forked from Imagelibrary/rtems
64c7497915cabe8713ac9ab2d437372052aceda7
The log of this problem is: jffs2: Error garbage collecting node at 0x***! jffs2: No space for garbage collection. Aborting GC thread This is because GC believe that it do nothing, so it abort. After going over the image of jffs2, I find a scene that can trigger this problem stably. The scene is: there is a normal dirent node at summary-area, but abnormal at corresponding not-summary-area with error name_crc. The reason that GC exit abnormally is because it find that abnormal dirent node to GC, but when it goes to function jffs2_add_fd_to_list, it cannot meet the condition listed below: if ((*prev)->nhash == new->nhash && !strcmp((*prev)->name, new->name)) So no node is marked obsolete, statistical information of erase_block do not change, which cause GC exit abnormally. The root cause of this problem is: we do not check the name_crc of the abnormal dirent node with summary is enabled. Noticed that in function jffs2_scan_dirent_node, we use function jffs2_scan_dirty_space to deal with the dirent node with error name_crc. So this patch add a checking code in function read_direntry to ensure the correctness of dirent node. If checked failed, the dirent node will be marked obsolete so GC will pass this node and this problem will be fixed. Cc: <stable@vger.kernel.org> Signed-off-by: Zhe Li <lizhe67@huawei.com> Signed-off-by: Richard Weinberger <richard@nod.at>
…
…
Real-Time Executive for Multiprocessing Systems (RTEMS)
-------------------------------------------------------
RTEMS, Real-Time Executive for Multiprocessor Systems, is a real-time executive
(kernel) which provides a high performance environment for embedded
applications with the following features:
- standards based user interfaces
- multitasking capabilities
- homogeneous and heterogeneous multiprocessor systems
- event-driven, priority-based, preemptive scheduling
- optional rate monotonic scheduling
- intertask communication and synchronization
- priority inheritance
- responsive interrupt management
- dynamic memory allocation
- high level of user configurability
- open source with a friendly user license
Project git repositories are located at https://git.rtems.org/
RTEMS Kernel: : https://git.rtems.org/rtems/
RTEMS Source Builder : https://git.rtems.org/rtems-source-builder/
RTEMS Tools : https://git.rtems.org/rtems-tools/
RTEMS Documentation : https://git.rtems.org/rtems-docs/
RTEMS FreeBSD : https://git.rtems.org/rtems-libbsd/
Online documentation is available at https://docs.rtems.org/
RTEMS User Manual : https://docs.rtems.org/branches/master/user/index.html
RTEMS RSB Manual : https://docs.rtems.org/branches/master/rsb/index.html
RTEMS Classic API : https://docs.rtems.org/branches/master/c-user/index.html
RTEMS POSIX API : https://docs.rtems.org/branches/master/posix-users/index.html
RTEMS Doxygen for CPUKit : https://docs.rtems.org/doxygen/branches/master/
RTEMS POSIX 1003.1 Compliance Guide :
https://docs.rtems.org/branches/master/posix-compliance/index.html
- Details the standards base functionality and profiles RTEMS supportsXo
RTEMS Developers Wiki : http://devel.rtems.org
- Bug reporting, community knowledge and tutorials.
RTEMS Mailing Lists : https://lists.rtems.org/mailman/listinfo
- The RTEMS Project maintains mailing lists which are used for most
discussions:
* For general-purpose questions related to using RTEMS, use the rtems-users
ml: https://lists.rtems.org/mailman/listinfo/users
* For questions and discussion related to development of RTEMS, use the
rtems-devel ml: https://lists.rtems.org/mailman/listinfo/devel
The version number for this software is indicated in the VERSION file.
Description
RTEMS is a real-time executive in use by embedded systems applications around the world and beyond
Languages
C
93.9%
Assembly
3.4%
Ada
1.4%
Python
0.3%
HTML
0.3%
Other
0.4%