. */
return 1 + (e_addr - s_addr) / granule_size;
}
/* See arch/aarch64-mte-linux.h */
CORE_ADDR
make_ltag_bits (CORE_ADDR value)
{
return value & MTE_LOGICAL_MAX_VALUE;
}
/* See arch/aarch64-mte-linux.h */
CORE_ADDR
make_ltag (CORE_ADDR value)
{
return make_ltag_bits (value) << MTE_LOGICAL_TAG_START_BIT;
}
/* See arch/aarch64-mte-linux.h */
CORE_ADDR
aarch64_linux_set_ltag (CORE_ADDR address, CORE_ADDR tag)
{
/* Remove the existing tag. */
address &= ~make_ltag (MTE_LOGICAL_MAX_VALUE);
/* Return the new tagged address. */
return address | make_ltag (tag);
}
/* See arch/aarch64-mte-linux.h */
CORE_ADDR
aarch64_linux_get_ltag (CORE_ADDR address)
{
return make_ltag_bits (address >> MTE_LOGICAL_TAG_START_BIT);
}

View File

@@ -0,0 +1,66 @@
/* Common Linux target-dependent definitions for AArch64 MTE
Copyright (C) 2020 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef ARCH_AARCH64_LINUX_H
#define ARCH_AARCH64_LINUX_H
#include "gdbsupport/common-defs.h"
/* Feature check for Memory Tagging Extension. */
#ifndef HWCAP2_MTE
#define HWCAP2_MTE (1 << 18)
#endif
/* The MTE regset consists of 2 registers of 64-bit size. */
#define AARCH64_LINUX_SIZEOF_MTE (2 * 64)
/* We have one tag per 16 bytes of memory. */
#define MTE_GRANULE_SIZE 16
#define MTE_LOGICAL_TAG_START_BIT 56
#define MTE_LOGICAL_MAX_VALUE 0xf
/* Memory tagging definitions. */
#ifndef SEGV_MTEAERR
# define SEGV_MTEAERR 8
# define SEGV_MTESERR 9
#endif
/* Return the number of tag granules in the memory range
[ADDR, ADDR + LEN) given GRANULE_SIZE. */
extern int get_tag_granules (CORE_ADDR addr, size_t len,
unsigned int granule_size);
/* Return the 4-bit tag made from VALUE. */
extern CORE_ADDR make_ltag_bits (CORE_ADDR value);
/* Return the 4-bit tag that can be OR-ed to an address. */
extern CORE_ADDR make_ltag (CORE_ADDR value);
/* Helper to set the logical TAG for a 64-bit ADDRESS.
It is always possible to set the logical tag. */
extern CORE_ADDR aarch64_linux_set_ltag (CORE_ADDR address,
CORE_ADDR tag);
/* Helper to get the logical tag from a 64-bit ADDRESS.
It is always possible to get the logical tag. */
extern CORE_ADDR aarch64_linux_get_ltag (CORE_ADDR address);
#endif /* ARCH_AARCH64_LINUX_H */

View File

@@ -23,11 +23,12 @@
#include "../features/aarch64-fpu.c"
#include "../features/aarch64-sve.c"
#include "../features/aarch64-pauth.c"
#include "../features/aarch64-mte.c"
/* See arch/aarch64.h. */
target_desc *
aarch64_create_target_description (uint64_t vq, bool pauth_p)
aarch64_create_target_description (uint64_t vq, bool pauth_p, bool mte_p)
{
target_desc *tdesc = allocate_target_description ();
@@ -47,5 +48,9 @@ aarch64_create_target_description (uint64_t vq, bool pauth_p)
if (pauth_p)
regnum = create_feature_aarch64_pauth (tdesc, regnum);
/* Memory tagging extension registers. */
if (mte_p)
regnum = create_feature_aarch64_mte (tdesc, regnum);
return tdesc;
}

View File

@@ -25,9 +25,12 @@
/* Create the aarch64 target description. A non zero VQ value indicates both
the presence of SVE and the Vector Quotient - the number of 128bit chunks in
an SVE Z register. HAS_PAUTH_P indicates the presence of the PAUTH
feature. */
feature.
target_desc *aarch64_create_target_description (uint64_t vq, bool has_pauth_p);
MTE_P indicates the presence of the Memory Tagging Extension feature. */
target_desc *aarch64_create_target_description (uint64_t vq, bool has_pauth_p,
bool mte_p);
/* Register numbers of various important registers.
Note that on SVE, the Z registers reuse the V register numbers and the V

View File

@@ -236,7 +236,8 @@ case ${gdb_host} in
NATDEPFILES="${NATDEPFILES} aarch64-linux-nat.o \
aarch32-linux-nat.o nat/aarch64-linux-hw-point.o \
nat/aarch64-linux.o \
nat/aarch64-sve-linux-ptrace.o"
nat/aarch64-sve-linux-ptrace.o \
nat/aarch64-mte-linux-ptrace.o"
;;
arm)
# Host: ARM based machine running GNU/Linux

View File

@@ -124,6 +124,7 @@ aarch64*-*-freebsd*)
aarch64*-*-linux*)
# Target: AArch64 linux
gdb_target_obs="aarch64-linux-tdep.o arch/aarch64.o\
arch/aarch64-mte-linux.o \
arch/arm.o arch/arm-linux.o arch/arm-get-next-pcs.o \
arm-tdep.o arm-linux-tdep.o \
glibc-tdep.o linux-tdep.o solib-svr4.o \

View File

@@ -9891,6 +9891,10 @@ If you omit @var{expr}, @value{GDBN} displays the last value again (from the
conveniently inspect the same value in an alternative format.
@end table
If the architecture supports memory tagging, the @code{print} command will
display pointer/memory tag mismatches if what is being printed is a pointer
or reference type.
A more low-level way of examining data is with the @code{x} command.
It examines data in memory at a specified address and prints it in a
specified format. @xref{Memory, ,Examining Memory}.
@@ -10658,7 +10662,8 @@ number is specified, memory is examined backward from @var{addr}.
@item @var{f}, the display format
The display format is one of the formats used by @code{print}
(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
@samp{f}, @samp{s}), @samp{i} (for machine instructions) and
@samp{m} (for displaying memory tags).
The default is @samp{x} (hexadecimal) initially. The default changes
each time you use either @code{x} or @code{print}.
@@ -10753,6 +10758,20 @@ counter is shown with a @code{=>} marker. For example:
0x804838c <main+24>: call 0x80482d4 <puts@@plt>
@end smallexample
If the architecture supports memory tagging, the tags can be displayed by
using @samp{m}. The information will be displayed once per granule size
(the amount of bytes a particular memory tag covers). For example, AArch64
has a granule size of 16 bytes, so it will display a tag every 16 bytes.
Due to the way @value{GDBN} prints information with the @code{x} command (not
aligned to a particular boundary), the tag information will refer to the
initial address displayed on a particular line. If a memory tag boundary
is crossed in the middle of a line displayed by the @code{x} command, it
will be displayed in the next line.
The @samp{m} format doesn't affect any other specified formats that were
passed to the @code{x} command.
@cindex @code{$_}, @code{$__}, and value history
The addresses and contents printed by the @code{x} command are not saved
in the value history because there is often too much of them and they
@@ -10804,6 +10823,58 @@ target supports computing the CRC checksum of a block of memory
(@pxref{qCRC packet}).
@end table
@subsection Memory Tagging
Memory tagging is a memory protection technology that validates accesses
through pointers via a tag. Both the pointer tag and the memory tag in the
physical address space must match for the memory access to be validated.
There are two types of tags: logical and allocation. The logical tag is
stored in the pointers themselves. The allocation tag is the tag associated
with the physical address space, against which the logical tags from pointers
are validated.
If the underlying architecture supports memory tagging, like AArch64,
@value{GDBN} can make use of it to validate addresses and pointers against
memory allocation tags.
The @code{print} and @code{x} commands will display tag information when
appropriate, and a command prefix of @code{mtag} gives access to the
various memory tagging commands.
The @code{print} command will automatically attempt to validate the logical
tag against the allocation tag for pointers and addresses, and will display
a message in case of failure.
The @code{x} command has a @code{m} modifier. When present, this modifier
will make the @code{x} command output allocation tag information for a given
memory region that is being examined.
The @code{mtag} commands are the following:
@table @code
@kindex mtag showltag
@item mtag showltag @var{address_expression}
Show the logical tag contained in the pointer resulting from evaluating the
argument expression.
@kindex mtag setltag
@item mtag setltag @var{address_expression} @var{tag_bytes}
Print the resulting pointer from evaluating the argument expression with a
logical tag of @var{tag_bytes}.
@kindex mtag showatag
@item mtag showatag @var{address_expression}
Show the allocation tag from the memory address pointed to by the evaluation
of the argument expression.
@kindex mtag setatag
@item mtag setatag @var{starting_address} @var{length} @var{tag_bytes}
Set the allocation tag for memory range @r{[}@var{starting_address},
@var{starting_address} + @var{length}@r{)} to @var{tag_bytes}.
@kindex mtag check
@item mtag check @var{address_expression}
Given the pointer resulting from evaluating the argument expression, check that
the logical tag and the allocation tags match.
@end table
@node Auto Display
@section Automatic Display
@cindex automatic display
@@ -24843,6 +24914,19 @@ When GDB prints a backtrace, any addresses that required unmasking will be
postfixed with the marker [PAC]. When using the MI, this is printed as part
of the @code{addr_flags} field.
@subsubsection AArch64 Memory Tagging Extension.
@cindex AArch64 Memory Tagging Extension.
When @value{GDBN} is debugging the AArch64 architecture, the program is
using the v8.5-A feature Memory Tagging Extension (MTE) and there is support
in the kernel for MTE, @value{GDBN} will make memory tagging functionality
available for inspection and editing of logical and allocation tags.
To aid debugging, @value{GDBN} will output additional information when SIGSEGV
signals are generated as a result of memory tag failures.
A new register set is made available through the MTE feature.
@node i386
@subsection x86 Architecture-specific Issues
@@ -40647,6 +40731,77 @@ is a sequence of thread IDs, @var{threadid} (eight hex
digits), from the target. See @code{remote.c:parse_threadlist_response()}.
@end table
@item qMemTags:@var{start address}:@var{length}
@cindex fetch memory tags
@cindex @samp{qMemTags} packet
Fetch memory tags in the address range @r{[}@var{start address},
@var{start address} + @var{length}@r{)}. The target is responsible for
calculating how many tags will be returned, as this is architecture-specific.
@var{start address} is the starting address of the memory range.
@var{length} is the length, in bytes, of the memory range.
Reply:
@table @samp
@item @var{mXX}@dots{}
Hex encoded sequence of uninterpreted bytes representing the tags found in
the request memory range.
@item E @var{nn}
An error occured. This means that fetching of memory tags failed for some
reason.
@item @w{}
An empty reply indicates that @samp{qMemTags} is not supported by the stub,
although this should not happen given @value{GDBN} will only send this packet
if the stub has advertised support for memory tagging via @samp{qSupported}.
@end table
@item QMemTags:@var{start address}:@var{length}:@var{tag bytes}
@cindex store memory tags
@cindex @samp{QMemTags} packet
Store memory tags to the address range @r{[}@var{start address},
@var{start address} + @var{length}@r{)}. The target is responsible for
interpreting the tag bytes and modifying the memory tag granules
accordingly, given this is architecture-specific.
The interpretation of how many tags should be written to how many memory tag
granules is also architecture-specific. The behavior is
implementation-specific, but the following is suggested.
If the number of memory tags, @var{N}, is greater than or equal to the number
of memory tag granules, @var{G}, only @var{G} tags will be stored.
If @var{N} is less than @var{G}, the behavior is that of a fill operation,
and the tag bytes will be used as a pattern that will get repeated until
@var{G} tags are stored.
@var{start address} is the starting address of the memory range. The address
does not have any restriction on alignment or size.
@var{length} is the length, in bytes, of the memory range.
@var{tag bytes} is a sequence of hex encoded uninterpreted bytes which will be
interpreted by the target. Each pair of hex digits is interpreted as a
single byte.
Reply:
@table @samp
@item OK
The request was successful and the memory tag granules were modified
accordingly.
@item E @var{nn}
An error occured. This means that modifying the memory tag granules failed
for some reason.
@item @w{}
An empty reply indicates that @samp{QMemTags} is not supported by the stub,
although this should not happen given @value{GDBN} will only send this packet
if the stub has advertised support for memory tagging via @samp{qSupported}.
@end table
@item qOffsets
@cindex section offsets, remote request
@cindex @samp{qOffsets} packet
@@ -41314,6 +41469,11 @@ These are the currently defined stub features and their properties:
@tab @samp{-}
@tab No
@item @samp{memory-tagging}
@tab No
@tab @samp{-}
@tab No
@end multitable
These are the currently defined stub features, in more detail:
@@ -41528,6 +41688,14 @@ The remote stub understands the @samp{QThreadEvents} packet.
@item no-resumed
The remote stub reports the @samp{N} stop reply.
@item memory-tagging
The remote stub supports and implements the required memory tagging
functionality and understands the @samp{qMemTags} and @samp{QMemTags} packets.
For AArch64 GNU/Linux systems, this feature also requires access to the smaps
file in the proc filesystem so memory mapping page flags can be inspected. This
is done via the @samp{vFile} requests.
@end table
@item qSymbol::

View File

@@ -201,6 +201,7 @@ $(outdir)/%.dat: %.xml number-regs.xsl sort-regs.xsl gdbserver-regs.xsl
FEATURE_XMLFILES = aarch64-core.xml \
aarch64-fpu.xml \
aarch64-pauth.xml \
aarch64-mte.xml \
arc/core-v2.xml \
arc/aux-v2.xml \
arc/core-arcompact.xml \

View File

@@ -0,0 +1,15 @@
/* THIS FILE IS GENERATED. -*- buffer-read-only: t -*- vi:set ro:
Original: aarch64-mte.xml */
#include "gdbsupport/tdesc.h"
static int
create_feature_aarch64_mte (struct target_desc *result, long regnum)
{
struct tdesc_feature *feature;
feature = tdesc_create_feature (result, "org.gnu.gdb.aarch64.mte");
tdesc_create_reg (feature, "sctlr", regnum++, 0, "system", 64, "uint64");
tdesc_create_reg (feature, "gcr", regnum++, 0, "system", 64, "uint64");
return regnum;
}

View File

@@ -0,0 +1,12 @@
<?xml version="1.0"?>
<!-- Copyright (C) 2020 Free Software Foundation, Inc.
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. -->
<!DOCTYPE feature SYSTEM "gdb-target.dtd">
<feature name="org.gnu.gdb.aarch64.mte">
<reg name="sctlr" bitsize="64" type="uint64" group="system" save-restore="no"/>
<reg name="gcr" bitsize="64" type="uint64" group="system" save-restore="no"/>
</feature>

View File

@@ -251,6 +251,12 @@ struct gdbarch
gdbarch_convert_from_func_ptr_addr_ftype *convert_from_func_ptr_addr;
gdbarch_addr_bits_remove_ftype *addr_bits_remove;
int significant_addr_bit;
gdbarch_memtag_to_string_ftype *memtag_to_string;
gdbarch_tagged_address_p_ftype *tagged_address_p;
gdbarch_memtag_mismatch_p_ftype *memtag_mismatch_p;
gdbarch_set_memtags_ftype *set_memtags;
gdbarch_get_memtag_ftype *get_memtag;
CORE_ADDR memtag_granule_size;
gdbarch_software_single_step_ftype *software_single_step;
gdbarch_single_step_through_delay_ftype *single_step_through_delay;
gdbarch_print_insn_ftype *print_insn;
@@ -426,6 +432,11 @@ gdbarch_alloc (const struct gdbarch_info *info,
gdbarch->stabs_argument_has_addr = default_stabs_argument_has_addr;
gdbarch->convert_from_func_ptr_addr = convert_from_func_ptr_addr_identity;
gdbarch->addr_bits_remove = core_addr_identity;
gdbarch->memtag_to_string = default_memtag_to_string;
gdbarch->tagged_address_p = default_tagged_address_p;
gdbarch->memtag_mismatch_p = default_memtag_mismatch_p;
gdbarch->set_memtags = default_set_memtags;
gdbarch->get_memtag = default_get_memtag;
gdbarch->print_insn = default_print_insn;
gdbarch->skip_trampoline_code = generic_skip_trampoline_code;
gdbarch->skip_solib_resolver = generic_skip_solib_resolver;
@@ -615,6 +626,12 @@ verify_gdbarch (struct gdbarch *gdbarch)
/* Skip verify of convert_from_func_ptr_addr, invalid_p == 0 */
/* Skip verify of addr_bits_remove, invalid_p == 0 */
/* Skip verify of significant_addr_bit, invalid_p == 0 */
/* Skip verify of memtag_to_string, invalid_p == 0 */
/* Skip verify of tagged_address_p, invalid_p == 0 */
/* Skip verify of memtag_mismatch_p, invalid_p == 0 */
/* Skip verify of set_memtags, invalid_p == 0 */
/* Skip verify of get_memtag, invalid_p == 0 */
/* Skip verify of memtag_granule_size, invalid_p == 0 */
/* Skip verify of software_single_step, has predicate. */
/* Skip verify of single_step_through_delay, has predicate. */
/* Skip verify of print_insn, invalid_p == 0 */
@@ -1053,6 +1070,9 @@ gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
fprintf_unfiltered (file,
"gdbarch_dump: get_longjmp_target = <%s>\n",
host_address_to_string (gdbarch->get_longjmp_target));
fprintf_unfiltered (file,
"gdbarch_dump: get_memtag = <%s>\n",
host_address_to_string (gdbarch->get_memtag));
fprintf_unfiltered (file,
"gdbarch_dump: get_pc_address_flags = <%s>\n",
host_address_to_string (gdbarch->get_pc_address_flags));
@@ -1188,6 +1208,15 @@ gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
fprintf_unfiltered (file,
"gdbarch_dump: memory_remove_breakpoint = <%s>\n",
host_address_to_string (gdbarch->memory_remove_breakpoint));
fprintf_unfiltered (file,
"gdbarch_dump: memtag_granule_size = %s\n",
core_addr_to_string_nz (gdbarch->memtag_granule_size));
fprintf_unfiltered (file,
"gdbarch_dump: memtag_mismatch_p = <%s>\n",
host_address_to_string (gdbarch->memtag_mismatch_p));
fprintf_unfiltered (file,
"gdbarch_dump: memtag_to_string = <%s>\n",
host_address_to_string (gdbarch->memtag_to_string));
fprintf_unfiltered (file,
"gdbarch_dump: num_pseudo_regs = %s\n",
plongest (gdbarch->num_pseudo_regs));
@@ -1332,6 +1361,9 @@ gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
fprintf_unfiltered (file,
"gdbarch_dump: sdb_reg_to_regnum = <%s>\n",
host_address_to_string (gdbarch->sdb_reg_to_regnum));
fprintf_unfiltered (file,
"gdbarch_dump: set_memtags = <%s>\n",
host_address_to_string (gdbarch->set_memtags));
fprintf_unfiltered (file,
"gdbarch_dump: short_bit = %s\n",
plongest (gdbarch->short_bit));
@@ -1440,6 +1472,9 @@ gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
fprintf_unfiltered (file,
"gdbarch_dump: syscalls_info = %s\n",
host_address_to_string (gdbarch->syscalls_info));
fprintf_unfiltered (file,
"gdbarch_dump: tagged_address_p = <%s>\n",
host_address_to_string (gdbarch->tagged_address_p));
fprintf_unfiltered (file,
"gdbarch_dump: target_desc = %s\n",
host_address_to_string (gdbarch->target_desc));
@@ -3212,6 +3247,108 @@ set_gdbarch_significant_addr_bit (struct gdbarch *gdbarch,
gdbarch->significant_addr_bit = significant_addr_bit;
}
std::string
gdbarch_memtag_to_string (struct gdbarch *gdbarch, struct value *address, enum memtag_type tag_type)
{
gdb_assert (gdbarch != NULL);
gdb_assert (gdbarch->memtag_to_string != NULL);
if (gdbarch_debug >= 2)
fprintf_unfiltered (gdb_stdlog, "gdbarch_memtag_to_string called\n");
return gdbarch->memtag_to_string (gdbarch, address, tag_type);
}
void
set_gdbarch_memtag_to_string (struct gdbarch *gdbarch,
gdbarch_memtag_to_string_ftype memtag_to_string)
{
gdbarch->memtag_to_string = memtag_to_string;
}
bool
gdbarch_tagged_address_p (struct gdbarch *gdbarch, struct value *address)
{
gdb_assert (gdbarch != NULL);
gdb_assert (gdbarch->tagged_address_p != NULL);
if (gdbarch_debug >= 2)
fprintf_unfiltered (gdb_stdlog, "gdbarch_tagged_address_p called\n");
return gdbarch->tagged_address_p (gdbarch, address);
}
void
set_gdbarch_tagged_address_p (struct gdbarch *gdbarch,
gdbarch_tagged_address_p_ftype tagged_address_p)
{
gdbarch->tagged_address_p = tagged_address_p;
}
bool
gdbarch_memtag_mismatch_p (struct gdbarch *gdbarch, struct value *address)
{
gdb_assert (gdbarch != NULL);
gdb_assert (gdbarch->memtag_mismatch_p != NULL);
if (gdbarch_debug >= 2)
fprintf_unfiltered (gdb_stdlog, "gdbarch_memtag_mismatch_p called\n");
return gdbarch->memtag_mismatch_p (gdbarch, address);
}
void
set_gdbarch_memtag_mismatch_p (struct gdbarch *gdbarch,
gdbarch_memtag_mismatch_p_ftype memtag_mismatch_p)
{
gdbarch->memtag_mismatch_p = memtag_mismatch_p;
}
int
gdbarch_set_memtags (struct gdbarch *gdbarch, struct value *address, size_t length, const gdb::byte_vector &tags, enum memtag_type tag_type)
{
gdb_assert (gdbarch != NULL);
gdb_assert (gdbarch->set_memtags != NULL);
if (gdbarch_debug >= 2)
fprintf_unfiltered (gdb_stdlog, "gdbarch_set_memtags called\n");
return gdbarch->set_memtags (gdbarch, address, length, tags, tag_type);
}
void
set_gdbarch_set_memtags (struct gdbarch *gdbarch,
gdbarch_set_memtags_ftype set_memtags)
{
gdbarch->set_memtags = set_memtags;
}
struct value *
gdbarch_get_memtag (struct gdbarch *gdbarch, struct value *address, enum memtag_type tag_type)
{
gdb_assert (gdbarch != NULL);
gdb_assert (gdbarch->get_memtag != NULL);
if (gdbarch_debug >= 2)
fprintf_unfiltered (gdb_stdlog, "gdbarch_get_memtag called\n");
return gdbarch->get_memtag (gdbarch, address, tag_type);
}
void
set_gdbarch_get_memtag (struct gdbarch *gdbarch,
gdbarch_get_memtag_ftype get_memtag)
{
gdbarch->get_memtag = get_memtag;
}
CORE_ADDR
gdbarch_memtag_granule_size (struct gdbarch *gdbarch)
{
gdb_assert (gdbarch != NULL);
/* Skip verify of memtag_granule_size, invalid_p == 0 */
if (gdbarch_debug >= 2)
fprintf_unfiltered (gdb_stdlog, "gdbarch_memtag_granule_size called\n");
return gdbarch->memtag_granule_size;
}
void
set_gdbarch_memtag_granule_size (struct gdbarch *gdbarch,
CORE_ADDR memtag_granule_size)
{
gdbarch->memtag_granule_size = memtag_granule_size;
}
int
gdbarch_software_single_step_p (struct gdbarch *gdbarch)
{

View File

@@ -115,6 +115,18 @@ enum function_call_return_method
return_method_struct,
};
enum memtag_type
{
/* Logical tag, the tag that is stored in unused bits of a pointer to a
virtual address. */
tag_logical = 0,
/* Allocation tag, the tag that is associated with every granule of memory in
the physical address space. Allocation tags are used to validate memory
accesses via pointers containing logical tags. */
tag_allocation,
};
/* The following are pre-initialized by GDBARCH. */
@@ -705,6 +717,47 @@ extern void set_gdbarch_addr_bits_remove (struct gdbarch *gdbarch, gdbarch_addr_
extern int gdbarch_significant_addr_bit (struct gdbarch *gdbarch);
extern void set_gdbarch_significant_addr_bit (struct gdbarch *gdbarch, int significant_addr_bit);
/* Return a string representation of the memory tag TYPE of ADDRESS.
If no tag is associated with such an address, return the empty string. */
typedef std::string (gdbarch_memtag_to_string_ftype) (struct gdbarch *gdbarch, struct value *address, enum memtag_type tag_type);
extern std::string gdbarch_memtag_to_string (struct gdbarch *gdbarch, struct value *address, enum memtag_type tag_type);
extern void set_gdbarch_memtag_to_string (struct gdbarch *gdbarch, gdbarch_memtag_to_string_ftype *memtag_to_string);
/* Return true if ADDRESS contains a tag and false otherwise. */
typedef bool (gdbarch_tagged_address_p_ftype) (struct gdbarch *gdbarch, struct value *address);
extern bool gdbarch_tagged_address_p (struct gdbarch *gdbarch, struct value *address);
extern void set_gdbarch_tagged_address_p (struct gdbarch *gdbarch, gdbarch_tagged_address_p_ftype *tagged_address_p);
/* Return true if the tag from ADDRESS does not match the memory tag for that
particular address. Return false otherwise. */
typedef bool (gdbarch_memtag_mismatch_p_ftype) (struct gdbarch *gdbarch, struct value *address);
extern bool gdbarch_memtag_mismatch_p (struct gdbarch *gdbarch, struct value *address);
extern void set_gdbarch_memtag_mismatch_p (struct gdbarch *gdbarch, gdbarch_memtag_mismatch_p_ftype *memtag_mismatch_p);
/* Set the tags for the address range [ADDRESS, ADDRESS + LENGTH) to TAGS
Return 0 if successful and non-zero otherwise. */
typedef int (gdbarch_set_memtags_ftype) (struct gdbarch *gdbarch, struct value *address, size_t length, const gdb::byte_vector &tags, enum memtag_type tag_type);
extern int gdbarch_set_memtags (struct gdbarch *gdbarch, struct value *address, size_t length, const gdb::byte_vector &tags, enum memtag_type tag_type);
extern void set_gdbarch_set_memtags (struct gdbarch *gdbarch, gdbarch_set_memtags_ftype *set_memtags);
/* Return the tag portion of ADDRESS, assuming ADDRESS is tagged. */
typedef struct value * (gdbarch_get_memtag_ftype) (struct gdbarch *gdbarch, struct value *address, enum memtag_type tag_type);
extern struct value * gdbarch_get_memtag (struct gdbarch *gdbarch, struct value *address, enum memtag_type tag_type);
extern void set_gdbarch_get_memtag (struct gdbarch *gdbarch, gdbarch_get_memtag_ftype *get_memtag);
/* memtag_granule_size is the size of the allocation tag granule, for
architectures that support memory tagging.
This is 0 for architectures that do not support memory tagging.
For a non-zero value, this represents the number of bytes of memory per tag. */
extern CORE_ADDR gdbarch_memtag_granule_size (struct gdbarch *gdbarch);
extern void set_gdbarch_memtag_granule_size (struct gdbarch *gdbarch, CORE_ADDR memtag_granule_size);
/* FIXME/cagney/2001-01-18: This should be split in two. A target method that
indicates if the target needs software single step. An ISA method to
implement it.

View File

@@ -604,6 +604,30 @@ m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
# additional data associated with the address.
v;int;significant_addr_bit;;;;;;0
# Return a string representation of the memory tag TYPE of ADDRESS.
# If no tag is associated with such an address, return the empty string.
+m;std::string;memtag_to_string;struct value *address, enum memtag_type tag_type;address, tag_type;;default_memtag_to_string;;0
# Return true if ADDRESS contains a tag and false otherwise.
+m;bool;tagged_address_p;struct value *address;address;;default_tagged_address_p;;0
# Return true if the tag from ADDRESS does not match the memory tag for that
# particular address. Return false otherwise.
+m;bool;memtag_mismatch_p;struct value *address;address;;default_memtag_mismatch_p;;0
# Set the tags for the address range [ADDRESS, ADDRESS + LENGTH) to TAGS
# Return 0 if successful and non-zero otherwise.
+m;int;set_memtags;struct value *address, size_t length, const gdb::byte_vector \&tags, enum memtag_type tag_type;address, length, tags, tag_type;;default_set_memtags;;0
# Return the tag portion of ADDRESS, assuming ADDRESS is tagged.
+m;struct value *;get_memtag;struct value *address, enum memtag_type tag_type;address, tag_type;;default_get_memtag;;0
# memtag_granule_size is the size of the allocation tag granule, for
# architectures that support memory tagging.
# This is 0 for architectures that do not support memory tagging.
# For a non-zero value, this represents the number of bytes of memory per tag.
v;CORE_ADDR;memtag_granule_size;;;;;;0
# FIXME/cagney/2001-01-18: This should be split in two. A target method that
# indicates if the target needs software single step. An ISA method to
# implement it.
@@ -1353,6 +1377,18 @@ enum function_call_return_method
return_method_struct,
};
enum memtag_type
{
/* Logical tag, the tag that is stored in unused bits of a pointer to a
virtual address. */
tag_logical = 0,
/* Allocation tag, the tag that is associated with every granule of memory in
the physical address space. Allocation tags are used to validate memory
accesses via pointers containing logical tags. */
tag_allocation,
};
EOF
# function typedef's

View File

@@ -86,8 +86,33 @@ struct smaps_vmflags
/* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
unsigned int shared_mapping : 1;
/* Memory map has memory tagging enabled. */
unsigned int memory_tagging : 1;
};
/* Data structure that holds the information contained in the
/proc/<pid>/smaps file. */
struct smaps_data
{
ULONGEST start_address;
ULONGEST end_address;
std::string filename;
struct smaps_vmflags vmflags;
bool read;
bool write;
bool exec;
bool priv;
bool has_anonymous;
bool mapping_anon_p;
bool mapping_file_p;
ULONGEST inode;
ULONGEST offset;
};
/* Whether to take the /proc/PID/coredump_filter into account when
generating a corefile. */
@@ -472,6 +497,8 @@ decode_vmflags (char *p, struct smaps_vmflags *v)
v->exclude_coredump = 1;
else if (strcmp (s, "sh") == 0)
v->shared_mapping = 1;
else if (strcmp (s, "mt") == 0)
v->memory_tagging = 1;
}
}
@@ -1172,6 +1199,185 @@ typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
const char *filename,
void *data);
/* Helper function to parse the contents of /proc/<pid>/smaps into a data
structure, for easy access.
DATA is the contents of the smaps file. The parsed contents are stored
into the SMAPS vector. */
static int
parse_smaps_data (const char *data,
std::vector<struct smaps_data> &smaps,
const char *mapsfilename)
{
char *line, *t;
gdb_assert (data != nullptr);
smaps.clear ();
line = strtok_r ((char *) data, "\n", &t);
while (line != NULL)
{
ULONGEST addr, endaddr, offset, inode;
const char *permissions, *device, *filename;
struct smaps_vmflags v;
size_t permissions_len, device_len;
int read, write, exec, priv;
int has_anonymous = 0;
int mapping_anon_p;
int mapping_file_p;
memset (&v, 0, sizeof (v));
read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
&offset, &device, &device_len, &inode, &filename);
mapping_anon_p = mapping_is_anonymous_p (filename);
/* If the mapping is not anonymous, then we can consider it
to be file-backed. These two states (anonymous or
file-backed) seem to be exclusive, but they can actually
coexist. For example, if a file-backed mapping has
"Anonymous:" pages (see more below), then the Linux
kernel will dump this mapping when the user specified
that she only wants anonymous mappings in the corefile
(*even* when she explicitly disabled the dumping of
file-backed mappings). */
mapping_file_p = !mapping_anon_p;
/* Decode permissions. */
read = (memchr (permissions, 'r', permissions_len) != 0);
write = (memchr (permissions, 'w', permissions_len) != 0);
exec = (memchr (permissions, 'x', permissions_len) != 0);
/* 'private' here actually means VM_MAYSHARE, and not
VM_SHARED. In order to know if a mapping is really
private or not, we must check the flag "sh" in the
VmFlags field. This is done by decode_vmflags. However,
if we are using a Linux kernel released before the commit
834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
not have the VmFlags there. In this case, there is
really no way to know if we are dealing with VM_SHARED,
so we just assume that VM_MAYSHARE is enough. */
priv = memchr (permissions, 'p', permissions_len) != 0;
/* Try to detect if region should be dumped by parsing smaps
counters. */
for (line = strtok_r (NULL, "\n", &t);
line != NULL && line[0] >= 'A' && line[0] <= 'Z';
line = strtok_r (NULL, "\n", &t))
{
char keyword[64 + 1];
if (sscanf (line, "%64s", keyword) != 1)
{
warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
break;
}
if (strcmp (keyword, "Anonymous:") == 0)
{
/* Older Linux kernels did not support the
"Anonymous:" counter. Check it here. */
has_anonymous = 1;
}
else if (strcmp (keyword, "VmFlags:") == 0)
decode_vmflags (line, &v);
if (strcmp (keyword, "AnonHugePages:") == 0
|| strcmp (keyword, "Anonymous:") == 0)
{
unsigned long number;
if (sscanf (line, "%*s%lu", &number) != 1)
{
warning (_("Error parsing {s,}maps file '%s' number"),
mapsfilename);
break;
}
if (number > 0)
{
/* Even if we are dealing with a file-backed
mapping, if it contains anonymous pages we
consider it to be *also* an anonymous
mapping, because this is what the Linux
kernel does:
// Dump segments that have been written to.
if (vma->anon_vma && FILTER(ANON_PRIVATE))
goto whole;
Note that if the mapping is already marked as
file-backed (i.e., mapping_file_p is
non-zero), then this is a special case, and
this mapping will be dumped either when the
user wants to dump file-backed *or* anonymous
mappings. */
mapping_anon_p = 1;
}
}
}
/* Save the smaps entry to the vector. */
struct smaps_data map;
std::string fname (filename);
map.start_address = addr;
map.end_address = endaddr;
map.filename = fname;
map.vmflags = v;
map.read = read? true : false;
map.write = write? true : false;
map.exec = exec? true : false;
map.priv = priv? true : false;
map.has_anonymous = has_anonymous;
map.mapping_anon_p = mapping_anon_p? true : false;
map.mapping_file_p = mapping_file_p? true : false;
map.offset = offset;
map.inode = inode;
smaps.emplace_back (map);
}
return 0;
}
/* See linux-tdep.h. */
bool
linux_address_in_memtag_page (CORE_ADDR address)
{
if (current_inferior ()->fake_pid_p)
return false;
pid_t pid = current_inferior ()->pid;
std::string smaps_file = string_printf ("/proc/%d/smaps", pid);
gdb::unique_xmalloc_ptr<char> data
= target_fileio_read_stralloc (NULL, smaps_file.c_str ());
if (data == nullptr)
return false;
std::vector<struct smaps_data> smaps;
/* Parse the contents of smaps into a vector. */
parse_smaps_data (data.get (), smaps, smaps_file.c_str ());
if (!smaps.empty ())
{
for (struct smaps_data map : smaps)
{
/* Is the address within [start_address, end_address) in a page
mapped with memory tagging? */
if (address >= map.start_address
&& address < map.end_address
&& map.vmflags.memory_tagging)
return true;
}
}
return false;
}
/* List memory regions in the inferior for a corefile. */
static int
@@ -1179,8 +1385,7 @@ linux_find_memory_regions_full (struct gdbarch *gdbarch,
linux_find_memory_region_ftype *func,
void *obfd)
{
char mapsfilename[100];
char coredumpfilter_name[100];
std::string coredumpfilter_name;
pid_t pid;
/* Default dump behavior of coredump_filter (0x33), according to
Documentation/filesystems/proc.txt from the Linux kernel
@@ -1198,10 +1403,9 @@ linux_find_memory_regions_full (struct gdbarch *gdbarch,
if (use_coredump_filter)
{
xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
"/proc/%d/coredump_filter", pid);
coredumpfilter_name = string_printf ("/proc/%d/coredump_filter", pid);
gdb::unique_xmalloc_ptr<char> coredumpfilterdata
= target_fileio_read_stralloc (NULL, coredumpfilter_name);
= target_fileio_read_stralloc (NULL, coredumpfilter_name.c_str ());
if (coredumpfilterdata != NULL)
{
unsigned int flags;
@@ -1211,124 +1415,37 @@ linux_find_memory_regions_full (struct gdbarch *gdbarch,
}
}
xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
std::string mapsfilename = string_printf ("/proc/%d/smaps", pid);
gdb::unique_xmalloc_ptr<char> data
= target_fileio_read_stralloc (NULL, mapsfilename);
= target_fileio_read_stralloc (NULL, mapsfilename.c_str ());
if (data == NULL)
{
/* Older Linux kernels did not support /proc/PID/smaps. */
xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
data = target_fileio_read_stralloc (NULL, mapsfilename);
mapsfilename = string_printf ("/proc/%d/maps", pid);
data = target_fileio_read_stralloc (NULL, mapsfilename.c_str ());
}
if (data != NULL)
if (data == nullptr)
return 1;
std::vector<struct smaps_data> smaps;
/* Parse the contents of smaps into a vector. */
parse_smaps_data (data.get (), smaps, mapsfilename.c_str ());
if (!smaps.empty ())
{
char *line, *t;
line = strtok_r (data.get (), "\n", &t);
while (line != NULL)
for (struct smaps_data map : smaps)
{
ULONGEST addr, endaddr, offset, inode;
const char *permissions, *device, *filename;
struct smaps_vmflags v;
size_t permissions_len, device_len;
int read, write, exec, priv;
int has_anonymous = 0;
int should_dump_p = 0;
int mapping_anon_p;
int mapping_file_p;
memset (&v, 0, sizeof (v));
read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
&offset, &device, &device_len, &inode, &filename);
mapping_anon_p = mapping_is_anonymous_p (filename);
/* If the mapping is not anonymous, then we can consider it
to be file-backed. These two states (anonymous or
file-backed) seem to be exclusive, but they can actually
coexist. For example, if a file-backed mapping has
"Anonymous:" pages (see more below), then the Linux
kernel will dump this mapping when the user specified
that she only wants anonymous mappings in the corefile
(*even* when she explicitly disabled the dumping of
file-backed mappings). */
mapping_file_p = !mapping_anon_p;
/* Decode permissions. */
read = (memchr (permissions, 'r', permissions_len) != 0);
write = (memchr (permissions, 'w', permissions_len) != 0);
exec = (memchr (permissions, 'x', permissions_len) != 0);
/* 'private' here actually means VM_MAYSHARE, and not
VM_SHARED. In order to know if a mapping is really
private or not, we must check the flag "sh" in the
VmFlags field. This is done by decode_vmflags. However,
if we are using a Linux kernel released before the commit
834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
not have the VmFlags there. In this case, there is
really no way to know if we are dealing with VM_SHARED,
so we just assume that VM_MAYSHARE is enough. */
priv = memchr (permissions, 'p', permissions_len) != 0;
/* Try to detect if region should be dumped by parsing smaps
counters. */
for (line = strtok_r (NULL, "\n", &t);
line != NULL && line[0] >= 'A' && line[0] <= 'Z';
line = strtok_r (NULL, "\n", &t))
{
char keyword[64 + 1];
if (sscanf (line, "%64s", keyword) != 1)
{
warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
break;
}
if (strcmp (keyword, "Anonymous:") == 0)
{
/* Older Linux kernels did not support the
"Anonymous:" counter. Check it here. */
has_anonymous = 1;
}
else if (strcmp (keyword, "VmFlags:") == 0)
decode_vmflags (line, &v);
if (strcmp (keyword, "AnonHugePages:") == 0
|| strcmp (keyword, "Anonymous:") == 0)
{
unsigned long number;
if (sscanf (line, "%*s%lu", &number) != 1)
{
warning (_("Error parsing {s,}maps file '%s' number"),
mapsfilename);
break;
}
if (number > 0)
{
/* Even if we are dealing with a file-backed
mapping, if it contains anonymous pages we
consider it to be *also* an anonymous
mapping, because this is what the Linux
kernel does:
// Dump segments that have been written to.
if (vma->anon_vma && FILTER(ANON_PRIVATE))
goto whole;
Note that if the mapping is already marked as
file-backed (i.e., mapping_file_p is
non-zero), then this is a special case, and
this mapping will be dumped either when the
user wants to dump file-backed *or* anonymous
mappings. */
mapping_anon_p = 1;
}
}
}
if (has_anonymous)
should_dump_p = dump_mapping_p (filterflags, &v, priv,
mapping_anon_p, mapping_file_p,
filename, addr, offset);
if (map.has_anonymous)
should_dump_p = dump_mapping_p (filterflags, &map.vmflags, map.priv,
map.mapping_anon_p,
map.mapping_file_p,
map.filename.c_str (),
map.start_address,
map.offset);
else
{
/* Older Linux kernels did not support the "Anonymous:" counter.
@@ -1338,16 +1455,15 @@ linux_find_memory_regions_full (struct gdbarch *gdbarch,
/* Invoke the callback function to create the corefile segment. */
if (should_dump_p)
func (addr, endaddr - addr, offset, inode,
read, write, exec, 1, /* MODIFIED is true because we
want to dump the mapping. */
filename, obfd);
func (map.start_address, map.end_address - map.start_address,
map.offset, map.inode, map.read, map.write, map.exec,
1, /* MODIFIED is true because we want to dump
the mapping. */
map.filename.c_str (), obfd);
}
return 0;
}
return 1;
return 0;
}
/* A structure for passing information through

View File

@@ -41,6 +41,10 @@ DEF_ENUM_FLAGS_TYPE (enum linux_siginfo_extra_field_values,
struct type *linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
linux_siginfo_extra_fields);
/* Return true if ADDRESS is within the boundaries of a page mapped with
memory tagging protection. */
bool linux_address_in_memtag_page (CORE_ADDR address);
typedef char *(*linux_collect_thread_registers_ftype) (const struct regcache *,
ptid_t,
bfd *, char *, int *,

View File

@@ -0,0 +1,195 @@
/* Common Linux native ptrace code for AArch64 MTE.
Copyright (C) 2020 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "gdbsupport/common-defs.h"
#include "gdbsupport/byte-vector.h"
#include "arch/aarch64.h"
#include "arch/aarch64-mte-linux.h"
#include "nat/aarch64-linux.h"
#include "nat/aarch64-mte-linux-ptrace.h"
#include "linux-ptrace.h"
#include <sys/uio.h>
/* Helper function to display various possible errors when reading
MTE tags. */
static void
aarch64_mte_linux_peek_error (int error)
{
switch (error)
{
case EIO:
perror_with_name (_("PEEKMTETAGS not supported"));
break;
case EFAULT:
perror_with_name (_("Couldn't fetch allocation tags"));
break;
case EOPNOTSUPP:
perror_with_name (_("PROT_ME not enabled for requested address"));
default:
perror_with_name (_("Unknown MTE error"));
break;
}
}
/* Helper function to display various possible errors when writing
MTE tags. */
static void
aarch64_mte_linux_poke_error (int error)
{
switch (error)
{
case EIO:
perror_with_name (_("POKEMTETAGS not supported"));
break;
case EFAULT:
perror_with_name (_("Couldn't store allocation tags"));
break;
case EOPNOTSUPP:
perror_with_name (_("PROT_ME not enabled for requested address"));
default:
perror_with_name (_("Unknown MTE error"));
break;
}
}
/* Helper to prepare a vector of tags to be passed on to the kernel. The
main purpose of this function is to optimize the number of calls to
ptrace if we're writing too many tags at once, like a pattern fill
request.
Return a vector of tags of up to MAX_SIZE size, containing the tags that
must be passed on to the kernel. GRANULES is the number of tag granules to
be modified. */
static gdb::byte_vector
prepare_tag_vector (size_t granules, const gdb::byte_vector &tags,
size_t max_size)
{
gdb::byte_vector t (0);
if (granules == 0)
return t;
gdb_assert (tags.size () > 0 && max_size > 0);
if (granules > TAGS_MAX_SIZE)
t.resize (TAGS_MAX_SIZE);
else
t.resize (granules);
size_t tag_count = tags.size ();
for (size_t i = 0; i < t.size (); i++)
t[i] = tags[i % tag_count];
return t;
}
/* See nat/aarch64-mte-linux-ptrace.h */
int
aarch64_mte_fetch_memtags (int tid, CORE_ADDR address, size_t len,
gdb::byte_vector &tags)
{
size_t ntags = get_tag_granules (address, len, MTE_GRANULE_SIZE);
gdb_byte tagbuf[ntags];
struct iovec iovec;
iovec.iov_base = tagbuf;
iovec.iov_len = ntags;
tags.clear ();
bool done_reading = false;
/* The kernel may return less tags than we requested. Loop until we've read
all the requested tags or until we get an error. */
while (!done_reading)
{
/* Attempt to read ntags allocation tags from the kernel. */
if (ptrace (PTRACE_PEEKMTETAGS, tid, address, &iovec) < 0)
aarch64_mte_linux_peek_error (errno);
/* Make sure the kernel returned at least one tag. */
if (iovec.iov_len <= 0)
{
tags.clear ();
return 1;
}
/* Copy the tags the kernel returned. */
for (size_t i = 0; i < iovec.iov_len; i++)
tags.push_back (tagbuf[i]);
/* Are we done reading tags? */
if (tags.size () == ntags)
done_reading = true;
else
{
address += iovec.iov_len * MTE_GRANULE_SIZE;
iovec.iov_len = ntags - iovec.iov_len;
}
}
return 0;
}
/* See nat/aarch64-mte-linux-ptrace.h */
int
aarch64_mte_store_memtags (int tid, CORE_ADDR address, size_t len,
const gdb::byte_vector &tags)
{
if (tags.size () == 0)
return 0;
/* Get the number of tags we need to write. */
size_t ntags = get_tag_granules (address, len, MTE_GRANULE_SIZE);
gdb::byte_vector t = prepare_tag_vector (ntags, tags, TAGS_MAX_SIZE);
gdb::byte_vector tags_left = tags;
/* Write all the tags, TAGS_MAX_SIZE blocks at a time. */
while (t.size () != 0)
{
struct iovec iovec;
iovec.iov_base = t.data ();
iovec.iov_len = t.size ();
/* Request the kernel to update the allocation tags. */
if (ptrace (PTRACE_POKEMTETAGS, tid, address, &iovec) < 0)
aarch64_mte_linux_poke_error (errno);
/* Make sure the kernel wrote at least one tag. */
if (iovec.iov_len <= 0)
return 1;
/* Update the tag vector based on how many tags the kernel actually
wrote. */
auto it = tags_left.begin ();
tags_left.erase (it, it + iovec.iov_len - 1);
address += iovec.iov_len * MTE_GRANULE_SIZE;
ntags -= iovec.iov_len;
t = prepare_tag_vector (ntags, tags_left, TAGS_MAX_SIZE);
}
return 0;
}

View File

@@ -0,0 +1,50 @@
/* Common native Linux definitions for AArch64 MTE.
Copyright (C) 2018-2020 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef NAT_AARCH64_MTE_LINUX_PTRACE_H
#define NAT_AARCH64_MTE_LINUX_PTRACE_H
/* MTE allocation tag access */
#ifndef PTRACE_PEEKMTETAGS
#define PTRACE_PEEKMTETAGS 33
#endif
#ifndef PTRACE_POKEMTETAGS
#define PTRACE_POKEMTETAGS 34
#endif
/* Maximum number of tags to pass at once to the kernel. */
#define TAGS_MAX_SIZE 4096
/* Read the allocation tags from memory range [ADDRESS, ADDRESS + LEN)
into TAGS.
Return 0 if successful and non-zero otherwise. */
extern int aarch64_mte_fetch_memtags (int tid, CORE_ADDR address, size_t len,
gdb::byte_vector &tags);
/* Write the TAGS allocation tags to the memory range
[ADDRESS, ADDRESS + LEN).
Return 0 if successful and non-zero otherwise. */
extern int aarch64_mte_store_memtags (int tid, CORE_ADDR address, size_t len,
const gdb::byte_vector &tags);
#endif /* NAT_AARCH64_MTE_LINUX_PTRACE_H */

View File

@@ -53,6 +53,12 @@
#include "source.h"
#include "gdbsupport/byte-vector.h"
#include "gdbsupport/gdb_optional.h"
#include "gdbsupport/rsp-low.h"
#include "infrun.h" /* For memtag setting. */
/* Chain containing all defined mtag subcommands. */
struct cmd_list_element *mtaglist;
/* Last specified output format. */
@@ -84,6 +90,24 @@ static CORE_ADDR last_examine_address;
static value_ref_ptr last_examine_value;
/* If TRUE (default), and the architecture supports it, GDB will attempt to use
the memory tagging infrastructure to validate certain memory accesses. It
will also report memory tag violations alongside a SIGSEGV signal.
If FALSE, GDB will not use memory tagging in any way, and debugging will work
in the standard way. */
static bool memtag = true;
static void
show_memtag (struct ui_file *file, int from_tty,
struct cmd_list_element *c,
const char *value)
{
fprintf_filtered (file,
_("Use of memory tagging infrastructure is \"%s\".\n"),
value);
}
/* Largest offset between a symbolic value and an address, that will be
printed as `0x1234 <symbol+offset>'. */
@@ -187,6 +211,7 @@ decode_format (const char **string_ptr, int oformat, int osize)
val.size = '?';
val.count = 1;
val.raw = 0;
val.print_tags = false;
if (*p == '-')
{
@@ -209,6 +234,11 @@ decode_format (const char **string_ptr, int oformat, int osize)
val.raw = 1;
p++;
}
else if (*p == 'm')
{
val.print_tags = true;
p++;
}
else if (*p >= 'a' && *p <= 'z')
val.format = *p++;
else
@@ -1083,12 +1113,47 @@ do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
need_to_update_next_address = 1;
}
/* Whether we need to print the memory tag information for the current
address range. */
bool print_range_tag = true;
uint32_t gsize = gdbarch_memtag_granule_size (gdbarch);
/* Print as many objects as specified in COUNT, at most maxelts per line,
with the address of the next one at the start of each line. */
while (count > 0)
{
QUIT;
CORE_ADDR tag_laddr = 0, tag_haddr = 0;
/* Print the memory tag information if requested. */
if (fmt.print_tags && print_range_tag && memtag
&& target_supports_memory_tagging ())
{
tag_laddr = align_down (next_address, gsize);
tag_haddr = align_down (next_address + gsize, gsize);
struct value *v_addr
= value_from_ulongest (builtin_type (gdbarch)->builtin_data_ptr,
tag_laddr);
if (gdbarch_tagged_address_p (target_gdbarch (), v_addr))
{
std::string atag = gdbarch_memtag_to_string (gdbarch, v_addr,
tag_allocation);
if (!atag.empty ())
{
printf_filtered (_("<Allocation Tag %s for range [%s,%s)>\n"),
atag.c_str (),
paddress (gdbarch, tag_laddr),
paddress (gdbarch, tag_haddr));
}
}
print_range_tag = false;
}
if (format == 'i')
fputs_filtered (pc_prefix (next_address), gdb_stdout);
print_address (next_gdbarch, next_address, gdb_stdout);
@@ -1119,6 +1184,11 @@ do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
/* Display any branch delay slots following the final insn. */
if (format == 'i' && count == 1)
count += branch_delay_insns;
/* Update the tag range based on the current address being
processed. */
if (tag_haddr <= next_address)
print_range_tag = true;
}
printf_filtered ("\n");
}
@@ -1191,35 +1261,76 @@ print_value (value *val, const value_print_options &opts)
annotate_value_history_end ();
}
/* Implementation of the "print" and "call" commands. */
/* Returns true if memory tags should be validated. False otherwise. */
static void
print_command_1 (const char *args, int voidprint)
static bool
should_validate_memtags (struct value *value)
{
struct value *val;
value_print_options print_opts;
if (memtag && target_supports_memory_tagging ()
&& gdbarch_tagged_address_p (target_gdbarch (), value))
{
gdb_assert (value && value_type (value));
get_user_print_options (&print_opts);
enum type_code code = value_type (value)->code ();
return (code == TYPE_CODE_PTR
|| code == TYPE_CODE_REF
|| code == TYPE_CODE_METHODPTR
|| code == TYPE_CODE_MEMBERPTR);
}
return false;
}
/* Helper for parsing arguments for print_command_1. */
static struct value *
process_print_command_args (const char *args, value_print_options *print_opts)
{
get_user_print_options (print_opts);
/* Override global settings with explicit options, if any. */
auto group = make_value_print_options_def_group (&print_opts);
auto group = make_value_print_options_def_group (print_opts);
gdb::option::process_options
(&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);
print_command_parse_format (&args, "print", &print_opts);
print_command_parse_format (&args, "print", print_opts);
const char *exp = args;
if (exp != nullptr && *exp)
{
expression_up expr = parse_expression (exp);
val = evaluate_expression (expr.get ());
return evaluate_expression (expr.get ());
}
else
val = access_value_history (0);
return access_value_history (0);
}
/* Implementation of the "print" and "call" commands. */
static void
print_command_1 (const char *args, int voidprint)
{
value_print_options print_opts;
struct value *val = process_print_command_args (args, &print_opts);
if (voidprint || (val && value_type (val) &&
value_type (val)->code () != TYPE_CODE_VOID))
print_value (val, print_opts);
{
/* If memory tagging validation is on, check if the tag is valid. */
if (should_validate_memtags (val)
&& gdbarch_memtag_mismatch_p (target_gdbarch (), val))
{
std::string ltag = gdbarch_memtag_to_string (target_gdbarch (),
val, tag_logical);
std::string atag = gdbarch_memtag_to_string (target_gdbarch (),
val, tag_allocation);
printf_filtered (_("Logical tag (%s) does not match the "
"allocation tag (%s).\n"),
ltag.c_str (), atag.c_str ());
}
print_value (val, print_opts);
}
}
/* See valprint.h. */
@@ -2683,6 +2794,267 @@ eval_command (const char *arg, int from_tty)
execute_command (expanded.c_str (), from_tty);
}
/* Convenience function for error checking in mtag commands. */
static void
show_addr_not_tagged (CORE_ADDR address)
{
error (_("Address %s not in a region mapped with a memory tagging flag."),
paddress (target_gdbarch (), address));
}
/* Convenience function for error checking in mtag commands. */
static void
show_memtag_unsupported (void)
{
error (_("Memory tagging not supported or disabled by the current"
" architecture."));
}
/* Implement the "mtag" prefix command. */
static void
mtag_command (const char *arg, int from_tty)
{
help_list (mtaglist, "mtag ", all_commands, gdb_stdout);
}
/* Helper for showltag and showatag. */
static void
mtag_showtag_command (const char *args, enum memtag_type tag_type)
{
if (args == nullptr)
error_no_arg (_("address or pointer"));
/* Parse args into a value. If the value is a pointer or an address,
then fetch the logical or allocation tag. */
value_print_options print_opts;
struct value *val = process_print_command_args (args, &print_opts);
/* If the address is not in a region memory mapped with a memory tagging
flag, it is no use trying to access/manipulate its allocation tag.
It is OK to manipulate the logical tag though. */
if (tag_type == tag_allocation
&& !gdbarch_tagged_address_p (target_gdbarch (), val))
show_addr_not_tagged (value_as_address (val));
std::string tag = gdbarch_memtag_to_string (target_gdbarch (),
val, tag_type);
if (tag.empty ())
printf_filtered (_("%s tag unavailable.\n"),
tag_type == tag_logical? "Logical" : "Allocation");
struct value *v_tag = process_print_command_args (tag.c_str (),
&print_opts);
print_opts.output_format = 'x';
print_value (v_tag, print_opts);
}
/* Implement the "mtag showltag" command. */
static void
mtag_showltag_command (const char *args, int from_tty)
{
if (!memtag || !target_supports_memory_tagging ())
show_memtag_unsupported ();
mtag_showtag_command (args, tag_logical);
}
/* Implement the "mtag showatag" command. */
static void
mtag_showatag_command (const char *args, int from_tty)
{
if (!memtag || !target_supports_memory_tagging ())
show_memtag_unsupported ();
mtag_showtag_command (args, tag_allocation);
}
/* Parse ARGS and extract ADDR and TAG.
ARGS should have format <expression> <tag bytes>. */
static void
parse_setltag_input (const char *args, struct value **val,
gdb::byte_vector &tags, value_print_options *print_opts)
{
/* Given <expression> can be reasonably complex, we parse things backwards
so we can isolate the <tag bytes> portion. */
/* Fetch the address. */
std::string s_address = extract_string_maybe_quoted (&args);
/* Parse the address into a value. */
*val = process_print_command_args (s_address.c_str (), print_opts);
/* Fetch the tag bytes. */
std::string s_tags = extract_string_maybe_quoted (&args);
/* Validate the input. */
if (s_address.empty () || s_tags.empty ())
error (_("Missing arguments."));
tags = hex2bin (s_tags.c_str ());
}
/* Implement the "mtag setltag" command. */
static void
mtag_setltag_command (const char *args, int from_tty)
{
if (!memtag || !target_supports_memory_tagging ())
show_memtag_unsupported ();
if (args == nullptr)
error_no_arg (_("<address> <tag>"));
gdb::byte_vector tags;
struct value *val;
value_print_options print_opts;
/* Parse the input. */
parse_setltag_input (args, &val, tags, &print_opts);
/* Setting the logical tag is just a local operation that does not touch
any memory from the target. Given an input value, we modify the value
to include the appropriate tag.
For this reason we need to cast the argument value to a
(void *) pointer. This is so we have the right the for the gdbarch
hook to manipulate the value and insert the tag.
Otherwise, this would fail if, for example, GDB parsed the argument value
into an int-sized value and the pointer value has a type of greater
length. */
/* Cast to (void *). */
val = value_cast (builtin_type (target_gdbarch ())->builtin_data_ptr,
val);
if (gdbarch_set_memtags (target_gdbarch (), val, 0, tags,
tag_logical) != 0)
printf_filtered (_("Could not update the logical tag data.\n"));
else
{
/* Always print it in hex format. */
print_opts.output_format = 'x';
print_value (val, print_opts);
}
}
/* Parse ARGS and extract ADDR, LENGTH and TAGS. */
static void
parse_setatag_input (const char *args, struct value **val, size_t *length,
gdb::byte_vector &tags)
{
/* Fetch the address. */
std::string s_address = extract_string_maybe_quoted (&args);
/* Parse the address into a value. */
value_print_options print_opts;
*val = process_print_command_args (s_address.c_str (), &print_opts);
/* Fetch the length. */
std::string s_length = extract_string_maybe_quoted (&args);
/* Fetch the tag bytes. */
std::string s_tags = extract_string_maybe_quoted (&args);
/* Validate the input. */
if (s_address.empty () || s_length.empty () || s_tags.empty ())
error (_("Missing arguments."));
errno = 0;
*length = strtoulst (s_length.c_str (), NULL, 10);
if (errno != 0)
error (_("Error parsing length argument."));
tags = hex2bin (s_tags.c_str ());
/* If the address is not in a region memory mapped with a memory tagging
flag, it is no use trying to access/manipulate its allocation tag. */
if (!gdbarch_tagged_address_p (target_gdbarch (), *val))
show_addr_not_tagged (value_as_address (*val));
}
/* Implement the "mtag setatag" command.
ARGS should be in the format <address> <length> <tags>. */
static void
mtag_setatag_command (const char *args, int from_tty)
{
if (!memtag || !target_supports_memory_tagging ())
show_memtag_unsupported ();
if (args == nullptr)
error_no_arg (_("<starting address> <length> <tag bytes>"));
gdb::byte_vector tags;
size_t length = 0;
struct value *val;
/* Parse the input. */
parse_setatag_input (args, &val, &length, tags);
if (gdbarch_set_memtags (target_gdbarch (), val, length, tags,
tag_allocation) != 0)
printf_filtered (_("Could not update the allocation tag(s).\n"));
else
printf_filtered (_("Allocation tag(s) updated successfully.\n"));
}
/* Implement the "mtag check" command. */
static void
mtag_check_command (const char *args, int from_tty)
{
if (!memtag || !target_supports_memory_tagging ())
show_memtag_unsupported ();
if (args == nullptr)
error (_("Argument required (address or pointer)"));
/* Parse the expression into a value. If the value is an address or
pointer, then check its logical tag against the allocation tag. */
value_print_options print_opts;
struct value *val = process_print_command_args (args, &print_opts);
/* If the address is not in a region memory mapped with a memory tagging
flag, it is no use trying to access/manipulate its allocation tag. */
if (!gdbarch_tagged_address_p (target_gdbarch (), val))
show_addr_not_tagged (value_as_address (val));
CORE_ADDR addr = value_as_address (val);
/* If memory tagging validation is on, check if the tag is valid. */
if (gdbarch_memtag_mismatch_p (target_gdbarch (), val))
{
std::string ltag = gdbarch_memtag_to_string (target_gdbarch (),
val, tag_logical);
std::string atag = gdbarch_memtag_to_string (target_gdbarch (),
val, tag_allocation);
printf_filtered (_("Logical tag (%s) does not match"
" the allocation tag (%s) for address %s.\n"),
ltag.c_str (), atag.c_str (),
paddress (target_gdbarch (), addr));
}
else
{
std::string ltag = gdbarch_memtag_to_string (target_gdbarch (),
val, tag_logical);
printf_filtered (_("Memory tags for address %s match (%s).\n"),
paddress (target_gdbarch (), addr), ltag.c_str ());
}
}
void _initialize_printcmd ();
void
_initialize_printcmd ()
@@ -2883,4 +3255,70 @@ Construct a GDB command and then evaluate it.\n\
Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
Convert the arguments to a string as \"printf\" would, but then\n\
treat this string as a command line, and evaluate it."));
add_setshow_boolean_cmd ("memory-tagging", class_support,
&memtag, _("\
Set whether the debugger should use memory tagging infrastructure."), _("\
Show whether the debugger should use memory tagging infrastructure."), _("\
If on, gdb will attempt to validate memory tags and will warn the user if\n\
certain operations have illegal tags."),
NULL,
show_memtag,
&setlist, &showlist);
/* Memory tagging commands. */
add_prefix_cmd ("mtag", class_vars, mtag_command, _("\
Generic command for showing and manipulating memory tag properties."),
&mtaglist, "mtag ", 0, &cmdlist);
add_cmd ("showltag", class_vars, mtag_showltag_command,
("Show the logical tag for an address.\n\
Usage: mtag showltag <address>.\n\
<address> is an expression that evaluates to a pointer or memory address.\n\
GDB will show the logical tag associated with <address>. The tag\n\
interpretation is architecture-specific."),
&mtaglist);
add_cmd ("showatag", class_vars, mtag_showatag_command,
_("Show the allocation tag for an address.\n\
Usage: mtag showatag <address>.\n\
<address> is an expression that evaluates to a pointer or memory address.\n\
GDB will show the allocation tag associated with <address>. The tag\n\
interpretation is architecture-specific."),
&mtaglist);
add_cmd ("setltag", class_vars, mtag_setltag_command,
_("Set the logical tag for an address.\n\
Usage: mtag setltag <address> <tag>\n\
<address> is an expression that evaluates to a pointer or memory address.\n\
<tag> is a sequence of hex bytes that will be interpreted by the\n\
architecture as a single memory tag.\n\
GDB will set the logical tag for <address> to <tag>, and will show the\n\
resulting address with the updated tag."),
&mtaglist);
add_cmd ("setatag", class_vars, mtag_setatag_command,
_("Set the allocation tag for an address.\n\
Usage: mtag setatag <address> <length> <tag_bytes>\n\
<address> is an expression that evaluates to a pointer or memory address\n\
<length> is the number of bytes that will get added to <address> to calculate\n\
the memory range.\n\
<tag bytes> is a sequence of hex bytes that will be interpreted by the\n\
architecture as one or more memory tags.\n\
Sets the tags of the memory range [<address>, <address> + <length>)\n\
to the specified tag bytes.\n\
\n\
If the number of tags is greater than or equal to the number of tag granules\n\
in the [<address>, <address> + <length) range, only the tags up to the\n\
number of tag granules will be stored.\n\
\n\
If the number of tags is less than the number of tag granules, then the\n\
command is a fill operation. The tag bytes are interpreted as a pattern\n\
that will get repeated until the number of tag granules in the memory range\n\
[<address>, <address> + <length>] is stored to."),
&mtaglist);
add_cmd ("check", class_vars, mtag_check_command,
_("Validate the logical tag against the allocation tag.\n\
Usage: mtag check <address>\n\
<address> is an expression that evaluates to a pointer or memory address\n\
GDB will fetch the logical and allocation tags for <address> and will\n\
compare them for equality. If the tags do not match, GDB will show\n\
additional information about the mismatch."),
&mtaglist);
}

View File

@@ -78,6 +78,7 @@
#include <algorithm>
#include <unordered_map>
#include "async-event.h"
#include "gdbsupport/selftest.h"
/* The remote target. */
@@ -685,6 +686,16 @@ public:
int remove_exec_catchpoint (int) override;
enum exec_direction_kind execution_direction () override;
bool supports_memory_tagging () override;
/* Read memory tags via the qMemTags packet */
int fetch_memtags (CORE_ADDR address, size_t len,
gdb::byte_vector &tags) override;
/* Write allocation tags via the QMemTags packet. */
int store_memtags (CORE_ADDR address, size_t len,
const gdb::byte_vector &tags) override;
public: /* Remote specific methods. */
void remote_download_command_source (int num, ULONGEST addr,
@@ -2093,6 +2104,10 @@ enum {
/* Support TARGET_WAITKIND_NO_RESUMED. */
PACKET_no_resumed,
/* Support for memory tagging, allocation tag fetch/store
packets and the tag violation stop replies. */
PACKET_memory_tagging_feature,
PACKET_MAX
};
@@ -2234,6 +2249,14 @@ remote_exec_event_p (struct remote_state *rs)
return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
}
/* Returns true if memory tagging is supported. */
static bool
remote_memory_tagging_p (void)
{
return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
}
/* Insert fork catchpoint target routine. If fork events are enabled
then return success, nothing more to do. */
@@ -5235,6 +5258,8 @@ static const struct protocol_feature remote_protocol_features[] = {
{ "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
{ "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
{ "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
{ "memory-tagging", PACKET_DISABLE, remote_supported_packet,
PACKET_memory_tagging_feature },
};
static char *remote_support_xml;
@@ -5329,6 +5354,10 @@ remote_target::remote_query_supported ()
if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
remote_query_supported_append (&q, "no-resumed+");
if (packet_set_cmd_state (PACKET_memory_tagging_feature)
!= AUTO_BOOLEAN_FALSE)
remote_query_supported_append (&q, "memory-tagging+");
/* Keep this one last to work around a gdbserver <= 7.10 bug in
the qSupported:xmlRegisters=i386 handling. */
if (remote_support_xml != NULL
@@ -14366,6 +14395,199 @@ set_range_stepping (const char *ignore_args, int from_tty,
}
}
/* Implement the "supports_memory_tagging" target_ops method. */
bool
remote_target::supports_memory_tagging ()
{
return remote_memory_tagging_p ();
}
/* Create the qMemTags packet given ADDRESS and LEN.
Return 0 if successful, non-zero otherwise. */
static void
create_fmemtags_request(gdb::char_vector &packet, CORE_ADDR address,
size_t len)
{
int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
std::string request = string_printf ("qMemTags:%s,%s",
phex_nz (address, addr_size),
phex_nz (len, sizeof (len)));
strcpy (packet.data (), request.c_str ());
}
/* Parse the qMemTags packet reply into TAGS.
Return 0 if successful, non-zero otherwise. */
static int
parse_fmemtags_reply (gdb::char_vector &reply, gdb::byte_vector &tags)
{
if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
return 1;
/* Copy the tag data. */
tags = hex2bin (reply.data () + 1);
return 0;
}
/* Create the QMemTags packet given ADDRESS, LEN and TAGS.
Return 0 if successful, non-zero otherwise. */
static void
create_smemtags_request (gdb::char_vector &packet, CORE_ADDR address,
size_t len, const gdb::byte_vector &tags)
{
int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
/* Put together the main packet, address and length. */
std::string request = string_printf ("QMemTags:%s,%s:",
phex_nz (address, addr_size),
phex_nz (len, sizeof (len)));
request += bin2hex (tags.data (), tags.size ());
/* Check if we have exceeded the maximum packet size. */
if (packet.size () < request.length ())
error (_("Contents too big for packet QMemTags."));
strcpy (packet.data (), request.c_str ());
}
/* Implement the "fetch_memtags" target_ops method. */
int
remote_target::fetch_memtags (CORE_ADDR address, size_t len,
gdb::byte_vector &tags)
{
/* Make sure the qMemTags packet is supported. */
if (!remote_memory_tagging_p ())
gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
struct remote_state *rs = get_remote_state ();
create_fmemtags_request (rs->buf, address, len);
putpkt (rs->buf);
getpkt (&rs->buf, 0);
parse_fmemtags_reply (rs->buf, tags);
return 0;
}
/* Implement the "store_memtags" target_ops method. */
int
remote_target::store_memtags (CORE_ADDR address, size_t len,
const gdb::byte_vector &tags)
{
/* Make sure the QMemTags packet is supported. */
if (!remote_memory_tagging_p ())
gdb_assert_not_reached ("remote store_memtags called with packet disabled");
struct remote_state *rs = get_remote_state ();
create_smemtags_request (rs->buf, address, len, tags);
putpkt (rs->buf);
getpkt (&rs->buf, 0);
/* Verify if the request was successful. */
if (packet_check_result (rs->buf.data ()) != PACKET_OK)
return 1;
return 0;
}
#if GDB_SELF_TEST
namespace selftests {
static void
test_memory_tagging_functions (void)
{
remote_target remote;
struct packet_config *config
= &remote_protocol_packets[PACKET_memory_tagging_feature];
/* Test memory tagging packet support. */
config->support = PACKET_SUPPORT_UNKNOWN;
SELF_CHECK (remote.supports_memory_tagging () == false);
config->support = PACKET_DISABLE;
SELF_CHECK (remote.supports_memory_tagging () == false);
config->support = PACKET_ENABLE;
SELF_CHECK (remote.supports_memory_tagging () == true);
/* Setup testing. */
gdb::char_vector packet;
gdb::byte_vector tags, bv;
std::string expected, reply;
packet.resize (32000);
/* Test creating a qMemTags request. */
expected = "qMemTags:0,0";
create_fmemtags_request (packet, 0x0, 0x0);
SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
expected = "qMemTags:deadbeef,10";
create_fmemtags_request (packet, 0xdeadbeef, 16);
SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
/* Test parsing a qMemTags reply. */
/* Error reply, tags vector unmodified. */
reply = "E00";
strcpy (packet.data (), reply.c_str ());
tags.resize (0);
SELF_CHECK (parse_fmemtags_reply (packet, tags) != 0);
SELF_CHECK (tags.size () == 0);
/* Valid reply, tags vector updated. */
tags.resize (0);
bv.resize (0);
for (int i = 0; i < 5; i++)
bv.push_back (i);
reply = "m" + bin2hex (bv.data (), bv.size ());
strcpy (packet.data (), reply.c_str ());
SELF_CHECK (parse_fmemtags_reply (packet, tags) == 0);
SELF_CHECK (tags.size () == 5);
for (int i = 0; i < 5; i++)
SELF_CHECK (tags[i] == i);
/* Test creating a QMemTags request. */
/* Empty tag data. */
tags.resize (0);
expected = "QMemTags:0,0:";
create_smemtags_request (packet, 0x0, 0x0, tags);
SELF_CHECK (memcmp (packet.data (), expected.c_str (),
expected.length ()) == 0);
/* Non-empty tag data. */
tags.resize (0);
for (int i = 0; i < 5; i++)
tags.push_back (i);
expected = "QMemTags:deadbeef,ff:0001020304";
create_smemtags_request (packet, 0xdeadbeef, 255, tags);
SELF_CHECK (memcmp (packet.data (), expected.c_str (),
expected.length ()) == 0);
}
} // namespace selftests
#endif /* GDB_SELF_TEST */
void _initialize_remote ();
void
_initialize_remote ()
@@ -14765,6 +14987,9 @@ Show the maximum size of the address (in bits) in a memory packet."), NULL,
add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
"N stop reply", "no-resumed-stop-reply", 0);
add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
"memory-tagging-feature", "memory-tagging-feature", 0);
/* Assert that we've registered "set remote foo-packet" commands
for all packet configs. */
{
@@ -14876,4 +15101,9 @@ Specify \"unlimited\" to display all the characters."),
/* Eventually initialize fileio. See fileio.c */
initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
#if GDB_SELF_TEST
selftests::register_test ("remote_memory_tagging",
selftests::test_memory_tagging_functions);
#endif
}

View File

@@ -171,6 +171,11 @@ struct dummy_target : public target_ops
const struct frame_unwind *get_tailcall_unwinder () override;
void prepare_to_generate_core () override;
void done_generating_core () override;
bool supports_memory_tagging () override;
int fetch_memtags (CORE_ADDR address, size_t len,
gdb::byte_vector &tags) override;
int store_memtags (CORE_ADDR address, size_t len,
const gdb::byte_vector &tags) override;
};
struct debug_target : public target_ops
@@ -340,6 +345,11 @@ struct debug_target : public target_ops
const struct frame_unwind *get_tailcall_unwinder () override;
void prepare_to_generate_core () override;
void done_generating_core () override;
bool supports_memory_tagging () override;
int fetch_memtags (CORE_ADDR address, size_t len,
gdb::byte_vector &tags) override;
int store_memtags (CORE_ADDR address, size_t len,
const gdb::byte_vector &tags) override;
};
void
@@ -4363,3 +4373,77 @@ debug_target::done_generating_core ()
fputs_unfiltered (")\n", gdb_stdlog);
}
bool
target_ops::supports_memory_tagging ()
{
return this->beneath ()->supports_memory_tagging ();
}
int
target_ops::fetch_memtags (CORE_ADDR address, size_t len,
gdb::byte_vector &tags)
{
return this->beneath ()->fetch_memtags (address, len, tags);
}
int
target_ops::store_memtags (CORE_ADDR address, size_t len,
const gdb::byte_vector &tags)
{
return this->beneath ()->store_memtags (address, len, tags);
}
bool
dummy_target::supports_memory_tagging ()
{
return false;
}
int
dummy_target::fetch_memtags (CORE_ADDR address, size_t len,
gdb::byte_vector &tags)
{
return 0;
}
int
dummy_target::store_memtags (CORE_ADDR address, size_t len,
const gdb::byte_vector &tags)
{
return 0;
}
bool
debug_target::supports_memory_tagging ()
{
bool result;
fprintf_unfiltered (gdb_stdlog, "-> %s->supports_memory_tagging (...)\n", this->beneath ()->shortname ());
result = this->beneath ()->supports_memory_tagging ();
fprintf_unfiltered (gdb_stdlog, "<- %s->supports_memory_tagging (", this->beneath ()->shortname ());
fputs_unfiltered (") = ", gdb_stdlog);
target_debug_print_bool (result);
fputs_unfiltered ("\n", gdb_stdlog);
return result;
}
int
debug_target::fetch_memtags (CORE_ADDR address, size_t len,
gdb::byte_vector &tags)
{
fprintf_unfiltered (gdb_stdlog, "-> %s->fetch_memtags (...)\n", this->beneath ()->shortname ());
int result = this->beneath ()->fetch_memtags (address, len, tags);
fprintf_unfiltered (gdb_stdlog, "<- %s->fetch_memtags (", this->beneath ()->shortname ());
fputs_unfiltered (")\n", gdb_stdlog);
return result;
}
int
debug_target::store_memtags (CORE_ADDR address, size_t len,
const gdb::byte_vector &tags)
{
fprintf_unfiltered (gdb_stdlog, "-> %s->store_memtags (...)\n", this->beneath ()->shortname ());
int result = this->beneath ()->store_memtags (address, len, tags);
fprintf_unfiltered (gdb_stdlog, "<- %s->store_memtags (", this->beneath ()->shortname ());
fputs_unfiltered (")\n", gdb_stdlog);
return result;
}

View File

@@ -1252,6 +1252,22 @@ struct target_ops
/* Cleanup after generating a core file. */
virtual void done_generating_core ()
TARGET_DEFAULT_IGNORE ();
/* Returns true if the target supports memory tagging. */
virtual bool supports_memory_tagging ()
TARGET_DEFAULT_RETURN (false);
/* Return the allocated memory tags associated with
[ADDRESS, ADDRESS + LEN) in TAGS. */
virtual int fetch_memtags (CORE_ADDR address, size_t len,
gdb::byte_vector &tags)
TARGET_DEFAULT_IGNORE ();
/* Write the allocation tags contained in TAGS to the memory range
[ADDRESS, ADDRESS + LEN). */
virtual int store_memtags (CORE_ADDR address, size_t len,
const gdb::byte_vector &tags)
TARGET_DEFAULT_IGNORE ();
};
/* Deleter for std::unique_ptr. See comments in
@@ -2308,6 +2324,15 @@ extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
#define target_augmented_libraries_svr4_read() \
(current_top_target ()->augmented_libraries_svr4_read) ()
#define target_supports_memory_tagging() \
((current_top_target ()->supports_memory_tagging) ())
#define target_fetch_memtags(address, len, tags) \
(current_top_target ()->fetch_memtags) ((address), (len), (tags))
#define target_store_memtags(address, len, tags) \
(current_top_target ()->store_memtags) ((address), (len), (tags))
/* Command logging facility. */
#define target_log_command(p) \

View File

@@ -0,0 +1,107 @@
/* This test program is part of GDB, the GNU debugger.
Copyright 2020 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Exercise AArch64's Memory Tagging Extension with tagged pointers. */
/* This test was based on the documentation for the AArch64 Memory Tagging
Extension from the Linux Kernel, found in the sources in
Documentation/arm64/memory-tagging-extension.rst. */
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/auxv.h>
#include <sys/mman.h>
#include <sys/prctl.h>
/* From arch/arm64/include/uapi/asm/hwcap.h */
#define HWCAP2_MTE (1 << 18)
/* From arch/arm64/include/uapi/asm/mman.h */
#define PROT_MTE 0x20
/* From include/uapi/linux/prctl.h */
#define PR_SET_TAGGED_ADDR_CTRL 55
#define PR_GET_TAGGED_ADDR_CTRL 56
#define PR_TAGGED_ADDR_ENABLE (1UL << 0)
#define PR_MTE_TCF_SHIFT 1
#define PR_MTE_TCF_NONE (0UL << PR_MTE_TCF_SHIFT)
#define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT)
#define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT)
#define PR_MTE_TCF_MASK (3UL << PR_MTE_TCF_SHIFT)
#define PR_MTE_TAG_SHIFT 3
#define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT)
void
access_memory (unsigned char *tagged_ptr, unsigned char *untagged_ptr)
{
tagged_ptr[0] = 'a';
}
int
main (int argc, char **argv)
{
unsigned char *tagged_ptr;
unsigned char *untagged_ptr;
unsigned long page_sz = sysconf (_SC_PAGESIZE);
unsigned long hwcap2 = getauxval(AT_HWCAP2);
/* Bail out if MTE is not supported. */
if (!(hwcap2 & HWCAP2_MTE))
return 1;
/* Enable the tagged address ABI, synchronous MTE tag check faults and
allow all non-zero tags in the randomly generated set. */
if (prctl (PR_SET_TAGGED_ADDR_CTRL,
PR_TAGGED_ADDR_ENABLE | PR_MTE_TCF_SYNC
| (0xfffe << PR_MTE_TAG_SHIFT),
0, 0, 0))
{
perror ("prctl () failed");
return 1;
}
/* Create a mapping that will have PROT_MTE set. */
tagged_ptr = mmap (0, page_sz, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (tagged_ptr == MAP_FAILED)
{
perror ("mmap () failed");
return 1;
}
/* Create another mapping that won't have PROT_MTE set. */
untagged_ptr = mmap (0, page_sz, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (untagged_ptr == MAP_FAILED)
{
perror ("mmap () failed");
return 1;
}
/* Enable MTE on the above anonymous mmap. */
if (mprotect (tagged_ptr, page_sz, PROT_READ | PROT_WRITE | PROT_MTE))
{
perror ("mprotect () failed");
return 1;
}
access_memory (tagged_ptr, untagged_ptr);
return 0;
}

View File

@@ -0,0 +1,338 @@
# Copyright (C) 2020 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Test a binary with address signing works regardless of whether the target
# supports pauth instructions. On non pauth systems, all pauth instructions
# are treated as nops.
global hex
global decimal
# Return TAG in hex format with no leading zeroes.
proc get_hex_tag { tag } {
return [format "%x" $tag]
}
# Return TAG in the NN format where N is 4 bits of the byte.
proc get_tag_nn { tag } {
return [format "%02x" $tag]
}
# Return the address of PTR with a tag of TAG.
proc get_tagged_ptr { tag ptr } {
set addr [get_hexadecimal_valueof $ptr -1]
return [get_valueof "/x" \
"${addr} & (0xf0ffffffffffffff) | ((unsigned long) ${tag} << 56)" \
"0" "fetch pointer ${ptr} with tag ${tag}"]
}
# Return the logical TAG from PTR.
proc get_ltag_from_ptr { ptr } {
set addr [get_hexadecimal_valueof $ptr -1]
return [get_valueof "/x" "${addr} >> 56 & 0xf" -1 "fetch tag from pointer ${ptr}"]
}
if {![is_aarch64_target]} {
verbose "Skipping ${gdb_test_file_name}."
return
}
standard_testfile
if { [prepare_for_testing "failed to prepare" ${testfile} ${srcfile}] } {
return -1
}
if ![runto_main] {
untested "could not run to main"
return -1
}
# Targets that don't support memory tagging should not execute the
# runtime memory tagging tests.
if {![supports_memtag]} {
untested "memory tagging unsupported"
return -1
}
gdb_breakpoint "access_memory"
if [gdb_continue "access_memory"] {
fail "could not run to tagged memory test function"
return -1
}
# Fetch a known pointer to an area mapped with PROT_MTE.
set tagged_ptr_symbol "tagged_ptr"
set tagged_ptr_addr [get_hexadecimal_valueof $tagged_ptr_symbol -1]
if {$tagged_ptr_addr == -1} {
untested "unexpected pointer or tag value"
return -1
}
# Fetch a known pointer to an area not mapped with PROT_MTE.
set untagged_ptr_symbol "untagged_ptr"
set untagged_ptr_addr [get_hexadecimal_valueof $untagged_ptr_symbol -1]
if {$untagged_ptr_addr == -1} {
untested "unexpected pointer or tag value"
return -1
}
with_test_prefix "literals" {
# Test inspecting an allocation tag from a pointer to a memory area that
# is not mapped with PROT_MTE.
set msg "Address ${untagged_ptr_addr} not in a region mapped with a memory tagging flag\."
gdb_test "mtag showatag ${untagged_ptr_addr}" $msg \
"mtag showatag with an untagged address"
gdb_test "mtag setatag ${untagged_ptr_addr} 0 00" $msg \
"mtag setatag with an untagged address"
set addr_tagged 0
set addr_tagged_valid 0
# Test setting and showing the logical tags for a literal address.
for {set i 0} {$i < 32} {incr i} {
with_test_prefix "tag ${i}" {
set addr_tagged [get_tagged_ptr $i ${tagged_ptr_addr}]
}
set tag_hexnz [get_hex_tag [expr $i % 16]]
gdb_test "mtag showltag ${addr_tagged}" \
" = 0x${tag_hexnz}" \
"showltag with tag ${i}"
set tag_hexnn [get_tag_nn $i]
gdb_test "mtag setltag ${addr_tagged} ${tag_hexnn}" \
" = \\(void \\*\\) ${addr_tagged}" \
"setltag with tag ${i}"
}
set setatag_msg "Allocation tag\\(s\\) updated successfully\."
# Test setting and showing the allocation tags.
for {set i 0} {$i < 32} {incr i} {
set tag_hexnn [get_tag_nn $i]
gdb_test "mtag setatag ${tagged_ptr_addr} 0 ${tag_hexnn}" \
$setatag_msg \
"setatag with tag ${i}"
set tag_hexnz [get_hex_tag [expr $i % 16]]
gdb_test "mtag showatag ${tagged_ptr_addr}" " = 0x${tag_hexnz}" \
"showatag with tag ${i}"
}
# Test tag mismatches.
with_test_prefix "tag mismatches" {
for {set i 0} {$i < 32} {incr i} {
# Set the allocation tag to a known value.
set tag_hexnn [get_tag_nn $i]
gdb_test "mtag setatag ${tagged_ptr_addr} 0 ${tag_hexnn}" \
$setatag_msg \
"setatag with tag ${i}"
set atag_hexnz [get_hex_tag [expr $i % 16]]
# Validate that the logical tag matches the allocation tag.
with_test_prefix "tag ${i}" {
set addr_tagged [get_tagged_ptr $i ${tagged_ptr_addr}]
}
gdb_test "mtag check ${addr_tagged}" \
"Memory tags for address $hex match \\(0x${atag_hexnz}\\)\." \
"check match with tag ${i}"
# Get a pointer with the logical tag that does not match the
# allocation tag.
set ltag [expr $i + 1]
with_test_prefix "fetch mismatch tag ${i}" {
set addr_tagged [get_tagged_ptr $ltag ${tagged_ptr_addr}]
}
# Validate that the logical tag does not match the allocation
# tag.
set ltag_hexnz [get_hex_tag [expr [expr $i + 1]% 16]]
gdb_test "mtag check ${addr_tagged}" \
"Logical tag \\(0x${ltag_hexnz}\\) does not match the allocation tag \\(0x${atag_hexnz}\\) for address $hex\." \
"check mismatch with tag ${i}"
}
}
}
with_test_prefix "symbolic" {
# Test inspecting an allocation tag from a pointer to a memory area that
# is not mapped with PROT_MTE.
set msg "Address ${untagged_ptr_addr} not in a region mapped with a memory tagging flag\."
gdb_test "mtag showatag ${untagged_ptr_symbol}" $msg \
"mtag showatag with an untagged address"
gdb_test "mtag setatag ${untagged_ptr_symbol} 0 00" $msg \
"mtag setatag with an untagged address"
# Test setting and showing the logical tags for a literal address.
for {set i 0} {$i < 32} {incr i} {
set addr_tagged 0
with_test_prefix "tag ${i}" {
set addr_tagged [get_tagged_ptr $i ${tagged_ptr_addr}]
gdb_test_no_output "set variable ${tagged_ptr_symbol} = ${addr_tagged}" \
"update value of symbol ${tagged_ptr_symbol}"
}
set tag_hexnz [get_hex_tag [expr $i % 16]]
gdb_test "mtag showltag ${tagged_ptr_symbol}" \
" = 0x${tag_hexnz}" \
"showltag with tag ${i}"
set tag_hexnn [get_tag_nn $i]
gdb_test "mtag setltag ${tagged_ptr_symbol} ${tag_hexnn}" \
" = \\(void \\*\\) ${addr_tagged}" \
"setltag with tag ${i}"
}
# Reset the tagged ptr to its original value
gdb_test_no_output "set variable ${tagged_ptr_symbol} = ${tagged_ptr_addr}" \
"reset ${tagged_ptr_symbol} to ${tagged_ptr_addr}"
set setatag_msg "Allocation tag\\(s\\) updated successfully\."
# Test setting and showing the allocation tags.
for {set i 0} {$i < 32} {incr i} {
set tag_hexnn [get_tag_nn $i]
gdb_test "mtag setatag ${tagged_ptr_symbol} 0 ${tag_hexnn}" \
$setatag_msg \
"setatag with tag ${i}"
set tag_hexnz [get_hex_tag [expr $i % 16]]
gdb_test "mtag showatag ${tagged_ptr_symbol}" " = 0x${tag_hexnz}" \
"showatag with tag ${i}"
}
# Test tag mismatches.
with_test_prefix "tag mismatches" {
for {set i 0} {$i < 32} {incr i} {
# Set the allocation tag to a known value (0).
set tag_hexnn [get_tag_nn $i]
gdb_test "mtag setatag ${tagged_ptr_symbol} 0 ${tag_hexnn}" \
$setatag_msg \
"setatag with tag ${i}"
set atag_hexnz [get_hex_tag [expr $i % 16]]
# Validate that the logical tag matches the allocation tag.
with_test_prefix "tag ${i}" {
set addr_tagged [get_tagged_ptr $i ${tagged_ptr_addr}]
}
with_test_prefix "tag ${i}" {
gdb_test_no_output "set variable ${tagged_ptr_symbol} = ${addr_tagged}" \
"set ${tagged_ptr_symbol} to a matching logical tag"
}
gdb_test "mtag check ${tagged_ptr_symbol}" \
"Memory tags for address $hex match \\(0x${atag_hexnz}\\)\." \
"check match with tag ${i}"
# Get a pointer with the logical tag that does not match the
# allocation tag.
set ltag [expr $i + 1]
with_test_prefix "fetch mismatch tag ${i}" {
set addr_tagged [get_tagged_ptr $ltag ${tagged_ptr_addr}]
}
with_test_prefix "tag ${i}" {
gdb_test_no_output "set variable ${tagged_ptr_symbol} = ${addr_tagged}" \
"set ${tagged_ptr_symbol} to a mismatching logical tag"
}
# Validate that the logical tag does not match the allocation
# tag.
set ltag_hexnz [get_hex_tag [expr [expr $i + 1]% 16]]
gdb_test "mtag check ${tagged_ptr_symbol}" \
"Logical tag \\(0x${ltag_hexnz}\\) does not match the allocation tag \\(0x${atag_hexnz}\\) for address $hex\." \
"check mismatch with tag ${i}"
}
# Reset the tagged ptr to its original value
gdb_test_no_output "set variable ${tagged_ptr_symbol} = ${tagged_ptr_addr}" \
"reset ${tagged_ptr_symbol} to ${tagged_ptr_addr}"
}
}
# Test the memory tagging extensions for the "print" command.
with_test_prefix "print command" {
set untagged_ptr [get_tagged_ptr 0 ${tagged_ptr_addr}]
with_test_prefix "fetch ltag" {
set ltag [get_ltag_from_ptr ${tagged_ptr_addr}]
}
if {$ltag == -1} {
untested "unexpected tag value"
return -1
}
set atag [expr [expr $ltag + 1] % 16]
set atag_hexnn [get_tag_nn $atag]
gdb_test "mtag setatag ${tagged_ptr_symbol} 0 ${atag_hexnn}" \
$setatag_msg \
"make atag and ltag different"
set atag_hexnz [get_hex_tag $atag]
gdb_test "p/x ${tagged_ptr_symbol}" \
[multi_line \
"Logical tag \\(${ltag}\\) does not match the allocation tag \\(0x${atag_hexnz}\\)\." \
"\\\$\[0-9\]+ = ${untagged_ptr}"] \
"show tag mismatch"
}
# Test the memory tagging extensions for the "x" command.
with_test_prefix "x command" {
# Check if the allocation tags match what we expect.
gdb_test "x/gxm ${tagged_ptr_symbol}" \
[multi_line \
"<Allocation Tag $hex for range \\\[$hex,$hex\\)>" \
"$hex:\[ \t\]+$hex"] \
"outputs tag information"
# Also make sure no tag information is output for memory areas without
# PROT_MTE mappings.
gdb_test "x/gxm ${untagged_ptr_symbol}" \
"$hex:\[ \t\]+$hex" \
"does not output tag information"
}
# Validate the presence of the MTE registers.
foreach reg {"sctlr" "gcr"} {
gdb_test "info registers $reg" \
"$reg\[ \t\]+$hex\[ \t\]+$decimal" \
"register $reg available"
}
# Run until a crash and confirm GDB displays memory tag violation
# information.
gdb_test "continue" \
[multi_line \
"Program received signal SIGSEGV, Segmentation fault" \
"Memory tag violation while accessing address $hex" \
"Logical tag $hex" \
"Allocation tag $hex\." \
"$hex in access_memory \\(.*\\) at .*" \
".*tagged_ptr\\\[0\\\] = 'a';"] \
"display tag violation information"

View File

@@ -0,0 +1,22 @@
/* This test program is part of GDB, the GNU debugger.
Copyright 2020 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
int
main (int argc, char **argv)
{
return 0;
}

View File

@@ -0,0 +1,64 @@
# Copyright 2020 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Smoke testing for the various memory tagging commands in GDB.
set u_msg "Memory tagging not supported or disabled by the current architecture\."
standard_testfile
if {[prepare_for_testing "failed to prepare" ${testfile} ${srcfile}]} {
return -1
}
if {[target_info gdb_protocol] == "extended-remote"} {
# Make sure we're disconnected, in case we're testing with an
# extended-remote board, therefore already connected.
gdb_test "disconnect" ".*"
}
# Test commands without running the program.
with_test_prefix "before program execution" {
# These commands should all fails without a running program.
foreach subcmd {"setltag" "showltag" "setatag" "showatag" "check"} {
gdb_test "mtag $subcmd" $u_msg
}
}
clean_restart $testfile
if ![runto_main] {
untested "could not run to main"
return -1
}
# Targets that don't support memory tagging should not execute the
# runtime memory tagging tests.
if {![supports_memtag]} {
untested "memory tagging unsupported"
return -1
}
# With the program running, try to use the memory tagging commands.
with_test_prefix "during program execution" {
set msg "Argument required \\(address or pointer\\)\."
# Test the various mtag commands again.
gdb_test "mtag showltag" $msg
gdb_test "mtag showatag" $msg
gdb_test "mtag setltag" "Argument required \\(<address> <tag>\\)\."
gdb_test "mtag setatag" \
"Argument required \\(<starting address> <length> <tag bytes>\\)\."
gdb_test "mtag check" $msg
}

View File

@@ -2613,6 +2613,22 @@ proc supports_get_siginfo_type {} {
}
}
# Return 1 if memory tagging is supported at runtime, otherwise return 0.
proc supports_memtag {} {
global gdb_prompt
gdb_test_multiple "mtag check" "" {
-re "Memory tagging not supported or disabled by the current architecture\..*$gdb_prompt $" {
return 0
}
-re "Argument required \\(address or pointer\\).*$gdb_prompt $" {
return 1
}
}
return 0
}
# Return 1 if the target supports hardware single stepping.
proc can_hardware_single_step {} {

View File

@@ -241,6 +241,7 @@ struct format_data
int count;
char format;
char size;
bool print_tags;
/* True if the value should be printed raw -- that is, bypassing
python-based formatters. */

View File

@@ -212,6 +212,7 @@ SFILES = \
$(srcdir)/../gdb/arch/ppc-linux-common.c \
$(srcdir)/../gdb/arch/riscv.c \
$(srcdir)/../gdb/nat/aarch64-sve-linux-ptrace.c \
$(srcdir)/../gdb/nat/aarch64-mte-linux-ptrace.c \
$(srcdir)/../gdb/nat/linux-btrace.c \
$(srcdir)/../gdb/nat/linux-namespaces.c \
$(srcdir)/../gdb/nat/linux-osdata.c \

View File

@@ -52,8 +52,10 @@ case "${gdbserver_host}" in
srv_tgtobj="$srv_tgtobj nat/aarch64-linux.o"
srv_tgtobj="$srv_tgtobj arch/aarch64-insn.o"
srv_tgtobj="$srv_tgtobj arch/aarch64.o"
srv_tgtobj="$srv_tgtobj arch/aarch64-mte-linux.o"
srv_tgtobj="$srv_tgtobj linux-aarch64-tdesc.o"
srv_tgtobj="$srv_tgtobj nat/aarch64-sve-linux-ptrace.o"
srv_tgtobj="$srv_tgtobj nat/aarch64-mte-linux-ptrace.o"
srv_tgtobj="${srv_tgtobj} $srv_linux_obj"
srv_linux_regsets=yes
srv_linux_thread_db=yes

View File

@@ -147,12 +147,12 @@ get_raw_reg (const unsigned char *raw_regs, int regnum)
/* Return target_desc to use for IPA, given the tdesc index passed by
gdbserver. Index is ignored, since we have only one tdesc
at the moment. SVE and pauth not yet supported. */
at the moment. SVE, pauth and MTE not yet supported. */
const struct target_desc *
get_ipa_tdesc (int idx)
{
return aarch64_linux_read_description (0, false);
return aarch64_linux_read_description (0, false, false);
}
/* Allocate buffer for the jump pads. The branch instruction has a reach
@@ -204,6 +204,6 @@ alloc_jump_pad_buffer (size_t size)
void
initialize_low_tracepoint (void)
{
/* SVE and pauth not yet supported. */
aarch64_linux_read_description (0, false);
/* SVE, pauth and MTE not yet supported. */
aarch64_linux_read_description (0, false, false);
}

View File

@@ -40,15 +40,21 @@
#include "gdb_proc_service.h"
#include "arch/aarch64.h"
#include "arch/aarch64-mte-linux.h"
#include "linux-aarch32-tdesc.h"
#include "linux-aarch64-tdesc.h"
#include "nat/aarch64-sve-linux-ptrace.h"
#include "nat/aarch64-mte-linux-ptrace.h"
#include "tdesc.h"
#ifdef HAVE_SYS_REG_H
#include <sys/reg.h>
#endif
#ifdef HAVE_GETAUXVAL
#include <sys/auxv.h>
#endif
/* Linux target op definitions for the AArch64 architecture. */
class aarch64_target : public linux_process_target
@@ -81,6 +87,14 @@ public:
struct emit_ops *emit_ops () override;
bool supports_memory_tagging () override;
int fetch_memtags (CORE_ADDR address, size_t len,
gdb::byte_vector &tags) override;
int store_memtags (CORE_ADDR address, size_t len,
const gdb::byte_vector &tags) override;
protected:
void low_arch_setup () override;
@@ -260,6 +274,23 @@ aarch64_store_pauthregset (struct regcache *regcache, const void *buf)
&pauth_regset[1]);
}
/* Store the MTE registers to regcache. */
static void
aarch64_store_mteregset (struct regcache *regcache, const void *buf)
{
uint64_t *mte_regset = (uint64_t *) buf;
int mte_base = find_regno (regcache->tdesc, "sctlr");
if (mte_base == 0)
return;
/* SCTLR register */
supply_register (regcache, mte_base, &mte_regset[0]);
/* GCR register */
supply_register (regcache, mte_base + 1, &mte_regset[1]);
}
bool
aarch64_target::low_supports_breakpoints ()
{
@@ -641,9 +672,13 @@ aarch64_target::low_arch_setup ()
{
uint64_t vq = aarch64_sve_get_vq (tid);
unsigned long hwcap = linux_get_hwcap (8);
unsigned long hwcap2 = linux_get_hwcap2 (8);
bool pauth_p = hwcap & AARCH64_HWCAP_PACA;
/* MTE is AArch64-only. */
bool mte_p = hwcap2 & HWCAP2_MTE;
current_process ()->tdesc = aarch64_linux_read_description (vq, pauth_p);
current_process ()->tdesc
= aarch64_linux_read_description (vq, pauth_p, mte_p);
}
else
current_process ()->tdesc = aarch32_linux_read_description ();
@@ -679,6 +714,8 @@ static struct regset_info aarch64_regsets[] =
{ PTRACE_GETREGSET, PTRACE_SETREGSET, NT_ARM_PAC_MASK,
AARCH64_PAUTH_REGS_SIZE, OPTIONAL_REGS,
NULL, aarch64_store_pauthregset },
{ PTRACE_GETREGSET, PTRACE_SETREGSET, NT_ARM_MTE,
AARCH64_LINUX_SIZEOF_MTE, OPTIONAL_REGS, NULL, aarch64_store_mteregset },
NULL_REGSET
};
@@ -708,6 +745,8 @@ static struct regset_info aarch64_sve_regsets[] =
{ PTRACE_GETREGSET, PTRACE_SETREGSET, NT_ARM_PAC_MASK,
AARCH64_PAUTH_REGS_SIZE, OPTIONAL_REGS,
NULL, aarch64_store_pauthregset },
{ PTRACE_GETREGSET, PTRACE_SETREGSET, NT_ARM_MTE,
AARCH64_LINUX_SIZEOF_MTE, OPTIONAL_REGS, NULL, aarch64_store_mteregset },
NULL_REGSET
};
@@ -3167,6 +3206,46 @@ aarch64_target::breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
return arm_breakpoint_kind_from_current_state (pcptr);
}
/* Returns true if memory tagging is supported. */
bool
aarch64_target::supports_memory_tagging ()
{
if (current_thread == NULL)
{
/* We don't have any processes running, so don't attempt to
use linux_get_hwcap2 as it will try to fetch the current
thread id. Instead, just fetch the auxv from the self
PID. */
#ifdef HAVE_GETAUXVAL
return (getauxval (AT_HWCAP2) & HWCAP2_MTE) != 0;
#else
return true;
#endif
}
return (linux_get_hwcap2 (8) & HWCAP2_MTE) != 0;
}
int
aarch64_target::fetch_memtags (CORE_ADDR address, size_t len,
gdb::byte_vector &tags)
{
/* Allocation tags are per-process, so any tid is fine. */
int tid = lwpid_of (current_thread);
return aarch64_mte_fetch_memtags (tid, address, len, tags);
}
int
aarch64_target::store_memtags (CORE_ADDR address, size_t len,
const gdb::byte_vector &tags)
{
/* Allocation tags are per-process, so any tid is fine. */
int tid = lwpid_of (current_thread);
return aarch64_mte_store_memtags (tid, address, len, tags);
}
/* The linux target ops object. */
linux_process_target *the_linux_target = &the_aarch64_target;

View File

@@ -27,22 +27,22 @@
#include <inttypes.h>
/* All possible aarch64 target descriptors. */
struct target_desc *tdesc_aarch64_list[AARCH64_MAX_SVE_VQ + 1][2/*pauth*/];
struct target_desc *tdesc_aarch64_list[AARCH64_MAX_SVE_VQ + 1][2/*pauth*/][2 /* mte */];
/* Create the aarch64 target description. */
const target_desc *
aarch64_linux_read_description (uint64_t vq, bool pauth_p)
aarch64_linux_read_description (uint64_t vq, bool pauth_p, bool mte_p)
{
if (vq > AARCH64_MAX_SVE_VQ)
error (_("VQ is %" PRIu64 ", maximum supported value is %d"), vq,
AARCH64_MAX_SVE_VQ);
struct target_desc *tdesc = tdesc_aarch64_list[vq][pauth_p];
struct target_desc *tdesc = tdesc_aarch64_list[vq][pauth_p][mte_p];
if (tdesc == NULL)
{
tdesc = aarch64_create_target_description (vq, pauth_p);
tdesc = aarch64_create_target_description (vq, pauth_p, mte_p);
static const char *expedite_regs_aarch64[] = { "x29", "sp", "pc", NULL };
static const char *expedite_regs_aarch64_sve[] = { "x29", "sp", "pc",
@@ -53,7 +53,7 @@ aarch64_linux_read_description (uint64_t vq, bool pauth_p)
else
init_target_desc (tdesc, expedite_regs_aarch64_sve);
tdesc_aarch64_list[vq][pauth_p] = tdesc;
tdesc_aarch64_list[vq][pauth_p][mte_p] = tdesc;
}
return tdesc;

View File

@@ -20,6 +20,7 @@
#ifndef GDBSERVER_LINUX_AARCH64_TDESC_H
#define GDBSERVER_LINUX_AARCH64_TDESC_H
const target_desc * aarch64_linux_read_description (uint64_t vq, bool pauth_p);
const target_desc * aarch64_linux_read_description (uint64_t vq, bool pauth_p,
bool mte_p);
#endif /* GDBSERVER_LINUX_AARCH64_TDESC_H */

View File

@@ -1302,31 +1302,12 @@ prepare_resume_reply (char *buf, ptid_t ptid,
}
}
void
decode_m_packet (char *from, CORE_ADDR *mem_addr_ptr, unsigned int *len_ptr)
{
int i = 0, j = 0;
char ch;
*mem_addr_ptr = *len_ptr = 0;
/* Decode ADDR and LEN from a parameter of the form "addr,len<x>", with <x>
being an end marker character. */
while ((ch = from[i++]) != ',')
{
*mem_addr_ptr = *mem_addr_ptr << 4;
*mem_addr_ptr |= fromhex (ch) & 0x0f;
}
for (j = 0; j < 4; j++)
{
if ((ch = from[i++]) == 0)
break;
*len_ptr = *len_ptr << 4;
*len_ptr |= fromhex (ch) & 0x0f;
}
}
void
decode_M_packet (char *from, CORE_ADDR *mem_addr_ptr, unsigned int *len_ptr,
unsigned char **to_p)
char *
decode_m_packet_params (char *from, CORE_ADDR *mem_addr_ptr,
unsigned int *len_ptr, const char end_marker)
{
int i = 0;
char ch;
@@ -1338,16 +1319,31 @@ decode_M_packet (char *from, CORE_ADDR *mem_addr_ptr, unsigned int *len_ptr,
*mem_addr_ptr |= fromhex (ch) & 0x0f;
}
while ((ch = from[i++]) != ':')
while ((ch = from[i++]) != end_marker)
{
*len_ptr = *len_ptr << 4;
*len_ptr |= fromhex (ch) & 0x0f;
}
return from + i;
}
void
decode_m_packet (char *from, CORE_ADDR *mem_addr_ptr, unsigned int *len_ptr)
{
decode_m_packet_params (from, mem_addr_ptr, len_ptr, '\0');
}
void
decode_M_packet (char *from, CORE_ADDR *mem_addr_ptr, unsigned int *len_ptr,
unsigned char **to_p)
{
from = decode_m_packet_params (from, mem_addr_ptr, len_ptr, ':');
if (*to_p == NULL)
*to_p = (unsigned char *) xmalloc (*len_ptr);
hex2bin (&from[i++], *to_p, *len_ptr);
hex2bin (from, *to_p, *len_ptr);
}
int

View File

@@ -45,6 +45,8 @@ void prepare_resume_reply (char *buf, ptid_t ptid,
const char *decode_address_to_semicolon (CORE_ADDR *addrp, const char *start);
void decode_address (CORE_ADDR *addrp, const char *start, int len);
char *decode_m_packet_params (char *from, CORE_ADDR *mem_addr_ptr,
unsigned int *len_ptr, const char end_marker);
void decode_m_packet (char *from, CORE_ADDR * mem_addr_ptr,
unsigned int *len_ptr);
void decode_M_packet (char *from, CORE_ADDR * mem_addr_ptr,

View File

@@ -545,12 +545,59 @@ handle_btrace_conf_general_set (char *own_buf)
return 1;
}
/* Create the qMemTags packet reply given TAGS. */
static int
create_fmemtags_reply (char *reply, const gdb::byte_vector &tags)
{
/* It is an error to pass a zero-sized tag vector. */
if (tags.size () == 0)
return 1;
std::string packet ("m");
/* Write the tag data. */
packet += bin2hex (tags.data (), tags.size ());
/* Check if the reply is too big for the packet to handle. */
if (PBUFSIZ < packet.size ())
return 1;
strcpy (reply, packet.c_str ());
return 0;
}
/* Parse the QMemTags request into ADDR, LEN and TAGS.
Return 0 if successful, non-zero otherwise. */
static int
parse_smemtags_request (char *request, CORE_ADDR *addr, size_t *len,
gdb::byte_vector &tags)
{
if (!startswith (request, "QMemTags:"))
return 1;
char *p = request + strlen ("QMemTags:");
/* Read address and length. */
unsigned int length = 0;
p = decode_m_packet_params (p, addr, &length, ':');
*len = length;
/* Read the tag data. */
tags = hex2bin (p);
return 0;
}
/* Handle all of the extended 'Q' packets. */
static void
handle_general_set (char *own_buf)
{
client_state &cs = get_client_state ();
if (startswith (own_buf, "QPassSignals:"))
{
int numsigs = (int) GDB_SIGNAL_LAST, i;
@@ -899,6 +946,30 @@ handle_general_set (char *own_buf)
return;
}
/* Handle store memory tags packets. */
if (startswith (own_buf, "QMemTags:")
&& target_supports_memory_tagging ())
{
gdb::byte_vector tags;
CORE_ADDR addr = 0;
size_t len = 0;
require_running_or_return (own_buf);
int ret = parse_smemtags_request (own_buf, &addr, &len, tags);
if (ret == 0)
ret = the_target->store_memtags (addr, len, tags);
if (ret)
write_enn (own_buf);
else
write_ok (own_buf);
return;
}
/* Otherwise we didn't know what packet it was. Say we didn't
understand it. */
own_buf[0] = 0;
@@ -2119,6 +2190,26 @@ crc32 (CORE_ADDR base, int len, unsigned int crc)
return (unsigned long long) crc;
}
/* Parse the qMemTags packet request into ADDR and LEN.
Return 0 if successful, non-zero otherwise. */
static int
parse_fmemtags_request (char *request, CORE_ADDR *addr, size_t *len)
{
if (!startswith (request, "qMemTags:"))
return 1;
char *p = request + strlen ("qMemTags:");
/* Read address and length. */
unsigned int length = 0;
decode_m_packet (p, addr, &length);
*len = length;
return 0;
}
/* Add supported btrace packets to BUF. */
static void
@@ -2344,6 +2435,12 @@ handle_query (char *own_buf, int packet_len, int *new_packet_len_p)
events. */
report_no_resumed = true;
}
else if (strcmp (p, "memory-tagging+") == 0)
{
/* GDB supports memory tagging features. */
if (target_supports_memory_tagging ())
cs.memory_tagging_feature = true;
}
else
{
/* Move the unknown features all together. */
@@ -2467,6 +2564,9 @@ handle_query (char *own_buf, int packet_len, int *new_packet_len_p)
strcat (own_buf, ";no-resumed+");
if (target_supports_memory_tagging ())
strcat (own_buf, ";memory-tagging+");
/* Reinitialize components as needed for the new connection. */
hostio_handle_new_gdb_connection ();
target_handle_new_gdb_connection ();
@@ -2659,6 +2759,31 @@ handle_query (char *own_buf, int packet_len, int *new_packet_len_p)
if (target_supports_tracepoints () && handle_tracepoint_query (own_buf))
return;
/* Handle fetch memory tags packets. */
if (startswith (own_buf, "qMemTags:")
&& target_supports_memory_tagging ())
{
gdb::byte_vector tags;
CORE_ADDR addr = 0;
size_t len = 0;
require_running_or_return (own_buf);
int ret = parse_fmemtags_request (own_buf, &addr, &len);
if (ret == 0)
ret = the_target->fetch_memtags (addr, len, tags);
if (ret == 0)
ret = create_fmemtags_reply (own_buf, tags);
if (ret)
write_enn (own_buf);
*new_packet_len_p = strlen (own_buf);
return;
}
/* Otherwise we didn't know what packet it was. Say we didn't
understand it. */
own_buf[0] = 0;
@@ -3568,6 +3693,91 @@ detach_or_kill_for_exit_cleanup ()
}
}
#if GDB_SELF_TEST
namespace selftests {
static void
test_memory_tagging_functions (void)
{
/* Setup testing. */
gdb::char_vector packet;
gdb::byte_vector tags, bv;
std::string expected;
packet.resize (32000);
CORE_ADDR addr;
size_t len;
/* Test parsing a qMemTags request. */
/* Invalid request, addr and len unchanged. */
addr = 0xff;
len = 255;
strcpy (packet.data (), "qMemTags_wrong:0,0");
SELF_CHECK (parse_fmemtags_request (packet.data (), &addr, &len) != 0);
SELF_CHECK (addr == 0xff && len == 255);
/* Valid request, addr and len updated. */
addr = 0xff;
len = 255;
strcpy (packet.data (), "qMemTags:0,0");
SELF_CHECK (parse_fmemtags_request (packet.data (), &addr, &len) == 0);
SELF_CHECK (addr == 0 && len == 0);
/* Valid request, addr and len updated. */
addr = 0;
len = 0;
strcpy (packet.data (), "qMemTags:deadbeef,ff");
SELF_CHECK (parse_fmemtags_request (packet.data (), &addr, &len) == 0);
SELF_CHECK (addr == 0xdeadbeef && len == 255);
/* Test creating a qMemTags reply. */
/* Non-empty tag data. */
bv.resize (0);
for (int i = 0; i < 5; i++)
bv.push_back (i);
expected = "m0001020304";
SELF_CHECK (create_fmemtags_reply (packet.data (), bv) == 0);
SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
/* Empty tag data (error). */
bv.clear ();
SELF_CHECK (create_fmemtags_reply (packet.data (), bv) != 0);
/* Test parsing a QMemTags request. */
/* Invalid request and non-empty tag data: addr, len and tags unchanged. */
addr = 0xff;
len = 255;
tags.resize (5);
strcpy (packet.data (), "QMemTags_wrong:0,0:");
SELF_CHECK (parse_smemtags_request (packet.data (), &addr, &len, tags) != 0);
SELF_CHECK (addr == 0xff && len == 255 && tags.size () == 5);
/* Valid request and empty tag data: addr, len and tags updated. */
addr = 0xff;
len = 255;
tags.resize (5);
strcpy (packet.data (), "QMemTags:0,0:");
SELF_CHECK (parse_smemtags_request (packet.data (), &addr, &len, tags) == 0);
SELF_CHECK (addr == 0 && len == 0 && tags.size () == 0);
/* Valid request and non-empty tag data: addr, len and tags updated. */
addr = 0;
len = 0;
tags.resize (0);
strcpy (packet.data (),
"QMemTags:deadbeef,ff:0001020304");
SELF_CHECK (parse_smemtags_request (packet.data (), &addr, &len, tags) == 0);
SELF_CHECK (addr == 0xdeadbeef && len == 255 && tags.size () == 5);
}
} // namespace selftests
#endif /* GDB_SELF_TEST */
/* Main function. This is called by the real "main" function,
wrapped in a TRY_CATCH that handles any uncaught exceptions. */
@@ -3585,6 +3795,9 @@ captured_main (int argc, char *argv[])
bool selftest = false;
#if GDB_SELF_TEST
const char *selftest_filter = NULL;
selftests::register_test ("remote_memory_tagging",
selftests::test_memory_tagging_functions);
#endif
current_directory = getcwd (NULL, 0);
@@ -3865,6 +4078,7 @@ captured_main (int argc, char *argv[])
cs.swbreak_feature = 0;
cs.hwbreak_feature = 0;
cs.vCont_supported = 0;
cs.memory_tagging_feature = false;
remote_open (port);

View File

@@ -190,6 +190,9 @@ struct client_state
int current_traceframe = -1;
/* If true, memory tagging features are supported. */
bool memory_tagging_feature = false;
};
client_state &get_client_state ();

View File

@@ -463,6 +463,26 @@ process_stratum_target::supports_read_offsets ()
return false;
}
bool
process_stratum_target::supports_memory_tagging ()
{
return false;
}
int
process_stratum_target::fetch_memtags (CORE_ADDR address, size_t len,
gdb::byte_vector &tags)
{
return 0;
}
int
process_stratum_target::store_memtags (CORE_ADDR address, size_t len,
const gdb::byte_vector &tags)
{
return 0;
}
int
process_stratum_target::read_offsets (CORE_ADDR *text, CORE_ADDR *data)
{

View File

@@ -29,6 +29,7 @@
#include "mem-break.h"
#include "gdbsupport/btrace-common.h"
#include <vector>
#include "gdbsupport/byte-vector.h"
struct emit_ops;
struct buffer;
@@ -497,6 +498,19 @@ public:
/* Return tdesc index for IPA. */
virtual int get_ipa_tdesc_idx ();
/* Returns true if the target supports memory tagging facilities. */
virtual bool supports_memory_tagging ();
/* Return the allocated memory tags associated with
[ADDRESS, ADDRESS + LEN) in TAGS. */
virtual int fetch_memtags (CORE_ADDR address, size_t len,
gdb::byte_vector &tags);
/* Write the allocation tags contained in TAGS to the memory range
[ADDRESS, ADDRESS + LEN). */
virtual int store_memtags (CORE_ADDR address, size_t len,
const gdb::byte_vector &tags);
};
extern process_stratum_target *the_target;
@@ -523,6 +537,9 @@ int kill_inferior (process_info *proc);
#define target_supports_exec_events() \
the_target->supports_exec_events ()
#define target_supports_memory_tagging() \
the_target->supports_memory_tagging ()
#define target_handle_new_gdb_connection() \
the_target->handle_new_gdb_connection ()

View File

@@ -32,7 +32,7 @@ fromhex (int a)
else if (a >= 'A' && a <= 'F')
return a - 'A' + 10;
else
error (_("Reply contains invalid hex digit %d"), a);
error (_("Invalid hex digit %d"), a);
}
/* See rsp-low.h. */

View File

@@ -653,6 +653,8 @@
/* note name must be "LINUX". */
#define NT_ARM_PAC_MASK 0x406 /* AArch pointer authentication code masks */
/* note name must be "LINUX". */
#define NT_ARM_MTE 0x407 /* AArch MTE registers. */
/* note name must be "LINUX". */
#define NT_ARC_V2 0x600 /* ARC HS accumulator/extra registers. */
/* note name must be "LINUX". */
#define NT_SIGINFO 0x53494749 /* Fields of siginfo_t. */