forked from Imagelibrary/binutils-gdb
fdb4c2e02e6600b51f38a60cd70882887007cbdf
When CTF finds conflicting types, it usually shoves each definition into a CTF dictionary named after the compilation unit. The intent of the obscure "cu-mapped link" feature is to allow you to implement custom linkers that shove the definitions into other, more coarse-grained units (say, one per kernel module, even if a module consists of more than one compilation unit): conflicting types within one of these larger components are hidden from name lookup so you can only look up (an arbitrary one of) them by name, but can still be found by chasing type graph links and are still fully deduplicated. You do this by calling ctf_link_add_cu_mapping (fp, "CU name", "bigger lump name"), repeatedly, with different "CU name"s: the ctf_link() following that will put all conflicting types found in "CU name"s sharing a "bigger lump name" into a child dict in an archive member named "bigger lump name". So it's clear enough what happens if you call it repeatedly with the same "bigger lump name" more than once, because that's the whole point of it: but what if you call it with the same "CU name" repeatedly? ctf_link_add_cu_mapping (fp, "CU name", "bigger lump name"); ctf_link_add_cu_mapping (fp, "CU name", "other name"); This is meant to be the same as just doing the second of these, as if the first was never called. Alas, this isn't what happens, and what you get is instead a bit of an inconsistent mess: more or less, the first takes precedence, which is the exact opposite of what we wanted. Fix this to work the right way round. (I plan to add support for CU-mapped links to GNU ld, mainly so that we can properly *test* this machinery.) libctf/ChangeLog: * ctf-link.c (ctf_create_per_cu): Note the behaviour of repeatedly adding FROMs. (ctf_link_add_cu_mapping): Implement that behavour.
…
…
…
…
…
…
…
…
…
…
…
…
…
…
README for GNU development tools This directory contains various GNU compilers, assemblers, linkers, debuggers, etc., plus their support routines, definitions, and documentation. If you are receiving this as part of a GDB release, see the file gdb/README. If with a binutils release, see binutils/README; if with a libg++ release, see libg++/README, etc. That'll give you info about this package -- supported targets, how to use it, how to report bugs, etc. It is now possible to automatically configure and build a variety of tools with one command. To build all of the tools contained herein, run the ``configure'' script here, e.g.: ./configure make To install them (by default in /usr/local/bin, /usr/local/lib, etc), then do: make install (If the configure script can't determine your type of computer, give it the name as an argument, for instance ``./configure sun4''. You can use the script ``config.sub'' to test whether a name is recognized; if it is, config.sub translates it to a triplet specifying CPU, vendor, and OS.) If you have more than one compiler on your system, it is often best to explicitly set CC in the environment before running configure, and to also set CC when running make. For example (assuming sh/bash/ksh): CC=gcc ./configure make A similar example using csh: setenv CC gcc ./configure make Much of the code and documentation enclosed is copyright by the Free Software Foundation, Inc. See the file COPYING or COPYING.LIB in the various directories, for a description of the GNU General Public License terms under which you can copy the files. REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info on where and how to report problems.
Description
Languages
C
50.6%
Makefile
22.6%
Assembly
13.2%
C++
5.9%
Roff
1.5%
Other
5.6%