Implement lazy FPU initialization for ravenscar

Some ravenscar runtimes implement lazy FPU handling.  On these
runtimes, the FPU is only initialized when a task tries to use it.
Furthermore, the FP registers aren't automatically saved on a task
switch -- instead, the save is deferred until the new task tries to
use the FPU.  Furthermore, each task's context area has a flag
indicating whether the FPU has been initialized for this task.

This patch teaches GDB to understand this implementation.  When
fetching or storing registers, GDB now checks to see whether the live
FP registers should be used.  If not, the task's saved FP registers
will be used if the task has caused FPU initialization.

Currently only AArch64 uses this code.  bb-runtimes implements this
for ARM as well, but GDB doesn't yet have an arm-ravenscar-thread.c.
This commit is contained in:
Tom Tromey
2022-05-04 13:08:11 -06:00
parent e73434e38f
commit 965b71a7f7
3 changed files with 217 additions and 56 deletions

View File

@@ -61,10 +61,17 @@ static const int aarch64_context_offsets[] =
112, 116,
};
#define V_INIT_OFFSET 640
/* The ravenscar_arch_ops vector for most Aarch64 targets. */
static struct ravenscar_arch_ops aarch64_ravenscar_ops
(aarch64_context_offsets);
(aarch64_context_offsets,
-1, -1,
V_INIT_OFFSET,
/* The FPU context buffer starts with the FPSR register. */
aarch64_context_offsets[AARCH64_FPSR_REGNUM],
AARCH64_V0_REGNUM, AARCH64_FPCR_REGNUM);
/* Register aarch64_ravenscar_ops in GDBARCH. */

View File

@@ -164,6 +164,32 @@ private:
switch_to_thread (find_thread_ptid (proc_target, underlying));
}
/* Some targets use lazy FPU initialization. On these, the FP
registers for a given task might be uninitialized, or stored in
the per-task context, or simply be the live registers on the CPU.
This enum is used to encode this information. */
enum fpu_state
{
/* This target doesn't do anything special for FP registers -- if
any exist, they are treated just identical to non-FP
registers. */
NOTHING_SPECIAL,
/* This target uses the lazy FP scheme, and the FP registers are
taken from the CPU. This can happen for any task, because if a
task switch occurs, the registers aren't immediately written to
the per-task context -- this is deferred until the current task
causes an FPU trap. */
LIVE_FP_REGISTERS,
/* This target uses the lazy FP scheme, and the FP registers are
not available. Maybe this task never initialized the FPU, or
maybe GDB couldn't find the required symbol. */
NO_FP_REGISTERS
};
/* Return the FPU state. */
fpu_state get_fpu_state (struct regcache *regcache,
const ravenscar_arch_ops *arch_ops);
/* This maps a TID to the CPU on which it was running. This is
needed because sometimes the runtime will report an active task
that hasn't yet been put on the list of tasks that is read by
@@ -508,9 +534,11 @@ ravenscar_arch_ops::supply_one_register (struct regcache *regcache,
}
void
ravenscar_arch_ops::fetch_registers (struct regcache *regcache,
int regnum) const
ravenscar_arch_ops::fetch_register (struct regcache *regcache,
int regnum) const
{
gdb_assert (regnum != -1);
struct gdbarch *gdbarch = regcache->arch ();
/* The tid is the thread_id field, which is a pointer to the thread. */
CORE_ADDR thread_descriptor_address
@@ -518,26 +546,17 @@ ravenscar_arch_ops::fetch_registers (struct regcache *regcache,
int sp_regno = -1;
CORE_ADDR stack_address = 0;
if (regnum == -1
|| (regnum >= first_stack_register && regnum <= last_stack_register))
if (regnum >= first_stack_register && regnum <= last_stack_register)
{
/* We must supply SP for get_stack_base, so recurse. */
sp_regno = gdbarch_sp_regnum (gdbarch);
gdb_assert (!(sp_regno >= first_stack_register
&& sp_regno <= last_stack_register));
fetch_registers (regcache, sp_regno);
fetch_register (regcache, sp_regno);
stack_address = get_stack_base (regcache);
}
if (regnum == -1)
{
/* Fetch all registers. */
for (int reg = 0; reg < offsets.size (); ++reg)
if (reg != sp_regno && offsets[reg] != -1)
supply_one_register (regcache, reg, thread_descriptor_address,
stack_address);
}
else if (regnum < offsets.size () && offsets[regnum] != -1)
if (regnum < offsets.size () && offsets[regnum] != -1)
supply_one_register (regcache, regnum, thread_descriptor_address,
stack_address);
}
@@ -562,27 +581,20 @@ ravenscar_arch_ops::store_one_register (struct regcache *regcache, int regnum,
}
void
ravenscar_arch_ops::store_registers (struct regcache *regcache,
int regnum) const
ravenscar_arch_ops::store_register (struct regcache *regcache,
int regnum) const
{
gdb_assert (regnum != -1);
/* The tid is the thread_id field, which is a pointer to the thread. */
CORE_ADDR thread_descriptor_address
= (CORE_ADDR) regcache->ptid ().tid ();
CORE_ADDR stack_address = 0;
if (regnum == -1
|| (regnum >= first_stack_register && regnum <= last_stack_register))
if (regnum >= first_stack_register && regnum <= last_stack_register)
stack_address = get_stack_base (regcache);
if (regnum == -1)
{
/* Store all registers. */
for (int reg = 0; reg < offsets.size (); ++reg)
if (offsets[reg] != -1)
store_one_register (regcache, reg, thread_descriptor_address,
stack_address);
}
else if (regnum < offsets.size () && offsets[regnum] != -1)
if (regnum < offsets.size () && offsets[regnum] != -1)
store_one_register (regcache, regnum, thread_descriptor_address,
stack_address);
}
@@ -615,6 +627,48 @@ private:
ptid_t m_save_ptid;
};
ravenscar_thread_target::fpu_state
ravenscar_thread_target::get_fpu_state (struct regcache *regcache,
const ravenscar_arch_ops *arch_ops)
{
/* We want to return true if the special FP register handling is
needed. If this target doesn't have lazy FP, then no special
treatment is ever needed. */
if (!arch_ops->on_demand_fp ())
return NOTHING_SPECIAL;
bound_minimal_symbol fpu_context
= lookup_minimal_symbol ("system__bb__cpu_primitives__current_fpu_context",
nullptr, nullptr);
/* If the symbol can't be found, just fall back. */
if (fpu_context.minsym == nullptr)
return NO_FP_REGISTERS;
struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
ptr_type = lookup_pointer_type (ptr_type);
value *val = value_from_pointer (ptr_type, fpu_context.value_address ());
int cpu = get_thread_base_cpu (regcache->ptid ());
/* The array index type has a lower bound of 1 -- it is Ada code --
so subtract 1 here. */
val = value_ptradd (val, cpu - 1);
val = value_ind (val);
CORE_ADDR fpu_task = value_as_long (val);
/* The tid is the thread_id field, which is a pointer to the thread. */
CORE_ADDR thread_descriptor_address
= (CORE_ADDR) regcache->ptid ().tid ();
if (fpu_task == (thread_descriptor_address
+ arch_ops->get_fpu_context_offset ()))
return LIVE_FP_REGISTERS;
int v_init_offset = arch_ops->get_v_init_offset ();
gdb_byte init = 0;
read_memory (thread_descriptor_address + v_init_offset, &init, 1);
return init ? NOTHING_SPECIAL : NO_FP_REGISTERS;
}
void
ravenscar_thread_target::fetch_registers (struct regcache *regcache,
int regnum)
@@ -623,19 +677,38 @@ ravenscar_thread_target::fetch_registers (struct regcache *regcache,
if (runtime_initialized () && is_ravenscar_task (ptid))
{
if (task_is_currently_active (ptid))
{
ptid_t base = get_base_thread_from_ravenscar_task (ptid);
temporarily_change_regcache_ptid changer (regcache, base);
beneath ()->fetch_registers (regcache, regnum);
}
else
{
struct gdbarch *gdbarch = regcache->arch ();
struct ravenscar_arch_ops *arch_ops
= gdbarch_ravenscar_ops (gdbarch);
struct gdbarch *gdbarch = regcache->arch ();
bool is_active = task_is_currently_active (ptid);
struct ravenscar_arch_ops *arch_ops = gdbarch_ravenscar_ops (gdbarch);
gdb::optional<fpu_state> fp_state;
arch_ops->fetch_registers (regcache, regnum);
int low_reg = regnum == -1 ? 0 : regnum;
int high_reg = regnum == -1 ? gdbarch_num_regs (gdbarch) : regnum + 1;
ptid_t base = get_base_thread_from_ravenscar_task (ptid);
for (int i = low_reg; i < high_reg; ++i)
{
bool use_beneath = false;
if (arch_ops->is_fp_register (i))
{
if (!fp_state.has_value ())
fp_state = get_fpu_state (regcache, arch_ops);
if (*fp_state == NO_FP_REGISTERS)
continue;
if (*fp_state == LIVE_FP_REGISTERS
|| (is_active && *fp_state == NOTHING_SPECIAL))
use_beneath = true;
}
else
use_beneath = is_active;
if (use_beneath)
{
temporarily_change_regcache_ptid changer (regcache, base);
beneath ()->fetch_registers (regcache, i);
}
else
arch_ops->fetch_register (regcache, i);
}
}
else
@@ -650,19 +723,38 @@ ravenscar_thread_target::store_registers (struct regcache *regcache,
if (runtime_initialized () && is_ravenscar_task (ptid))
{
if (task_is_currently_active (ptid))
{
ptid_t base = get_base_thread_from_ravenscar_task (ptid);
temporarily_change_regcache_ptid changer (regcache, base);
beneath ()->store_registers (regcache, regnum);
}
else
{
struct gdbarch *gdbarch = regcache->arch ();
struct ravenscar_arch_ops *arch_ops
= gdbarch_ravenscar_ops (gdbarch);
struct gdbarch *gdbarch = regcache->arch ();
bool is_active = task_is_currently_active (ptid);
struct ravenscar_arch_ops *arch_ops = gdbarch_ravenscar_ops (gdbarch);
gdb::optional<fpu_state> fp_state;
arch_ops->store_registers (regcache, regnum);
int low_reg = regnum == -1 ? 0 : regnum;
int high_reg = regnum == -1 ? gdbarch_num_regs (gdbarch) : regnum + 1;
ptid_t base = get_base_thread_from_ravenscar_task (ptid);
for (int i = low_reg; i < high_reg; ++i)
{
bool use_beneath = false;
if (arch_ops->is_fp_register (i))
{
if (!fp_state.has_value ())
fp_state = get_fpu_state (regcache, arch_ops);
if (*fp_state == NO_FP_REGISTERS)
continue;
if (*fp_state == LIVE_FP_REGISTERS
|| (is_active && *fp_state == NOTHING_SPECIAL))
use_beneath = true;
}
else
use_beneath = is_active;
if (use_beneath)
{
temporarily_change_regcache_ptid changer (regcache, base);
beneath ()->store_registers (regcache, i);
}
else
arch_ops->store_register (regcache, i);
}
}
else

View File

@@ -26,19 +26,63 @@ struct ravenscar_arch_ops
{
ravenscar_arch_ops (gdb::array_view<const int> offsets_,
int first_stack = -1,
int last_stack = -1)
int last_stack = -1,
int v_init = -1,
int fpu_offset = -1,
int first_fp = -1,
int last_fp = -1)
: offsets (offsets_),
first_stack_register (first_stack),
last_stack_register (last_stack)
last_stack_register (last_stack),
v_init_offset (v_init),
fpu_context_offset (fpu_offset),
first_fp_register (first_fp),
last_fp_register (last_fp)
{
/* These must either both be -1 or both be valid. */
gdb_assert ((first_stack_register == -1) == (last_stack_register == -1));
/* They must also be ordered. */
gdb_assert (last_stack_register >= first_stack_register);
/* These must either all be -1 or all be valid. */
gdb_assert ((v_init_offset == -1) == (fpu_context_offset == -1)
&& (fpu_context_offset == -1) == (first_fp_register == -1)
&& (first_fp_register == -1) == (last_fp_register == -1));
}
void fetch_registers (struct regcache *, int) const;
void store_registers (struct regcache *, int) const;
/* Return true if this architecture implements on-demand floating
point. */
bool on_demand_fp () const
{ return v_init_offset != -1; }
/* Return true if REGNUM is a floating-point register for this
target. If this target does not use the on-demand FP scheme,
this will always return false. */
bool is_fp_register (int regnum) const
{
return regnum >= first_fp_register && regnum <= last_fp_register;
}
/* Return the offset, in the current task context, of the byte
indicating whether the FPU has been initialized for the task.
This can only be called when the architecture implements
on-demand floating-point. */
int get_v_init_offset () const
{
gdb_assert (on_demand_fp ());
return v_init_offset;
}
/* Return the offset, in the current task context, of the FPU
context. This can only be called when the architecture
implements on-demand floating-point. */
int get_fpu_context_offset () const
{
gdb_assert (on_demand_fp ());
return fpu_context_offset;
}
void fetch_register (struct regcache *recache, int regnum) const;
void store_register (struct regcache *recache, int regnum) const;
private:
@@ -54,6 +98,24 @@ private:
const int first_stack_register;
const int last_stack_register;
/* If these are -1, there is no special treatment for floating-point
registers -- they are handled, or not, just like all other
registers.
Otherwise, they must all not be -1, and the target is one that
uses on-demand FP initialization. V_INIT_OFFSET is the offset of
a boolean field in the context that indicates whether the FP
registers have been initialized for this task.
FPU_CONTEXT_OFFSET is the offset of the FPU context from the task
context. (This is needed to check whether the FPU registers have
been saved.) FIRST_FP_REGISTER and LAST_FP_REGISTER are the
register numbers of the first and last (inclusive) floating point
registers. */
const int v_init_offset;
const int fpu_context_offset;
const int first_fp_register;
const int last_fp_register;
/* Helper function to supply one register. */
void supply_one_register (struct regcache *regcache, int regnum,
CORE_ADDR descriptor,