forked from Imagelibrary/rtems
Forgot to remove these when code moved.
This commit is contained in:
@@ -1,2 +0,0 @@
|
||||
Makefile
|
||||
Makefile.in
|
||||
@@ -1,55 +0,0 @@
|
||||
##
|
||||
## $Id$
|
||||
##
|
||||
|
||||
AUTOMAKE_OPTIONS = foreign 1.4
|
||||
ACLOCAL_AMFLAGS = -I $(RTEMS_TOPdir)/aclocal
|
||||
|
||||
C_FILES = cpu.c
|
||||
C_O_FILES = $(C_FILES:%.c=${ARCH}/%.o)
|
||||
|
||||
ROOT_H_FILES =
|
||||
RTEMS_SCORE_H_FILES = cpu.h c_isr.inl
|
||||
noinst_HEADERS = $(ROOT_H_FILES) $(RTEMS_SCORE_H_FILES)
|
||||
|
||||
S_FILES = cpu_asm.S
|
||||
S_O_FILES = $(S_FILES:%.S=${ARCH}/%.o)
|
||||
|
||||
include $(RTEMS_ROOT)/make/custom/@RTEMS_BSP@.cfg
|
||||
include $(top_srcdir)/../../../../../automake/lib.am
|
||||
|
||||
#
|
||||
# (OPTIONAL) Add local stuff here using +=
|
||||
#
|
||||
|
||||
PREINSTALL_FILES += $(PROJECT_INCLUDE) $(PROJECT_INCLUDE)/rtems/score \
|
||||
$(ROOT_H_FILES:%=$(PROJECT_INCLUDE)/%) \
|
||||
$(RTEMS_SCORE_H_FILES:%=$(PROJECT_INCLUDE)/rtems/score/%)
|
||||
|
||||
$(PROJECT_INCLUDE):
|
||||
$(mkinstalldirs) $@
|
||||
|
||||
$(PROJECT_INCLUDE)/rtems/score:
|
||||
$(mkinstalldirs) $@
|
||||
|
||||
$(PROJECT_INCLUDE)/rtems/score/%: %
|
||||
$(INSTALL_DATA) $< $@
|
||||
|
||||
$(PROJECT_INCLUDE)/%: %
|
||||
$(INSTALL_DATA) $< $@
|
||||
|
||||
REL = ../$(ARCH)/rtems-cpu.rel
|
||||
|
||||
$(REL): $(C_O_FILES) $(S_O_FILES)
|
||||
test -d ../$(ARCH) || mkdir ../$(ARCH)
|
||||
$(make-rel)
|
||||
|
||||
all-local: $(ARCH) $(PREINSTALL_FILES) $(REL)
|
||||
## all-local: $(ARCH)/rtems.o
|
||||
all-local: $(TMPINSTALL_FILES)
|
||||
|
||||
CLEANDIRS = ../o-optimize ../o-debug ../o-profile
|
||||
|
||||
EXTRA_DIST = $(C_FILES) $(S_FILES)
|
||||
|
||||
include $(top_srcdir)/../../../../../automake/local.am
|
||||
@@ -1,9 +0,0 @@
|
||||
RTEMS_INLINE_ROUTINE boolean _ISR_Is_in_progress( void )
|
||||
{
|
||||
register unsigned int isr_nesting_level;
|
||||
/*
|
||||
* Move from special purpose register 0 (mfspr SPRG0, r3)
|
||||
*/
|
||||
asm volatile ("mfspr %0, 272" : "=r" (isr_nesting_level));
|
||||
return isr_nesting_level;
|
||||
}
|
||||
@@ -1,116 +0,0 @@
|
||||
/*
|
||||
* PowerPC CPU Dependent Source
|
||||
*
|
||||
* Author: Andrew Bray <andy@i-cubed.co.uk>
|
||||
*
|
||||
* COPYRIGHT (c) 1995 by i-cubed ltd.
|
||||
*
|
||||
* To anyone who acknowledges that this file is provided "AS IS"
|
||||
* without any express or implied warranty:
|
||||
* permission to use, copy, modify, and distribute this file
|
||||
* for any purpose is hereby granted without fee, provided that
|
||||
* the above copyright notice and this notice appears in all
|
||||
* copies, and that the name of i-cubed limited not be used in
|
||||
* advertising or publicity pertaining to distribution of the
|
||||
* software without specific, written prior permission.
|
||||
* i-cubed limited makes no representations about the suitability
|
||||
* of this software for any purpose.
|
||||
*
|
||||
* Derived from c/src/exec/cpu/no_cpu/cpu.c:
|
||||
*
|
||||
* COPYRIGHT (c) 1989-1997.
|
||||
* On-Line Applications Research Corporation (OAR).
|
||||
* Copyright assigned to U.S. Government, 1994.
|
||||
*
|
||||
* The license and distribution terms for this file may be found in
|
||||
* the file LICENSE in this distribution or at
|
||||
* http://www.OARcorp.com/rtems/license.html.
|
||||
*
|
||||
* $Id$
|
||||
*/
|
||||
|
||||
#include <rtems/system.h>
|
||||
#include <rtems/score/isr.h>
|
||||
#include <rtems/score/context.h>
|
||||
#include <rtems/score/thread.h>
|
||||
#include <rtems/score/interr.h>
|
||||
|
||||
|
||||
/* _CPU_Initialize
|
||||
*
|
||||
* This routine performs processor dependent initialization.
|
||||
*
|
||||
* INPUT PARAMETERS:
|
||||
* cpu_table - CPU table to initialize
|
||||
* thread_dispatch - address of disptaching routine
|
||||
*/
|
||||
|
||||
void _CPU_Initialize(
|
||||
rtems_cpu_table *cpu_table,
|
||||
void (*thread_dispatch) /* ignored on this CPU */
|
||||
)
|
||||
{
|
||||
_CPU_Table = *cpu_table;
|
||||
}
|
||||
|
||||
/*PAGE
|
||||
*
|
||||
* _CPU_Context_Initialize
|
||||
*/
|
||||
|
||||
void _CPU_Context_Initialize(
|
||||
Context_Control *the_context,
|
||||
unsigned32 *stack_base,
|
||||
unsigned32 size,
|
||||
unsigned32 new_level,
|
||||
void *entry_point,
|
||||
boolean is_fp
|
||||
)
|
||||
{
|
||||
unsigned32 msr_value;
|
||||
unsigned32 sp;
|
||||
|
||||
sp = (unsigned32)stack_base + size - CPU_MINIMUM_STACK_FRAME_SIZE;
|
||||
*((unsigned32 *)sp) = 0;
|
||||
the_context->gpr1 = sp;
|
||||
|
||||
_CPU_MSR_GET( msr_value );
|
||||
|
||||
if (!(new_level & CPU_MODES_INTERRUPT_MASK)) {
|
||||
msr_value |= MSR_EE;
|
||||
}
|
||||
else {
|
||||
msr_value &= ~MSR_EE;
|
||||
}
|
||||
|
||||
the_context->msr = msr_value;
|
||||
|
||||
/*
|
||||
* The FP bit of the MSR should only be enabled if this is a floating
|
||||
* point task. Unfortunately, the vfprintf_r routine in newlib
|
||||
* ends up pushing a floating point register regardless of whether or
|
||||
* not a floating point number is being printed. Serious restructuring
|
||||
* of vfprintf.c will be required to avoid this behavior. At this
|
||||
* time (7 July 1997), this restructuring is not being done.
|
||||
*/
|
||||
|
||||
/*if ( is_fp ) */
|
||||
the_context->msr |= PPC_MSR_FP;
|
||||
|
||||
the_context->pc = (unsigned32)entry_point;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*PAGE
|
||||
*
|
||||
* _CPU_Install_interrupt_stack
|
||||
*/
|
||||
|
||||
void _CPU_Install_interrupt_stack( void )
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,947 +0,0 @@
|
||||
/* cpu.h
|
||||
*
|
||||
* This include file contains information pertaining to the PowerPC
|
||||
* processor.
|
||||
*
|
||||
* Author: Andrew Bray <andy@i-cubed.co.uk>
|
||||
*
|
||||
* COPYRIGHT (c) 1995 by i-cubed ltd.
|
||||
*
|
||||
* To anyone who acknowledges that this file is provided "AS IS"
|
||||
* without any express or implied warranty:
|
||||
* permission to use, copy, modify, and distribute this file
|
||||
* for any purpose is hereby granted without fee, provided that
|
||||
* the above copyright notice and this notice appears in all
|
||||
* copies, and that the name of i-cubed limited not be used in
|
||||
* advertising or publicity pertaining to distribution of the
|
||||
* software without specific, written prior permission.
|
||||
* i-cubed limited makes no representations about the suitability
|
||||
* of this software for any purpose.
|
||||
*
|
||||
* Derived from c/src/exec/cpu/no_cpu/cpu.h:
|
||||
*
|
||||
* COPYRIGHT (c) 1989-1997.
|
||||
* On-Line Applications Research Corporation (OAR).
|
||||
* Copyright assigned to U.S. Government, 1994.
|
||||
*
|
||||
* The license and distribution terms for this file may be found in
|
||||
* the file LICENSE in this distribution or at
|
||||
* http://www.OARcorp.com/rtems/license.html.
|
||||
*
|
||||
* $Id$
|
||||
*/
|
||||
|
||||
#ifndef __CPU_h
|
||||
#define __CPU_h
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <rtems/score/ppc.h> /* pick up machine definitions */
|
||||
#include <libcpu/cpu.h>
|
||||
|
||||
#ifndef ASM
|
||||
#include <rtems/score/ppctypes.h>
|
||||
#endif
|
||||
|
||||
/* conditional compilation parameters */
|
||||
|
||||
/*
|
||||
* Should the calls to _Thread_Enable_dispatch be inlined?
|
||||
*
|
||||
* If TRUE, then they are inlined.
|
||||
* If FALSE, then a subroutine call is made.
|
||||
*
|
||||
* Basically this is an example of the classic trade-off of size
|
||||
* versus speed. Inlining the call (TRUE) typically increases the
|
||||
* size of RTEMS while speeding up the enabling of dispatching.
|
||||
* [NOTE: In general, the _Thread_Dispatch_disable_level will
|
||||
* only be 0 or 1 unless you are in an interrupt handler and that
|
||||
* interrupt handler invokes the executive.] When not inlined
|
||||
* something calls _Thread_Enable_dispatch which in turns calls
|
||||
* _Thread_Dispatch. If the enable dispatch is inlined, then
|
||||
* one subroutine call is avoided entirely.]
|
||||
*/
|
||||
|
||||
#define CPU_INLINE_ENABLE_DISPATCH FALSE
|
||||
|
||||
/*
|
||||
* Should the body of the search loops in _Thread_queue_Enqueue_priority
|
||||
* be unrolled one time? In unrolled each iteration of the loop examines
|
||||
* two "nodes" on the chain being searched. Otherwise, only one node
|
||||
* is examined per iteration.
|
||||
*
|
||||
* If TRUE, then the loops are unrolled.
|
||||
* If FALSE, then the loops are not unrolled.
|
||||
*
|
||||
* The primary factor in making this decision is the cost of disabling
|
||||
* and enabling interrupts (_ISR_Flash) versus the cost of rest of the
|
||||
* body of the loop. On some CPUs, the flash is more expensive than
|
||||
* one iteration of the loop body. In this case, it might be desirable
|
||||
* to unroll the loop. It is important to note that on some CPUs, this
|
||||
* code is the longest interrupt disable period in RTEMS. So it is
|
||||
* necessary to strike a balance when setting this parameter.
|
||||
*/
|
||||
|
||||
#define CPU_UNROLL_ENQUEUE_PRIORITY FALSE
|
||||
|
||||
/*
|
||||
* Does RTEMS manage a dedicated interrupt stack in software?
|
||||
*
|
||||
* If TRUE, then a stack is allocated in _ISR_Handler_initialization.
|
||||
* If FALSE, nothing is done.
|
||||
*
|
||||
* If the CPU supports a dedicated interrupt stack in hardware,
|
||||
* then it is generally the responsibility of the BSP to allocate it
|
||||
* and set it up.
|
||||
*
|
||||
* If the CPU does not support a dedicated interrupt stack, then
|
||||
* the porter has two options: (1) execute interrupts on the
|
||||
* stack of the interrupted task, and (2) have RTEMS manage a dedicated
|
||||
* interrupt stack.
|
||||
*
|
||||
* If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
|
||||
*
|
||||
* Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
|
||||
* CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
|
||||
* possible that both are FALSE for a particular CPU. Although it
|
||||
* is unclear what that would imply about the interrupt processing
|
||||
* procedure on that CPU.
|
||||
*/
|
||||
|
||||
#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
|
||||
|
||||
/*
|
||||
* Does this CPU have hardware support for a dedicated interrupt stack?
|
||||
*
|
||||
* If TRUE, then it must be installed during initialization.
|
||||
* If FALSE, then no installation is performed.
|
||||
*
|
||||
* If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
|
||||
*
|
||||
* Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
|
||||
* CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
|
||||
* possible that both are FALSE for a particular CPU. Although it
|
||||
* is unclear what that would imply about the interrupt processing
|
||||
* procedure on that CPU.
|
||||
*/
|
||||
|
||||
#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
|
||||
|
||||
/*
|
||||
* Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
|
||||
*
|
||||
* If TRUE, then the memory is allocated during initialization.
|
||||
* If FALSE, then the memory is allocated during initialization.
|
||||
*
|
||||
* This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
|
||||
* or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
|
||||
*/
|
||||
|
||||
#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
|
||||
|
||||
/*
|
||||
* Does the RTEMS invoke the user's ISR with the vector number and
|
||||
* a pointer to the saved interrupt frame (1) or just the vector
|
||||
* number (0)?
|
||||
*/
|
||||
|
||||
#define CPU_ISR_PASSES_FRAME_POINTER 0
|
||||
|
||||
/*
|
||||
* Does the CPU have hardware floating point?
|
||||
*
|
||||
* If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
|
||||
* If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
|
||||
*
|
||||
* If there is a FP coprocessor such as the i387 or mc68881, then
|
||||
* the answer is TRUE.
|
||||
*
|
||||
* The macro name "PPC_HAS_FPU" should be made CPU specific.
|
||||
* It indicates whether or not this CPU model has FP support. For
|
||||
* example, it would be possible to have an i386_nofp CPU model
|
||||
* which set this to false to indicate that you have an i386 without
|
||||
* an i387 and wish to leave floating point support out of RTEMS.
|
||||
*/
|
||||
|
||||
#if ( PPC_HAS_FPU == 1 )
|
||||
#define CPU_HARDWARE_FP TRUE
|
||||
#else
|
||||
#define CPU_HARDWARE_FP FALSE
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
|
||||
*
|
||||
* If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
|
||||
* If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
|
||||
*
|
||||
* So far, the only CPU in which this option has been used is the
|
||||
* HP PA-RISC. The HP C compiler and gcc both implicitly use the
|
||||
* floating point registers to perform integer multiplies. If
|
||||
* a function which you would not think utilize the FP unit DOES,
|
||||
* then one can not easily predict which tasks will use the FP hardware.
|
||||
* In this case, this option should be TRUE.
|
||||
*
|
||||
* If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
|
||||
*/
|
||||
|
||||
#define CPU_ALL_TASKS_ARE_FP FALSE
|
||||
|
||||
/*
|
||||
* Should the IDLE task have a floating point context?
|
||||
*
|
||||
* If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
|
||||
* and it has a floating point context which is switched in and out.
|
||||
* If FALSE, then the IDLE task does not have a floating point context.
|
||||
*
|
||||
* Setting this to TRUE negatively impacts the time required to preempt
|
||||
* the IDLE task from an interrupt because the floating point context
|
||||
* must be saved as part of the preemption.
|
||||
*/
|
||||
|
||||
#define CPU_IDLE_TASK_IS_FP FALSE
|
||||
|
||||
/*
|
||||
* Should the saving of the floating point registers be deferred
|
||||
* until a context switch is made to another different floating point
|
||||
* task?
|
||||
*
|
||||
* If TRUE, then the floating point context will not be stored until
|
||||
* necessary. It will remain in the floating point registers and not
|
||||
* disturned until another floating point task is switched to.
|
||||
*
|
||||
* If FALSE, then the floating point context is saved when a floating
|
||||
* point task is switched out and restored when the next floating point
|
||||
* task is restored. The state of the floating point registers between
|
||||
* those two operations is not specified.
|
||||
*
|
||||
* If the floating point context does NOT have to be saved as part of
|
||||
* interrupt dispatching, then it should be safe to set this to TRUE.
|
||||
*
|
||||
* Setting this flag to TRUE results in using a different algorithm
|
||||
* for deciding when to save and restore the floating point context.
|
||||
* The deferred FP switch algorithm minimizes the number of times
|
||||
* the FP context is saved and restored. The FP context is not saved
|
||||
* until a context switch is made to another, different FP task.
|
||||
* Thus in a system with only one FP task, the FP context will never
|
||||
* be saved or restored.
|
||||
*/
|
||||
/*
|
||||
* ACB Note: This could make debugging tricky..
|
||||
*/
|
||||
|
||||
#define CPU_USE_DEFERRED_FP_SWITCH TRUE
|
||||
|
||||
/*
|
||||
* Does this port provide a CPU dependent IDLE task implementation?
|
||||
*
|
||||
* If TRUE, then the routine _CPU_Thread_Idle_body
|
||||
* must be provided and is the default IDLE thread body instead of
|
||||
* _CPU_Thread_Idle_body.
|
||||
*
|
||||
* If FALSE, then use the generic IDLE thread body if the BSP does
|
||||
* not provide one.
|
||||
*
|
||||
* This is intended to allow for supporting processors which have
|
||||
* a low power or idle mode. When the IDLE thread is executed, then
|
||||
* the CPU can be powered down.
|
||||
*
|
||||
* The order of precedence for selecting the IDLE thread body is:
|
||||
*
|
||||
* 1. BSP provided
|
||||
* 2. CPU dependent (if provided)
|
||||
* 3. generic (if no BSP and no CPU dependent)
|
||||
*/
|
||||
|
||||
#define CPU_PROVIDES_IDLE_THREAD_BODY FALSE
|
||||
|
||||
/*
|
||||
* Does the stack grow up (toward higher addresses) or down
|
||||
* (toward lower addresses)?
|
||||
*
|
||||
* If TRUE, then the grows upward.
|
||||
* If FALSE, then the grows toward smaller addresses.
|
||||
*/
|
||||
|
||||
#define CPU_STACK_GROWS_UP FALSE
|
||||
|
||||
/*
|
||||
* The following is the variable attribute used to force alignment
|
||||
* of critical RTEMS structures. On some processors it may make
|
||||
* sense to have these aligned on tighter boundaries than
|
||||
* the minimum requirements of the compiler in order to have as
|
||||
* much of the critical data area as possible in a cache line.
|
||||
*
|
||||
* The placement of this macro in the declaration of the variables
|
||||
* is based on the syntactically requirements of the GNU C
|
||||
* "__attribute__" extension. For example with GNU C, use
|
||||
* the following to force a structures to a 32 byte boundary.
|
||||
*
|
||||
* __attribute__ ((aligned (32)))
|
||||
*
|
||||
* NOTE: Currently only the Priority Bit Map table uses this feature.
|
||||
* To benefit from using this, the data must be heavily
|
||||
* used so it will stay in the cache and used frequently enough
|
||||
* in the executive to justify turning this on.
|
||||
*/
|
||||
|
||||
#define CPU_STRUCTURE_ALIGNMENT \
|
||||
__attribute__ ((aligned (PPC_CACHE_ALIGNMENT)))
|
||||
|
||||
/*
|
||||
* Define what is required to specify how the network to host conversion
|
||||
* routines are handled.
|
||||
*/
|
||||
|
||||
#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES FALSE
|
||||
#define CPU_BIG_ENDIAN TRUE
|
||||
#define CPU_LITTLE_ENDIAN FALSE
|
||||
|
||||
|
||||
/*
|
||||
* Processor defined structures
|
||||
*
|
||||
* Examples structures include the descriptor tables from the i386
|
||||
* and the processor control structure on the i960ca.
|
||||
*/
|
||||
|
||||
/* may need to put some structures here. */
|
||||
|
||||
/*
|
||||
* Contexts
|
||||
*
|
||||
* Generally there are 2 types of context to save.
|
||||
* 1. Interrupt registers to save
|
||||
* 2. Task level registers to save
|
||||
*
|
||||
* This means we have the following 3 context items:
|
||||
* 1. task level context stuff:: Context_Control
|
||||
* 2. floating point task stuff:: Context_Control_fp
|
||||
* 3. special interrupt level context :: Context_Control_interrupt
|
||||
*
|
||||
* On some processors, it is cost-effective to save only the callee
|
||||
* preserved registers during a task context switch. This means
|
||||
* that the ISR code needs to save those registers which do not
|
||||
* persist across function calls. It is not mandatory to make this
|
||||
* distinctions between the caller/callee saves registers for the
|
||||
* purpose of minimizing context saved during task switch and on interrupts.
|
||||
* If the cost of saving extra registers is minimal, simplicity is the
|
||||
* choice. Save the same context on interrupt entry as for tasks in
|
||||
* this case.
|
||||
*
|
||||
* Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
|
||||
* care should be used in designing the context area.
|
||||
*
|
||||
* On some CPUs with hardware floating point support, the Context_Control_fp
|
||||
* structure will not be used or it simply consist of an array of a
|
||||
* fixed number of bytes. This is done when the floating point context
|
||||
* is dumped by a "FP save context" type instruction and the format
|
||||
* is not really defined by the CPU. In this case, there is no need
|
||||
* to figure out the exact format -- only the size. Of course, although
|
||||
* this is enough information for RTEMS, it is probably not enough for
|
||||
* a debugger such as gdb. But that is another problem.
|
||||
*/
|
||||
|
||||
#ifndef ASM
|
||||
|
||||
typedef struct {
|
||||
unsigned32 gpr1; /* Stack pointer for all */
|
||||
unsigned32 gpr2; /* TOC in PowerOpen, reserved SVR4, section ptr EABI + */
|
||||
unsigned32 gpr13; /* First non volatile PowerOpen, section ptr SVR4/EABI */
|
||||
unsigned32 gpr14; /* Non volatile for all */
|
||||
unsigned32 gpr15; /* Non volatile for all */
|
||||
unsigned32 gpr16; /* Non volatile for all */
|
||||
unsigned32 gpr17; /* Non volatile for all */
|
||||
unsigned32 gpr18; /* Non volatile for all */
|
||||
unsigned32 gpr19; /* Non volatile for all */
|
||||
unsigned32 gpr20; /* Non volatile for all */
|
||||
unsigned32 gpr21; /* Non volatile for all */
|
||||
unsigned32 gpr22; /* Non volatile for all */
|
||||
unsigned32 gpr23; /* Non volatile for all */
|
||||
unsigned32 gpr24; /* Non volatile for all */
|
||||
unsigned32 gpr25; /* Non volatile for all */
|
||||
unsigned32 gpr26; /* Non volatile for all */
|
||||
unsigned32 gpr27; /* Non volatile for all */
|
||||
unsigned32 gpr28; /* Non volatile for all */
|
||||
unsigned32 gpr29; /* Non volatile for all */
|
||||
unsigned32 gpr30; /* Non volatile for all */
|
||||
unsigned32 gpr31; /* Non volatile for all */
|
||||
unsigned32 cr; /* PART of the CR is non volatile for all */
|
||||
unsigned32 pc; /* Program counter/Link register */
|
||||
unsigned32 msr; /* Initial interrupt level */
|
||||
} Context_Control;
|
||||
|
||||
typedef struct {
|
||||
/* The ABIs (PowerOpen/SVR4/EABI) only require saving f14-f31 over
|
||||
* procedure calls. However, this would mean that the interrupt
|
||||
* frame had to hold f0-f13, and the fpscr. And as the majority
|
||||
* of tasks will not have an FP context, we will save the whole
|
||||
* context here.
|
||||
*/
|
||||
#if (PPC_HAS_DOUBLE == 1)
|
||||
double f[32];
|
||||
double fpscr;
|
||||
#else
|
||||
float f[32];
|
||||
float fpscr;
|
||||
#endif
|
||||
} Context_Control_fp;
|
||||
|
||||
typedef struct CPU_Interrupt_frame {
|
||||
unsigned32 stacklink; /* Ensure this is a real frame (also reg1 save) */
|
||||
unsigned32 calleeLr; /* link register used by callees: SVR4/EABI */
|
||||
/* This is what is left out of the primary contexts */
|
||||
unsigned32 gpr0;
|
||||
unsigned32 gpr2; /* play safe */
|
||||
unsigned32 gpr3;
|
||||
unsigned32 gpr4;
|
||||
unsigned32 gpr5;
|
||||
unsigned32 gpr6;
|
||||
unsigned32 gpr7;
|
||||
unsigned32 gpr8;
|
||||
unsigned32 gpr9;
|
||||
unsigned32 gpr10;
|
||||
unsigned32 gpr11;
|
||||
unsigned32 gpr12;
|
||||
unsigned32 gpr13; /* Play safe */
|
||||
unsigned32 gpr28; /* For internal use by the IRQ handler */
|
||||
unsigned32 gpr29; /* For internal use by the IRQ handler */
|
||||
unsigned32 gpr30; /* For internal use by the IRQ handler */
|
||||
unsigned32 gpr31; /* For internal use by the IRQ handler */
|
||||
unsigned32 cr; /* Bits of this are volatile, so no-one may save */
|
||||
unsigned32 ctr;
|
||||
unsigned32 xer;
|
||||
unsigned32 lr;
|
||||
unsigned32 pc;
|
||||
unsigned32 msr;
|
||||
unsigned32 pad[3];
|
||||
} CPU_Interrupt_frame;
|
||||
|
||||
/*
|
||||
* The following table contains the information required to configure
|
||||
* the PowerPC processor specific parameters.
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
void (*pretasking_hook)( void );
|
||||
void (*predriver_hook)( void );
|
||||
void (*postdriver_hook)( void );
|
||||
void (*idle_task)( void );
|
||||
boolean do_zero_of_workspace;
|
||||
unsigned32 idle_task_stack_size;
|
||||
unsigned32 interrupt_stack_size;
|
||||
unsigned32 extra_mpci_receive_server_stack;
|
||||
void * (*stack_allocate_hook)( unsigned32 );
|
||||
void (*stack_free_hook)( void* );
|
||||
/* end of fields required on all CPUs */
|
||||
|
||||
unsigned32 clicks_per_usec; /* Timer clicks per microsecond */
|
||||
boolean exceptions_in_RAM; /* TRUE if in RAM */
|
||||
|
||||
} rtems_cpu_table;
|
||||
|
||||
/*
|
||||
* Macros to access required entires in the CPU Table are in
|
||||
* the file rtems/system.h.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Macros to access PowerPC MPC750 specific additions to the CPU Table
|
||||
*/
|
||||
|
||||
#define rtems_cpu_configuration_get_clicks_per_usec() \
|
||||
(_CPU_Table.clicks_per_usec)
|
||||
|
||||
#define rtems_cpu_configuration_get_exceptions_in_ram() \
|
||||
(_CPU_Table.exceptions_in_RAM)
|
||||
|
||||
/*
|
||||
* This variable is optional. It is used on CPUs on which it is difficult
|
||||
* to generate an "uninitialized" FP context. It is filled in by
|
||||
* _CPU_Initialize and copied into the task's FP context area during
|
||||
* _CPU_Context_Initialize.
|
||||
*/
|
||||
|
||||
/* EXTERN Context_Control_fp _CPU_Null_fp_context; */
|
||||
|
||||
/*
|
||||
* On some CPUs, RTEMS supports a software managed interrupt stack.
|
||||
* This stack is allocated by the Interrupt Manager and the switch
|
||||
* is performed in _ISR_Handler. These variables contain pointers
|
||||
* to the lowest and highest addresses in the chunk of memory allocated
|
||||
* for the interrupt stack. Since it is unknown whether the stack
|
||||
* grows up or down (in general), this give the CPU dependent
|
||||
* code the option of picking the version it wants to use.
|
||||
*
|
||||
* NOTE: These two variables are required if the macro
|
||||
* CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
|
||||
*/
|
||||
|
||||
SCORE_EXTERN void *_CPU_Interrupt_stack_low;
|
||||
SCORE_EXTERN void *_CPU_Interrupt_stack_high;
|
||||
|
||||
#endif /* ndef ASM */
|
||||
|
||||
/*
|
||||
* This defines the number of levels and the mask used to pick those
|
||||
* bits out of a thread mode.
|
||||
*/
|
||||
|
||||
#define CPU_MODES_INTERRUPT_LEVEL 0x00000001 /* interrupt level in mode */
|
||||
#define CPU_MODES_INTERRUPT_MASK 0x00000001 /* interrupt level in mode */
|
||||
|
||||
/*
|
||||
* With some compilation systems, it is difficult if not impossible to
|
||||
* call a high-level language routine from assembly language. This
|
||||
* is especially true of commercial Ada compilers and name mangling
|
||||
* C++ ones. This variable can be optionally defined by the CPU porter
|
||||
* and contains the address of the routine _Thread_Dispatch. This
|
||||
* can make it easier to invoke that routine at the end of the interrupt
|
||||
* sequence (if a dispatch is necessary).
|
||||
*/
|
||||
|
||||
/* EXTERN void (*_CPU_Thread_dispatch_pointer)(); */
|
||||
|
||||
/*
|
||||
* Nothing prevents the porter from declaring more CPU specific variables.
|
||||
*/
|
||||
|
||||
#ifndef ASM
|
||||
|
||||
SCORE_EXTERN struct {
|
||||
unsigned32 *Disable_level;
|
||||
void *Stack;
|
||||
volatile boolean *Switch_necessary;
|
||||
boolean *Signal;
|
||||
|
||||
} _CPU_IRQ_info CPU_STRUCTURE_ALIGNMENT;
|
||||
|
||||
#endif /* ndef ASM */
|
||||
|
||||
/*
|
||||
* The size of the floating point context area. On some CPUs this
|
||||
* will not be a "sizeof" because the format of the floating point
|
||||
* area is not defined -- only the size is. This is usually on
|
||||
* CPUs with a "floating point save context" instruction.
|
||||
*/
|
||||
|
||||
#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
|
||||
|
||||
/*
|
||||
* (Optional) # of bytes for libmisc/stackchk to check
|
||||
* If not specifed, then it defaults to something reasonable
|
||||
* for most architectures.
|
||||
*/
|
||||
|
||||
#define CPU_STACK_CHECK_SIZE (128)
|
||||
|
||||
/*
|
||||
* Amount of extra stack (above minimum stack size) required by
|
||||
* MPCI receive server thread. Remember that in a multiprocessor
|
||||
* system this thread must exist and be able to process all directives.
|
||||
*/
|
||||
|
||||
#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
|
||||
|
||||
/*
|
||||
* This defines the number of entries in the ISR_Vector_table managed
|
||||
* by RTEMS.
|
||||
*/
|
||||
|
||||
#define CPU_INTERRUPT_NUMBER_OF_VECTORS (PPC_INTERRUPT_MAX)
|
||||
#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER (PPC_INTERRUPT_MAX - 1)
|
||||
|
||||
/*
|
||||
* Should be large enough to run all RTEMS tests. This insures
|
||||
* that a "reasonable" small application should not have any problems.
|
||||
*/
|
||||
|
||||
#define CPU_STACK_MINIMUM_SIZE (1024*8)
|
||||
|
||||
/*
|
||||
* CPU's worst alignment requirement for data types on a byte boundary. This
|
||||
* alignment does not take into account the requirements for the stack.
|
||||
*/
|
||||
|
||||
#define CPU_ALIGNMENT (PPC_ALIGNMENT)
|
||||
|
||||
/*
|
||||
* This number corresponds to the byte alignment requirement for the
|
||||
* heap handler. This alignment requirement may be stricter than that
|
||||
* for the data types alignment specified by CPU_ALIGNMENT. It is
|
||||
* common for the heap to follow the same alignment requirement as
|
||||
* CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap,
|
||||
* then this should be set to CPU_ALIGNMENT.
|
||||
*
|
||||
* NOTE: This does not have to be a power of 2. It does have to
|
||||
* be greater or equal to than CPU_ALIGNMENT.
|
||||
*/
|
||||
|
||||
#define CPU_HEAP_ALIGNMENT (PPC_ALIGNMENT)
|
||||
|
||||
/*
|
||||
* This number corresponds to the byte alignment requirement for memory
|
||||
* buffers allocated by the partition manager. This alignment requirement
|
||||
* may be stricter than that for the data types alignment specified by
|
||||
* CPU_ALIGNMENT. It is common for the partition to follow the same
|
||||
* alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict
|
||||
* enough for the partition, then this should be set to CPU_ALIGNMENT.
|
||||
*
|
||||
* NOTE: This does not have to be a power of 2. It does have to
|
||||
* be greater or equal to than CPU_ALIGNMENT.
|
||||
*/
|
||||
|
||||
#define CPU_PARTITION_ALIGNMENT (PPC_ALIGNMENT)
|
||||
|
||||
/*
|
||||
* This number corresponds to the byte alignment requirement for the
|
||||
* stack. This alignment requirement may be stricter than that for the
|
||||
* data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT
|
||||
* is strict enough for the stack, then this should be set to 0.
|
||||
*
|
||||
* NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
|
||||
*/
|
||||
|
||||
#define CPU_STACK_ALIGNMENT (PPC_STACK_ALIGNMENT)
|
||||
|
||||
/*
|
||||
* Needed for Interrupt stack
|
||||
*/
|
||||
#define CPU_MINIMUM_STACK_FRAME_SIZE 8
|
||||
|
||||
|
||||
/* ISR handler macros */
|
||||
|
||||
/*
|
||||
* Disable all interrupts for an RTEMS critical section. The previous
|
||||
* level is returned in _isr_cookie.
|
||||
*/
|
||||
|
||||
#define loc_string(a,b) a " (" #b ")\n"
|
||||
|
||||
#ifndef ASM
|
||||
|
||||
static inline unsigned32 _CPU_ISR_Get_level( void )
|
||||
{
|
||||
register unsigned int msr;
|
||||
_CPU_MSR_GET(msr);
|
||||
if (msr & MSR_EE) return 0;
|
||||
else return 1;
|
||||
}
|
||||
|
||||
static inline void _CPU_ISR_Set_level( unsigned32 level )
|
||||
{
|
||||
register unsigned int msr;
|
||||
_CPU_MSR_GET(msr);
|
||||
if (!(level & CPU_MODES_INTERRUPT_MASK)) {
|
||||
msr |= MSR_EE;
|
||||
}
|
||||
else {
|
||||
msr &= ~MSR_EE;
|
||||
}
|
||||
_CPU_MSR_SET(msr);
|
||||
}
|
||||
|
||||
#define _CPU_ISR_install_vector(irq, new, old) {BSP_panic("_CPU_ISR_install_vector called\n");}
|
||||
|
||||
/* Context handler macros */
|
||||
|
||||
/*
|
||||
* Initialize the context to a state suitable for starting a
|
||||
* task after a context restore operation. Generally, this
|
||||
* involves:
|
||||
*
|
||||
* - setting a starting address
|
||||
* - preparing the stack
|
||||
* - preparing the stack and frame pointers
|
||||
* - setting the proper interrupt level in the context
|
||||
* - initializing the floating point context
|
||||
*
|
||||
* This routine generally does not set any unnecessary register
|
||||
* in the context. The state of the "general data" registers is
|
||||
* undefined at task start time.
|
||||
*
|
||||
* NOTE: Implemented as a subroutine for the SPARC port.
|
||||
*/
|
||||
|
||||
void _CPU_Context_Initialize(
|
||||
Context_Control *the_context,
|
||||
unsigned32 *stack_base,
|
||||
unsigned32 size,
|
||||
unsigned32 new_level,
|
||||
void *entry_point,
|
||||
boolean is_fp
|
||||
);
|
||||
|
||||
/*
|
||||
* This routine is responsible for somehow restarting the currently
|
||||
* executing task. If you are lucky, then all that is necessary
|
||||
* is restoring the context. Otherwise, there will need to be
|
||||
* a special assembly routine which does something special in this
|
||||
* case. Context_Restore should work most of the time. It will
|
||||
* not work if restarting self conflicts with the stack frame
|
||||
* assumptions of restoring a context.
|
||||
*/
|
||||
|
||||
#define _CPU_Context_Restart_self( _the_context ) \
|
||||
_CPU_Context_restore( (_the_context) );
|
||||
|
||||
/*
|
||||
* The purpose of this macro is to allow the initial pointer into
|
||||
* a floating point context area (used to save the floating point
|
||||
* context) to be at an arbitrary place in the floating point
|
||||
* context area.
|
||||
*
|
||||
* This is necessary because some FP units are designed to have
|
||||
* their context saved as a stack which grows into lower addresses.
|
||||
* Other FP units can be saved by simply moving registers into offsets
|
||||
* from the base of the context area. Finally some FP units provide
|
||||
* a "dump context" instruction which could fill in from high to low
|
||||
* or low to high based on the whim of the CPU designers.
|
||||
*/
|
||||
|
||||
#define _CPU_Context_Fp_start( _base, _offset ) \
|
||||
( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
|
||||
|
||||
/*
|
||||
* This routine initializes the FP context area passed to it to.
|
||||
* There are a few standard ways in which to initialize the
|
||||
* floating point context. The code included for this macro assumes
|
||||
* that this is a CPU in which a "initial" FP context was saved into
|
||||
* _CPU_Null_fp_context and it simply copies it to the destination
|
||||
* context passed to it.
|
||||
*
|
||||
* Other models include (1) not doing anything, and (2) putting
|
||||
* a "null FP status word" in the correct place in the FP context.
|
||||
*/
|
||||
|
||||
#define _CPU_Context_Initialize_fp( _destination ) \
|
||||
{ \
|
||||
((Context_Control_fp *) *((void **) _destination))->fpscr = PPC_INIT_FPSCR; \
|
||||
}
|
||||
|
||||
/* end of Context handler macros */
|
||||
|
||||
/* Fatal Error manager macros */
|
||||
|
||||
/*
|
||||
* This routine copies _error into a known place -- typically a stack
|
||||
* location or a register, optionally disables interrupts, and
|
||||
* halts/stops the CPU.
|
||||
*/
|
||||
|
||||
#define _CPU_Fatal_halt( _error ) \
|
||||
_BSP_Fatal_error(_error)
|
||||
|
||||
/* end of Fatal Error manager macros */
|
||||
|
||||
/* Bitfield handler macros */
|
||||
|
||||
/*
|
||||
* This routine sets _output to the bit number of the first bit
|
||||
* set in _value. _value is of CPU dependent type Priority_Bit_map_control.
|
||||
* This type may be either 16 or 32 bits wide although only the 16
|
||||
* least significant bits will be used.
|
||||
*
|
||||
* There are a number of variables in using a "find first bit" type
|
||||
* instruction.
|
||||
*
|
||||
* (1) What happens when run on a value of zero?
|
||||
* (2) Bits may be numbered from MSB to LSB or vice-versa.
|
||||
* (3) The numbering may be zero or one based.
|
||||
* (4) The "find first bit" instruction may search from MSB or LSB.
|
||||
*
|
||||
* RTEMS guarantees that (1) will never happen so it is not a concern.
|
||||
* (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
|
||||
* _CPU_Priority_Bits_index(). These three form a set of routines
|
||||
* which must logically operate together. Bits in the _value are
|
||||
* set and cleared based on masks built by _CPU_Priority_mask().
|
||||
* The basic major and minor values calculated by _Priority_Major()
|
||||
* and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index()
|
||||
* to properly range between the values returned by the "find first bit"
|
||||
* instruction. This makes it possible for _Priority_Get_highest() to
|
||||
* calculate the major and directly index into the minor table.
|
||||
* This mapping is necessary to ensure that 0 (a high priority major/minor)
|
||||
* is the first bit found.
|
||||
*
|
||||
* This entire "find first bit" and mapping process depends heavily
|
||||
* on the manner in which a priority is broken into a major and minor
|
||||
* components with the major being the 4 MSB of a priority and minor
|
||||
* the 4 LSB. Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
|
||||
* priority. And (15 << 4) + 14 corresponds to priority 254 -- the next
|
||||
* to the lowest priority.
|
||||
*
|
||||
* If your CPU does not have a "find first bit" instruction, then
|
||||
* there are ways to make do without it. Here are a handful of ways
|
||||
* to implement this in software:
|
||||
*
|
||||
* - a series of 16 bit test instructions
|
||||
* - a "binary search using if's"
|
||||
* - _number = 0
|
||||
* if _value > 0x00ff
|
||||
* _value >>=8
|
||||
* _number = 8;
|
||||
*
|
||||
* if _value > 0x0000f
|
||||
* _value >=8
|
||||
* _number += 4
|
||||
*
|
||||
* _number += bit_set_table[ _value ]
|
||||
*
|
||||
* where bit_set_table[ 16 ] has values which indicate the first
|
||||
* bit set
|
||||
*/
|
||||
|
||||
#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
|
||||
{ \
|
||||
asm volatile ("cntlzw %0, %1" : "=r" ((_output)), "=r" ((_value)) : \
|
||||
"1" ((_value))); \
|
||||
}
|
||||
|
||||
/* end of Bitfield handler macros */
|
||||
|
||||
/*
|
||||
* This routine builds the mask which corresponds to the bit fields
|
||||
* as searched by _CPU_Bitfield_Find_first_bit(). See the discussion
|
||||
* for that routine.
|
||||
*/
|
||||
|
||||
#define _CPU_Priority_Mask( _bit_number ) \
|
||||
( 0x80000000 >> (_bit_number) )
|
||||
|
||||
/*
|
||||
* This routine translates the bit numbers returned by
|
||||
* _CPU_Bitfield_Find_first_bit() into something suitable for use as
|
||||
* a major or minor component of a priority. See the discussion
|
||||
* for that routine.
|
||||
*/
|
||||
|
||||
#define _CPU_Priority_bits_index( _priority ) \
|
||||
(_priority)
|
||||
|
||||
/* end of Priority handler macros */
|
||||
|
||||
/* variables */
|
||||
|
||||
extern const unsigned32 _CPU_msrs[4];
|
||||
|
||||
/* functions */
|
||||
|
||||
/*
|
||||
* _CPU_Initialize
|
||||
*
|
||||
* This routine performs CPU dependent initialization.
|
||||
*/
|
||||
|
||||
void _CPU_Initialize(
|
||||
rtems_cpu_table *cpu_table,
|
||||
void (*thread_dispatch)
|
||||
);
|
||||
|
||||
|
||||
/*
|
||||
* _CPU_Install_interrupt_stack
|
||||
*
|
||||
* This routine installs the hardware interrupt stack pointer.
|
||||
*
|
||||
* NOTE: It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
|
||||
* is TRUE.
|
||||
*/
|
||||
|
||||
void _CPU_Install_interrupt_stack( void );
|
||||
|
||||
/*
|
||||
* _CPU_Context_switch
|
||||
*
|
||||
* This routine switches from the run context to the heir context.
|
||||
*/
|
||||
|
||||
void _CPU_Context_switch(
|
||||
Context_Control *run,
|
||||
Context_Control *heir
|
||||
);
|
||||
|
||||
/*
|
||||
* _CPU_Context_restore
|
||||
*
|
||||
* This routine is generallu used only to restart self in an
|
||||
* efficient manner. It may simply be a label in _CPU_Context_switch.
|
||||
*
|
||||
* NOTE: May be unnecessary to reload some registers.
|
||||
*/
|
||||
|
||||
void _CPU_Context_restore(
|
||||
Context_Control *new_context
|
||||
);
|
||||
|
||||
/*
|
||||
* _CPU_Context_save_fp
|
||||
*
|
||||
* This routine saves the floating point context passed to it.
|
||||
*/
|
||||
|
||||
void _CPU_Context_save_fp(
|
||||
void **fp_context_ptr
|
||||
);
|
||||
|
||||
/*
|
||||
* _CPU_Context_restore_fp
|
||||
*
|
||||
* This routine restores the floating point context passed to it.
|
||||
*/
|
||||
|
||||
void _CPU_Context_restore_fp(
|
||||
void **fp_context_ptr
|
||||
);
|
||||
|
||||
void _CPU_Fatal_error(
|
||||
unsigned32 _error
|
||||
);
|
||||
|
||||
/* The following routine swaps the endian format of an unsigned int.
|
||||
* It must be static because it is referenced indirectly.
|
||||
*
|
||||
* This version will work on any processor, but if there is a better
|
||||
* way for your CPU PLEASE use it. The most common way to do this is to:
|
||||
*
|
||||
* swap least significant two bytes with 16-bit rotate
|
||||
* swap upper and lower 16-bits
|
||||
* swap most significant two bytes with 16-bit rotate
|
||||
*
|
||||
* Some CPUs have special instructions which swap a 32-bit quantity in
|
||||
* a single instruction (e.g. i486). It is probably best to avoid
|
||||
* an "endian swapping control bit" in the CPU. One good reason is
|
||||
* that interrupts would probably have to be disabled to insure that
|
||||
* an interrupt does not try to access the same "chunk" with the wrong
|
||||
* endian. Another good reason is that on some CPUs, the endian bit
|
||||
* endianness for ALL fetches -- both code and data -- so the code
|
||||
* will be fetched incorrectly.
|
||||
*/
|
||||
|
||||
static inline unsigned int CPU_swap_u32(
|
||||
unsigned int value
|
||||
)
|
||||
{
|
||||
unsigned32 swapped;
|
||||
|
||||
asm volatile("rlwimi %0,%1,8,24,31;"
|
||||
"rlwimi %0,%1,24,16,23;"
|
||||
"rlwimi %0,%1,8,8,15;"
|
||||
"rlwimi %0,%1,24,0,7;" :
|
||||
"=&r" ((swapped)) : "r" ((value)));
|
||||
|
||||
return( swapped );
|
||||
}
|
||||
|
||||
#define CPU_swap_u16( value ) \
|
||||
(((value&0xff) << 8) | ((value >> 8)&0xff))
|
||||
|
||||
#endif /* ndef ASM */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
@@ -1,396 +0,0 @@
|
||||
|
||||
/* cpu_asm.s 1.1 - 95/12/04
|
||||
*
|
||||
* This file contains the assembly code for the PowerPC implementation
|
||||
* of RTEMS.
|
||||
*
|
||||
* Author: Andrew Bray <andy@i-cubed.co.uk>
|
||||
*
|
||||
* COPYRIGHT (c) 1995 by i-cubed ltd.
|
||||
*
|
||||
* To anyone who acknowledges that this file is provided "AS IS"
|
||||
* without any express or implied warranty:
|
||||
* permission to use, copy, modify, and distribute this file
|
||||
* for any purpose is hereby granted without fee, provided that
|
||||
* the above copyright notice and this notice appears in all
|
||||
* copies, and that the name of i-cubed limited not be used in
|
||||
* advertising or publicity pertaining to distribution of the
|
||||
* software without specific, written prior permission.
|
||||
* i-cubed limited makes no representations about the suitability
|
||||
* of this software for any purpose.
|
||||
*
|
||||
* Derived from c/src/exec/cpu/no_cpu/cpu_asm.c:
|
||||
*
|
||||
* COPYRIGHT (c) 1989-1997.
|
||||
* On-Line Applications Research Corporation (OAR).
|
||||
* Copyright assigned to U.S. Government, 1994.
|
||||
*
|
||||
* The license and distribution terms for this file may in
|
||||
* the file LICENSE in this distribution or at
|
||||
* http://www.OARcorp.com/rtems/license.html.
|
||||
*
|
||||
* $Id$
|
||||
*/
|
||||
|
||||
#include <asm.h>
|
||||
|
||||
/*
|
||||
* Offsets for various Contexts
|
||||
*/
|
||||
.set GP_1, 0
|
||||
.set GP_2, (GP_1 + 4)
|
||||
.set GP_13, (GP_2 + 4)
|
||||
.set GP_14, (GP_13 + 4)
|
||||
|
||||
.set GP_15, (GP_14 + 4)
|
||||
.set GP_16, (GP_15 + 4)
|
||||
.set GP_17, (GP_16 + 4)
|
||||
.set GP_18, (GP_17 + 4)
|
||||
|
||||
.set GP_19, (GP_18 + 4)
|
||||
.set GP_20, (GP_19 + 4)
|
||||
.set GP_21, (GP_20 + 4)
|
||||
.set GP_22, (GP_21 + 4)
|
||||
|
||||
.set GP_23, (GP_22 + 4)
|
||||
.set GP_24, (GP_23 + 4)
|
||||
.set GP_25, (GP_24 + 4)
|
||||
.set GP_26, (GP_25 + 4)
|
||||
|
||||
.set GP_27, (GP_26 + 4)
|
||||
.set GP_28, (GP_27 + 4)
|
||||
.set GP_29, (GP_28 + 4)
|
||||
.set GP_30, (GP_29 + 4)
|
||||
|
||||
.set GP_31, (GP_30 + 4)
|
||||
.set GP_CR, (GP_31 + 4)
|
||||
.set GP_PC, (GP_CR + 4)
|
||||
.set GP_MSR, (GP_PC + 4)
|
||||
|
||||
.set FP_0, 0
|
||||
.set FP_1, (FP_0 + 4)
|
||||
.set FP_2, (FP_1 + 4)
|
||||
.set FP_3, (FP_2 + 4)
|
||||
.set FP_4, (FP_3 + 4)
|
||||
.set FP_5, (FP_4 + 4)
|
||||
.set FP_6, (FP_5 + 4)
|
||||
.set FP_7, (FP_6 + 4)
|
||||
.set FP_8, (FP_7 + 4)
|
||||
.set FP_9, (FP_8 + 4)
|
||||
.set FP_10, (FP_9 + 4)
|
||||
.set FP_11, (FP_10 + 4)
|
||||
.set FP_12, (FP_11 + 4)
|
||||
.set FP_13, (FP_12 + 4)
|
||||
.set FP_14, (FP_13 + 4)
|
||||
.set FP_15, (FP_14 + 4)
|
||||
.set FP_16, (FP_15 + 4)
|
||||
.set FP_17, (FP_16 + 4)
|
||||
.set FP_18, (FP_17 + 4)
|
||||
.set FP_19, (FP_18 + 4)
|
||||
.set FP_20, (FP_19 + 4)
|
||||
.set FP_21, (FP_20 + 4)
|
||||
.set FP_22, (FP_21 + 4)
|
||||
.set FP_23, (FP_22 + 4)
|
||||
.set FP_24, (FP_23 + 4)
|
||||
.set FP_25, (FP_24 + 4)
|
||||
.set FP_26, (FP_25 + 4)
|
||||
.set FP_27, (FP_26 + 4)
|
||||
.set FP_28, (FP_27 + 4)
|
||||
.set FP_29, (FP_28 + 4)
|
||||
.set FP_30, (FP_29 + 4)
|
||||
.set FP_31, (FP_30 + 4)
|
||||
.set FP_FPSCR, (FP_31 + 4)
|
||||
|
||||
.set IP_LINK, 0
|
||||
.set IP_0, (IP_LINK + 8)
|
||||
.set IP_2, (IP_0 + 4)
|
||||
|
||||
.set IP_3, (IP_2 + 4)
|
||||
.set IP_4, (IP_3 + 4)
|
||||
.set IP_5, (IP_4 + 4)
|
||||
.set IP_6, (IP_5 + 4)
|
||||
|
||||
.set IP_7, (IP_6 + 4)
|
||||
.set IP_8, (IP_7 + 4)
|
||||
.set IP_9, (IP_8 + 4)
|
||||
.set IP_10, (IP_9 + 4)
|
||||
|
||||
.set IP_11, (IP_10 + 4)
|
||||
.set IP_12, (IP_11 + 4)
|
||||
.set IP_13, (IP_12 + 4)
|
||||
.set IP_28, (IP_13 + 4)
|
||||
|
||||
.set IP_29, (IP_28 + 4)
|
||||
.set IP_30, (IP_29 + 4)
|
||||
.set IP_31, (IP_30 + 4)
|
||||
.set IP_CR, (IP_31 + 4)
|
||||
|
||||
.set IP_CTR, (IP_CR + 4)
|
||||
.set IP_XER, (IP_CTR + 4)
|
||||
.set IP_LR, (IP_XER + 4)
|
||||
.set IP_PC, (IP_LR + 4)
|
||||
|
||||
.set IP_MSR, (IP_PC + 4)
|
||||
.set IP_END, (IP_MSR + 16)
|
||||
|
||||
BEGIN_CODE
|
||||
/*
|
||||
* _CPU_Context_save_fp_context
|
||||
*
|
||||
* This routine is responsible for saving the FP context
|
||||
* at *fp_context_ptr. If the point to load the FP context
|
||||
* from is changed then the pointer is modified by this routine.
|
||||
*
|
||||
* Sometimes a macro implementation of this is in cpu.h which dereferences
|
||||
* the ** and a similarly named routine in this file is passed something
|
||||
* like a (Context_Control_fp *). The general rule on making this decision
|
||||
* is to avoid writing assembly language.
|
||||
*/
|
||||
|
||||
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
|
||||
PUBLIC_PROC (_CPU_Context_save_fp)
|
||||
PROC (_CPU_Context_save_fp):
|
||||
#if (PPC_HAS_FPU == 1)
|
||||
lwz r3, 0(r3)
|
||||
stfs f0, FP_0(r3)
|
||||
stfs f1, FP_1(r3)
|
||||
stfs f2, FP_2(r3)
|
||||
stfs f3, FP_3(r3)
|
||||
stfs f4, FP_4(r3)
|
||||
stfs f5, FP_5(r3)
|
||||
stfs f6, FP_6(r3)
|
||||
stfs f7, FP_7(r3)
|
||||
stfs f8, FP_8(r3)
|
||||
stfs f9, FP_9(r3)
|
||||
stfs f10, FP_10(r3)
|
||||
stfs f11, FP_11(r3)
|
||||
stfs f12, FP_12(r3)
|
||||
stfs f13, FP_13(r3)
|
||||
stfs f14, FP_14(r3)
|
||||
stfs f15, FP_15(r3)
|
||||
stfs f16, FP_16(r3)
|
||||
stfs f17, FP_17(r3)
|
||||
stfs f18, FP_18(r3)
|
||||
stfs f19, FP_19(r3)
|
||||
stfs f20, FP_20(r3)
|
||||
stfs f21, FP_21(r3)
|
||||
stfs f22, FP_22(r3)
|
||||
stfs f23, FP_23(r3)
|
||||
stfs f24, FP_24(r3)
|
||||
stfs f25, FP_25(r3)
|
||||
stfs f26, FP_26(r3)
|
||||
stfs f27, FP_27(r3)
|
||||
stfs f28, FP_28(r3)
|
||||
stfs f29, FP_29(r3)
|
||||
stfs f30, FP_30(r3)
|
||||
stfs f31, FP_31(r3)
|
||||
mffs f2
|
||||
stfs f2, FP_FPSCR(r3)
|
||||
#endif
|
||||
blr
|
||||
|
||||
/*
|
||||
* _CPU_Context_restore_fp_context
|
||||
*
|
||||
* This routine is responsible for restoring the FP context
|
||||
* at *fp_context_ptr. If the point to load the FP context
|
||||
* from is changed then the pointer is modified by this routine.
|
||||
*
|
||||
* Sometimes a macro implementation of this is in cpu.h which dereferences
|
||||
* the ** and a similarly named routine in this file is passed something
|
||||
* like a (Context_Control_fp *). The general rule on making this decision
|
||||
* is to avoid writing assembly language.
|
||||
*/
|
||||
|
||||
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
|
||||
PUBLIC_PROC (_CPU_Context_restore_fp)
|
||||
PROC (_CPU_Context_restore_fp):
|
||||
#if (PPC_HAS_FPU == 1)
|
||||
lwz r3, 0(r3)
|
||||
lfs f2, FP_FPSCR(r3)
|
||||
mtfsf 255, f2
|
||||
lfs f0, FP_0(r3)
|
||||
lfs f1, FP_1(r3)
|
||||
lfs f2, FP_2(r3)
|
||||
lfs f3, FP_3(r3)
|
||||
lfs f4, FP_4(r3)
|
||||
lfs f5, FP_5(r3)
|
||||
lfs f6, FP_6(r3)
|
||||
lfs f7, FP_7(r3)
|
||||
lfs f8, FP_8(r3)
|
||||
lfs f9, FP_9(r3)
|
||||
lfs f10, FP_10(r3)
|
||||
lfs f11, FP_11(r3)
|
||||
lfs f12, FP_12(r3)
|
||||
lfs f13, FP_13(r3)
|
||||
lfs f14, FP_14(r3)
|
||||
lfs f15, FP_15(r3)
|
||||
lfs f16, FP_16(r3)
|
||||
lfs f17, FP_17(r3)
|
||||
lfs f18, FP_18(r3)
|
||||
lfs f19, FP_19(r3)
|
||||
lfs f20, FP_20(r3)
|
||||
lfs f21, FP_21(r3)
|
||||
lfs f22, FP_22(r3)
|
||||
lfs f23, FP_23(r3)
|
||||
lfs f24, FP_24(r3)
|
||||
lfs f25, FP_25(r3)
|
||||
lfs f26, FP_26(r3)
|
||||
lfs f27, FP_27(r3)
|
||||
lfs f28, FP_28(r3)
|
||||
lfs f29, FP_29(r3)
|
||||
lfs f30, FP_30(r3)
|
||||
lfs f31, FP_31(r3)
|
||||
#endif
|
||||
blr
|
||||
|
||||
|
||||
/* _CPU_Context_switch
|
||||
*
|
||||
* This routine performs a normal non-FP context switch.
|
||||
*/
|
||||
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
|
||||
PUBLIC_PROC (_CPU_Context_switch)
|
||||
PROC (_CPU_Context_switch):
|
||||
sync
|
||||
isync
|
||||
/* This assumes that all the registers are in the given order */
|
||||
li r5, 32
|
||||
addi r3,r3,-4
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbz r5, r3
|
||||
#endif
|
||||
stw r1, GP_1+4(r3)
|
||||
stw r2, GP_2+4(r3)
|
||||
#if (PPC_USE_MULTIPLE == 1)
|
||||
addi r3, r3, GP_18+4
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbz r5, r3
|
||||
#endif
|
||||
stmw r13, GP_13-GP_18(r3)
|
||||
#else
|
||||
stw r13, GP_13+4(r3)
|
||||
stw r14, GP_14+4(r3)
|
||||
stw r15, GP_15+4(r3)
|
||||
stw r16, GP_16+4(r3)
|
||||
stw r17, GP_17+4(r3)
|
||||
stwu r18, GP_18+4(r3)
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbz r5, r3
|
||||
#endif
|
||||
stw r19, GP_19-GP_18(r3)
|
||||
stw r20, GP_20-GP_18(r3)
|
||||
stw r21, GP_21-GP_18(r3)
|
||||
stw r22, GP_22-GP_18(r3)
|
||||
stw r23, GP_23-GP_18(r3)
|
||||
stw r24, GP_24-GP_18(r3)
|
||||
stw r25, GP_25-GP_18(r3)
|
||||
stw r26, GP_26-GP_18(r3)
|
||||
stw r27, GP_27-GP_18(r3)
|
||||
stw r28, GP_28-GP_18(r3)
|
||||
stw r29, GP_29-GP_18(r3)
|
||||
stw r30, GP_30-GP_18(r3)
|
||||
stw r31, GP_31-GP_18(r3)
|
||||
#endif
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r0, r4
|
||||
#endif
|
||||
mfcr r6
|
||||
stw r6, GP_CR-GP_18(r3)
|
||||
mflr r7
|
||||
stw r7, GP_PC-GP_18(r3)
|
||||
mfmsr r8
|
||||
stw r8, GP_MSR-GP_18(r3)
|
||||
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r5, r4
|
||||
#endif
|
||||
lwz r1, GP_1(r4)
|
||||
lwz r2, GP_2(r4)
|
||||
#if (PPC_USE_MULTIPLE == 1)
|
||||
addi r4, r4, GP_19
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r5, r4
|
||||
#endif
|
||||
lmw r13, GP_13-GP_19(r4)
|
||||
#else
|
||||
lwz r13, GP_13(r4)
|
||||
lwz r14, GP_14(r4)
|
||||
lwz r15, GP_15(r4)
|
||||
lwz r16, GP_16(r4)
|
||||
lwz r17, GP_17(r4)
|
||||
lwz r18, GP_18(r4)
|
||||
lwzu r19, GP_19(r4)
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r5, r4
|
||||
#endif
|
||||
lwz r20, GP_20-GP_19(r4)
|
||||
lwz r21, GP_21-GP_19(r4)
|
||||
lwz r22, GP_22-GP_19(r4)
|
||||
lwz r23, GP_23-GP_19(r4)
|
||||
lwz r24, GP_24-GP_19(r4)
|
||||
lwz r25, GP_25-GP_19(r4)
|
||||
lwz r26, GP_26-GP_19(r4)
|
||||
lwz r27, GP_27-GP_19(r4)
|
||||
lwz r28, GP_28-GP_19(r4)
|
||||
lwz r29, GP_29-GP_19(r4)
|
||||
lwz r30, GP_30-GP_19(r4)
|
||||
lwz r31, GP_31-GP_19(r4)
|
||||
#endif
|
||||
lwz r6, GP_CR-GP_19(r4)
|
||||
lwz r7, GP_PC-GP_19(r4)
|
||||
lwz r8, GP_MSR-GP_19(r4)
|
||||
mtcrf 255, r6
|
||||
mtlr r7
|
||||
mtmsr r8
|
||||
|
||||
blr
|
||||
|
||||
/*
|
||||
* _CPU_Context_restore
|
||||
*
|
||||
* This routine is generallu used only to restart self in an
|
||||
* efficient manner. It may simply be a label in _CPU_Context_switch.
|
||||
*
|
||||
* NOTE: May be unnecessary to reload some registers.
|
||||
*/
|
||||
/*
|
||||
* ACB: Don't worry about cache optimisation here - this is not THAT critical.
|
||||
*/
|
||||
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
|
||||
PUBLIC_PROC (_CPU_Context_restore)
|
||||
PROC (_CPU_Context_restore):
|
||||
lwz r5, GP_CR(r3)
|
||||
lwz r6, GP_PC(r3)
|
||||
lwz r7, GP_MSR(r3)
|
||||
mtcrf 255, r5
|
||||
mtlr r6
|
||||
mtmsr r7
|
||||
lwz r1, GP_1(r3)
|
||||
lwz r2, GP_2(r3)
|
||||
#if (PPC_USE_MULTIPLE == 1)
|
||||
lmw r13, GP_13(r3)
|
||||
#else
|
||||
lwz r13, GP_13(r3)
|
||||
lwz r14, GP_14(r3)
|
||||
lwz r15, GP_15(r3)
|
||||
lwz r16, GP_16(r3)
|
||||
lwz r17, GP_17(r3)
|
||||
lwz r18, GP_18(r3)
|
||||
lwz r19, GP_19(r3)
|
||||
lwz r20, GP_20(r3)
|
||||
lwz r21, GP_21(r3)
|
||||
lwz r22, GP_22(r3)
|
||||
lwz r23, GP_23(r3)
|
||||
lwz r24, GP_24(r3)
|
||||
lwz r25, GP_25(r3)
|
||||
lwz r26, GP_26(r3)
|
||||
lwz r27, GP_27(r3)
|
||||
lwz r28, GP_28(r3)
|
||||
lwz r29, GP_29(r3)
|
||||
lwz r30, GP_30(r3)
|
||||
lwz r31, GP_31(r3)
|
||||
#endif
|
||||
|
||||
blr
|
||||
|
||||
@@ -1,2 +0,0 @@
|
||||
Makefile
|
||||
Makefile.in
|
||||
@@ -1,58 +0,0 @@
|
||||
##
|
||||
## $Id$
|
||||
##
|
||||
|
||||
AUTOMAKE_OPTIONS = foreign 1.4
|
||||
ACLOCAL_AMFLAGS = -I $(RTEMS_TOPdir)/aclocal
|
||||
|
||||
# C source names
|
||||
C_FILES = cpu.c
|
||||
C_O_FILES = $(C_FILES:%.c=${ARCH}/%.o)
|
||||
|
||||
ROOT_H_FILES =
|
||||
RTEMS_SCORE_H_FILES = cpu.h c_isr.inl
|
||||
noinst_HEADERS = $(ROOT_H_FILES) $(RTEMS_SCORE_H_FILES)
|
||||
|
||||
# Assembly source names
|
||||
S_FILES = cpu_asm.S
|
||||
S_O_FILES = $(S_FILES:%.S=${ARCH}/%.o)
|
||||
|
||||
include $(RTEMS_ROOT)/make/custom/@RTEMS_BSP@.cfg
|
||||
include $(top_srcdir)/../../../../../automake/lib.am
|
||||
|
||||
PREINSTALL_FILES += $(PROJECT_INCLUDE) $(PROJECT_INCLUDE)/rtems/score \
|
||||
$(ROOT_H_FILES:%=$(PROJECT_INCLUDE)/%) \
|
||||
$(RTEMS_SCORE_H_FILES:%=$(PROJECT_INCLUDE)/rtems/score/%)
|
||||
|
||||
TMPINSTALL_FILES += $(PROJECT_RELEASE)/lib/rtems$(LIB_VARIANT).o
|
||||
|
||||
$(PROJECT_RELEASE)/lib/rtems$(LIB_VARIANT).o: $(ARCH)/rtems.o
|
||||
$(INSTALL_DATA) $< $@
|
||||
|
||||
$(PROJECT_INCLUDE):
|
||||
$(mkinstalldirs) $@
|
||||
|
||||
$(PROJECT_INCLUDE)/rtems/score:
|
||||
$(mkinstalldirs) $@
|
||||
|
||||
$(PROJECT_INCLUDE)/rtems/score/%: %
|
||||
$(INSTALL_DATA) $< $@
|
||||
|
||||
$(PROJECT_INCLUDE)/%: %
|
||||
$(INSTALL_DATA) $< $@
|
||||
|
||||
REL = $(ARCH)/rtems-cpu.rel
|
||||
|
||||
$(REL): $(C_O_FILES) $(S_O_FILES)
|
||||
test -d ../$(ARCH) || mkdir ../$(ARCH)
|
||||
$(make-rel)
|
||||
|
||||
all-local: $(ARCH) $(PREINSTALL_FILES) $(REL) $(ARCH)/rtems.o $(TMPINSTALL_FILES)
|
||||
|
||||
CLEANDIRS = ../o-optimize ../o-debug ../o-profile
|
||||
|
||||
UNUSED_FILES = irq_stub.S
|
||||
|
||||
EXTRA_DIST = TODO rtems.S $(C_FILES) $(S_FILES) $(UNUSED_FILES)
|
||||
|
||||
include $(top_srcdir)/../../../../../automake/local.am
|
||||
@@ -1,80 +0,0 @@
|
||||
#
|
||||
# $Id$
|
||||
#
|
||||
|
||||
There are various issues regarding this port:
|
||||
|
||||
|
||||
|
||||
1) Legal
|
||||
|
||||
This port is written by Andrew Bray <andy@i-cubed.co.uk>, and
|
||||
is copyright 1995 i-cubed ltd.
|
||||
|
||||
This port was later updated by Joel Sherrill <joel@OARcorp.com>
|
||||
to test the support for the PPC603, PPC603e, and MPC604. This
|
||||
was tested on the PowerPC simulator PSIM and a VMEbus single board
|
||||
computer.
|
||||
|
||||
2) CPU support.
|
||||
|
||||
This release fully supports the PPC403GA, PPC403GB, PPC603, PPC603e,
|
||||
MPC604, MPC750, and numerous MPC8xx processors. A good faith attempt
|
||||
has been made to include support other models based upon available
|
||||
documentation including the MPC5xx. There are two interrupt structures
|
||||
supported by the PowerPC port. The newer structure is supported by
|
||||
all the MPC750 and MPC604 BSPs. This structure is required to use
|
||||
the RDBG remote debugging support.
|
||||
|
||||
This port was originally written and tested on the PPC403GA (using
|
||||
software floating point). Current ports are tested primarily on
|
||||
60x CPUs using the PowerPC simulator PSIM.
|
||||
|
||||
Andrew Bray received assistance during the initial porting effort
|
||||
from IBM and Blue Micro and we would like to gratefully acknowledge
|
||||
that help.
|
||||
|
||||
The support for the PPC602 processor is incomplete as only sketchy
|
||||
data is currently available. Perhaps this model has been dropped.
|
||||
|
||||
3) Application Binary Interface
|
||||
|
||||
In the context of RTEMS, the ABI is of interest for the following
|
||||
aspects:
|
||||
|
||||
a) Register usage. Which registers are used to provide static variable
|
||||
linkage, stack pointer etc.
|
||||
|
||||
b) Function calling convention. How parameters are passed, how function
|
||||
variables should be invoked, how values are returned, etc.
|
||||
|
||||
c) Stack frame layout.
|
||||
|
||||
I am aware of a number of ABIs for the PowerPC:
|
||||
|
||||
a) The PowerOpen ABI. This is the original Power ABI used on the RS/6000.
|
||||
This is the only ABI supported by versions of GCC before 2.7.0.
|
||||
|
||||
b) The SVR4 ABI. This is the ABI defined by SunSoft for the Solaris port
|
||||
to the PowerPC.
|
||||
|
||||
c) The Embedded ABI. This is an embedded ABI for PowerPC use, which has no
|
||||
operating system interface defined. It is promoted by SunSoft, Motorola,
|
||||
and Cygnus Support. Cygnus are porting the GNU toolchain to this ABI.
|
||||
|
||||
d) GCC 2.7.0. This compiler is partway along the road to supporting the EABI,
|
||||
but is currently halfway in between.
|
||||
|
||||
This port was built and tested using the PowerOpen ABI, with the following
|
||||
caveat: we used an ELF assembler and linker. So some attention may be
|
||||
required on the assembler files to get them through a traditional (XCOFF)
|
||||
PowerOpen assembler.
|
||||
|
||||
This port contains support for the other ABIs, but this may prove to be
|
||||
incomplete as it is untested.
|
||||
|
||||
The RTEMS PowerPC port supports EABI as the primary ABI. The powerpc-rtems
|
||||
GNU toolset configuration is EABI.
|
||||
|
||||
Andrew Bray, 4 December 1995
|
||||
Joel Sherrill, 16 July 1997
|
||||
@@ -1,8 +0,0 @@
|
||||
#
|
||||
# $Id$
|
||||
#
|
||||
|
||||
Todo list:
|
||||
|
||||
Maybe decode external interrupts like the HPPA does.
|
||||
See c/src/lib/libcpu/powerpc/ppc403/ictrl/* for implementation on ppc403
|
||||
@@ -1,4 +0,0 @@
|
||||
RTEMS_INLINE_ROUTINE boolean _ISR_Is_in_progress( void )
|
||||
{
|
||||
return (_ISR_Nest_level != 0);
|
||||
}
|
||||
@@ -1,858 +0,0 @@
|
||||
/*
|
||||
* PowerPC CPU Dependent Source
|
||||
*
|
||||
* Author: Andrew Bray <andy@i-cubed.co.uk>
|
||||
*
|
||||
* COPYRIGHT (c) 1995 by i-cubed ltd.
|
||||
*
|
||||
* To anyone who acknowledges that this file is provided "AS IS"
|
||||
* without any express or implied warranty:
|
||||
* permission to use, copy, modify, and distribute this file
|
||||
* for any purpose is hereby granted without fee, provided that
|
||||
* the above copyright notice and this notice appears in all
|
||||
* copies, and that the name of i-cubed limited not be used in
|
||||
* advertising or publicity pertaining to distribution of the
|
||||
* software without specific, written prior permission.
|
||||
* i-cubed limited makes no representations about the suitability
|
||||
* of this software for any purpose.
|
||||
*
|
||||
* Derived from c/src/exec/cpu/no_cpu/cpu.c:
|
||||
*
|
||||
* COPYRIGHT (c) 1989-1997.
|
||||
* On-Line Applications Research Corporation (OAR).
|
||||
* Copyright assigned to U.S. Government, 1994.
|
||||
*
|
||||
* The license and distribution terms for this file may be found in
|
||||
* the file LICENSE in this distribution or at
|
||||
* http://www.OARcorp.com/rtems/license.html.
|
||||
*
|
||||
* $Id$
|
||||
*/
|
||||
|
||||
#include <rtems/system.h>
|
||||
#include <rtems/score/isr.h>
|
||||
#include <rtems/score/context.h>
|
||||
#include <rtems/score/thread.h>
|
||||
#include <rtems/score/interr.h>
|
||||
|
||||
/*
|
||||
* These are for testing purposes.
|
||||
*/
|
||||
|
||||
/* _CPU_Initialize
|
||||
*
|
||||
* This routine performs processor dependent initialization.
|
||||
*
|
||||
* INPUT PARAMETERS:
|
||||
* cpu_table - CPU table to initialize
|
||||
* thread_dispatch - address of disptaching routine
|
||||
*/
|
||||
|
||||
static void ppc_spurious(int, CPU_Interrupt_frame *);
|
||||
|
||||
int _CPU_spurious_count = 0;
|
||||
int _CPU_last_spurious = 0;
|
||||
|
||||
void _CPU_Initialize(
|
||||
rtems_cpu_table *cpu_table,
|
||||
void (*thread_dispatch) /* ignored on this CPU */
|
||||
)
|
||||
{
|
||||
proc_ptr handler = (proc_ptr)ppc_spurious;
|
||||
int i;
|
||||
#if (PPC_ABI != PPC_ABI_POWEROPEN)
|
||||
register unsigned32 r2 = 0;
|
||||
#if (PPC_ABI != PPC_ABI_GCC27)
|
||||
register unsigned32 r13 = 0;
|
||||
|
||||
asm ("mr %0,13" : "=r" ((r13)) : "0" ((r13)));
|
||||
_CPU_IRQ_info.Default_r13 = r13;
|
||||
#endif
|
||||
|
||||
asm ("mr %0,2" : "=r" ((r2)) : "0" ((r2)));
|
||||
_CPU_IRQ_info.Default_r2 = r2;
|
||||
#endif
|
||||
|
||||
_CPU_IRQ_info.Nest_level = &_ISR_Nest_level;
|
||||
_CPU_IRQ_info.Disable_level = &_Thread_Dispatch_disable_level;
|
||||
_CPU_IRQ_info.Vector_table = _ISR_Vector_table;
|
||||
#if (PPC_ABI == PPC_ABI_POWEROPEN)
|
||||
_CPU_IRQ_info.Dispatch_r2 = ((unsigned32 *)_Thread_Dispatch)[1];
|
||||
#endif
|
||||
_CPU_IRQ_info.Switch_necessary = &_Context_Switch_necessary;
|
||||
_CPU_IRQ_info.Signal = &_ISR_Signals_to_thread_executing;
|
||||
|
||||
#if (PPC_USE_SPRG)
|
||||
i = (int)&_CPU_IRQ_info;
|
||||
asm volatile("mtspr 0x113, %0" : "=r" (i) : "0" (i)); /* SPRG 3 */
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Store Msr Value in the IRQ info structure.
|
||||
*/
|
||||
_CPU_MSR_Value(_CPU_IRQ_info.msr_initial);
|
||||
|
||||
#if (PPC_USE_SPRG)
|
||||
i = _CPU_IRQ_info.msr_initial;
|
||||
asm volatile("mtspr 0x112, %0" : "=r" (i) : "0" (i)); /* SPRG 2 */
|
||||
#endif
|
||||
|
||||
if ( cpu_table->spurious_handler )
|
||||
handler = (proc_ptr)cpu_table->spurious_handler;
|
||||
|
||||
for (i = 0; i < PPC_INTERRUPT_MAX; i++)
|
||||
_ISR_Vector_table[i] = handler;
|
||||
|
||||
_CPU_Table = *cpu_table;
|
||||
}
|
||||
|
||||
/*PAGE
|
||||
*
|
||||
* _CPU_ISR_Calculate_level
|
||||
*
|
||||
* The PowerPC puts its interrupt enable status in the MSR register
|
||||
* which also contains things like endianness control. To be more
|
||||
* awkward, the layout varies from processor to processor. This
|
||||
* is why it was necessary to adopt a scheme which allowed the user
|
||||
* to specify specifically which interrupt sources were enabled.
|
||||
*/
|
||||
|
||||
unsigned32 _CPU_ISR_Calculate_level(
|
||||
unsigned32 new_level
|
||||
)
|
||||
{
|
||||
register unsigned32 new_msr = 0;
|
||||
|
||||
/*
|
||||
* Set the critical interrupt enable bit
|
||||
*/
|
||||
|
||||
#if (PPC_HAS_RFCI)
|
||||
if ( !(new_level & PPC_INTERRUPT_LEVEL_CE) )
|
||||
new_msr |= PPC_MSR_CE;
|
||||
#endif
|
||||
|
||||
if ( !(new_level & PPC_INTERRUPT_LEVEL_ME) )
|
||||
new_msr |= PPC_MSR_ME;
|
||||
|
||||
if ( !(new_level & PPC_INTERRUPT_LEVEL_EE) )
|
||||
new_msr |= PPC_MSR_EE;
|
||||
|
||||
return new_msr;
|
||||
}
|
||||
|
||||
/*PAGE
|
||||
*
|
||||
* _CPU_ISR_Set_level
|
||||
*
|
||||
* This routine sets the requested level in the MSR.
|
||||
*/
|
||||
|
||||
void _CPU_ISR_Set_level(
|
||||
unsigned32 new_level
|
||||
)
|
||||
{
|
||||
register unsigned32 tmp = 0;
|
||||
register unsigned32 new_msr;
|
||||
|
||||
new_msr = _CPU_ISR_Calculate_level( new_level );
|
||||
|
||||
asm volatile (
|
||||
"mfmsr %0; andc %0,%0,%1; and %2, %2, %1; or %0, %0, %2; mtmsr %0" :
|
||||
"=&r" ((tmp)) :
|
||||
"r" ((PPC_MSR_DISABLE_MASK)), "r" ((new_msr)), "0" ((tmp))
|
||||
);
|
||||
}
|
||||
|
||||
/*PAGE
|
||||
*
|
||||
* _CPU_ISR_Get_level
|
||||
*
|
||||
* This routine gets the current interrupt level from the MSR and
|
||||
* converts it to an RTEMS interrupt level.
|
||||
*/
|
||||
|
||||
unsigned32 _CPU_ISR_Get_level( void )
|
||||
{
|
||||
unsigned32 level = 0;
|
||||
unsigned32 msr;
|
||||
|
||||
asm volatile("mfmsr %0" : "=r" ((msr)));
|
||||
|
||||
msr &= PPC_MSR_DISABLE_MASK;
|
||||
|
||||
/*
|
||||
* Set the critical interrupt enable bit
|
||||
*/
|
||||
|
||||
#if (PPC_HAS_RFCI)
|
||||
if ( !(msr & PPC_MSR_CE) )
|
||||
level |= PPC_INTERRUPT_LEVEL_CE;
|
||||
#endif
|
||||
|
||||
if ( !(msr & PPC_MSR_ME) )
|
||||
level |= PPC_INTERRUPT_LEVEL_ME;
|
||||
|
||||
if ( !(msr & PPC_MSR_EE) )
|
||||
level |= PPC_INTERRUPT_LEVEL_EE;
|
||||
|
||||
return level;
|
||||
}
|
||||
|
||||
/*PAGE
|
||||
*
|
||||
* _CPU_Context_Initialize
|
||||
*/
|
||||
|
||||
#if (PPC_ABI == PPC_ABI_POWEROPEN)
|
||||
#define CPU_MINIMUM_STACK_FRAME_SIZE 56
|
||||
#else /* PPC_ABI_SVR4 or PPC_ABI_EABI */
|
||||
#define CPU_MINIMUM_STACK_FRAME_SIZE 8
|
||||
#endif
|
||||
|
||||
void _CPU_Context_Initialize(
|
||||
Context_Control *the_context,
|
||||
unsigned32 *stack_base,
|
||||
unsigned32 size,
|
||||
unsigned32 new_level,
|
||||
void *entry_point,
|
||||
boolean is_fp
|
||||
)
|
||||
{
|
||||
unsigned32 msr_value;
|
||||
unsigned32 sp;
|
||||
|
||||
sp = (unsigned32)stack_base + size - CPU_MINIMUM_STACK_FRAME_SIZE;
|
||||
*((unsigned32 *)sp) = 0;
|
||||
the_context->gpr1 = sp;
|
||||
|
||||
the_context->msr = _CPU_ISR_Calculate_level( new_level );
|
||||
|
||||
/*
|
||||
* The FP bit of the MSR should only be enabled if this is a floating
|
||||
* point task. Unfortunately, the vfprintf_r routine in newlib
|
||||
* ends up pushing a floating point register regardless of whether or
|
||||
* not a floating point number is being printed. Serious restructuring
|
||||
* of vfprintf.c will be required to avoid this behavior. At this
|
||||
* time (7 July 1997), this restructuring is not being done.
|
||||
*/
|
||||
|
||||
/*if ( is_fp ) */
|
||||
the_context->msr |= PPC_MSR_FP;
|
||||
|
||||
/*
|
||||
* Calculate the task's MSR value:
|
||||
*
|
||||
* + Set the exception prefix bit to point to the exception table
|
||||
* + Force the RI bit
|
||||
* + Use the DR and IR bits
|
||||
*/
|
||||
_CPU_MSR_Value( msr_value );
|
||||
the_context->msr |= (msr_value & PPC_MSR_EP);
|
||||
the_context->msr |= PPC_MSR_RI;
|
||||
the_context->msr |= msr_value & (PPC_MSR_DR|PPC_MSR_IR);
|
||||
|
||||
#if (PPC_ABI == PPC_ABI_POWEROPEN)
|
||||
{ unsigned32 *desc = (unsigned32 *)entry_point;
|
||||
|
||||
the_context->pc = desc[0];
|
||||
the_context->gpr2 = desc[1];
|
||||
}
|
||||
#endif
|
||||
|
||||
#if (PPC_ABI == PPC_ABI_SVR4)
|
||||
{ unsigned r13 = 0;
|
||||
asm volatile ("mr %0, 13" : "=r" ((r13)));
|
||||
|
||||
the_context->pc = (unsigned32)entry_point;
|
||||
the_context->gpr13 = r13;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if (PPC_ABI == PPC_ABI_EABI)
|
||||
{ unsigned32 r2 = 0;
|
||||
unsigned r13 = 0;
|
||||
asm volatile ("mr %0,2; mr %1,13" : "=r" ((r2)), "=r" ((r13)));
|
||||
|
||||
the_context->pc = (unsigned32)entry_point;
|
||||
the_context->gpr2 = r2;
|
||||
the_context->gpr13 = r13;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/* _CPU_ISR_install_vector
|
||||
*
|
||||
* This kernel routine installs the RTEMS handler for the
|
||||
* specified vector.
|
||||
*
|
||||
* Input parameters:
|
||||
* vector - interrupt vector number
|
||||
* old_handler - former ISR for this vector number
|
||||
* new_handler - replacement ISR for this vector number
|
||||
*
|
||||
* Output parameters: NONE
|
||||
*
|
||||
*/
|
||||
|
||||
void _CPU_ISR_install_vector(
|
||||
unsigned32 vector,
|
||||
proc_ptr new_handler,
|
||||
proc_ptr *old_handler
|
||||
)
|
||||
{
|
||||
proc_ptr ignored;
|
||||
*old_handler = _ISR_Vector_table[ vector ];
|
||||
|
||||
/*
|
||||
* If the interrupt vector table is a table of pointer to isr entry
|
||||
* points, then we need to install the appropriate RTEMS interrupt
|
||||
* handler for this vector number.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Install the wrapper so this ISR can be invoked properly.
|
||||
*/
|
||||
if (_CPU_Table.exceptions_in_RAM)
|
||||
_CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored );
|
||||
|
||||
/*
|
||||
* We put the actual user ISR address in '_ISR_vector_table'. This will
|
||||
* be used by the _ISR_Handler so the user gets control.
|
||||
*/
|
||||
|
||||
_ISR_Vector_table[ vector ] = new_handler ? (ISR_Handler_entry)new_handler :
|
||||
_CPU_Table.spurious_handler ?
|
||||
(ISR_Handler_entry)_CPU_Table.spurious_handler :
|
||||
(ISR_Handler_entry)ppc_spurious;
|
||||
}
|
||||
|
||||
/*PAGE
|
||||
*
|
||||
* _CPU_Install_interrupt_stack
|
||||
*/
|
||||
|
||||
void _CPU_Install_interrupt_stack( void )
|
||||
{
|
||||
#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27)
|
||||
_CPU_IRQ_info.Stack = _CPU_Interrupt_stack_high - 56;
|
||||
#else
|
||||
_CPU_IRQ_info.Stack = _CPU_Interrupt_stack_high - 8;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Handle a spurious interrupt */
|
||||
static void ppc_spurious(int v, CPU_Interrupt_frame *i)
|
||||
{
|
||||
#if 0
|
||||
printf("Spurious interrupt on vector %d from %08.8x\n",
|
||||
v, i->pc);
|
||||
#endif
|
||||
#ifdef ppc403
|
||||
if (v == PPC_IRQ_EXTERNAL)
|
||||
{
|
||||
register int r = 0;
|
||||
|
||||
asm volatile("mtdcr 0x42, %0" :
|
||||
"=&r" ((r)) : "0" ((r))); /* EXIER */
|
||||
}
|
||||
else if (v == PPC_IRQ_PIT)
|
||||
{
|
||||
register int r = 0x08000000;
|
||||
|
||||
asm volatile("mtspr 0x3d8, %0" :
|
||||
"=&r" ((r)) : "0" ((r))); /* TSR */
|
||||
}
|
||||
else if (v == PPC_IRQ_FIT)
|
||||
{
|
||||
register int r = 0x04000000;
|
||||
|
||||
asm volatile("mtspr 0x3d8, %0" :
|
||||
"=&r" ((r)) : "0" ((r))); /* TSR */
|
||||
}
|
||||
#endif
|
||||
++_CPU_spurious_count;
|
||||
_CPU_last_spurious = v;
|
||||
}
|
||||
|
||||
void _CPU_Fatal_error(unsigned32 _error)
|
||||
{
|
||||
asm volatile ("mr 3, %0" : : "r" ((_error)));
|
||||
asm volatile ("tweq 5,5");
|
||||
asm volatile ("li 0,0; mtmsr 0");
|
||||
while (1) ;
|
||||
}
|
||||
|
||||
#define PPC_SYNCHRONOUS_TRAP_BIT_MASK 0x100
|
||||
#define PPC_ASYNCHRONOUS_TRAP( _trap ) (_trap)
|
||||
#define PPC_SYNCHRONOUS_TRAP ( _trap ) ((_trap)+PPC_SYNCHRONOUS_TRAP_BIT_MASK)
|
||||
#define PPC_REAL_TRAP_NUMBER ( _trap ) ((_trap)%PPC_SYNCHRONOUS_TRAP_BIT_MASK)
|
||||
|
||||
|
||||
const CPU_Trap_table_entry _CPU_Trap_slot_template = {
|
||||
|
||||
#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27)
|
||||
#error " Vector install not tested."
|
||||
#if (PPC_HAS_FPU)
|
||||
#error " Vector install not tested."
|
||||
0x9421feb0, /* stwu r1, -(20*4 + 18*8 + IP_END)(r1) */
|
||||
#else
|
||||
#error " Vector install not tested."
|
||||
0x9421ff40, /* stwu r1, -(20*4 + IP_END)(r1) */
|
||||
#endif
|
||||
#else
|
||||
0x9421ff90, /* stwu r1, -(IP_END)(r1) */
|
||||
#endif
|
||||
|
||||
0x90010008, /* stw %r0, IP_0(%r1) */
|
||||
0x38000000, /* li %r0, PPC_IRQ */
|
||||
0x48000002 /* ba PROC (_ISR_Handler) */
|
||||
};
|
||||
|
||||
#if defined(mpc860) || defined(mpc821)
|
||||
const CPU_Trap_table_entry _CPU_Trap_slot_template_m860 = {
|
||||
0x7c0803ac, /* mtlr %r0 */
|
||||
0x81210028, /* lwz %r9, IP_9(%r1) */
|
||||
0x38000000, /* li %r0, PPC_IRQ */
|
||||
0x48000002 /* b PROC (_ISR_Handler) */
|
||||
};
|
||||
#endif /* mpc860 */
|
||||
|
||||
unsigned32 ppc_exception_vector_addr(
|
||||
unsigned32 vector
|
||||
);
|
||||
|
||||
|
||||
/*PAGE
|
||||
*
|
||||
* _CPU_ISR_install_raw_handler
|
||||
*
|
||||
* This routine installs the specified handler as a "raw" non-executive
|
||||
* supported trap handler (a.k.a. interrupt service routine).
|
||||
*
|
||||
* Input Parameters:
|
||||
* vector - trap table entry number plus synchronous
|
||||
* vs. asynchronous information
|
||||
* new_handler - address of the handler to be installed
|
||||
* old_handler - pointer to an address of the handler previously installed
|
||||
*
|
||||
* Output Parameters: NONE
|
||||
* *new_handler - address of the handler previously installed
|
||||
*
|
||||
* NOTE:
|
||||
*
|
||||
* This routine is based on the SPARC routine _CPU_ISR_install_raw_handler.
|
||||
* Install a software trap handler as an executive interrupt handler
|
||||
* (which is desirable since RTEMS takes care of window and register issues),
|
||||
* then the executive needs to know that the return address is to the trap
|
||||
* rather than the instruction following the trap.
|
||||
*
|
||||
*/
|
||||
|
||||
void _CPU_ISR_install_raw_handler(
|
||||
unsigned32 vector,
|
||||
proc_ptr new_handler,
|
||||
proc_ptr *old_handler
|
||||
)
|
||||
{
|
||||
unsigned32 real_vector;
|
||||
CPU_Trap_table_entry *slot;
|
||||
unsigned32 u32_handler=0;
|
||||
|
||||
/*
|
||||
* Get the "real" trap number for this vector ignoring the synchronous
|
||||
* versus asynchronous indicator included with our vector numbers.
|
||||
*/
|
||||
|
||||
real_vector = vector;
|
||||
|
||||
/*
|
||||
* Get the current base address of the trap table and calculate a pointer
|
||||
* to the slot we are interested in.
|
||||
*/
|
||||
slot = (CPU_Trap_table_entry *)ppc_exception_vector_addr( real_vector );
|
||||
|
||||
/*
|
||||
* Get the address of the old_handler from the trap table.
|
||||
*
|
||||
* NOTE: The old_handler returned will be bogus if it does not follow
|
||||
* the RTEMS model.
|
||||
*/
|
||||
|
||||
#define HIGH_BITS_MASK 0xFFFFFC00
|
||||
#define HIGH_BITS_SHIFT 10
|
||||
#define LOW_BITS_MASK 0x000003FF
|
||||
|
||||
if (slot->stwu_r1 == _CPU_Trap_slot_template.stwu_r1) {
|
||||
/*
|
||||
* Set u32_handler = to target address
|
||||
*/
|
||||
u32_handler = slot->b_Handler & 0x03fffffc;
|
||||
|
||||
/* IMD FIX: sign extend address fragment... */
|
||||
if (u32_handler & 0x02000000) {
|
||||
u32_handler |= 0xfc000000;
|
||||
}
|
||||
|
||||
*old_handler = (proc_ptr) u32_handler;
|
||||
} else
|
||||
/* There are two kinds of handlers for the MPC860. One is the 'standard'
|
||||
* one like above. The other is for the cascaded interrupts from the SIU
|
||||
* and CPM. Therefore we must check for the alternate one if the standard
|
||||
* one is not present
|
||||
*/
|
||||
#if defined(mpc860) || defined(mpc821)
|
||||
if (slot->stwu_r1 == _CPU_Trap_slot_template_m860.stwu_r1) {
|
||||
/*
|
||||
* Set u32_handler = to target address
|
||||
*/
|
||||
u32_handler = slot->b_Handler & 0x03fffffc;
|
||||
*old_handler = (proc_ptr) u32_handler;
|
||||
} else
|
||||
#endif /* mpc860 */
|
||||
|
||||
*old_handler = 0;
|
||||
|
||||
/*
|
||||
* Copy the template to the slot and then fix it.
|
||||
*/
|
||||
#if defined(mpc860) || defined(mpc821)
|
||||
if (vector >= PPC_IRQ_IRQ0)
|
||||
*slot = _CPU_Trap_slot_template_m860;
|
||||
else
|
||||
#endif /* mpc860 */
|
||||
*slot = _CPU_Trap_slot_template;
|
||||
|
||||
u32_handler = (unsigned32) new_handler;
|
||||
|
||||
/*
|
||||
* IMD FIX: insert address fragment only (bits 6..29)
|
||||
* therefore check for proper address range
|
||||
* and remove unwanted bits
|
||||
*/
|
||||
if ((u32_handler & 0xfc000000) == 0xfc000000) {
|
||||
u32_handler &= ~0xfc000000;
|
||||
}
|
||||
else if ((u32_handler & 0xfc000000) != 0x00000000) {
|
||||
_Internal_error_Occurred(INTERNAL_ERROR_CORE,
|
||||
TRUE,
|
||||
u32_handler);
|
||||
}
|
||||
|
||||
slot->b_Handler |= u32_handler;
|
||||
|
||||
slot->li_r0_IRQ |= vector;
|
||||
|
||||
_CPU_Data_Cache_Block_Flush( slot );
|
||||
}
|
||||
|
||||
unsigned32 ppc_exception_vector_addr(
|
||||
unsigned32 vector
|
||||
)
|
||||
{
|
||||
#if (!PPC_HAS_EVPR)
|
||||
unsigned32 Msr;
|
||||
#endif
|
||||
unsigned32 Top = 0;
|
||||
unsigned32 Offset = 0x000;
|
||||
|
||||
#if (PPC_HAS_EXCEPTION_PREFIX)
|
||||
_CPU_MSR_Value ( Msr );
|
||||
if ( ( Msr & PPC_MSR_EP) != 0 ) /* Vectors at FFFx_xxxx */
|
||||
Top = 0xfff00000;
|
||||
#elif (PPC_HAS_EVPR)
|
||||
asm volatile( "mfspr %0,0x3d6" : "=r" (Top)); /* EVPR */
|
||||
Top = Top & 0xffff0000;
|
||||
#endif
|
||||
|
||||
switch ( vector ) {
|
||||
case PPC_IRQ_SYSTEM_RESET: /* on 40x aka PPC_IRQ_CRIT */
|
||||
Offset = 0x00100;
|
||||
break;
|
||||
case PPC_IRQ_MCHECK:
|
||||
Offset = 0x00200;
|
||||
break;
|
||||
case PPC_IRQ_PROTECT:
|
||||
Offset = 0x00300;
|
||||
break;
|
||||
case PPC_IRQ_ISI:
|
||||
Offset = 0x00400;
|
||||
break;
|
||||
case PPC_IRQ_EXTERNAL:
|
||||
Offset = 0x00500;
|
||||
break;
|
||||
case PPC_IRQ_ALIGNMENT:
|
||||
Offset = 0x00600;
|
||||
break;
|
||||
case PPC_IRQ_PROGRAM:
|
||||
Offset = 0x00700;
|
||||
break;
|
||||
case PPC_IRQ_NOFP:
|
||||
Offset = 0x00800;
|
||||
break;
|
||||
case PPC_IRQ_DECREMENTER:
|
||||
Offset = 0x00900;
|
||||
break;
|
||||
case PPC_IRQ_RESERVED_A:
|
||||
Offset = 0x00a00;
|
||||
break;
|
||||
case PPC_IRQ_RESERVED_B:
|
||||
Offset = 0x00b00;
|
||||
break;
|
||||
case PPC_IRQ_SCALL:
|
||||
Offset = 0x00c00;
|
||||
break;
|
||||
case PPC_IRQ_TRACE:
|
||||
Offset = 0x00d00;
|
||||
break;
|
||||
case PPC_IRQ_FP_ASST:
|
||||
Offset = 0x00e00;
|
||||
break;
|
||||
|
||||
#if defined(ppc403)
|
||||
|
||||
/* PPC_IRQ_CRIT is the same vector as PPC_IRQ_RESET
|
||||
case PPC_IRQ_CRIT:
|
||||
Offset = 0x00100;
|
||||
break;
|
||||
*/
|
||||
case PPC_IRQ_PIT:
|
||||
Offset = 0x01000;
|
||||
break;
|
||||
case PPC_IRQ_FIT:
|
||||
Offset = 0x01010;
|
||||
break;
|
||||
case PPC_IRQ_WATCHDOG:
|
||||
Offset = 0x01020;
|
||||
break;
|
||||
case PPC_IRQ_DEBUG:
|
||||
Offset = 0x02000;
|
||||
break;
|
||||
|
||||
#elif defined(ppc601)
|
||||
case PPC_IRQ_TRACE:
|
||||
Offset = 0x02000;
|
||||
break;
|
||||
|
||||
#elif defined(ppc603)
|
||||
case PPC_IRQ_TRANS_MISS:
|
||||
Offset = 0x1000;
|
||||
break;
|
||||
case PPC_IRQ_DATA_LOAD:
|
||||
Offset = 0x1100;
|
||||
break;
|
||||
case PPC_IRQ_DATA_STORE:
|
||||
Offset = 0x1200;
|
||||
break;
|
||||
case PPC_IRQ_ADDR_BRK:
|
||||
Offset = 0x1300;
|
||||
break;
|
||||
case PPC_IRQ_SYS_MGT:
|
||||
Offset = 0x1400;
|
||||
break;
|
||||
|
||||
#elif defined(ppc603e)
|
||||
case PPC_TLB_INST_MISS:
|
||||
Offset = 0x1000;
|
||||
break;
|
||||
case PPC_TLB_LOAD_MISS:
|
||||
Offset = 0x1100;
|
||||
break;
|
||||
case PPC_TLB_STORE_MISS:
|
||||
Offset = 0x1200;
|
||||
break;
|
||||
case PPC_IRQ_ADDRBRK:
|
||||
Offset = 0x1300;
|
||||
break;
|
||||
case PPC_IRQ_SYS_MGT:
|
||||
Offset = 0x1400;
|
||||
break;
|
||||
|
||||
#elif defined(mpc604)
|
||||
case PPC_IRQ_ADDR_BRK:
|
||||
Offset = 0x1300;
|
||||
break;
|
||||
case PPC_IRQ_SYS_MGT:
|
||||
Offset = 0x1400;
|
||||
break;
|
||||
|
||||
#elif defined(mpc860) || defined(mpc821)
|
||||
case PPC_IRQ_EMULATE:
|
||||
Offset = 0x1000;
|
||||
break;
|
||||
case PPC_IRQ_INST_MISS:
|
||||
Offset = 0x1100;
|
||||
break;
|
||||
case PPC_IRQ_DATA_MISS:
|
||||
Offset = 0x1200;
|
||||
break;
|
||||
case PPC_IRQ_INST_ERR:
|
||||
Offset = 0x1300;
|
||||
break;
|
||||
case PPC_IRQ_DATA_ERR:
|
||||
Offset = 0x1400;
|
||||
break;
|
||||
case PPC_IRQ_DATA_BPNT:
|
||||
Offset = 0x1c00;
|
||||
break;
|
||||
case PPC_IRQ_INST_BPNT:
|
||||
Offset = 0x1d00;
|
||||
break;
|
||||
case PPC_IRQ_IO_BPNT:
|
||||
Offset = 0x1e00;
|
||||
break;
|
||||
case PPC_IRQ_DEV_PORT:
|
||||
Offset = 0x1f00;
|
||||
break;
|
||||
case PPC_IRQ_IRQ0:
|
||||
Offset = 0x2000;
|
||||
break;
|
||||
case PPC_IRQ_LVL0:
|
||||
Offset = 0x2040;
|
||||
break;
|
||||
case PPC_IRQ_IRQ1:
|
||||
Offset = 0x2080;
|
||||
break;
|
||||
case PPC_IRQ_LVL1:
|
||||
Offset = 0x20c0;
|
||||
break;
|
||||
case PPC_IRQ_IRQ2:
|
||||
Offset = 0x2100;
|
||||
break;
|
||||
case PPC_IRQ_LVL2:
|
||||
Offset = 0x2140;
|
||||
break;
|
||||
case PPC_IRQ_IRQ3:
|
||||
Offset = 0x2180;
|
||||
break;
|
||||
case PPC_IRQ_LVL3:
|
||||
Offset = 0x21c0;
|
||||
break;
|
||||
case PPC_IRQ_IRQ4:
|
||||
Offset = 0x2200;
|
||||
break;
|
||||
case PPC_IRQ_LVL4:
|
||||
Offset = 0x2240;
|
||||
break;
|
||||
case PPC_IRQ_IRQ5:
|
||||
Offset = 0x2280;
|
||||
break;
|
||||
case PPC_IRQ_LVL5:
|
||||
Offset = 0x22c0;
|
||||
break;
|
||||
case PPC_IRQ_IRQ6:
|
||||
Offset = 0x2300;
|
||||
break;
|
||||
case PPC_IRQ_LVL6:
|
||||
Offset = 0x2340;
|
||||
break;
|
||||
case PPC_IRQ_IRQ7:
|
||||
Offset = 0x2380;
|
||||
break;
|
||||
case PPC_IRQ_LVL7:
|
||||
Offset = 0x23c0;
|
||||
break;
|
||||
case PPC_IRQ_CPM_ERROR:
|
||||
Offset = 0x2400;
|
||||
break;
|
||||
case PPC_IRQ_CPM_PC4:
|
||||
Offset = 0x2410;
|
||||
break;
|
||||
case PPC_IRQ_CPM_PC5:
|
||||
Offset = 0x2420;
|
||||
break;
|
||||
case PPC_IRQ_CPM_SMC2:
|
||||
Offset = 0x2430;
|
||||
break;
|
||||
case PPC_IRQ_CPM_SMC1:
|
||||
Offset = 0x2440;
|
||||
break;
|
||||
case PPC_IRQ_CPM_SPI:
|
||||
Offset = 0x2450;
|
||||
break;
|
||||
case PPC_IRQ_CPM_PC6:
|
||||
Offset = 0x2460;
|
||||
break;
|
||||
case PPC_IRQ_CPM_TIMER4:
|
||||
Offset = 0x2470;
|
||||
break;
|
||||
case PPC_IRQ_CPM_RESERVED_8:
|
||||
Offset = 0x2480;
|
||||
break;
|
||||
case PPC_IRQ_CPM_PC7:
|
||||
Offset = 0x2490;
|
||||
break;
|
||||
case PPC_IRQ_CPM_PC8:
|
||||
Offset = 0x24a0;
|
||||
break;
|
||||
case PPC_IRQ_CPM_PC9:
|
||||
Offset = 0x24b0;
|
||||
break;
|
||||
case PPC_IRQ_CPM_TIMER3:
|
||||
Offset = 0x24c0;
|
||||
break;
|
||||
case PPC_IRQ_CPM_RESERVED_D:
|
||||
Offset = 0x24d0;
|
||||
break;
|
||||
case PPC_IRQ_CPM_PC10:
|
||||
Offset = 0x24e0;
|
||||
break;
|
||||
case PPC_IRQ_CPM_PC11:
|
||||
Offset = 0x24f0;
|
||||
break;
|
||||
case PPC_IRQ_CPM_I2C:
|
||||
Offset = 0x2500;
|
||||
break;
|
||||
case PPC_IRQ_CPM_RISC_TIMER:
|
||||
Offset = 0x2510;
|
||||
break;
|
||||
case PPC_IRQ_CPM_TIMER2:
|
||||
Offset = 0x2520;
|
||||
break;
|
||||
case PPC_IRQ_CPM_RESERVED_13:
|
||||
Offset = 0x2530;
|
||||
break;
|
||||
case PPC_IRQ_CPM_IDMA2:
|
||||
Offset = 0x2540;
|
||||
break;
|
||||
case PPC_IRQ_CPM_IDMA1:
|
||||
Offset = 0x2550;
|
||||
break;
|
||||
case PPC_IRQ_CPM_SDMA_ERROR:
|
||||
Offset = 0x2560;
|
||||
break;
|
||||
case PPC_IRQ_CPM_PC12:
|
||||
Offset = 0x2570;
|
||||
break;
|
||||
case PPC_IRQ_CPM_PC13:
|
||||
Offset = 0x2580;
|
||||
break;
|
||||
case PPC_IRQ_CPM_TIMER1:
|
||||
Offset = 0x2590;
|
||||
break;
|
||||
case PPC_IRQ_CPM_PC14:
|
||||
Offset = 0x25a0;
|
||||
break;
|
||||
case PPC_IRQ_CPM_SCC4:
|
||||
Offset = 0x25b0;
|
||||
break;
|
||||
case PPC_IRQ_CPM_SCC3:
|
||||
Offset = 0x25c0;
|
||||
break;
|
||||
case PPC_IRQ_CPM_SCC2:
|
||||
Offset = 0x25d0;
|
||||
break;
|
||||
case PPC_IRQ_CPM_SCC1:
|
||||
Offset = 0x25e0;
|
||||
break;
|
||||
case PPC_IRQ_CPM_PC15:
|
||||
Offset = 0x25f0;
|
||||
break;
|
||||
#endif
|
||||
|
||||
}
|
||||
Top += Offset;
|
||||
return Top;
|
||||
}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,809 +0,0 @@
|
||||
|
||||
/* cpu_asm.s 1.1 - 95/12/04
|
||||
*
|
||||
* This file contains the assembly code for the PowerPC implementation
|
||||
* of RTEMS.
|
||||
*
|
||||
* Author: Andrew Bray <andy@i-cubed.co.uk>
|
||||
*
|
||||
* COPYRIGHT (c) 1995 by i-cubed ltd.
|
||||
*
|
||||
* To anyone who acknowledges that this file is provided "AS IS"
|
||||
* without any express or implied warranty:
|
||||
* permission to use, copy, modify, and distribute this file
|
||||
* for any purpose is hereby granted without fee, provided that
|
||||
* the above copyright notice and this notice appears in all
|
||||
* copies, and that the name of i-cubed limited not be used in
|
||||
* advertising or publicity pertaining to distribution of the
|
||||
* software without specific, written prior permission.
|
||||
* i-cubed limited makes no representations about the suitability
|
||||
* of this software for any purpose.
|
||||
*
|
||||
* Derived from c/src/exec/cpu/no_cpu/cpu_asm.c:
|
||||
*
|
||||
* COPYRIGHT (c) 1989-1997.
|
||||
* On-Line Applications Research Corporation (OAR).
|
||||
* Copyright assigned to U.S. Government, 1994.
|
||||
*
|
||||
* The license and distribution terms for this file may in
|
||||
* the file LICENSE in this distribution or at
|
||||
* http://www.OARcorp.com/rtems/license.html.
|
||||
*
|
||||
* $Id$
|
||||
*/
|
||||
|
||||
#include <asm.h>
|
||||
|
||||
/*
|
||||
* Offsets for various Contexts
|
||||
*/
|
||||
.set GP_1, 0
|
||||
.set GP_2, (GP_1 + 4)
|
||||
.set GP_13, (GP_2 + 4)
|
||||
.set GP_14, (GP_13 + 4)
|
||||
|
||||
.set GP_15, (GP_14 + 4)
|
||||
.set GP_16, (GP_15 + 4)
|
||||
.set GP_17, (GP_16 + 4)
|
||||
.set GP_18, (GP_17 + 4)
|
||||
|
||||
.set GP_19, (GP_18 + 4)
|
||||
.set GP_20, (GP_19 + 4)
|
||||
.set GP_21, (GP_20 + 4)
|
||||
.set GP_22, (GP_21 + 4)
|
||||
|
||||
.set GP_23, (GP_22 + 4)
|
||||
.set GP_24, (GP_23 + 4)
|
||||
.set GP_25, (GP_24 + 4)
|
||||
.set GP_26, (GP_25 + 4)
|
||||
|
||||
.set GP_27, (GP_26 + 4)
|
||||
.set GP_28, (GP_27 + 4)
|
||||
.set GP_29, (GP_28 + 4)
|
||||
.set GP_30, (GP_29 + 4)
|
||||
|
||||
.set GP_31, (GP_30 + 4)
|
||||
.set GP_CR, (GP_31 + 4)
|
||||
.set GP_PC, (GP_CR + 4)
|
||||
.set GP_MSR, (GP_PC + 4)
|
||||
|
||||
#if (PPC_HAS_DOUBLE == 1)
|
||||
.set FP_0, 0
|
||||
.set FP_1, (FP_0 + 8)
|
||||
.set FP_2, (FP_1 + 8)
|
||||
.set FP_3, (FP_2 + 8)
|
||||
.set FP_4, (FP_3 + 8)
|
||||
.set FP_5, (FP_4 + 8)
|
||||
.set FP_6, (FP_5 + 8)
|
||||
.set FP_7, (FP_6 + 8)
|
||||
.set FP_8, (FP_7 + 8)
|
||||
.set FP_9, (FP_8 + 8)
|
||||
.set FP_10, (FP_9 + 8)
|
||||
.set FP_11, (FP_10 + 8)
|
||||
.set FP_12, (FP_11 + 8)
|
||||
.set FP_13, (FP_12 + 8)
|
||||
.set FP_14, (FP_13 + 8)
|
||||
.set FP_15, (FP_14 + 8)
|
||||
.set FP_16, (FP_15 + 8)
|
||||
.set FP_17, (FP_16 + 8)
|
||||
.set FP_18, (FP_17 + 8)
|
||||
.set FP_19, (FP_18 + 8)
|
||||
.set FP_20, (FP_19 + 8)
|
||||
.set FP_21, (FP_20 + 8)
|
||||
.set FP_22, (FP_21 + 8)
|
||||
.set FP_23, (FP_22 + 8)
|
||||
.set FP_24, (FP_23 + 8)
|
||||
.set FP_25, (FP_24 + 8)
|
||||
.set FP_26, (FP_25 + 8)
|
||||
.set FP_27, (FP_26 + 8)
|
||||
.set FP_28, (FP_27 + 8)
|
||||
.set FP_29, (FP_28 + 8)
|
||||
.set FP_30, (FP_29 + 8)
|
||||
.set FP_31, (FP_30 + 8)
|
||||
.set FP_FPSCR, (FP_31 + 8)
|
||||
#else
|
||||
.set FP_0, 0
|
||||
.set FP_1, (FP_0 + 4)
|
||||
.set FP_2, (FP_1 + 4)
|
||||
.set FP_3, (FP_2 + 4)
|
||||
.set FP_4, (FP_3 + 4)
|
||||
.set FP_5, (FP_4 + 4)
|
||||
.set FP_6, (FP_5 + 4)
|
||||
.set FP_7, (FP_6 + 4)
|
||||
.set FP_8, (FP_7 + 4)
|
||||
.set FP_9, (FP_8 + 4)
|
||||
.set FP_10, (FP_9 + 4)
|
||||
.set FP_11, (FP_10 + 4)
|
||||
.set FP_12, (FP_11 + 4)
|
||||
.set FP_13, (FP_12 + 4)
|
||||
.set FP_14, (FP_13 + 4)
|
||||
.set FP_15, (FP_14 + 4)
|
||||
.set FP_16, (FP_15 + 4)
|
||||
.set FP_17, (FP_16 + 4)
|
||||
.set FP_18, (FP_17 + 4)
|
||||
.set FP_19, (FP_18 + 4)
|
||||
.set FP_20, (FP_19 + 4)
|
||||
.set FP_21, (FP_20 + 4)
|
||||
.set FP_22, (FP_21 + 4)
|
||||
.set FP_23, (FP_22 + 4)
|
||||
.set FP_24, (FP_23 + 4)
|
||||
.set FP_25, (FP_24 + 4)
|
||||
.set FP_26, (FP_25 + 4)
|
||||
.set FP_27, (FP_26 + 4)
|
||||
.set FP_28, (FP_27 + 4)
|
||||
.set FP_29, (FP_28 + 4)
|
||||
.set FP_30, (FP_29 + 4)
|
||||
.set FP_31, (FP_30 + 4)
|
||||
.set FP_FPSCR, (FP_31 + 4)
|
||||
#endif
|
||||
|
||||
.set IP_LINK, 0
|
||||
#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27)
|
||||
.set IP_0, (IP_LINK + 56)
|
||||
#else
|
||||
.set IP_0, (IP_LINK + 8)
|
||||
#endif
|
||||
.set IP_2, (IP_0 + 4)
|
||||
|
||||
.set IP_3, (IP_2 + 4)
|
||||
.set IP_4, (IP_3 + 4)
|
||||
.set IP_5, (IP_4 + 4)
|
||||
.set IP_6, (IP_5 + 4)
|
||||
|
||||
.set IP_7, (IP_6 + 4)
|
||||
.set IP_8, (IP_7 + 4)
|
||||
.set IP_9, (IP_8 + 4)
|
||||
.set IP_10, (IP_9 + 4)
|
||||
|
||||
.set IP_11, (IP_10 + 4)
|
||||
.set IP_12, (IP_11 + 4)
|
||||
.set IP_13, (IP_12 + 4)
|
||||
.set IP_28, (IP_13 + 4)
|
||||
|
||||
.set IP_29, (IP_28 + 4)
|
||||
.set IP_30, (IP_29 + 4)
|
||||
.set IP_31, (IP_30 + 4)
|
||||
.set IP_CR, (IP_31 + 4)
|
||||
|
||||
.set IP_CTR, (IP_CR + 4)
|
||||
.set IP_XER, (IP_CTR + 4)
|
||||
.set IP_LR, (IP_XER + 4)
|
||||
.set IP_PC, (IP_LR + 4)
|
||||
|
||||
.set IP_MSR, (IP_PC + 4)
|
||||
.set IP_END, (IP_MSR + 16)
|
||||
|
||||
/* _CPU_IRQ_info offsets */
|
||||
|
||||
/* These must be in this order */
|
||||
.set Nest_level, 0
|
||||
.set Disable_level, 4
|
||||
.set Vector_table, 8
|
||||
.set Stack, 12
|
||||
#if (PPC_ABI == PPC_ABI_POWEROPEN)
|
||||
.set Dispatch_r2, 16
|
||||
.set Switch_necessary, 20
|
||||
#else
|
||||
.set Default_r2, 16
|
||||
#if (PPC_ABI != PPC_ABI_GCC27)
|
||||
.set Default_r13, 20
|
||||
.set Switch_necessary, 24
|
||||
#else
|
||||
.set Switch_necessary, 20
|
||||
#endif
|
||||
#endif
|
||||
.set Signal, Switch_necessary + 4
|
||||
.set msr_initial, Signal + 4
|
||||
|
||||
BEGIN_CODE
|
||||
/*
|
||||
* _CPU_Context_save_fp_context
|
||||
*
|
||||
* This routine is responsible for saving the FP context
|
||||
* at *fp_context_ptr. If the point to load the FP context
|
||||
* from is changed then the pointer is modified by this routine.
|
||||
*
|
||||
* Sometimes a macro implementation of this is in cpu.h which dereferences
|
||||
* the ** and a similarly named routine in this file is passed something
|
||||
* like a (Context_Control_fp *). The general rule on making this decision
|
||||
* is to avoid writing assembly language.
|
||||
*/
|
||||
|
||||
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
|
||||
PUBLIC_PROC (_CPU_Context_save_fp)
|
||||
PROC (_CPU_Context_save_fp):
|
||||
#if (PPC_HAS_FPU == 1)
|
||||
lwz r3, 0(r3)
|
||||
#if (PPC_HAS_DOUBLE == 1)
|
||||
stfd f0, FP_0(r3)
|
||||
stfd f1, FP_1(r3)
|
||||
stfd f2, FP_2(r3)
|
||||
stfd f3, FP_3(r3)
|
||||
stfd f4, FP_4(r3)
|
||||
stfd f5, FP_5(r3)
|
||||
stfd f6, FP_6(r3)
|
||||
stfd f7, FP_7(r3)
|
||||
stfd f8, FP_8(r3)
|
||||
stfd f9, FP_9(r3)
|
||||
stfd f10, FP_10(r3)
|
||||
stfd f11, FP_11(r3)
|
||||
stfd f12, FP_12(r3)
|
||||
stfd f13, FP_13(r3)
|
||||
stfd f14, FP_14(r3)
|
||||
stfd f15, FP_15(r3)
|
||||
stfd f16, FP_16(r3)
|
||||
stfd f17, FP_17(r3)
|
||||
stfd f18, FP_18(r3)
|
||||
stfd f19, FP_19(r3)
|
||||
stfd f20, FP_20(r3)
|
||||
stfd f21, FP_21(r3)
|
||||
stfd f22, FP_22(r3)
|
||||
stfd f23, FP_23(r3)
|
||||
stfd f24, FP_24(r3)
|
||||
stfd f25, FP_25(r3)
|
||||
stfd f26, FP_26(r3)
|
||||
stfd f27, FP_27(r3)
|
||||
stfd f28, FP_28(r3)
|
||||
stfd f29, FP_29(r3)
|
||||
stfd f30, FP_30(r3)
|
||||
stfd f31, FP_31(r3)
|
||||
mffs f2
|
||||
stfd f2, FP_FPSCR(r3)
|
||||
#else
|
||||
stfs f0, FP_0(r3)
|
||||
stfs f1, FP_1(r3)
|
||||
stfs f2, FP_2(r3)
|
||||
stfs f3, FP_3(r3)
|
||||
stfs f4, FP_4(r3)
|
||||
stfs f5, FP_5(r3)
|
||||
stfs f6, FP_6(r3)
|
||||
stfs f7, FP_7(r3)
|
||||
stfs f8, FP_8(r3)
|
||||
stfs f9, FP_9(r3)
|
||||
stfs f10, FP_10(r3)
|
||||
stfs f11, FP_11(r3)
|
||||
stfs f12, FP_12(r3)
|
||||
stfs f13, FP_13(r3)
|
||||
stfs f14, FP_14(r3)
|
||||
stfs f15, FP_15(r3)
|
||||
stfs f16, FP_16(r3)
|
||||
stfs f17, FP_17(r3)
|
||||
stfs f18, FP_18(r3)
|
||||
stfs f19, FP_19(r3)
|
||||
stfs f20, FP_20(r3)
|
||||
stfs f21, FP_21(r3)
|
||||
stfs f22, FP_22(r3)
|
||||
stfs f23, FP_23(r3)
|
||||
stfs f24, FP_24(r3)
|
||||
stfs f25, FP_25(r3)
|
||||
stfs f26, FP_26(r3)
|
||||
stfs f27, FP_27(r3)
|
||||
stfs f28, FP_28(r3)
|
||||
stfs f29, FP_29(r3)
|
||||
stfs f30, FP_30(r3)
|
||||
stfs f31, FP_31(r3)
|
||||
mffs f2
|
||||
stfs f2, FP_FPSCR(r3)
|
||||
#endif
|
||||
#endif
|
||||
blr
|
||||
|
||||
/*
|
||||
* _CPU_Context_restore_fp_context
|
||||
*
|
||||
* This routine is responsible for restoring the FP context
|
||||
* at *fp_context_ptr. If the point to load the FP context
|
||||
* from is changed then the pointer is modified by this routine.
|
||||
*
|
||||
* Sometimes a macro implementation of this is in cpu.h which dereferences
|
||||
* the ** and a similarly named routine in this file is passed something
|
||||
* like a (Context_Control_fp *). The general rule on making this decision
|
||||
* is to avoid writing assembly language.
|
||||
*/
|
||||
|
||||
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
|
||||
PUBLIC_PROC (_CPU_Context_restore_fp)
|
||||
PROC (_CPU_Context_restore_fp):
|
||||
#if (PPC_HAS_FPU == 1)
|
||||
lwz r3, 0(r3)
|
||||
#if (PPC_HAS_DOUBLE == 1)
|
||||
lfd f2, FP_FPSCR(r3)
|
||||
mtfsf 255, f2
|
||||
lfd f0, FP_0(r3)
|
||||
lfd f1, FP_1(r3)
|
||||
lfd f2, FP_2(r3)
|
||||
lfd f3, FP_3(r3)
|
||||
lfd f4, FP_4(r3)
|
||||
lfd f5, FP_5(r3)
|
||||
lfd f6, FP_6(r3)
|
||||
lfd f7, FP_7(r3)
|
||||
lfd f8, FP_8(r3)
|
||||
lfd f9, FP_9(r3)
|
||||
lfd f10, FP_10(r3)
|
||||
lfd f11, FP_11(r3)
|
||||
lfd f12, FP_12(r3)
|
||||
lfd f13, FP_13(r3)
|
||||
lfd f14, FP_14(r3)
|
||||
lfd f15, FP_15(r3)
|
||||
lfd f16, FP_16(r3)
|
||||
lfd f17, FP_17(r3)
|
||||
lfd f18, FP_18(r3)
|
||||
lfd f19, FP_19(r3)
|
||||
lfd f20, FP_20(r3)
|
||||
lfd f21, FP_21(r3)
|
||||
lfd f22, FP_22(r3)
|
||||
lfd f23, FP_23(r3)
|
||||
lfd f24, FP_24(r3)
|
||||
lfd f25, FP_25(r3)
|
||||
lfd f26, FP_26(r3)
|
||||
lfd f27, FP_27(r3)
|
||||
lfd f28, FP_28(r3)
|
||||
lfd f29, FP_29(r3)
|
||||
lfd f30, FP_30(r3)
|
||||
lfd f31, FP_31(r3)
|
||||
#else
|
||||
lfs f2, FP_FPSCR(r3)
|
||||
mtfsf 255, f2
|
||||
lfs f0, FP_0(r3)
|
||||
lfs f1, FP_1(r3)
|
||||
lfs f2, FP_2(r3)
|
||||
lfs f3, FP_3(r3)
|
||||
lfs f4, FP_4(r3)
|
||||
lfs f5, FP_5(r3)
|
||||
lfs f6, FP_6(r3)
|
||||
lfs f7, FP_7(r3)
|
||||
lfs f8, FP_8(r3)
|
||||
lfs f9, FP_9(r3)
|
||||
lfs f10, FP_10(r3)
|
||||
lfs f11, FP_11(r3)
|
||||
lfs f12, FP_12(r3)
|
||||
lfs f13, FP_13(r3)
|
||||
lfs f14, FP_14(r3)
|
||||
lfs f15, FP_15(r3)
|
||||
lfs f16, FP_16(r3)
|
||||
lfs f17, FP_17(r3)
|
||||
lfs f18, FP_18(r3)
|
||||
lfs f19, FP_19(r3)
|
||||
lfs f20, FP_20(r3)
|
||||
lfs f21, FP_21(r3)
|
||||
lfs f22, FP_22(r3)
|
||||
lfs f23, FP_23(r3)
|
||||
lfs f24, FP_24(r3)
|
||||
lfs f25, FP_25(r3)
|
||||
lfs f26, FP_26(r3)
|
||||
lfs f27, FP_27(r3)
|
||||
lfs f28, FP_28(r3)
|
||||
lfs f29, FP_29(r3)
|
||||
lfs f30, FP_30(r3)
|
||||
lfs f31, FP_31(r3)
|
||||
#endif
|
||||
#endif
|
||||
blr
|
||||
|
||||
|
||||
/* _CPU_Context_switch
|
||||
*
|
||||
* This routine performs a normal non-FP context switch.
|
||||
*/
|
||||
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
|
||||
PUBLIC_PROC (_CPU_Context_switch)
|
||||
PROC (_CPU_Context_switch):
|
||||
sync
|
||||
isync
|
||||
#if (PPC_CACHE_ALIGNMENT == 4) /* No cache */
|
||||
stw r1, GP_1(r3)
|
||||
lwz r1, GP_1(r4)
|
||||
stw r2, GP_2(r3)
|
||||
lwz r2, GP_2(r4)
|
||||
#if (PPC_USE_MULTIPLE == 1)
|
||||
stmw r13, GP_13(r3)
|
||||
lmw r13, GP_13(r4)
|
||||
#else
|
||||
stw r13, GP_13(r3)
|
||||
lwz r13, GP_13(r4)
|
||||
stw r14, GP_14(r3)
|
||||
lwz r14, GP_14(r4)
|
||||
stw r15, GP_15(r3)
|
||||
lwz r15, GP_15(r4)
|
||||
stw r16, GP_16(r3)
|
||||
lwz r16, GP_16(r4)
|
||||
stw r17, GP_17(r3)
|
||||
lwz r17, GP_17(r4)
|
||||
stw r18, GP_18(r3)
|
||||
lwz r18, GP_18(r4)
|
||||
stw r19, GP_19(r3)
|
||||
lwz r19, GP_19(r4)
|
||||
stw r20, GP_20(r3)
|
||||
lwz r20, GP_20(r4)
|
||||
stw r21, GP_21(r3)
|
||||
lwz r21, GP_21(r4)
|
||||
stw r22, GP_22(r3)
|
||||
lwz r22, GP_22(r4)
|
||||
stw r23, GP_23(r3)
|
||||
lwz r23, GP_23(r4)
|
||||
stw r24, GP_24(r3)
|
||||
lwz r24, GP_24(r4)
|
||||
stw r25, GP_25(r3)
|
||||
lwz r25, GP_25(r4)
|
||||
stw r26, GP_26(r3)
|
||||
lwz r26, GP_26(r4)
|
||||
stw r27, GP_27(r3)
|
||||
lwz r27, GP_27(r4)
|
||||
stw r28, GP_28(r3)
|
||||
lwz r28, GP_28(r4)
|
||||
stw r29, GP_29(r3)
|
||||
lwz r29, GP_29(r4)
|
||||
stw r30, GP_30(r3)
|
||||
lwz r30, GP_30(r4)
|
||||
stw r31, GP_31(r3)
|
||||
lwz r31, GP_31(r4)
|
||||
#endif
|
||||
mfcr r5
|
||||
stw r5, GP_CR(r3)
|
||||
lwz r5, GP_CR(r4)
|
||||
mflr r6
|
||||
mtcrf 255, r5
|
||||
stw r6, GP_PC(r3)
|
||||
lwz r6, GP_PC(r4)
|
||||
mfmsr r7
|
||||
mtlr r6
|
||||
stw r7, GP_MSR(r3)
|
||||
lwz r7, GP_MSR(r4)
|
||||
mtmsr r7
|
||||
#endif
|
||||
#if (PPC_CACHE_ALIGNMENT == 16)
|
||||
/* This assumes that all the registers are in the given order */
|
||||
li r5, 16
|
||||
addi r3,r3,-4
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbz r5, r3
|
||||
#endif
|
||||
stw r1, GP_1+4(r3)
|
||||
stw r2, GP_2+4(r3)
|
||||
#if (PPC_USE_MULTIPLE == 1)
|
||||
addi r3, r3, GP_14+4
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbz r5, r3
|
||||
#endif
|
||||
|
||||
addi r3, r3, GP_18-GP_14
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbz r5, r3
|
||||
#endif
|
||||
addi r3, r3, GP_22-GP_18
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbz r5, r3
|
||||
#endif
|
||||
addi r3, r3, GP_26-GP_22
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbz r5, r3
|
||||
#endif
|
||||
stmw r13, GP_13-GP_26(r3)
|
||||
#else
|
||||
stw r13, GP_13+4(r3)
|
||||
stwu r14, GP_14+4(r3)
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbz r5, r3
|
||||
#endif
|
||||
stw r15, GP_15-GP_14(r3)
|
||||
stw r16, GP_16-GP_14(r3)
|
||||
stw r17, GP_17-GP_14(r3)
|
||||
stwu r18, GP_18-GP_14(r3)
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbz r5, r3
|
||||
#endif
|
||||
stw r19, GP_19-GP_18(r3)
|
||||
stw r20, GP_20-GP_18(r3)
|
||||
stw r21, GP_21-GP_18(r3)
|
||||
stwu r22, GP_22-GP_18(r3)
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbz r5, r3
|
||||
#endif
|
||||
stw r23, GP_23-GP_22(r3)
|
||||
stw r24, GP_24-GP_22(r3)
|
||||
stw r25, GP_25-GP_22(r3)
|
||||
stwu r26, GP_26-GP_22(r3)
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbz r5, r3
|
||||
#endif
|
||||
stw r27, GP_27-GP_26(r3)
|
||||
stw r28, GP_28-GP_26(r3)
|
||||
stw r29, GP_29-GP_26(r3)
|
||||
stw r30, GP_30-GP_26(r3)
|
||||
stw r31, GP_31-GP_26(r3)
|
||||
#endif
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r0, r4
|
||||
#endif
|
||||
mfcr r6
|
||||
stw r6, GP_CR-GP_26(r3)
|
||||
mflr r7
|
||||
stw r7, GP_PC-GP_26(r3)
|
||||
mfmsr r8
|
||||
stw r8, GP_MSR-GP_26(r3)
|
||||
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r5, r4
|
||||
#endif
|
||||
lwz r1, GP_1(r4)
|
||||
lwz r2, GP_2(r4)
|
||||
#if (PPC_USE_MULTIPLE == 1)
|
||||
addi r4, r4, GP_15
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r5, r4
|
||||
#endif
|
||||
addi r4, r4, GP_19-GP_15
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r5, r4
|
||||
#endif
|
||||
addi r4, r4, GP_23-GP_19
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r5, r4
|
||||
#endif
|
||||
addi r4, r4, GP_27-GP_23
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r5, r4
|
||||
#endif
|
||||
lmw r13, GP_13-GP_27(r4)
|
||||
#else
|
||||
lwz r13, GP_13(r4)
|
||||
lwz r14, GP_14(r4)
|
||||
lwzu r15, GP_15(r4)
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r5, r4
|
||||
#endif
|
||||
lwz r16, GP_16-GP_15(r4)
|
||||
lwz r17, GP_17-GP_15(r4)
|
||||
lwz r18, GP_18-GP_15(r4)
|
||||
lwzu r19, GP_19-GP_15(r4)
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r5, r4
|
||||
#endif
|
||||
lwz r20, GP_20-GP_19(r4)
|
||||
lwz r21, GP_21-GP_19(r4)
|
||||
lwz r22, GP_22-GP_19(r4)
|
||||
lwzu r23, GP_23-GP_19(r4)
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r5, r4
|
||||
#endif
|
||||
lwz r24, GP_24-GP_23(r4)
|
||||
lwz r25, GP_25-GP_23(r4)
|
||||
lwz r26, GP_26-GP_23(r4)
|
||||
lwzu r27, GP_27-GP_23(r4)
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r5, r4
|
||||
#endif
|
||||
lwz r28, GP_28-GP_27(r4)
|
||||
lwz r29, GP_29-GP_27(r4)
|
||||
lwz r30, GP_30-GP_27(r4)
|
||||
lwz r31, GP_31-GP_27(r4)
|
||||
#endif
|
||||
lwz r6, GP_CR-GP_27(r4)
|
||||
lwz r7, GP_PC-GP_27(r4)
|
||||
lwz r8, GP_MSR-GP_27(r4)
|
||||
mtcrf 255, r6
|
||||
mtlr r7
|
||||
mtmsr r8
|
||||
#endif
|
||||
#if (PPC_CACHE_ALIGNMENT == 32)
|
||||
/* This assumes that all the registers are in the given order */
|
||||
li r5, 32
|
||||
addi r3,r3,-4
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbz r5, r3
|
||||
#endif
|
||||
stw r1, GP_1+4(r3)
|
||||
stw r2, GP_2+4(r3)
|
||||
#if (PPC_USE_MULTIPLE == 1)
|
||||
addi r3, r3, GP_18+4
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbz r5, r3
|
||||
#endif
|
||||
stmw r13, GP_13-GP_18(r3)
|
||||
#else
|
||||
stw r13, GP_13+4(r3)
|
||||
stw r14, GP_14+4(r3)
|
||||
stw r15, GP_15+4(r3)
|
||||
stw r16, GP_16+4(r3)
|
||||
stw r17, GP_17+4(r3)
|
||||
stwu r18, GP_18+4(r3)
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbz r5, r3
|
||||
#endif
|
||||
stw r19, GP_19-GP_18(r3)
|
||||
stw r20, GP_20-GP_18(r3)
|
||||
stw r21, GP_21-GP_18(r3)
|
||||
stw r22, GP_22-GP_18(r3)
|
||||
stw r23, GP_23-GP_18(r3)
|
||||
stw r24, GP_24-GP_18(r3)
|
||||
stw r25, GP_25-GP_18(r3)
|
||||
stw r26, GP_26-GP_18(r3)
|
||||
stw r27, GP_27-GP_18(r3)
|
||||
stw r28, GP_28-GP_18(r3)
|
||||
stw r29, GP_29-GP_18(r3)
|
||||
stw r30, GP_30-GP_18(r3)
|
||||
stw r31, GP_31-GP_18(r3)
|
||||
#endif
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r0, r4
|
||||
#endif
|
||||
mfcr r6
|
||||
stw r6, GP_CR-GP_18(r3)
|
||||
mflr r7
|
||||
stw r7, GP_PC-GP_18(r3)
|
||||
mfmsr r8
|
||||
stw r8, GP_MSR-GP_18(r3)
|
||||
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r5, r4
|
||||
#endif
|
||||
lwz r1, GP_1(r4)
|
||||
lwz r2, GP_2(r4)
|
||||
#if (PPC_USE_MULTIPLE == 1)
|
||||
addi r4, r4, GP_19
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r5, r4
|
||||
#endif
|
||||
lmw r13, GP_13-GP_19(r4)
|
||||
#else
|
||||
lwz r13, GP_13(r4)
|
||||
lwz r14, GP_14(r4)
|
||||
lwz r15, GP_15(r4)
|
||||
lwz r16, GP_16(r4)
|
||||
lwz r17, GP_17(r4)
|
||||
lwz r18, GP_18(r4)
|
||||
lwzu r19, GP_19(r4)
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r5, r4
|
||||
#endif
|
||||
lwz r20, GP_20-GP_19(r4)
|
||||
lwz r21, GP_21-GP_19(r4)
|
||||
lwz r22, GP_22-GP_19(r4)
|
||||
lwz r23, GP_23-GP_19(r4)
|
||||
lwz r24, GP_24-GP_19(r4)
|
||||
lwz r25, GP_25-GP_19(r4)
|
||||
lwz r26, GP_26-GP_19(r4)
|
||||
lwz r27, GP_27-GP_19(r4)
|
||||
lwz r28, GP_28-GP_19(r4)
|
||||
lwz r29, GP_29-GP_19(r4)
|
||||
lwz r30, GP_30-GP_19(r4)
|
||||
lwz r31, GP_31-GP_19(r4)
|
||||
#endif
|
||||
lwz r6, GP_CR-GP_19(r4)
|
||||
lwz r7, GP_PC-GP_19(r4)
|
||||
lwz r8, GP_MSR-GP_19(r4)
|
||||
mtcrf 255, r6
|
||||
mtlr r7
|
||||
mtmsr r8
|
||||
#endif
|
||||
blr
|
||||
|
||||
/*
|
||||
* _CPU_Context_restore
|
||||
*
|
||||
* This routine is generallu used only to restart self in an
|
||||
* efficient manner. It may simply be a label in _CPU_Context_switch.
|
||||
*
|
||||
* NOTE: May be unnecessary to reload some registers.
|
||||
*/
|
||||
/*
|
||||
* ACB: Don't worry about cache optimisation here - this is not THAT critical.
|
||||
*/
|
||||
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
|
||||
PUBLIC_PROC (_CPU_Context_restore)
|
||||
PROC (_CPU_Context_restore):
|
||||
lwz r5, GP_CR(r3)
|
||||
lwz r6, GP_PC(r3)
|
||||
lwz r7, GP_MSR(r3)
|
||||
mtcrf 255, r5
|
||||
mtlr r6
|
||||
mtmsr r7
|
||||
lwz r1, GP_1(r3)
|
||||
lwz r2, GP_2(r3)
|
||||
#if (PPC_USE_MULTIPLE == 1)
|
||||
lmw r13, GP_13(r3)
|
||||
#else
|
||||
lwz r13, GP_13(r3)
|
||||
lwz r14, GP_14(r3)
|
||||
lwz r15, GP_15(r3)
|
||||
lwz r16, GP_16(r3)
|
||||
lwz r17, GP_17(r3)
|
||||
lwz r18, GP_18(r3)
|
||||
lwz r19, GP_19(r3)
|
||||
lwz r20, GP_20(r3)
|
||||
lwz r21, GP_21(r3)
|
||||
lwz r22, GP_22(r3)
|
||||
lwz r23, GP_23(r3)
|
||||
lwz r24, GP_24(r3)
|
||||
lwz r25, GP_25(r3)
|
||||
lwz r26, GP_26(r3)
|
||||
lwz r27, GP_27(r3)
|
||||
lwz r28, GP_28(r3)
|
||||
lwz r29, GP_29(r3)
|
||||
lwz r30, GP_30(r3)
|
||||
lwz r31, GP_31(r3)
|
||||
#endif
|
||||
|
||||
blr
|
||||
|
||||
/* Individual interrupt prologues look like this:
|
||||
* #if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27)
|
||||
* #if (PPC_HAS_FPU)
|
||||
* stwu r1, -(20*4 + 18*8 + IP_END)(r1)
|
||||
* #else
|
||||
* stwu r1, -(20*4 + IP_END)(r1)
|
||||
* #endif
|
||||
* #else
|
||||
* stwu r1, -(IP_END)(r1)
|
||||
* #endif
|
||||
* stw r0, IP_0(r1)
|
||||
*
|
||||
* li r0, vectornum
|
||||
* b PROC (_ISR_Handler{,C})
|
||||
*/
|
||||
|
||||
/* void __ISR_Handler()
|
||||
*
|
||||
* This routine provides the RTEMS interrupt management.
|
||||
* The vector number is in r0. R0 has already been stacked.
|
||||
*
|
||||
*/
|
||||
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
|
||||
PUBLIC_PROC (_ISR_Handler)
|
||||
PROC (_ISR_Handler):
|
||||
#define LABEL(x) x
|
||||
/* XXX ??
|
||||
#define MTSAVE(x) mtspr sprg0, x
|
||||
#define MFSAVE(x) mfspr x, sprg0
|
||||
*/
|
||||
#define MTPC(x) mtspr srr0, x
|
||||
#define MFPC(x) mfspr x, srr0
|
||||
#define MTMSR(x) mtspr srr1, x
|
||||
#define MFMSR(x) mfspr x, srr1
|
||||
|
||||
#include "irq_stub.S"
|
||||
rfi
|
||||
|
||||
#if (PPC_HAS_RFCI == 1)
|
||||
/* void __ISR_HandlerC()
|
||||
*
|
||||
* This routine provides the RTEMS interrupt management.
|
||||
* For critical interrupts
|
||||
*
|
||||
*/
|
||||
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
|
||||
PUBLIC_PROC (_ISR_HandlerC)
|
||||
PROC (_ISR_HandlerC):
|
||||
#undef LABEL
|
||||
#undef MTSAVE
|
||||
#undef MFSAVE
|
||||
#undef MTPC
|
||||
#undef MFPC
|
||||
#undef MTMSR
|
||||
#undef MFMSR
|
||||
#define LABEL(x) x##_C
|
||||
/* XXX??
|
||||
#define MTSAVE(x) mtspr sprg1, x
|
||||
#define MFSAVE(x) mfspr x, sprg1
|
||||
*/
|
||||
#define MTPC(x) mtspr srr2, x
|
||||
#define MFPC(x) mfspr x, srr2
|
||||
#define MTMSR(x) mtspr srr3, x
|
||||
#define MFMSR(x) mfspr x, srr3
|
||||
#include "irq_stub.S"
|
||||
rfci
|
||||
#endif
|
||||
|
||||
/* PowerOpen descriptors for indirect function calls.
|
||||
*/
|
||||
|
||||
#if (PPC_ABI == PPC_ABI_POWEROPEN)
|
||||
DESCRIPTOR (_CPU_Context_save_fp)
|
||||
DESCRIPTOR (_CPU_Context_restore_fp)
|
||||
DESCRIPTOR (_CPU_Context_switch)
|
||||
DESCRIPTOR (_CPU_Context_restore)
|
||||
DESCRIPTOR (_ISR_Handler)
|
||||
#if (PPC_HAS_RFCI == 1)
|
||||
DESCRIPTOR (_ISR_HandlerC)
|
||||
#endif
|
||||
#endif
|
||||
@@ -1,270 +0,0 @@
|
||||
/*
|
||||
* This file contains the interrupt handler assembly code for the PowerPC
|
||||
* implementation of RTEMS. It is #included from cpu_asm.s.
|
||||
*
|
||||
* Author: Andrew Bray <andy@i-cubed.co.uk>
|
||||
*
|
||||
* COPYRIGHT (c) 1995 by i-cubed ltd.
|
||||
*
|
||||
* To anyone who acknowledges that this file is provided "AS IS"
|
||||
* without any express or implied warranty:
|
||||
* permission to use, copy, modify, and distribute this file
|
||||
* for any purpose is hereby granted without fee, provided that
|
||||
* the above copyright notice and this notice appears in all
|
||||
* copies, and that the name of i-cubed limited not be used in
|
||||
* advertising or publicity pertaining to distribution of the
|
||||
* software without specific, written prior permission.
|
||||
* i-cubed limited makes no representations about the suitability
|
||||
* of this software for any purpose.
|
||||
*
|
||||
* $Id$
|
||||
*/
|
||||
|
||||
/* void __ISR_Handler()
|
||||
*
|
||||
* This routine provides the RTEMS interrupt management.
|
||||
* The vector number is in r0. R0 has already been stacked.
|
||||
*
|
||||
*/
|
||||
PUBLIC_VAR (_CPU_IRQ_info )
|
||||
|
||||
/* Finish off the interrupt frame */
|
||||
stw r2, IP_2(r1)
|
||||
stw r3, IP_3(r1)
|
||||
stw r4, IP_4(r1)
|
||||
stw r5, IP_5(r1)
|
||||
stw r6, IP_6(r1)
|
||||
stw r7, IP_7(r1)
|
||||
stw r8, IP_8(r1)
|
||||
stw r9, IP_9(r1)
|
||||
stw r10, IP_10(r1)
|
||||
stw r11, IP_11(r1)
|
||||
stw r12, IP_12(r1)
|
||||
stw r13, IP_13(r1)
|
||||
stmw r28, IP_28(r1)
|
||||
mfcr r5
|
||||
mfctr r6
|
||||
mfxer r7
|
||||
mflr r8
|
||||
MFPC (r9)
|
||||
MFMSR (r10)
|
||||
/* Establish addressing */
|
||||
#if (PPC_USE_SPRG)
|
||||
mfspr r11, sprg3
|
||||
#else
|
||||
lis r11,_CPU_IRQ_info@ha
|
||||
addi r11,r11,_CPU_IRQ_info@l
|
||||
#endif
|
||||
#if ( PPC_USE_DATA_CACHE )
|
||||
dcbt r0, r11
|
||||
#endif
|
||||
stw r5, IP_CR(r1)
|
||||
stw r6, IP_CTR(r1)
|
||||
stw r7, IP_XER(r1)
|
||||
stw r8, IP_LR(r1)
|
||||
stw r9, IP_PC(r1)
|
||||
stw r10, IP_MSR(r1)
|
||||
|
||||
lwz r30, Vector_table(r11)
|
||||
slwi r4,r0,2
|
||||
lwz r28, Nest_level(r11)
|
||||
add r4, r4, r30
|
||||
|
||||
lwz r30, 0(r28)
|
||||
mr r3, r0
|
||||
lwz r31, Stack(r11)
|
||||
/*
|
||||
* #if ( CPU_HAS_SOFTWARE_INTERRUPT_STACK == TRUE )
|
||||
* if ( _ISR_Nest_level == 0 )
|
||||
* switch to software interrupt stack
|
||||
* #endif
|
||||
*/
|
||||
/* Switch stacks, here we must prevent ALL interrupts */
|
||||
#if (PPC_USE_SPRG)
|
||||
mfmsr r5
|
||||
mfspr r6, sprg2
|
||||
#else
|
||||
lwz r6,msr_initial(r11)
|
||||
lis r5,~PPC_MSR_DISABLE_MASK@ha
|
||||
ori r5,r5,~PPC_MSR_DISABLE_MASK@l
|
||||
and r6,r6,r5
|
||||
mfmsr r5
|
||||
#endif
|
||||
mtmsr r6
|
||||
cmpwi r30, 0
|
||||
lwz r29, Disable_level(r11)
|
||||
subf r31,r1,r31
|
||||
bne LABEL (nested)
|
||||
stwux r1,r1,r31
|
||||
LABEL (nested):
|
||||
/*
|
||||
* _ISR_Nest_level++;
|
||||
*/
|
||||
lwz r31, 0(r29)
|
||||
addi r30,r30,1
|
||||
stw r30,0(r28)
|
||||
/* From here on out, interrupts can be re-enabled. RTEMS
|
||||
* convention says not.
|
||||
*/
|
||||
lwz r4,0(r4)
|
||||
/*
|
||||
* _Thread_Dispatch_disable_level++;
|
||||
*/
|
||||
addi r31,r31,1
|
||||
stw r31, 0(r29)
|
||||
/* SCE 980217
|
||||
*
|
||||
* We need address translation ON when we call our ISR routine
|
||||
|
||||
mtmsr r5
|
||||
|
||||
*/
|
||||
|
||||
/*
|
||||
* (*_ISR_Vector_table[ vector ])( vector );
|
||||
*/
|
||||
#if (PPC_ABI == PPC_ABI_POWEROPEN)
|
||||
lwz r6,0(r4)
|
||||
lwz r2,4(r4)
|
||||
mtlr r6
|
||||
lwz r11,8(r4)
|
||||
#endif
|
||||
#if (PPC_ABI == PPC_ABI_GCC27)
|
||||
lwz r2, Default_r2(r11)
|
||||
mtlr r4
|
||||
#lwz r2, 0(r2)
|
||||
#endif
|
||||
#if (PPC_ABI == PPC_ABI_SVR4 || PPC_ABI == PPC_ABI_EABI)
|
||||
mtlr r4
|
||||
lwz r2, Default_r2(r11)
|
||||
lwz r13, Default_r13(r11)
|
||||
#lwz r2, 0(r2)
|
||||
#lwz r13, 0(r13)
|
||||
#endif
|
||||
mr r4,r1
|
||||
blrl
|
||||
/* NOP marker for debuggers */
|
||||
or r6,r6,r6
|
||||
|
||||
/* We must re-disable the interrupts */
|
||||
#if (PPC_USE_SPRG)
|
||||
mfspr r11, sprg3
|
||||
mfspr r0, sprg2
|
||||
#else
|
||||
lis r11,_CPU_IRQ_info@ha
|
||||
addi r11,r11,_CPU_IRQ_info@l
|
||||
lwz r0,msr_initial(r11)
|
||||
lis r30,~PPC_MSR_DISABLE_MASK@ha
|
||||
ori r30,r30,~PPC_MSR_DISABLE_MASK@l
|
||||
and r0,r0,r30
|
||||
#endif
|
||||
mtmsr r0
|
||||
lwz r30, 0(r28)
|
||||
lwz r31, 0(r29)
|
||||
|
||||
/*
|
||||
* if (--Thread_Dispatch_disable,--_ISR_Nest_level)
|
||||
* goto easy_exit;
|
||||
*/
|
||||
addi r30, r30, -1
|
||||
cmpwi r30, 0
|
||||
addi r31, r31, -1
|
||||
stw r30, 0(r28)
|
||||
stw r31, 0(r29)
|
||||
bne LABEL (easy_exit)
|
||||
cmpwi r31, 0
|
||||
|
||||
lwz r30, Switch_necessary(r11)
|
||||
|
||||
/*
|
||||
* #if ( CPU_HAS_SOFTWARE_INTERRUPT_STACK == TRUE )
|
||||
* restore stack
|
||||
* #endif
|
||||
*/
|
||||
lwz r1,0(r1)
|
||||
bne LABEL (easy_exit)
|
||||
lwz r30, 0(r30)
|
||||
lwz r31, Signal(r11)
|
||||
|
||||
/*
|
||||
* if ( _Context_Switch_necessary )
|
||||
* goto switch
|
||||
*/
|
||||
cmpwi r30, 0
|
||||
lwz r28, 0(r31)
|
||||
li r6,0
|
||||
bne LABEL (switch)
|
||||
/*
|
||||
* if ( !_ISR_Signals_to_thread_executing )
|
||||
* goto easy_exit
|
||||
* _ISR_Signals_to_thread_executing = 0;
|
||||
*/
|
||||
cmpwi r28, 0
|
||||
beq LABEL (easy_exit)
|
||||
|
||||
/*
|
||||
* switch:
|
||||
* call _Thread_Dispatch() or prepare to return to _ISR_Dispatch
|
||||
*/
|
||||
LABEL (switch):
|
||||
stw r6, 0(r31)
|
||||
/* Re-enable interrupts */
|
||||
lwz r0, IP_MSR(r1)
|
||||
#if (PPC_ABI == PPC_ABI_POWEROPEN)
|
||||
lwz r2, Dispatch_r2(r11)
|
||||
#else
|
||||
/* R2 and R13 still hold their values from the last call */
|
||||
#endif
|
||||
mtmsr r0
|
||||
bl SYM (_Thread_Dispatch)
|
||||
/* NOP marker for debuggers */
|
||||
or r6,r6,r6
|
||||
/*
|
||||
* prepare to get out of interrupt
|
||||
*/
|
||||
/* Re-disable IRQs */
|
||||
#if (PPC_USE_SPRG)
|
||||
mfspr r0, sprg2
|
||||
#else
|
||||
lis r11,_CPU_IRQ_info@ha
|
||||
addi r11,r11,_CPU_IRQ_info@l
|
||||
lwz r0,msr_initial(r11)
|
||||
lis r5,~PPC_MSR_DISABLE_MASK@ha
|
||||
ori r5,r5,~PPC_MSR_DISABLE_MASK@l
|
||||
and r0,r0,r5
|
||||
#endif
|
||||
mtmsr r0
|
||||
|
||||
/*
|
||||
* easy_exit:
|
||||
* prepare to get out of interrupt
|
||||
* return from interrupt
|
||||
*/
|
||||
LABEL (easy_exit):
|
||||
lwz r5, IP_CR(r1)
|
||||
lwz r6, IP_CTR(r1)
|
||||
lwz r7, IP_XER(r1)
|
||||
lwz r8, IP_LR(r1)
|
||||
lwz r9, IP_PC(r1)
|
||||
lwz r10, IP_MSR(r1)
|
||||
mtcrf 255,r5
|
||||
mtctr r6
|
||||
mtxer r7
|
||||
mtlr r8
|
||||
MTPC (r9)
|
||||
MTMSR (r10)
|
||||
lwz r0, IP_0(r1)
|
||||
lwz r2, IP_2(r1)
|
||||
lwz r3, IP_3(r1)
|
||||
lwz r4, IP_4(r1)
|
||||
lwz r5, IP_5(r1)
|
||||
lwz r6, IP_6(r1)
|
||||
lwz r7, IP_7(r1)
|
||||
lwz r8, IP_8(r1)
|
||||
lwz r9, IP_9(r1)
|
||||
lwz r10, IP_10(r1)
|
||||
lwz r11, IP_11(r1)
|
||||
lwz r12, IP_12(r1)
|
||||
lwz r13, IP_13(r1)
|
||||
lmw r28, IP_28(r1)
|
||||
lwz r1, 0(r1)
|
||||
@@ -1,132 +0,0 @@
|
||||
/* rtems.s
|
||||
*
|
||||
* This file contains the single entry point code for
|
||||
* the PowerPC implementation of RTEMS.
|
||||
*
|
||||
* Author: Andrew Bray <andy@i-cubed.co.uk>
|
||||
*
|
||||
* COPYRIGHT (c) 1995 by i-cubed ltd.
|
||||
*
|
||||
* To anyone who acknowledges that this file is provided "AS IS"
|
||||
* without any express or implied warranty:
|
||||
* permission to use, copy, modify, and distribute this file
|
||||
* for any purpose is hereby granted without fee, provided that
|
||||
* the above copyright notice and this notice appears in all
|
||||
* copies, and that the name of i-cubed limited not be used in
|
||||
* advertising or publicity pertaining to distribution of the
|
||||
* software without specific, written prior permission.
|
||||
* i-cubed limited makes no representations about the suitability
|
||||
* of this software for any purpose.
|
||||
*
|
||||
* Derived from c/src/exec/cpu/no_cpu/rtems.c:
|
||||
*
|
||||
* COPYRIGHT (c) 1989-1997.
|
||||
* On-Line Applications Research Corporation (OAR).
|
||||
* Copyright assigned to U.S. Government, 1994.
|
||||
*
|
||||
* The license and distribution terms for this file may in
|
||||
* the file LICENSE in this distribution or at
|
||||
* http://www.OARcorp.com/rtems/license.html.
|
||||
*
|
||||
* $Id$
|
||||
*/
|
||||
|
||||
#include <asm.h>
|
||||
|
||||
BEGIN_CODE
|
||||
/*
|
||||
* RTEMS
|
||||
*
|
||||
* This routine jumps to the directive indicated in r11.
|
||||
* This routine is used when RTEMS is linked by itself and placed
|
||||
* in ROM. This routine is the first address in the ROM space for
|
||||
* RTEMS. The user "calls" this address with the directive arguments
|
||||
* in the normal place.
|
||||
* This routine then jumps indirectly to the correct directive
|
||||
* preserving the arguments. The directive should not realize
|
||||
* it has been "wrapped" in this way. The table "_Entry_points"
|
||||
* is used to look up the directive.
|
||||
*/
|
||||
|
||||
ALIGN (4, 2)
|
||||
PUBLIC_PROC (RTEMS)
|
||||
PROC (RTEMS):
|
||||
#if (PPC_ABI == PPC_ABI_POWEROPEN)
|
||||
mflr r0
|
||||
stw r0, 8(r1)
|
||||
stwu r1, -64(r1)
|
||||
|
||||
/* Establish addressing */
|
||||
bl base
|
||||
base:
|
||||
mflr r12
|
||||
addi r12, r12, tabaddr - base
|
||||
|
||||
lwz r12, Entry_points-abase(r12)
|
||||
slwi r11, r11, 2
|
||||
lwzx r12, r12, r11
|
||||
|
||||
stw r2, 56(r1)
|
||||
lwz r0, 0(r12)
|
||||
mtlr r0
|
||||
lwz r2, 4(r12)
|
||||
lwz r11, 8(r12)
|
||||
blrl
|
||||
lwz r2, 56(r1)
|
||||
addi r1, r1, 64
|
||||
lwz r0, 8(r1)
|
||||
mtlr r0
|
||||
#else
|
||||
mflr r0
|
||||
stw r0, 4(r1)
|
||||
stwu r1, -16(r1)
|
||||
|
||||
/* Establish addressing */
|
||||
bl base
|
||||
base:
|
||||
mflr r12
|
||||
addi r12, r12, tabaddr - base
|
||||
|
||||
lwz r12, Entry_points-abase(r12)
|
||||
slwi r11, r11, 2
|
||||
lwzx r11, r12, r11
|
||||
|
||||
stw r2, 8(r1)
|
||||
#if (PPC_ABI != PPC_ABI_GCC27)
|
||||
stw r13, 12(r1)
|
||||
#endif
|
||||
mtlr r11
|
||||
lwz r11, irqinfo-abase(r12)
|
||||
lwz r2, 0(r11)
|
||||
#if (PPC_ABI != PPC_ABI_GCC27)
|
||||
lwz r13, 4(r11)
|
||||
#endif
|
||||
blrl
|
||||
lwz r2, 8(r1)
|
||||
#if (PPC_ABI != PPC_ABI_GCC27)
|
||||
lwz r13, 12(r1)
|
||||
#endif
|
||||
addi r1, r1, 16
|
||||
lwz r0, 4(r1)
|
||||
mtlr r0
|
||||
#endif
|
||||
blr
|
||||
|
||||
|
||||
/* Addressability stuff */
|
||||
tabaddr:
|
||||
abase:
|
||||
EXTERN_VAR (_Entry_points)
|
||||
Entry_points:
|
||||
EXT_SYM_REF (_Entry_points)
|
||||
#if (PPC_ABI != PPC_ABI_POWEROPEN)
|
||||
EXTERN_VAR (_CPU_IRQ_info)
|
||||
irqinfo:
|
||||
EXT_SYM_REF (_CPU_IRQ_info)
|
||||
#endif
|
||||
|
||||
#if (PPC_ABI == PPC_ABI_POWEROPEN)
|
||||
DESCRIPTOR (RTEMS)
|
||||
#endif
|
||||
|
||||
|
||||
Reference in New Issue
Block a user