Zoran Zaric 0dd1a71b4d Add new classes that model DWARF stack element
The rest of the patch series addresses the issues described in a
"Motivation" section of the AMD's DWARF standard extensions that
can be found at:

https://llvm.org/docs/AMDGPUDwarfExtensionsForHeterogeneousDebugging.html

The document describes a couple of main issues found when using the
current DWARF 5 version to describe optimized code for SIMD and SIMT
architectures.

Without going much into details described in the document, the main
point is that DWARF version 5 does not allow a proper support for
address spaces and it does not allow a location description to be used
anywhere in the DWARF expression, instead a location description can
using a result left on the DWARF stack (after the evaluation of that
expression) to describe the location.

Both issues can be solved in a clean way by introducing a new set of
classes that describe all entry types which can be placed on a DWARF
stack, while keeping most of backward compatibility with the previous
standard version. These entry types can now be either a typed value
or any location description.

Known edge case where placing a location description on the DWARF stack
is not fully backward compatible with DWARF version 5 is in the case of
DW_OP_call operations, where the current standard only defines that an
expression stack is shared between the caller and the callee, but there
it is unknown what happens with the resuling location description after
the evaluation of the callee's location description expression.

Considering that this edge case is not defined in the standard, it
would be very unusual and dangerous for any compiler to use it in their
own way and in the existing testsuite, there is no indication of that.

Currently, the result of an expression evaluation is kept in a separate
data structure, while with the new approach, it will be always found as
a top element of the DWARF stack.

Question here is, why do we need a new set of classes and why not just
use the struct value instead?

As it stands, there are couple of issues with using the struct value to
describe a DWARF stack element:

 - It is not designed to represent a DWARF location description
specifically, instead it behaves more like unified debug information
format that represents an actual target resource. One example of this
is accessing data of a struct value register location description,
where if the amount of data accessed is larger then the register,
results in accessing more then one register. In DWARF this is not a
valid behavior and locations that span more then one register should be
described as a composite location description.

- There is a tight coupling between struct value and it's type
information, regardless if the data represented is describing a value
(not_lval) or a location description. While the type information
dictates how the data is accessed for a struct value case, in DWARF,
location description doesn't have a type so data access is not bound by
it.

- DWARF values only support much simpler base types, while struct value
can be linked to any type. Admittedly, new classes are still using the
same struct value infrastructure for a value based operations at the
moment, but that is planned to change in the near future.

- struct value register location description requires a frame id
information which makes them unsuitable for CFA expression evaluation.

So, there seems to be a lack of separation of concerns in the design
of a struct value infrastructure, while the new classes are handling
one specific purpose and are completely encapsulated in the expr.c.

Additional benefit of this design is that it makes a step in a
right direction for being able to evaluate DWARF expressions on a
gdbserver side in the near future, which sounds like a desirable thing.

It is also worth mentioning that this new location description
representation is based on a bit granularity (the bit_suboffset class
member) even though the DWARF standard has a very limited support for
it (mostly used for DW_OP_bit_piece operation).

By allowing any location description to define a bit sub-offset of the
location, we are able to give more options for supporting of new
concepts (like the existing packed arrays in Ada language).

In this patch, a new set of classes that describe a DWARF stack element
are added. The new classes are:

- Value - describes a numerical value with a DWARF base type.
- Location description - describes a DWARF location description.
  - Undefined location - describes a location that is not defined.
  - Memory location - describes a location in memory.
  - Register location - describes a register location in a frame
    context.
  - Implicit location - describes a location that implicitly holds a
    value that it describes.
  - Implicit pointer - describes a concept of an implicit pointer to
    a source variable.
  - Composite location - describes a location that is composed from
    pieces of other location descriptions.

For now, these classes are just defined, and they are planned to be
used by the following patches.

gdb/ChangeLog:

	* dwarf2/expr.c (class dwarf_entry): New class.
	(class dwarf_value): New class.
	(class dwarf_location): New class.
	(class dwarf_undefined): New class.
	(class dwarf_memory): New class.
	(class dwarf_register): New class.
	(class dwarf_implicit): New class.
	(class dwarf_implicit_pointer): New class.
	(class dwarf_composite): New class.
	* value.c (pack_unsigned_long): Expose function.
	* value.h (pack_unsigned_long): Expose function.
2021-11-05 11:46:38 +00:00
2021-09-09 23:30:12 -04:00
2021-10-29 13:31:37 +03:00

		   README for GNU development tools

This directory contains various GNU compilers, assemblers, linkers, 
debuggers, etc., plus their support routines, definitions, and documentation.

If you are receiving this as part of a GDB release, see the file gdb/README.
If with a binutils release, see binutils/README;  if with a libg++ release,
see libg++/README, etc.  That'll give you info about this
package -- supported targets, how to use it, how to report bugs, etc.

It is now possible to automatically configure and build a variety of
tools with one command.  To build all of the tools contained herein,
run the ``configure'' script here, e.g.:

	./configure 
	make

To install them (by default in /usr/local/bin, /usr/local/lib, etc),
then do:
	make install

(If the configure script can't determine your type of computer, give it
the name as an argument, for instance ``./configure sun4''.  You can
use the script ``config.sub'' to test whether a name is recognized; if
it is, config.sub translates it to a triplet specifying CPU, vendor,
and OS.)

If you have more than one compiler on your system, it is often best to
explicitly set CC in the environment before running configure, and to
also set CC when running make.  For example (assuming sh/bash/ksh):

	CC=gcc ./configure
	make

A similar example using csh:

	setenv CC gcc
	./configure
	make

Much of the code and documentation enclosed is copyright by
the Free Software Foundation, Inc.  See the file COPYING or
COPYING.LIB in the various directories, for a description of the
GNU General Public License terms under which you can copy the files.

REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info
on where and how to report problems.
Description
Unofficial mirror of sourceware binutils-gdb repository. Updated daily.
Readme 897 MiB
Languages
C 50.6%
Makefile 22.6%
Assembly 13.2%
C++ 5.9%
Roff 1.5%
Other 5.6%