Forgot to remove these when code moved.

This commit is contained in:
Joel Sherrill
2000-07-25 11:48:33 +00:00
parent e001d84afb
commit ca8dfbcc6b
16 changed files with 0 additions and 4955 deletions

View File

@@ -1,2 +0,0 @@
Makefile
Makefile.in

View File

@@ -1,55 +0,0 @@
##
## $Id$
##
AUTOMAKE_OPTIONS = foreign 1.4
ACLOCAL_AMFLAGS = -I $(RTEMS_TOPdir)/aclocal
C_FILES = cpu.c
C_O_FILES = $(C_FILES:%.c=${ARCH}/%.o)
ROOT_H_FILES =
RTEMS_SCORE_H_FILES = cpu.h c_isr.inl
noinst_HEADERS = $(ROOT_H_FILES) $(RTEMS_SCORE_H_FILES)
S_FILES = cpu_asm.S
S_O_FILES = $(S_FILES:%.S=${ARCH}/%.o)
include $(RTEMS_ROOT)/make/custom/@RTEMS_BSP@.cfg
include $(top_srcdir)/../../../../../automake/lib.am
#
# (OPTIONAL) Add local stuff here using +=
#
PREINSTALL_FILES += $(PROJECT_INCLUDE) $(PROJECT_INCLUDE)/rtems/score \
$(ROOT_H_FILES:%=$(PROJECT_INCLUDE)/%) \
$(RTEMS_SCORE_H_FILES:%=$(PROJECT_INCLUDE)/rtems/score/%)
$(PROJECT_INCLUDE):
$(mkinstalldirs) $@
$(PROJECT_INCLUDE)/rtems/score:
$(mkinstalldirs) $@
$(PROJECT_INCLUDE)/rtems/score/%: %
$(INSTALL_DATA) $< $@
$(PROJECT_INCLUDE)/%: %
$(INSTALL_DATA) $< $@
REL = ../$(ARCH)/rtems-cpu.rel
$(REL): $(C_O_FILES) $(S_O_FILES)
test -d ../$(ARCH) || mkdir ../$(ARCH)
$(make-rel)
all-local: $(ARCH) $(PREINSTALL_FILES) $(REL)
## all-local: $(ARCH)/rtems.o
all-local: $(TMPINSTALL_FILES)
CLEANDIRS = ../o-optimize ../o-debug ../o-profile
EXTRA_DIST = $(C_FILES) $(S_FILES)
include $(top_srcdir)/../../../../../automake/local.am

View File

@@ -1,9 +0,0 @@
RTEMS_INLINE_ROUTINE boolean _ISR_Is_in_progress( void )
{
register unsigned int isr_nesting_level;
/*
* Move from special purpose register 0 (mfspr SPRG0, r3)
*/
asm volatile ("mfspr %0, 272" : "=r" (isr_nesting_level));
return isr_nesting_level;
}

View File

@@ -1,116 +0,0 @@
/*
* PowerPC CPU Dependent Source
*
* Author: Andrew Bray <andy@i-cubed.co.uk>
*
* COPYRIGHT (c) 1995 by i-cubed ltd.
*
* To anyone who acknowledges that this file is provided "AS IS"
* without any express or implied warranty:
* permission to use, copy, modify, and distribute this file
* for any purpose is hereby granted without fee, provided that
* the above copyright notice and this notice appears in all
* copies, and that the name of i-cubed limited not be used in
* advertising or publicity pertaining to distribution of the
* software without specific, written prior permission.
* i-cubed limited makes no representations about the suitability
* of this software for any purpose.
*
* Derived from c/src/exec/cpu/no_cpu/cpu.c:
*
* COPYRIGHT (c) 1989-1997.
* On-Line Applications Research Corporation (OAR).
* Copyright assigned to U.S. Government, 1994.
*
* The license and distribution terms for this file may be found in
* the file LICENSE in this distribution or at
* http://www.OARcorp.com/rtems/license.html.
*
* $Id$
*/
#include <rtems/system.h>
#include <rtems/score/isr.h>
#include <rtems/score/context.h>
#include <rtems/score/thread.h>
#include <rtems/score/interr.h>
/* _CPU_Initialize
*
* This routine performs processor dependent initialization.
*
* INPUT PARAMETERS:
* cpu_table - CPU table to initialize
* thread_dispatch - address of disptaching routine
*/
void _CPU_Initialize(
rtems_cpu_table *cpu_table,
void (*thread_dispatch) /* ignored on this CPU */
)
{
_CPU_Table = *cpu_table;
}
/*PAGE
*
* _CPU_Context_Initialize
*/
void _CPU_Context_Initialize(
Context_Control *the_context,
unsigned32 *stack_base,
unsigned32 size,
unsigned32 new_level,
void *entry_point,
boolean is_fp
)
{
unsigned32 msr_value;
unsigned32 sp;
sp = (unsigned32)stack_base + size - CPU_MINIMUM_STACK_FRAME_SIZE;
*((unsigned32 *)sp) = 0;
the_context->gpr1 = sp;
_CPU_MSR_GET( msr_value );
if (!(new_level & CPU_MODES_INTERRUPT_MASK)) {
msr_value |= MSR_EE;
}
else {
msr_value &= ~MSR_EE;
}
the_context->msr = msr_value;
/*
* The FP bit of the MSR should only be enabled if this is a floating
* point task. Unfortunately, the vfprintf_r routine in newlib
* ends up pushing a floating point register regardless of whether or
* not a floating point number is being printed. Serious restructuring
* of vfprintf.c will be required to avoid this behavior. At this
* time (7 July 1997), this restructuring is not being done.
*/
/*if ( is_fp ) */
the_context->msr |= PPC_MSR_FP;
the_context->pc = (unsigned32)entry_point;
}
/*PAGE
*
* _CPU_Install_interrupt_stack
*/
void _CPU_Install_interrupt_stack( void )
{
}

View File

@@ -1,947 +0,0 @@
/* cpu.h
*
* This include file contains information pertaining to the PowerPC
* processor.
*
* Author: Andrew Bray <andy@i-cubed.co.uk>
*
* COPYRIGHT (c) 1995 by i-cubed ltd.
*
* To anyone who acknowledges that this file is provided "AS IS"
* without any express or implied warranty:
* permission to use, copy, modify, and distribute this file
* for any purpose is hereby granted without fee, provided that
* the above copyright notice and this notice appears in all
* copies, and that the name of i-cubed limited not be used in
* advertising or publicity pertaining to distribution of the
* software without specific, written prior permission.
* i-cubed limited makes no representations about the suitability
* of this software for any purpose.
*
* Derived from c/src/exec/cpu/no_cpu/cpu.h:
*
* COPYRIGHT (c) 1989-1997.
* On-Line Applications Research Corporation (OAR).
* Copyright assigned to U.S. Government, 1994.
*
* The license and distribution terms for this file may be found in
* the file LICENSE in this distribution or at
* http://www.OARcorp.com/rtems/license.html.
*
* $Id$
*/
#ifndef __CPU_h
#define __CPU_h
#ifdef __cplusplus
extern "C" {
#endif
#include <rtems/score/ppc.h> /* pick up machine definitions */
#include <libcpu/cpu.h>
#ifndef ASM
#include <rtems/score/ppctypes.h>
#endif
/* conditional compilation parameters */
/*
* Should the calls to _Thread_Enable_dispatch be inlined?
*
* If TRUE, then they are inlined.
* If FALSE, then a subroutine call is made.
*
* Basically this is an example of the classic trade-off of size
* versus speed. Inlining the call (TRUE) typically increases the
* size of RTEMS while speeding up the enabling of dispatching.
* [NOTE: In general, the _Thread_Dispatch_disable_level will
* only be 0 or 1 unless you are in an interrupt handler and that
* interrupt handler invokes the executive.] When not inlined
* something calls _Thread_Enable_dispatch which in turns calls
* _Thread_Dispatch. If the enable dispatch is inlined, then
* one subroutine call is avoided entirely.]
*/
#define CPU_INLINE_ENABLE_DISPATCH FALSE
/*
* Should the body of the search loops in _Thread_queue_Enqueue_priority
* be unrolled one time? In unrolled each iteration of the loop examines
* two "nodes" on the chain being searched. Otherwise, only one node
* is examined per iteration.
*
* If TRUE, then the loops are unrolled.
* If FALSE, then the loops are not unrolled.
*
* The primary factor in making this decision is the cost of disabling
* and enabling interrupts (_ISR_Flash) versus the cost of rest of the
* body of the loop. On some CPUs, the flash is more expensive than
* one iteration of the loop body. In this case, it might be desirable
* to unroll the loop. It is important to note that on some CPUs, this
* code is the longest interrupt disable period in RTEMS. So it is
* necessary to strike a balance when setting this parameter.
*/
#define CPU_UNROLL_ENQUEUE_PRIORITY FALSE
/*
* Does RTEMS manage a dedicated interrupt stack in software?
*
* If TRUE, then a stack is allocated in _ISR_Handler_initialization.
* If FALSE, nothing is done.
*
* If the CPU supports a dedicated interrupt stack in hardware,
* then it is generally the responsibility of the BSP to allocate it
* and set it up.
*
* If the CPU does not support a dedicated interrupt stack, then
* the porter has two options: (1) execute interrupts on the
* stack of the interrupted task, and (2) have RTEMS manage a dedicated
* interrupt stack.
*
* If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
*
* Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
* CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
* possible that both are FALSE for a particular CPU. Although it
* is unclear what that would imply about the interrupt processing
* procedure on that CPU.
*/
#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
/*
* Does this CPU have hardware support for a dedicated interrupt stack?
*
* If TRUE, then it must be installed during initialization.
* If FALSE, then no installation is performed.
*
* If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
*
* Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
* CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
* possible that both are FALSE for a particular CPU. Although it
* is unclear what that would imply about the interrupt processing
* procedure on that CPU.
*/
#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
/*
* Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
*
* If TRUE, then the memory is allocated during initialization.
* If FALSE, then the memory is allocated during initialization.
*
* This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
* or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
*/
#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
/*
* Does the RTEMS invoke the user's ISR with the vector number and
* a pointer to the saved interrupt frame (1) or just the vector
* number (0)?
*/
#define CPU_ISR_PASSES_FRAME_POINTER 0
/*
* Does the CPU have hardware floating point?
*
* If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
* If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
*
* If there is a FP coprocessor such as the i387 or mc68881, then
* the answer is TRUE.
*
* The macro name "PPC_HAS_FPU" should be made CPU specific.
* It indicates whether or not this CPU model has FP support. For
* example, it would be possible to have an i386_nofp CPU model
* which set this to false to indicate that you have an i386 without
* an i387 and wish to leave floating point support out of RTEMS.
*/
#if ( PPC_HAS_FPU == 1 )
#define CPU_HARDWARE_FP TRUE
#else
#define CPU_HARDWARE_FP FALSE
#endif
/*
* Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
*
* If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
* If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
*
* So far, the only CPU in which this option has been used is the
* HP PA-RISC. The HP C compiler and gcc both implicitly use the
* floating point registers to perform integer multiplies. If
* a function which you would not think utilize the FP unit DOES,
* then one can not easily predict which tasks will use the FP hardware.
* In this case, this option should be TRUE.
*
* If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
*/
#define CPU_ALL_TASKS_ARE_FP FALSE
/*
* Should the IDLE task have a floating point context?
*
* If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
* and it has a floating point context which is switched in and out.
* If FALSE, then the IDLE task does not have a floating point context.
*
* Setting this to TRUE negatively impacts the time required to preempt
* the IDLE task from an interrupt because the floating point context
* must be saved as part of the preemption.
*/
#define CPU_IDLE_TASK_IS_FP FALSE
/*
* Should the saving of the floating point registers be deferred
* until a context switch is made to another different floating point
* task?
*
* If TRUE, then the floating point context will not be stored until
* necessary. It will remain in the floating point registers and not
* disturned until another floating point task is switched to.
*
* If FALSE, then the floating point context is saved when a floating
* point task is switched out and restored when the next floating point
* task is restored. The state of the floating point registers between
* those two operations is not specified.
*
* If the floating point context does NOT have to be saved as part of
* interrupt dispatching, then it should be safe to set this to TRUE.
*
* Setting this flag to TRUE results in using a different algorithm
* for deciding when to save and restore the floating point context.
* The deferred FP switch algorithm minimizes the number of times
* the FP context is saved and restored. The FP context is not saved
* until a context switch is made to another, different FP task.
* Thus in a system with only one FP task, the FP context will never
* be saved or restored.
*/
/*
* ACB Note: This could make debugging tricky..
*/
#define CPU_USE_DEFERRED_FP_SWITCH TRUE
/*
* Does this port provide a CPU dependent IDLE task implementation?
*
* If TRUE, then the routine _CPU_Thread_Idle_body
* must be provided and is the default IDLE thread body instead of
* _CPU_Thread_Idle_body.
*
* If FALSE, then use the generic IDLE thread body if the BSP does
* not provide one.
*
* This is intended to allow for supporting processors which have
* a low power or idle mode. When the IDLE thread is executed, then
* the CPU can be powered down.
*
* The order of precedence for selecting the IDLE thread body is:
*
* 1. BSP provided
* 2. CPU dependent (if provided)
* 3. generic (if no BSP and no CPU dependent)
*/
#define CPU_PROVIDES_IDLE_THREAD_BODY FALSE
/*
* Does the stack grow up (toward higher addresses) or down
* (toward lower addresses)?
*
* If TRUE, then the grows upward.
* If FALSE, then the grows toward smaller addresses.
*/
#define CPU_STACK_GROWS_UP FALSE
/*
* The following is the variable attribute used to force alignment
* of critical RTEMS structures. On some processors it may make
* sense to have these aligned on tighter boundaries than
* the minimum requirements of the compiler in order to have as
* much of the critical data area as possible in a cache line.
*
* The placement of this macro in the declaration of the variables
* is based on the syntactically requirements of the GNU C
* "__attribute__" extension. For example with GNU C, use
* the following to force a structures to a 32 byte boundary.
*
* __attribute__ ((aligned (32)))
*
* NOTE: Currently only the Priority Bit Map table uses this feature.
* To benefit from using this, the data must be heavily
* used so it will stay in the cache and used frequently enough
* in the executive to justify turning this on.
*/
#define CPU_STRUCTURE_ALIGNMENT \
__attribute__ ((aligned (PPC_CACHE_ALIGNMENT)))
/*
* Define what is required to specify how the network to host conversion
* routines are handled.
*/
#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES FALSE
#define CPU_BIG_ENDIAN TRUE
#define CPU_LITTLE_ENDIAN FALSE
/*
* Processor defined structures
*
* Examples structures include the descriptor tables from the i386
* and the processor control structure on the i960ca.
*/
/* may need to put some structures here. */
/*
* Contexts
*
* Generally there are 2 types of context to save.
* 1. Interrupt registers to save
* 2. Task level registers to save
*
* This means we have the following 3 context items:
* 1. task level context stuff:: Context_Control
* 2. floating point task stuff:: Context_Control_fp
* 3. special interrupt level context :: Context_Control_interrupt
*
* On some processors, it is cost-effective to save only the callee
* preserved registers during a task context switch. This means
* that the ISR code needs to save those registers which do not
* persist across function calls. It is not mandatory to make this
* distinctions between the caller/callee saves registers for the
* purpose of minimizing context saved during task switch and on interrupts.
* If the cost of saving extra registers is minimal, simplicity is the
* choice. Save the same context on interrupt entry as for tasks in
* this case.
*
* Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
* care should be used in designing the context area.
*
* On some CPUs with hardware floating point support, the Context_Control_fp
* structure will not be used or it simply consist of an array of a
* fixed number of bytes. This is done when the floating point context
* is dumped by a "FP save context" type instruction and the format
* is not really defined by the CPU. In this case, there is no need
* to figure out the exact format -- only the size. Of course, although
* this is enough information for RTEMS, it is probably not enough for
* a debugger such as gdb. But that is another problem.
*/
#ifndef ASM
typedef struct {
unsigned32 gpr1; /* Stack pointer for all */
unsigned32 gpr2; /* TOC in PowerOpen, reserved SVR4, section ptr EABI + */
unsigned32 gpr13; /* First non volatile PowerOpen, section ptr SVR4/EABI */
unsigned32 gpr14; /* Non volatile for all */
unsigned32 gpr15; /* Non volatile for all */
unsigned32 gpr16; /* Non volatile for all */
unsigned32 gpr17; /* Non volatile for all */
unsigned32 gpr18; /* Non volatile for all */
unsigned32 gpr19; /* Non volatile for all */
unsigned32 gpr20; /* Non volatile for all */
unsigned32 gpr21; /* Non volatile for all */
unsigned32 gpr22; /* Non volatile for all */
unsigned32 gpr23; /* Non volatile for all */
unsigned32 gpr24; /* Non volatile for all */
unsigned32 gpr25; /* Non volatile for all */
unsigned32 gpr26; /* Non volatile for all */
unsigned32 gpr27; /* Non volatile for all */
unsigned32 gpr28; /* Non volatile for all */
unsigned32 gpr29; /* Non volatile for all */
unsigned32 gpr30; /* Non volatile for all */
unsigned32 gpr31; /* Non volatile for all */
unsigned32 cr; /* PART of the CR is non volatile for all */
unsigned32 pc; /* Program counter/Link register */
unsigned32 msr; /* Initial interrupt level */
} Context_Control;
typedef struct {
/* The ABIs (PowerOpen/SVR4/EABI) only require saving f14-f31 over
* procedure calls. However, this would mean that the interrupt
* frame had to hold f0-f13, and the fpscr. And as the majority
* of tasks will not have an FP context, we will save the whole
* context here.
*/
#if (PPC_HAS_DOUBLE == 1)
double f[32];
double fpscr;
#else
float f[32];
float fpscr;
#endif
} Context_Control_fp;
typedef struct CPU_Interrupt_frame {
unsigned32 stacklink; /* Ensure this is a real frame (also reg1 save) */
unsigned32 calleeLr; /* link register used by callees: SVR4/EABI */
/* This is what is left out of the primary contexts */
unsigned32 gpr0;
unsigned32 gpr2; /* play safe */
unsigned32 gpr3;
unsigned32 gpr4;
unsigned32 gpr5;
unsigned32 gpr6;
unsigned32 gpr7;
unsigned32 gpr8;
unsigned32 gpr9;
unsigned32 gpr10;
unsigned32 gpr11;
unsigned32 gpr12;
unsigned32 gpr13; /* Play safe */
unsigned32 gpr28; /* For internal use by the IRQ handler */
unsigned32 gpr29; /* For internal use by the IRQ handler */
unsigned32 gpr30; /* For internal use by the IRQ handler */
unsigned32 gpr31; /* For internal use by the IRQ handler */
unsigned32 cr; /* Bits of this are volatile, so no-one may save */
unsigned32 ctr;
unsigned32 xer;
unsigned32 lr;
unsigned32 pc;
unsigned32 msr;
unsigned32 pad[3];
} CPU_Interrupt_frame;
/*
* The following table contains the information required to configure
* the PowerPC processor specific parameters.
*/
typedef struct {
void (*pretasking_hook)( void );
void (*predriver_hook)( void );
void (*postdriver_hook)( void );
void (*idle_task)( void );
boolean do_zero_of_workspace;
unsigned32 idle_task_stack_size;
unsigned32 interrupt_stack_size;
unsigned32 extra_mpci_receive_server_stack;
void * (*stack_allocate_hook)( unsigned32 );
void (*stack_free_hook)( void* );
/* end of fields required on all CPUs */
unsigned32 clicks_per_usec; /* Timer clicks per microsecond */
boolean exceptions_in_RAM; /* TRUE if in RAM */
} rtems_cpu_table;
/*
* Macros to access required entires in the CPU Table are in
* the file rtems/system.h.
*/
/*
* Macros to access PowerPC MPC750 specific additions to the CPU Table
*/
#define rtems_cpu_configuration_get_clicks_per_usec() \
(_CPU_Table.clicks_per_usec)
#define rtems_cpu_configuration_get_exceptions_in_ram() \
(_CPU_Table.exceptions_in_RAM)
/*
* This variable is optional. It is used on CPUs on which it is difficult
* to generate an "uninitialized" FP context. It is filled in by
* _CPU_Initialize and copied into the task's FP context area during
* _CPU_Context_Initialize.
*/
/* EXTERN Context_Control_fp _CPU_Null_fp_context; */
/*
* On some CPUs, RTEMS supports a software managed interrupt stack.
* This stack is allocated by the Interrupt Manager and the switch
* is performed in _ISR_Handler. These variables contain pointers
* to the lowest and highest addresses in the chunk of memory allocated
* for the interrupt stack. Since it is unknown whether the stack
* grows up or down (in general), this give the CPU dependent
* code the option of picking the version it wants to use.
*
* NOTE: These two variables are required if the macro
* CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
*/
SCORE_EXTERN void *_CPU_Interrupt_stack_low;
SCORE_EXTERN void *_CPU_Interrupt_stack_high;
#endif /* ndef ASM */
/*
* This defines the number of levels and the mask used to pick those
* bits out of a thread mode.
*/
#define CPU_MODES_INTERRUPT_LEVEL 0x00000001 /* interrupt level in mode */
#define CPU_MODES_INTERRUPT_MASK 0x00000001 /* interrupt level in mode */
/*
* With some compilation systems, it is difficult if not impossible to
* call a high-level language routine from assembly language. This
* is especially true of commercial Ada compilers and name mangling
* C++ ones. This variable can be optionally defined by the CPU porter
* and contains the address of the routine _Thread_Dispatch. This
* can make it easier to invoke that routine at the end of the interrupt
* sequence (if a dispatch is necessary).
*/
/* EXTERN void (*_CPU_Thread_dispatch_pointer)(); */
/*
* Nothing prevents the porter from declaring more CPU specific variables.
*/
#ifndef ASM
SCORE_EXTERN struct {
unsigned32 *Disable_level;
void *Stack;
volatile boolean *Switch_necessary;
boolean *Signal;
} _CPU_IRQ_info CPU_STRUCTURE_ALIGNMENT;
#endif /* ndef ASM */
/*
* The size of the floating point context area. On some CPUs this
* will not be a "sizeof" because the format of the floating point
* area is not defined -- only the size is. This is usually on
* CPUs with a "floating point save context" instruction.
*/
#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
/*
* (Optional) # of bytes for libmisc/stackchk to check
* If not specifed, then it defaults to something reasonable
* for most architectures.
*/
#define CPU_STACK_CHECK_SIZE (128)
/*
* Amount of extra stack (above minimum stack size) required by
* MPCI receive server thread. Remember that in a multiprocessor
* system this thread must exist and be able to process all directives.
*/
#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
/*
* This defines the number of entries in the ISR_Vector_table managed
* by RTEMS.
*/
#define CPU_INTERRUPT_NUMBER_OF_VECTORS (PPC_INTERRUPT_MAX)
#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER (PPC_INTERRUPT_MAX - 1)
/*
* Should be large enough to run all RTEMS tests. This insures
* that a "reasonable" small application should not have any problems.
*/
#define CPU_STACK_MINIMUM_SIZE (1024*8)
/*
* CPU's worst alignment requirement for data types on a byte boundary. This
* alignment does not take into account the requirements for the stack.
*/
#define CPU_ALIGNMENT (PPC_ALIGNMENT)
/*
* This number corresponds to the byte alignment requirement for the
* heap handler. This alignment requirement may be stricter than that
* for the data types alignment specified by CPU_ALIGNMENT. It is
* common for the heap to follow the same alignment requirement as
* CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap,
* then this should be set to CPU_ALIGNMENT.
*
* NOTE: This does not have to be a power of 2. It does have to
* be greater or equal to than CPU_ALIGNMENT.
*/
#define CPU_HEAP_ALIGNMENT (PPC_ALIGNMENT)
/*
* This number corresponds to the byte alignment requirement for memory
* buffers allocated by the partition manager. This alignment requirement
* may be stricter than that for the data types alignment specified by
* CPU_ALIGNMENT. It is common for the partition to follow the same
* alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict
* enough for the partition, then this should be set to CPU_ALIGNMENT.
*
* NOTE: This does not have to be a power of 2. It does have to
* be greater or equal to than CPU_ALIGNMENT.
*/
#define CPU_PARTITION_ALIGNMENT (PPC_ALIGNMENT)
/*
* This number corresponds to the byte alignment requirement for the
* stack. This alignment requirement may be stricter than that for the
* data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT
* is strict enough for the stack, then this should be set to 0.
*
* NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
*/
#define CPU_STACK_ALIGNMENT (PPC_STACK_ALIGNMENT)
/*
* Needed for Interrupt stack
*/
#define CPU_MINIMUM_STACK_FRAME_SIZE 8
/* ISR handler macros */
/*
* Disable all interrupts for an RTEMS critical section. The previous
* level is returned in _isr_cookie.
*/
#define loc_string(a,b) a " (" #b ")\n"
#ifndef ASM
static inline unsigned32 _CPU_ISR_Get_level( void )
{
register unsigned int msr;
_CPU_MSR_GET(msr);
if (msr & MSR_EE) return 0;
else return 1;
}
static inline void _CPU_ISR_Set_level( unsigned32 level )
{
register unsigned int msr;
_CPU_MSR_GET(msr);
if (!(level & CPU_MODES_INTERRUPT_MASK)) {
msr |= MSR_EE;
}
else {
msr &= ~MSR_EE;
}
_CPU_MSR_SET(msr);
}
#define _CPU_ISR_install_vector(irq, new, old) {BSP_panic("_CPU_ISR_install_vector called\n");}
/* Context handler macros */
/*
* Initialize the context to a state suitable for starting a
* task after a context restore operation. Generally, this
* involves:
*
* - setting a starting address
* - preparing the stack
* - preparing the stack and frame pointers
* - setting the proper interrupt level in the context
* - initializing the floating point context
*
* This routine generally does not set any unnecessary register
* in the context. The state of the "general data" registers is
* undefined at task start time.
*
* NOTE: Implemented as a subroutine for the SPARC port.
*/
void _CPU_Context_Initialize(
Context_Control *the_context,
unsigned32 *stack_base,
unsigned32 size,
unsigned32 new_level,
void *entry_point,
boolean is_fp
);
/*
* This routine is responsible for somehow restarting the currently
* executing task. If you are lucky, then all that is necessary
* is restoring the context. Otherwise, there will need to be
* a special assembly routine which does something special in this
* case. Context_Restore should work most of the time. It will
* not work if restarting self conflicts with the stack frame
* assumptions of restoring a context.
*/
#define _CPU_Context_Restart_self( _the_context ) \
_CPU_Context_restore( (_the_context) );
/*
* The purpose of this macro is to allow the initial pointer into
* a floating point context area (used to save the floating point
* context) to be at an arbitrary place in the floating point
* context area.
*
* This is necessary because some FP units are designed to have
* their context saved as a stack which grows into lower addresses.
* Other FP units can be saved by simply moving registers into offsets
* from the base of the context area. Finally some FP units provide
* a "dump context" instruction which could fill in from high to low
* or low to high based on the whim of the CPU designers.
*/
#define _CPU_Context_Fp_start( _base, _offset ) \
( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
/*
* This routine initializes the FP context area passed to it to.
* There are a few standard ways in which to initialize the
* floating point context. The code included for this macro assumes
* that this is a CPU in which a "initial" FP context was saved into
* _CPU_Null_fp_context and it simply copies it to the destination
* context passed to it.
*
* Other models include (1) not doing anything, and (2) putting
* a "null FP status word" in the correct place in the FP context.
*/
#define _CPU_Context_Initialize_fp( _destination ) \
{ \
((Context_Control_fp *) *((void **) _destination))->fpscr = PPC_INIT_FPSCR; \
}
/* end of Context handler macros */
/* Fatal Error manager macros */
/*
* This routine copies _error into a known place -- typically a stack
* location or a register, optionally disables interrupts, and
* halts/stops the CPU.
*/
#define _CPU_Fatal_halt( _error ) \
_BSP_Fatal_error(_error)
/* end of Fatal Error manager macros */
/* Bitfield handler macros */
/*
* This routine sets _output to the bit number of the first bit
* set in _value. _value is of CPU dependent type Priority_Bit_map_control.
* This type may be either 16 or 32 bits wide although only the 16
* least significant bits will be used.
*
* There are a number of variables in using a "find first bit" type
* instruction.
*
* (1) What happens when run on a value of zero?
* (2) Bits may be numbered from MSB to LSB or vice-versa.
* (3) The numbering may be zero or one based.
* (4) The "find first bit" instruction may search from MSB or LSB.
*
* RTEMS guarantees that (1) will never happen so it is not a concern.
* (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
* _CPU_Priority_Bits_index(). These three form a set of routines
* which must logically operate together. Bits in the _value are
* set and cleared based on masks built by _CPU_Priority_mask().
* The basic major and minor values calculated by _Priority_Major()
* and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index()
* to properly range between the values returned by the "find first bit"
* instruction. This makes it possible for _Priority_Get_highest() to
* calculate the major and directly index into the minor table.
* This mapping is necessary to ensure that 0 (a high priority major/minor)
* is the first bit found.
*
* This entire "find first bit" and mapping process depends heavily
* on the manner in which a priority is broken into a major and minor
* components with the major being the 4 MSB of a priority and minor
* the 4 LSB. Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
* priority. And (15 << 4) + 14 corresponds to priority 254 -- the next
* to the lowest priority.
*
* If your CPU does not have a "find first bit" instruction, then
* there are ways to make do without it. Here are a handful of ways
* to implement this in software:
*
* - a series of 16 bit test instructions
* - a "binary search using if's"
* - _number = 0
* if _value > 0x00ff
* _value >>=8
* _number = 8;
*
* if _value > 0x0000f
* _value >=8
* _number += 4
*
* _number += bit_set_table[ _value ]
*
* where bit_set_table[ 16 ] has values which indicate the first
* bit set
*/
#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
{ \
asm volatile ("cntlzw %0, %1" : "=r" ((_output)), "=r" ((_value)) : \
"1" ((_value))); \
}
/* end of Bitfield handler macros */
/*
* This routine builds the mask which corresponds to the bit fields
* as searched by _CPU_Bitfield_Find_first_bit(). See the discussion
* for that routine.
*/
#define _CPU_Priority_Mask( _bit_number ) \
( 0x80000000 >> (_bit_number) )
/*
* This routine translates the bit numbers returned by
* _CPU_Bitfield_Find_first_bit() into something suitable for use as
* a major or minor component of a priority. See the discussion
* for that routine.
*/
#define _CPU_Priority_bits_index( _priority ) \
(_priority)
/* end of Priority handler macros */
/* variables */
extern const unsigned32 _CPU_msrs[4];
/* functions */
/*
* _CPU_Initialize
*
* This routine performs CPU dependent initialization.
*/
void _CPU_Initialize(
rtems_cpu_table *cpu_table,
void (*thread_dispatch)
);
/*
* _CPU_Install_interrupt_stack
*
* This routine installs the hardware interrupt stack pointer.
*
* NOTE: It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
* is TRUE.
*/
void _CPU_Install_interrupt_stack( void );
/*
* _CPU_Context_switch
*
* This routine switches from the run context to the heir context.
*/
void _CPU_Context_switch(
Context_Control *run,
Context_Control *heir
);
/*
* _CPU_Context_restore
*
* This routine is generallu used only to restart self in an
* efficient manner. It may simply be a label in _CPU_Context_switch.
*
* NOTE: May be unnecessary to reload some registers.
*/
void _CPU_Context_restore(
Context_Control *new_context
);
/*
* _CPU_Context_save_fp
*
* This routine saves the floating point context passed to it.
*/
void _CPU_Context_save_fp(
void **fp_context_ptr
);
/*
* _CPU_Context_restore_fp
*
* This routine restores the floating point context passed to it.
*/
void _CPU_Context_restore_fp(
void **fp_context_ptr
);
void _CPU_Fatal_error(
unsigned32 _error
);
/* The following routine swaps the endian format of an unsigned int.
* It must be static because it is referenced indirectly.
*
* This version will work on any processor, but if there is a better
* way for your CPU PLEASE use it. The most common way to do this is to:
*
* swap least significant two bytes with 16-bit rotate
* swap upper and lower 16-bits
* swap most significant two bytes with 16-bit rotate
*
* Some CPUs have special instructions which swap a 32-bit quantity in
* a single instruction (e.g. i486). It is probably best to avoid
* an "endian swapping control bit" in the CPU. One good reason is
* that interrupts would probably have to be disabled to insure that
* an interrupt does not try to access the same "chunk" with the wrong
* endian. Another good reason is that on some CPUs, the endian bit
* endianness for ALL fetches -- both code and data -- so the code
* will be fetched incorrectly.
*/
static inline unsigned int CPU_swap_u32(
unsigned int value
)
{
unsigned32 swapped;
asm volatile("rlwimi %0,%1,8,24,31;"
"rlwimi %0,%1,24,16,23;"
"rlwimi %0,%1,8,8,15;"
"rlwimi %0,%1,24,0,7;" :
"=&r" ((swapped)) : "r" ((value)));
return( swapped );
}
#define CPU_swap_u16( value ) \
(((value&0xff) << 8) | ((value >> 8)&0xff))
#endif /* ndef ASM */
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -1,396 +0,0 @@
/* cpu_asm.s 1.1 - 95/12/04
*
* This file contains the assembly code for the PowerPC implementation
* of RTEMS.
*
* Author: Andrew Bray <andy@i-cubed.co.uk>
*
* COPYRIGHT (c) 1995 by i-cubed ltd.
*
* To anyone who acknowledges that this file is provided "AS IS"
* without any express or implied warranty:
* permission to use, copy, modify, and distribute this file
* for any purpose is hereby granted without fee, provided that
* the above copyright notice and this notice appears in all
* copies, and that the name of i-cubed limited not be used in
* advertising or publicity pertaining to distribution of the
* software without specific, written prior permission.
* i-cubed limited makes no representations about the suitability
* of this software for any purpose.
*
* Derived from c/src/exec/cpu/no_cpu/cpu_asm.c:
*
* COPYRIGHT (c) 1989-1997.
* On-Line Applications Research Corporation (OAR).
* Copyright assigned to U.S. Government, 1994.
*
* The license and distribution terms for this file may in
* the file LICENSE in this distribution or at
* http://www.OARcorp.com/rtems/license.html.
*
* $Id$
*/
#include <asm.h>
/*
* Offsets for various Contexts
*/
.set GP_1, 0
.set GP_2, (GP_1 + 4)
.set GP_13, (GP_2 + 4)
.set GP_14, (GP_13 + 4)
.set GP_15, (GP_14 + 4)
.set GP_16, (GP_15 + 4)
.set GP_17, (GP_16 + 4)
.set GP_18, (GP_17 + 4)
.set GP_19, (GP_18 + 4)
.set GP_20, (GP_19 + 4)
.set GP_21, (GP_20 + 4)
.set GP_22, (GP_21 + 4)
.set GP_23, (GP_22 + 4)
.set GP_24, (GP_23 + 4)
.set GP_25, (GP_24 + 4)
.set GP_26, (GP_25 + 4)
.set GP_27, (GP_26 + 4)
.set GP_28, (GP_27 + 4)
.set GP_29, (GP_28 + 4)
.set GP_30, (GP_29 + 4)
.set GP_31, (GP_30 + 4)
.set GP_CR, (GP_31 + 4)
.set GP_PC, (GP_CR + 4)
.set GP_MSR, (GP_PC + 4)
.set FP_0, 0
.set FP_1, (FP_0 + 4)
.set FP_2, (FP_1 + 4)
.set FP_3, (FP_2 + 4)
.set FP_4, (FP_3 + 4)
.set FP_5, (FP_4 + 4)
.set FP_6, (FP_5 + 4)
.set FP_7, (FP_6 + 4)
.set FP_8, (FP_7 + 4)
.set FP_9, (FP_8 + 4)
.set FP_10, (FP_9 + 4)
.set FP_11, (FP_10 + 4)
.set FP_12, (FP_11 + 4)
.set FP_13, (FP_12 + 4)
.set FP_14, (FP_13 + 4)
.set FP_15, (FP_14 + 4)
.set FP_16, (FP_15 + 4)
.set FP_17, (FP_16 + 4)
.set FP_18, (FP_17 + 4)
.set FP_19, (FP_18 + 4)
.set FP_20, (FP_19 + 4)
.set FP_21, (FP_20 + 4)
.set FP_22, (FP_21 + 4)
.set FP_23, (FP_22 + 4)
.set FP_24, (FP_23 + 4)
.set FP_25, (FP_24 + 4)
.set FP_26, (FP_25 + 4)
.set FP_27, (FP_26 + 4)
.set FP_28, (FP_27 + 4)
.set FP_29, (FP_28 + 4)
.set FP_30, (FP_29 + 4)
.set FP_31, (FP_30 + 4)
.set FP_FPSCR, (FP_31 + 4)
.set IP_LINK, 0
.set IP_0, (IP_LINK + 8)
.set IP_2, (IP_0 + 4)
.set IP_3, (IP_2 + 4)
.set IP_4, (IP_3 + 4)
.set IP_5, (IP_4 + 4)
.set IP_6, (IP_5 + 4)
.set IP_7, (IP_6 + 4)
.set IP_8, (IP_7 + 4)
.set IP_9, (IP_8 + 4)
.set IP_10, (IP_9 + 4)
.set IP_11, (IP_10 + 4)
.set IP_12, (IP_11 + 4)
.set IP_13, (IP_12 + 4)
.set IP_28, (IP_13 + 4)
.set IP_29, (IP_28 + 4)
.set IP_30, (IP_29 + 4)
.set IP_31, (IP_30 + 4)
.set IP_CR, (IP_31 + 4)
.set IP_CTR, (IP_CR + 4)
.set IP_XER, (IP_CTR + 4)
.set IP_LR, (IP_XER + 4)
.set IP_PC, (IP_LR + 4)
.set IP_MSR, (IP_PC + 4)
.set IP_END, (IP_MSR + 16)
BEGIN_CODE
/*
* _CPU_Context_save_fp_context
*
* This routine is responsible for saving the FP context
* at *fp_context_ptr. If the point to load the FP context
* from is changed then the pointer is modified by this routine.
*
* Sometimes a macro implementation of this is in cpu.h which dereferences
* the ** and a similarly named routine in this file is passed something
* like a (Context_Control_fp *). The general rule on making this decision
* is to avoid writing assembly language.
*/
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
PUBLIC_PROC (_CPU_Context_save_fp)
PROC (_CPU_Context_save_fp):
#if (PPC_HAS_FPU == 1)
lwz r3, 0(r3)
stfs f0, FP_0(r3)
stfs f1, FP_1(r3)
stfs f2, FP_2(r3)
stfs f3, FP_3(r3)
stfs f4, FP_4(r3)
stfs f5, FP_5(r3)
stfs f6, FP_6(r3)
stfs f7, FP_7(r3)
stfs f8, FP_8(r3)
stfs f9, FP_9(r3)
stfs f10, FP_10(r3)
stfs f11, FP_11(r3)
stfs f12, FP_12(r3)
stfs f13, FP_13(r3)
stfs f14, FP_14(r3)
stfs f15, FP_15(r3)
stfs f16, FP_16(r3)
stfs f17, FP_17(r3)
stfs f18, FP_18(r3)
stfs f19, FP_19(r3)
stfs f20, FP_20(r3)
stfs f21, FP_21(r3)
stfs f22, FP_22(r3)
stfs f23, FP_23(r3)
stfs f24, FP_24(r3)
stfs f25, FP_25(r3)
stfs f26, FP_26(r3)
stfs f27, FP_27(r3)
stfs f28, FP_28(r3)
stfs f29, FP_29(r3)
stfs f30, FP_30(r3)
stfs f31, FP_31(r3)
mffs f2
stfs f2, FP_FPSCR(r3)
#endif
blr
/*
* _CPU_Context_restore_fp_context
*
* This routine is responsible for restoring the FP context
* at *fp_context_ptr. If the point to load the FP context
* from is changed then the pointer is modified by this routine.
*
* Sometimes a macro implementation of this is in cpu.h which dereferences
* the ** and a similarly named routine in this file is passed something
* like a (Context_Control_fp *). The general rule on making this decision
* is to avoid writing assembly language.
*/
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
PUBLIC_PROC (_CPU_Context_restore_fp)
PROC (_CPU_Context_restore_fp):
#if (PPC_HAS_FPU == 1)
lwz r3, 0(r3)
lfs f2, FP_FPSCR(r3)
mtfsf 255, f2
lfs f0, FP_0(r3)
lfs f1, FP_1(r3)
lfs f2, FP_2(r3)
lfs f3, FP_3(r3)
lfs f4, FP_4(r3)
lfs f5, FP_5(r3)
lfs f6, FP_6(r3)
lfs f7, FP_7(r3)
lfs f8, FP_8(r3)
lfs f9, FP_9(r3)
lfs f10, FP_10(r3)
lfs f11, FP_11(r3)
lfs f12, FP_12(r3)
lfs f13, FP_13(r3)
lfs f14, FP_14(r3)
lfs f15, FP_15(r3)
lfs f16, FP_16(r3)
lfs f17, FP_17(r3)
lfs f18, FP_18(r3)
lfs f19, FP_19(r3)
lfs f20, FP_20(r3)
lfs f21, FP_21(r3)
lfs f22, FP_22(r3)
lfs f23, FP_23(r3)
lfs f24, FP_24(r3)
lfs f25, FP_25(r3)
lfs f26, FP_26(r3)
lfs f27, FP_27(r3)
lfs f28, FP_28(r3)
lfs f29, FP_29(r3)
lfs f30, FP_30(r3)
lfs f31, FP_31(r3)
#endif
blr
/* _CPU_Context_switch
*
* This routine performs a normal non-FP context switch.
*/
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
PUBLIC_PROC (_CPU_Context_switch)
PROC (_CPU_Context_switch):
sync
isync
/* This assumes that all the registers are in the given order */
li r5, 32
addi r3,r3,-4
#if ( PPC_USE_DATA_CACHE )
dcbz r5, r3
#endif
stw r1, GP_1+4(r3)
stw r2, GP_2+4(r3)
#if (PPC_USE_MULTIPLE == 1)
addi r3, r3, GP_18+4
#if ( PPC_USE_DATA_CACHE )
dcbz r5, r3
#endif
stmw r13, GP_13-GP_18(r3)
#else
stw r13, GP_13+4(r3)
stw r14, GP_14+4(r3)
stw r15, GP_15+4(r3)
stw r16, GP_16+4(r3)
stw r17, GP_17+4(r3)
stwu r18, GP_18+4(r3)
#if ( PPC_USE_DATA_CACHE )
dcbz r5, r3
#endif
stw r19, GP_19-GP_18(r3)
stw r20, GP_20-GP_18(r3)
stw r21, GP_21-GP_18(r3)
stw r22, GP_22-GP_18(r3)
stw r23, GP_23-GP_18(r3)
stw r24, GP_24-GP_18(r3)
stw r25, GP_25-GP_18(r3)
stw r26, GP_26-GP_18(r3)
stw r27, GP_27-GP_18(r3)
stw r28, GP_28-GP_18(r3)
stw r29, GP_29-GP_18(r3)
stw r30, GP_30-GP_18(r3)
stw r31, GP_31-GP_18(r3)
#endif
#if ( PPC_USE_DATA_CACHE )
dcbt r0, r4
#endif
mfcr r6
stw r6, GP_CR-GP_18(r3)
mflr r7
stw r7, GP_PC-GP_18(r3)
mfmsr r8
stw r8, GP_MSR-GP_18(r3)
#if ( PPC_USE_DATA_CACHE )
dcbt r5, r4
#endif
lwz r1, GP_1(r4)
lwz r2, GP_2(r4)
#if (PPC_USE_MULTIPLE == 1)
addi r4, r4, GP_19
#if ( PPC_USE_DATA_CACHE )
dcbt r5, r4
#endif
lmw r13, GP_13-GP_19(r4)
#else
lwz r13, GP_13(r4)
lwz r14, GP_14(r4)
lwz r15, GP_15(r4)
lwz r16, GP_16(r4)
lwz r17, GP_17(r4)
lwz r18, GP_18(r4)
lwzu r19, GP_19(r4)
#if ( PPC_USE_DATA_CACHE )
dcbt r5, r4
#endif
lwz r20, GP_20-GP_19(r4)
lwz r21, GP_21-GP_19(r4)
lwz r22, GP_22-GP_19(r4)
lwz r23, GP_23-GP_19(r4)
lwz r24, GP_24-GP_19(r4)
lwz r25, GP_25-GP_19(r4)
lwz r26, GP_26-GP_19(r4)
lwz r27, GP_27-GP_19(r4)
lwz r28, GP_28-GP_19(r4)
lwz r29, GP_29-GP_19(r4)
lwz r30, GP_30-GP_19(r4)
lwz r31, GP_31-GP_19(r4)
#endif
lwz r6, GP_CR-GP_19(r4)
lwz r7, GP_PC-GP_19(r4)
lwz r8, GP_MSR-GP_19(r4)
mtcrf 255, r6
mtlr r7
mtmsr r8
blr
/*
* _CPU_Context_restore
*
* This routine is generallu used only to restart self in an
* efficient manner. It may simply be a label in _CPU_Context_switch.
*
* NOTE: May be unnecessary to reload some registers.
*/
/*
* ACB: Don't worry about cache optimisation here - this is not THAT critical.
*/
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
PUBLIC_PROC (_CPU_Context_restore)
PROC (_CPU_Context_restore):
lwz r5, GP_CR(r3)
lwz r6, GP_PC(r3)
lwz r7, GP_MSR(r3)
mtcrf 255, r5
mtlr r6
mtmsr r7
lwz r1, GP_1(r3)
lwz r2, GP_2(r3)
#if (PPC_USE_MULTIPLE == 1)
lmw r13, GP_13(r3)
#else
lwz r13, GP_13(r3)
lwz r14, GP_14(r3)
lwz r15, GP_15(r3)
lwz r16, GP_16(r3)
lwz r17, GP_17(r3)
lwz r18, GP_18(r3)
lwz r19, GP_19(r3)
lwz r20, GP_20(r3)
lwz r21, GP_21(r3)
lwz r22, GP_22(r3)
lwz r23, GP_23(r3)
lwz r24, GP_24(r3)
lwz r25, GP_25(r3)
lwz r26, GP_26(r3)
lwz r27, GP_27(r3)
lwz r28, GP_28(r3)
lwz r29, GP_29(r3)
lwz r30, GP_30(r3)
lwz r31, GP_31(r3)
#endif
blr

View File

@@ -1,2 +0,0 @@
Makefile
Makefile.in

View File

@@ -1,58 +0,0 @@
##
## $Id$
##
AUTOMAKE_OPTIONS = foreign 1.4
ACLOCAL_AMFLAGS = -I $(RTEMS_TOPdir)/aclocal
# C source names
C_FILES = cpu.c
C_O_FILES = $(C_FILES:%.c=${ARCH}/%.o)
ROOT_H_FILES =
RTEMS_SCORE_H_FILES = cpu.h c_isr.inl
noinst_HEADERS = $(ROOT_H_FILES) $(RTEMS_SCORE_H_FILES)
# Assembly source names
S_FILES = cpu_asm.S
S_O_FILES = $(S_FILES:%.S=${ARCH}/%.o)
include $(RTEMS_ROOT)/make/custom/@RTEMS_BSP@.cfg
include $(top_srcdir)/../../../../../automake/lib.am
PREINSTALL_FILES += $(PROJECT_INCLUDE) $(PROJECT_INCLUDE)/rtems/score \
$(ROOT_H_FILES:%=$(PROJECT_INCLUDE)/%) \
$(RTEMS_SCORE_H_FILES:%=$(PROJECT_INCLUDE)/rtems/score/%)
TMPINSTALL_FILES += $(PROJECT_RELEASE)/lib/rtems$(LIB_VARIANT).o
$(PROJECT_RELEASE)/lib/rtems$(LIB_VARIANT).o: $(ARCH)/rtems.o
$(INSTALL_DATA) $< $@
$(PROJECT_INCLUDE):
$(mkinstalldirs) $@
$(PROJECT_INCLUDE)/rtems/score:
$(mkinstalldirs) $@
$(PROJECT_INCLUDE)/rtems/score/%: %
$(INSTALL_DATA) $< $@
$(PROJECT_INCLUDE)/%: %
$(INSTALL_DATA) $< $@
REL = $(ARCH)/rtems-cpu.rel
$(REL): $(C_O_FILES) $(S_O_FILES)
test -d ../$(ARCH) || mkdir ../$(ARCH)
$(make-rel)
all-local: $(ARCH) $(PREINSTALL_FILES) $(REL) $(ARCH)/rtems.o $(TMPINSTALL_FILES)
CLEANDIRS = ../o-optimize ../o-debug ../o-profile
UNUSED_FILES = irq_stub.S
EXTRA_DIST = TODO rtems.S $(C_FILES) $(S_FILES) $(UNUSED_FILES)
include $(top_srcdir)/../../../../../automake/local.am

View File

@@ -1,80 +0,0 @@
#
# $Id$
#
There are various issues regarding this port:
1) Legal
This port is written by Andrew Bray <andy@i-cubed.co.uk>, and
is copyright 1995 i-cubed ltd.
This port was later updated by Joel Sherrill <joel@OARcorp.com>
to test the support for the PPC603, PPC603e, and MPC604. This
was tested on the PowerPC simulator PSIM and a VMEbus single board
computer.
2) CPU support.
This release fully supports the PPC403GA, PPC403GB, PPC603, PPC603e,
MPC604, MPC750, and numerous MPC8xx processors. A good faith attempt
has been made to include support other models based upon available
documentation including the MPC5xx. There are two interrupt structures
supported by the PowerPC port. The newer structure is supported by
all the MPC750 and MPC604 BSPs. This structure is required to use
the RDBG remote debugging support.
This port was originally written and tested on the PPC403GA (using
software floating point). Current ports are tested primarily on
60x CPUs using the PowerPC simulator PSIM.
Andrew Bray received assistance during the initial porting effort
from IBM and Blue Micro and we would like to gratefully acknowledge
that help.
The support for the PPC602 processor is incomplete as only sketchy
data is currently available. Perhaps this model has been dropped.
3) Application Binary Interface
In the context of RTEMS, the ABI is of interest for the following
aspects:
a) Register usage. Which registers are used to provide static variable
linkage, stack pointer etc.
b) Function calling convention. How parameters are passed, how function
variables should be invoked, how values are returned, etc.
c) Stack frame layout.
I am aware of a number of ABIs for the PowerPC:
a) The PowerOpen ABI. This is the original Power ABI used on the RS/6000.
This is the only ABI supported by versions of GCC before 2.7.0.
b) The SVR4 ABI. This is the ABI defined by SunSoft for the Solaris port
to the PowerPC.
c) The Embedded ABI. This is an embedded ABI for PowerPC use, which has no
operating system interface defined. It is promoted by SunSoft, Motorola,
and Cygnus Support. Cygnus are porting the GNU toolchain to this ABI.
d) GCC 2.7.0. This compiler is partway along the road to supporting the EABI,
but is currently halfway in between.
This port was built and tested using the PowerOpen ABI, with the following
caveat: we used an ELF assembler and linker. So some attention may be
required on the assembler files to get them through a traditional (XCOFF)
PowerOpen assembler.
This port contains support for the other ABIs, but this may prove to be
incomplete as it is untested.
The RTEMS PowerPC port supports EABI as the primary ABI. The powerpc-rtems
GNU toolset configuration is EABI.
Andrew Bray, 4 December 1995
Joel Sherrill, 16 July 1997

View File

@@ -1,8 +0,0 @@
#
# $Id$
#
Todo list:
Maybe decode external interrupts like the HPPA does.
See c/src/lib/libcpu/powerpc/ppc403/ictrl/* for implementation on ppc403

View File

@@ -1,4 +0,0 @@
RTEMS_INLINE_ROUTINE boolean _ISR_Is_in_progress( void )
{
return (_ISR_Nest_level != 0);
}

View File

@@ -1,858 +0,0 @@
/*
* PowerPC CPU Dependent Source
*
* Author: Andrew Bray <andy@i-cubed.co.uk>
*
* COPYRIGHT (c) 1995 by i-cubed ltd.
*
* To anyone who acknowledges that this file is provided "AS IS"
* without any express or implied warranty:
* permission to use, copy, modify, and distribute this file
* for any purpose is hereby granted without fee, provided that
* the above copyright notice and this notice appears in all
* copies, and that the name of i-cubed limited not be used in
* advertising or publicity pertaining to distribution of the
* software without specific, written prior permission.
* i-cubed limited makes no representations about the suitability
* of this software for any purpose.
*
* Derived from c/src/exec/cpu/no_cpu/cpu.c:
*
* COPYRIGHT (c) 1989-1997.
* On-Line Applications Research Corporation (OAR).
* Copyright assigned to U.S. Government, 1994.
*
* The license and distribution terms for this file may be found in
* the file LICENSE in this distribution or at
* http://www.OARcorp.com/rtems/license.html.
*
* $Id$
*/
#include <rtems/system.h>
#include <rtems/score/isr.h>
#include <rtems/score/context.h>
#include <rtems/score/thread.h>
#include <rtems/score/interr.h>
/*
* These are for testing purposes.
*/
/* _CPU_Initialize
*
* This routine performs processor dependent initialization.
*
* INPUT PARAMETERS:
* cpu_table - CPU table to initialize
* thread_dispatch - address of disptaching routine
*/
static void ppc_spurious(int, CPU_Interrupt_frame *);
int _CPU_spurious_count = 0;
int _CPU_last_spurious = 0;
void _CPU_Initialize(
rtems_cpu_table *cpu_table,
void (*thread_dispatch) /* ignored on this CPU */
)
{
proc_ptr handler = (proc_ptr)ppc_spurious;
int i;
#if (PPC_ABI != PPC_ABI_POWEROPEN)
register unsigned32 r2 = 0;
#if (PPC_ABI != PPC_ABI_GCC27)
register unsigned32 r13 = 0;
asm ("mr %0,13" : "=r" ((r13)) : "0" ((r13)));
_CPU_IRQ_info.Default_r13 = r13;
#endif
asm ("mr %0,2" : "=r" ((r2)) : "0" ((r2)));
_CPU_IRQ_info.Default_r2 = r2;
#endif
_CPU_IRQ_info.Nest_level = &_ISR_Nest_level;
_CPU_IRQ_info.Disable_level = &_Thread_Dispatch_disable_level;
_CPU_IRQ_info.Vector_table = _ISR_Vector_table;
#if (PPC_ABI == PPC_ABI_POWEROPEN)
_CPU_IRQ_info.Dispatch_r2 = ((unsigned32 *)_Thread_Dispatch)[1];
#endif
_CPU_IRQ_info.Switch_necessary = &_Context_Switch_necessary;
_CPU_IRQ_info.Signal = &_ISR_Signals_to_thread_executing;
#if (PPC_USE_SPRG)
i = (int)&_CPU_IRQ_info;
asm volatile("mtspr 0x113, %0" : "=r" (i) : "0" (i)); /* SPRG 3 */
#endif
/*
* Store Msr Value in the IRQ info structure.
*/
_CPU_MSR_Value(_CPU_IRQ_info.msr_initial);
#if (PPC_USE_SPRG)
i = _CPU_IRQ_info.msr_initial;
asm volatile("mtspr 0x112, %0" : "=r" (i) : "0" (i)); /* SPRG 2 */
#endif
if ( cpu_table->spurious_handler )
handler = (proc_ptr)cpu_table->spurious_handler;
for (i = 0; i < PPC_INTERRUPT_MAX; i++)
_ISR_Vector_table[i] = handler;
_CPU_Table = *cpu_table;
}
/*PAGE
*
* _CPU_ISR_Calculate_level
*
* The PowerPC puts its interrupt enable status in the MSR register
* which also contains things like endianness control. To be more
* awkward, the layout varies from processor to processor. This
* is why it was necessary to adopt a scheme which allowed the user
* to specify specifically which interrupt sources were enabled.
*/
unsigned32 _CPU_ISR_Calculate_level(
unsigned32 new_level
)
{
register unsigned32 new_msr = 0;
/*
* Set the critical interrupt enable bit
*/
#if (PPC_HAS_RFCI)
if ( !(new_level & PPC_INTERRUPT_LEVEL_CE) )
new_msr |= PPC_MSR_CE;
#endif
if ( !(new_level & PPC_INTERRUPT_LEVEL_ME) )
new_msr |= PPC_MSR_ME;
if ( !(new_level & PPC_INTERRUPT_LEVEL_EE) )
new_msr |= PPC_MSR_EE;
return new_msr;
}
/*PAGE
*
* _CPU_ISR_Set_level
*
* This routine sets the requested level in the MSR.
*/
void _CPU_ISR_Set_level(
unsigned32 new_level
)
{
register unsigned32 tmp = 0;
register unsigned32 new_msr;
new_msr = _CPU_ISR_Calculate_level( new_level );
asm volatile (
"mfmsr %0; andc %0,%0,%1; and %2, %2, %1; or %0, %0, %2; mtmsr %0" :
"=&r" ((tmp)) :
"r" ((PPC_MSR_DISABLE_MASK)), "r" ((new_msr)), "0" ((tmp))
);
}
/*PAGE
*
* _CPU_ISR_Get_level
*
* This routine gets the current interrupt level from the MSR and
* converts it to an RTEMS interrupt level.
*/
unsigned32 _CPU_ISR_Get_level( void )
{
unsigned32 level = 0;
unsigned32 msr;
asm volatile("mfmsr %0" : "=r" ((msr)));
msr &= PPC_MSR_DISABLE_MASK;
/*
* Set the critical interrupt enable bit
*/
#if (PPC_HAS_RFCI)
if ( !(msr & PPC_MSR_CE) )
level |= PPC_INTERRUPT_LEVEL_CE;
#endif
if ( !(msr & PPC_MSR_ME) )
level |= PPC_INTERRUPT_LEVEL_ME;
if ( !(msr & PPC_MSR_EE) )
level |= PPC_INTERRUPT_LEVEL_EE;
return level;
}
/*PAGE
*
* _CPU_Context_Initialize
*/
#if (PPC_ABI == PPC_ABI_POWEROPEN)
#define CPU_MINIMUM_STACK_FRAME_SIZE 56
#else /* PPC_ABI_SVR4 or PPC_ABI_EABI */
#define CPU_MINIMUM_STACK_FRAME_SIZE 8
#endif
void _CPU_Context_Initialize(
Context_Control *the_context,
unsigned32 *stack_base,
unsigned32 size,
unsigned32 new_level,
void *entry_point,
boolean is_fp
)
{
unsigned32 msr_value;
unsigned32 sp;
sp = (unsigned32)stack_base + size - CPU_MINIMUM_STACK_FRAME_SIZE;
*((unsigned32 *)sp) = 0;
the_context->gpr1 = sp;
the_context->msr = _CPU_ISR_Calculate_level( new_level );
/*
* The FP bit of the MSR should only be enabled if this is a floating
* point task. Unfortunately, the vfprintf_r routine in newlib
* ends up pushing a floating point register regardless of whether or
* not a floating point number is being printed. Serious restructuring
* of vfprintf.c will be required to avoid this behavior. At this
* time (7 July 1997), this restructuring is not being done.
*/
/*if ( is_fp ) */
the_context->msr |= PPC_MSR_FP;
/*
* Calculate the task's MSR value:
*
* + Set the exception prefix bit to point to the exception table
* + Force the RI bit
* + Use the DR and IR bits
*/
_CPU_MSR_Value( msr_value );
the_context->msr |= (msr_value & PPC_MSR_EP);
the_context->msr |= PPC_MSR_RI;
the_context->msr |= msr_value & (PPC_MSR_DR|PPC_MSR_IR);
#if (PPC_ABI == PPC_ABI_POWEROPEN)
{ unsigned32 *desc = (unsigned32 *)entry_point;
the_context->pc = desc[0];
the_context->gpr2 = desc[1];
}
#endif
#if (PPC_ABI == PPC_ABI_SVR4)
{ unsigned r13 = 0;
asm volatile ("mr %0, 13" : "=r" ((r13)));
the_context->pc = (unsigned32)entry_point;
the_context->gpr13 = r13;
}
#endif
#if (PPC_ABI == PPC_ABI_EABI)
{ unsigned32 r2 = 0;
unsigned r13 = 0;
asm volatile ("mr %0,2; mr %1,13" : "=r" ((r2)), "=r" ((r13)));
the_context->pc = (unsigned32)entry_point;
the_context->gpr2 = r2;
the_context->gpr13 = r13;
}
#endif
}
/* _CPU_ISR_install_vector
*
* This kernel routine installs the RTEMS handler for the
* specified vector.
*
* Input parameters:
* vector - interrupt vector number
* old_handler - former ISR for this vector number
* new_handler - replacement ISR for this vector number
*
* Output parameters: NONE
*
*/
void _CPU_ISR_install_vector(
unsigned32 vector,
proc_ptr new_handler,
proc_ptr *old_handler
)
{
proc_ptr ignored;
*old_handler = _ISR_Vector_table[ vector ];
/*
* If the interrupt vector table is a table of pointer to isr entry
* points, then we need to install the appropriate RTEMS interrupt
* handler for this vector number.
*/
/*
* Install the wrapper so this ISR can be invoked properly.
*/
if (_CPU_Table.exceptions_in_RAM)
_CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored );
/*
* We put the actual user ISR address in '_ISR_vector_table'. This will
* be used by the _ISR_Handler so the user gets control.
*/
_ISR_Vector_table[ vector ] = new_handler ? (ISR_Handler_entry)new_handler :
_CPU_Table.spurious_handler ?
(ISR_Handler_entry)_CPU_Table.spurious_handler :
(ISR_Handler_entry)ppc_spurious;
}
/*PAGE
*
* _CPU_Install_interrupt_stack
*/
void _CPU_Install_interrupt_stack( void )
{
#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27)
_CPU_IRQ_info.Stack = _CPU_Interrupt_stack_high - 56;
#else
_CPU_IRQ_info.Stack = _CPU_Interrupt_stack_high - 8;
#endif
}
/* Handle a spurious interrupt */
static void ppc_spurious(int v, CPU_Interrupt_frame *i)
{
#if 0
printf("Spurious interrupt on vector %d from %08.8x\n",
v, i->pc);
#endif
#ifdef ppc403
if (v == PPC_IRQ_EXTERNAL)
{
register int r = 0;
asm volatile("mtdcr 0x42, %0" :
"=&r" ((r)) : "0" ((r))); /* EXIER */
}
else if (v == PPC_IRQ_PIT)
{
register int r = 0x08000000;
asm volatile("mtspr 0x3d8, %0" :
"=&r" ((r)) : "0" ((r))); /* TSR */
}
else if (v == PPC_IRQ_FIT)
{
register int r = 0x04000000;
asm volatile("mtspr 0x3d8, %0" :
"=&r" ((r)) : "0" ((r))); /* TSR */
}
#endif
++_CPU_spurious_count;
_CPU_last_spurious = v;
}
void _CPU_Fatal_error(unsigned32 _error)
{
asm volatile ("mr 3, %0" : : "r" ((_error)));
asm volatile ("tweq 5,5");
asm volatile ("li 0,0; mtmsr 0");
while (1) ;
}
#define PPC_SYNCHRONOUS_TRAP_BIT_MASK 0x100
#define PPC_ASYNCHRONOUS_TRAP( _trap ) (_trap)
#define PPC_SYNCHRONOUS_TRAP ( _trap ) ((_trap)+PPC_SYNCHRONOUS_TRAP_BIT_MASK)
#define PPC_REAL_TRAP_NUMBER ( _trap ) ((_trap)%PPC_SYNCHRONOUS_TRAP_BIT_MASK)
const CPU_Trap_table_entry _CPU_Trap_slot_template = {
#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27)
#error " Vector install not tested."
#if (PPC_HAS_FPU)
#error " Vector install not tested."
0x9421feb0, /* stwu r1, -(20*4 + 18*8 + IP_END)(r1) */
#else
#error " Vector install not tested."
0x9421ff40, /* stwu r1, -(20*4 + IP_END)(r1) */
#endif
#else
0x9421ff90, /* stwu r1, -(IP_END)(r1) */
#endif
0x90010008, /* stw %r0, IP_0(%r1) */
0x38000000, /* li %r0, PPC_IRQ */
0x48000002 /* ba PROC (_ISR_Handler) */
};
#if defined(mpc860) || defined(mpc821)
const CPU_Trap_table_entry _CPU_Trap_slot_template_m860 = {
0x7c0803ac, /* mtlr %r0 */
0x81210028, /* lwz %r9, IP_9(%r1) */
0x38000000, /* li %r0, PPC_IRQ */
0x48000002 /* b PROC (_ISR_Handler) */
};
#endif /* mpc860 */
unsigned32 ppc_exception_vector_addr(
unsigned32 vector
);
/*PAGE
*
* _CPU_ISR_install_raw_handler
*
* This routine installs the specified handler as a "raw" non-executive
* supported trap handler (a.k.a. interrupt service routine).
*
* Input Parameters:
* vector - trap table entry number plus synchronous
* vs. asynchronous information
* new_handler - address of the handler to be installed
* old_handler - pointer to an address of the handler previously installed
*
* Output Parameters: NONE
* *new_handler - address of the handler previously installed
*
* NOTE:
*
* This routine is based on the SPARC routine _CPU_ISR_install_raw_handler.
* Install a software trap handler as an executive interrupt handler
* (which is desirable since RTEMS takes care of window and register issues),
* then the executive needs to know that the return address is to the trap
* rather than the instruction following the trap.
*
*/
void _CPU_ISR_install_raw_handler(
unsigned32 vector,
proc_ptr new_handler,
proc_ptr *old_handler
)
{
unsigned32 real_vector;
CPU_Trap_table_entry *slot;
unsigned32 u32_handler=0;
/*
* Get the "real" trap number for this vector ignoring the synchronous
* versus asynchronous indicator included with our vector numbers.
*/
real_vector = vector;
/*
* Get the current base address of the trap table and calculate a pointer
* to the slot we are interested in.
*/
slot = (CPU_Trap_table_entry *)ppc_exception_vector_addr( real_vector );
/*
* Get the address of the old_handler from the trap table.
*
* NOTE: The old_handler returned will be bogus if it does not follow
* the RTEMS model.
*/
#define HIGH_BITS_MASK 0xFFFFFC00
#define HIGH_BITS_SHIFT 10
#define LOW_BITS_MASK 0x000003FF
if (slot->stwu_r1 == _CPU_Trap_slot_template.stwu_r1) {
/*
* Set u32_handler = to target address
*/
u32_handler = slot->b_Handler & 0x03fffffc;
/* IMD FIX: sign extend address fragment... */
if (u32_handler & 0x02000000) {
u32_handler |= 0xfc000000;
}
*old_handler = (proc_ptr) u32_handler;
} else
/* There are two kinds of handlers for the MPC860. One is the 'standard'
* one like above. The other is for the cascaded interrupts from the SIU
* and CPM. Therefore we must check for the alternate one if the standard
* one is not present
*/
#if defined(mpc860) || defined(mpc821)
if (slot->stwu_r1 == _CPU_Trap_slot_template_m860.stwu_r1) {
/*
* Set u32_handler = to target address
*/
u32_handler = slot->b_Handler & 0x03fffffc;
*old_handler = (proc_ptr) u32_handler;
} else
#endif /* mpc860 */
*old_handler = 0;
/*
* Copy the template to the slot and then fix it.
*/
#if defined(mpc860) || defined(mpc821)
if (vector >= PPC_IRQ_IRQ0)
*slot = _CPU_Trap_slot_template_m860;
else
#endif /* mpc860 */
*slot = _CPU_Trap_slot_template;
u32_handler = (unsigned32) new_handler;
/*
* IMD FIX: insert address fragment only (bits 6..29)
* therefore check for proper address range
* and remove unwanted bits
*/
if ((u32_handler & 0xfc000000) == 0xfc000000) {
u32_handler &= ~0xfc000000;
}
else if ((u32_handler & 0xfc000000) != 0x00000000) {
_Internal_error_Occurred(INTERNAL_ERROR_CORE,
TRUE,
u32_handler);
}
slot->b_Handler |= u32_handler;
slot->li_r0_IRQ |= vector;
_CPU_Data_Cache_Block_Flush( slot );
}
unsigned32 ppc_exception_vector_addr(
unsigned32 vector
)
{
#if (!PPC_HAS_EVPR)
unsigned32 Msr;
#endif
unsigned32 Top = 0;
unsigned32 Offset = 0x000;
#if (PPC_HAS_EXCEPTION_PREFIX)
_CPU_MSR_Value ( Msr );
if ( ( Msr & PPC_MSR_EP) != 0 ) /* Vectors at FFFx_xxxx */
Top = 0xfff00000;
#elif (PPC_HAS_EVPR)
asm volatile( "mfspr %0,0x3d6" : "=r" (Top)); /* EVPR */
Top = Top & 0xffff0000;
#endif
switch ( vector ) {
case PPC_IRQ_SYSTEM_RESET: /* on 40x aka PPC_IRQ_CRIT */
Offset = 0x00100;
break;
case PPC_IRQ_MCHECK:
Offset = 0x00200;
break;
case PPC_IRQ_PROTECT:
Offset = 0x00300;
break;
case PPC_IRQ_ISI:
Offset = 0x00400;
break;
case PPC_IRQ_EXTERNAL:
Offset = 0x00500;
break;
case PPC_IRQ_ALIGNMENT:
Offset = 0x00600;
break;
case PPC_IRQ_PROGRAM:
Offset = 0x00700;
break;
case PPC_IRQ_NOFP:
Offset = 0x00800;
break;
case PPC_IRQ_DECREMENTER:
Offset = 0x00900;
break;
case PPC_IRQ_RESERVED_A:
Offset = 0x00a00;
break;
case PPC_IRQ_RESERVED_B:
Offset = 0x00b00;
break;
case PPC_IRQ_SCALL:
Offset = 0x00c00;
break;
case PPC_IRQ_TRACE:
Offset = 0x00d00;
break;
case PPC_IRQ_FP_ASST:
Offset = 0x00e00;
break;
#if defined(ppc403)
/* PPC_IRQ_CRIT is the same vector as PPC_IRQ_RESET
case PPC_IRQ_CRIT:
Offset = 0x00100;
break;
*/
case PPC_IRQ_PIT:
Offset = 0x01000;
break;
case PPC_IRQ_FIT:
Offset = 0x01010;
break;
case PPC_IRQ_WATCHDOG:
Offset = 0x01020;
break;
case PPC_IRQ_DEBUG:
Offset = 0x02000;
break;
#elif defined(ppc601)
case PPC_IRQ_TRACE:
Offset = 0x02000;
break;
#elif defined(ppc603)
case PPC_IRQ_TRANS_MISS:
Offset = 0x1000;
break;
case PPC_IRQ_DATA_LOAD:
Offset = 0x1100;
break;
case PPC_IRQ_DATA_STORE:
Offset = 0x1200;
break;
case PPC_IRQ_ADDR_BRK:
Offset = 0x1300;
break;
case PPC_IRQ_SYS_MGT:
Offset = 0x1400;
break;
#elif defined(ppc603e)
case PPC_TLB_INST_MISS:
Offset = 0x1000;
break;
case PPC_TLB_LOAD_MISS:
Offset = 0x1100;
break;
case PPC_TLB_STORE_MISS:
Offset = 0x1200;
break;
case PPC_IRQ_ADDRBRK:
Offset = 0x1300;
break;
case PPC_IRQ_SYS_MGT:
Offset = 0x1400;
break;
#elif defined(mpc604)
case PPC_IRQ_ADDR_BRK:
Offset = 0x1300;
break;
case PPC_IRQ_SYS_MGT:
Offset = 0x1400;
break;
#elif defined(mpc860) || defined(mpc821)
case PPC_IRQ_EMULATE:
Offset = 0x1000;
break;
case PPC_IRQ_INST_MISS:
Offset = 0x1100;
break;
case PPC_IRQ_DATA_MISS:
Offset = 0x1200;
break;
case PPC_IRQ_INST_ERR:
Offset = 0x1300;
break;
case PPC_IRQ_DATA_ERR:
Offset = 0x1400;
break;
case PPC_IRQ_DATA_BPNT:
Offset = 0x1c00;
break;
case PPC_IRQ_INST_BPNT:
Offset = 0x1d00;
break;
case PPC_IRQ_IO_BPNT:
Offset = 0x1e00;
break;
case PPC_IRQ_DEV_PORT:
Offset = 0x1f00;
break;
case PPC_IRQ_IRQ0:
Offset = 0x2000;
break;
case PPC_IRQ_LVL0:
Offset = 0x2040;
break;
case PPC_IRQ_IRQ1:
Offset = 0x2080;
break;
case PPC_IRQ_LVL1:
Offset = 0x20c0;
break;
case PPC_IRQ_IRQ2:
Offset = 0x2100;
break;
case PPC_IRQ_LVL2:
Offset = 0x2140;
break;
case PPC_IRQ_IRQ3:
Offset = 0x2180;
break;
case PPC_IRQ_LVL3:
Offset = 0x21c0;
break;
case PPC_IRQ_IRQ4:
Offset = 0x2200;
break;
case PPC_IRQ_LVL4:
Offset = 0x2240;
break;
case PPC_IRQ_IRQ5:
Offset = 0x2280;
break;
case PPC_IRQ_LVL5:
Offset = 0x22c0;
break;
case PPC_IRQ_IRQ6:
Offset = 0x2300;
break;
case PPC_IRQ_LVL6:
Offset = 0x2340;
break;
case PPC_IRQ_IRQ7:
Offset = 0x2380;
break;
case PPC_IRQ_LVL7:
Offset = 0x23c0;
break;
case PPC_IRQ_CPM_ERROR:
Offset = 0x2400;
break;
case PPC_IRQ_CPM_PC4:
Offset = 0x2410;
break;
case PPC_IRQ_CPM_PC5:
Offset = 0x2420;
break;
case PPC_IRQ_CPM_SMC2:
Offset = 0x2430;
break;
case PPC_IRQ_CPM_SMC1:
Offset = 0x2440;
break;
case PPC_IRQ_CPM_SPI:
Offset = 0x2450;
break;
case PPC_IRQ_CPM_PC6:
Offset = 0x2460;
break;
case PPC_IRQ_CPM_TIMER4:
Offset = 0x2470;
break;
case PPC_IRQ_CPM_RESERVED_8:
Offset = 0x2480;
break;
case PPC_IRQ_CPM_PC7:
Offset = 0x2490;
break;
case PPC_IRQ_CPM_PC8:
Offset = 0x24a0;
break;
case PPC_IRQ_CPM_PC9:
Offset = 0x24b0;
break;
case PPC_IRQ_CPM_TIMER3:
Offset = 0x24c0;
break;
case PPC_IRQ_CPM_RESERVED_D:
Offset = 0x24d0;
break;
case PPC_IRQ_CPM_PC10:
Offset = 0x24e0;
break;
case PPC_IRQ_CPM_PC11:
Offset = 0x24f0;
break;
case PPC_IRQ_CPM_I2C:
Offset = 0x2500;
break;
case PPC_IRQ_CPM_RISC_TIMER:
Offset = 0x2510;
break;
case PPC_IRQ_CPM_TIMER2:
Offset = 0x2520;
break;
case PPC_IRQ_CPM_RESERVED_13:
Offset = 0x2530;
break;
case PPC_IRQ_CPM_IDMA2:
Offset = 0x2540;
break;
case PPC_IRQ_CPM_IDMA1:
Offset = 0x2550;
break;
case PPC_IRQ_CPM_SDMA_ERROR:
Offset = 0x2560;
break;
case PPC_IRQ_CPM_PC12:
Offset = 0x2570;
break;
case PPC_IRQ_CPM_PC13:
Offset = 0x2580;
break;
case PPC_IRQ_CPM_TIMER1:
Offset = 0x2590;
break;
case PPC_IRQ_CPM_PC14:
Offset = 0x25a0;
break;
case PPC_IRQ_CPM_SCC4:
Offset = 0x25b0;
break;
case PPC_IRQ_CPM_SCC3:
Offset = 0x25c0;
break;
case PPC_IRQ_CPM_SCC2:
Offset = 0x25d0;
break;
case PPC_IRQ_CPM_SCC1:
Offset = 0x25e0;
break;
case PPC_IRQ_CPM_PC15:
Offset = 0x25f0;
break;
#endif
}
Top += Offset;
return Top;
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,809 +0,0 @@
/* cpu_asm.s 1.1 - 95/12/04
*
* This file contains the assembly code for the PowerPC implementation
* of RTEMS.
*
* Author: Andrew Bray <andy@i-cubed.co.uk>
*
* COPYRIGHT (c) 1995 by i-cubed ltd.
*
* To anyone who acknowledges that this file is provided "AS IS"
* without any express or implied warranty:
* permission to use, copy, modify, and distribute this file
* for any purpose is hereby granted without fee, provided that
* the above copyright notice and this notice appears in all
* copies, and that the name of i-cubed limited not be used in
* advertising or publicity pertaining to distribution of the
* software without specific, written prior permission.
* i-cubed limited makes no representations about the suitability
* of this software for any purpose.
*
* Derived from c/src/exec/cpu/no_cpu/cpu_asm.c:
*
* COPYRIGHT (c) 1989-1997.
* On-Line Applications Research Corporation (OAR).
* Copyright assigned to U.S. Government, 1994.
*
* The license and distribution terms for this file may in
* the file LICENSE in this distribution or at
* http://www.OARcorp.com/rtems/license.html.
*
* $Id$
*/
#include <asm.h>
/*
* Offsets for various Contexts
*/
.set GP_1, 0
.set GP_2, (GP_1 + 4)
.set GP_13, (GP_2 + 4)
.set GP_14, (GP_13 + 4)
.set GP_15, (GP_14 + 4)
.set GP_16, (GP_15 + 4)
.set GP_17, (GP_16 + 4)
.set GP_18, (GP_17 + 4)
.set GP_19, (GP_18 + 4)
.set GP_20, (GP_19 + 4)
.set GP_21, (GP_20 + 4)
.set GP_22, (GP_21 + 4)
.set GP_23, (GP_22 + 4)
.set GP_24, (GP_23 + 4)
.set GP_25, (GP_24 + 4)
.set GP_26, (GP_25 + 4)
.set GP_27, (GP_26 + 4)
.set GP_28, (GP_27 + 4)
.set GP_29, (GP_28 + 4)
.set GP_30, (GP_29 + 4)
.set GP_31, (GP_30 + 4)
.set GP_CR, (GP_31 + 4)
.set GP_PC, (GP_CR + 4)
.set GP_MSR, (GP_PC + 4)
#if (PPC_HAS_DOUBLE == 1)
.set FP_0, 0
.set FP_1, (FP_0 + 8)
.set FP_2, (FP_1 + 8)
.set FP_3, (FP_2 + 8)
.set FP_4, (FP_3 + 8)
.set FP_5, (FP_4 + 8)
.set FP_6, (FP_5 + 8)
.set FP_7, (FP_6 + 8)
.set FP_8, (FP_7 + 8)
.set FP_9, (FP_8 + 8)
.set FP_10, (FP_9 + 8)
.set FP_11, (FP_10 + 8)
.set FP_12, (FP_11 + 8)
.set FP_13, (FP_12 + 8)
.set FP_14, (FP_13 + 8)
.set FP_15, (FP_14 + 8)
.set FP_16, (FP_15 + 8)
.set FP_17, (FP_16 + 8)
.set FP_18, (FP_17 + 8)
.set FP_19, (FP_18 + 8)
.set FP_20, (FP_19 + 8)
.set FP_21, (FP_20 + 8)
.set FP_22, (FP_21 + 8)
.set FP_23, (FP_22 + 8)
.set FP_24, (FP_23 + 8)
.set FP_25, (FP_24 + 8)
.set FP_26, (FP_25 + 8)
.set FP_27, (FP_26 + 8)
.set FP_28, (FP_27 + 8)
.set FP_29, (FP_28 + 8)
.set FP_30, (FP_29 + 8)
.set FP_31, (FP_30 + 8)
.set FP_FPSCR, (FP_31 + 8)
#else
.set FP_0, 0
.set FP_1, (FP_0 + 4)
.set FP_2, (FP_1 + 4)
.set FP_3, (FP_2 + 4)
.set FP_4, (FP_3 + 4)
.set FP_5, (FP_4 + 4)
.set FP_6, (FP_5 + 4)
.set FP_7, (FP_6 + 4)
.set FP_8, (FP_7 + 4)
.set FP_9, (FP_8 + 4)
.set FP_10, (FP_9 + 4)
.set FP_11, (FP_10 + 4)
.set FP_12, (FP_11 + 4)
.set FP_13, (FP_12 + 4)
.set FP_14, (FP_13 + 4)
.set FP_15, (FP_14 + 4)
.set FP_16, (FP_15 + 4)
.set FP_17, (FP_16 + 4)
.set FP_18, (FP_17 + 4)
.set FP_19, (FP_18 + 4)
.set FP_20, (FP_19 + 4)
.set FP_21, (FP_20 + 4)
.set FP_22, (FP_21 + 4)
.set FP_23, (FP_22 + 4)
.set FP_24, (FP_23 + 4)
.set FP_25, (FP_24 + 4)
.set FP_26, (FP_25 + 4)
.set FP_27, (FP_26 + 4)
.set FP_28, (FP_27 + 4)
.set FP_29, (FP_28 + 4)
.set FP_30, (FP_29 + 4)
.set FP_31, (FP_30 + 4)
.set FP_FPSCR, (FP_31 + 4)
#endif
.set IP_LINK, 0
#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27)
.set IP_0, (IP_LINK + 56)
#else
.set IP_0, (IP_LINK + 8)
#endif
.set IP_2, (IP_0 + 4)
.set IP_3, (IP_2 + 4)
.set IP_4, (IP_3 + 4)
.set IP_5, (IP_4 + 4)
.set IP_6, (IP_5 + 4)
.set IP_7, (IP_6 + 4)
.set IP_8, (IP_7 + 4)
.set IP_9, (IP_8 + 4)
.set IP_10, (IP_9 + 4)
.set IP_11, (IP_10 + 4)
.set IP_12, (IP_11 + 4)
.set IP_13, (IP_12 + 4)
.set IP_28, (IP_13 + 4)
.set IP_29, (IP_28 + 4)
.set IP_30, (IP_29 + 4)
.set IP_31, (IP_30 + 4)
.set IP_CR, (IP_31 + 4)
.set IP_CTR, (IP_CR + 4)
.set IP_XER, (IP_CTR + 4)
.set IP_LR, (IP_XER + 4)
.set IP_PC, (IP_LR + 4)
.set IP_MSR, (IP_PC + 4)
.set IP_END, (IP_MSR + 16)
/* _CPU_IRQ_info offsets */
/* These must be in this order */
.set Nest_level, 0
.set Disable_level, 4
.set Vector_table, 8
.set Stack, 12
#if (PPC_ABI == PPC_ABI_POWEROPEN)
.set Dispatch_r2, 16
.set Switch_necessary, 20
#else
.set Default_r2, 16
#if (PPC_ABI != PPC_ABI_GCC27)
.set Default_r13, 20
.set Switch_necessary, 24
#else
.set Switch_necessary, 20
#endif
#endif
.set Signal, Switch_necessary + 4
.set msr_initial, Signal + 4
BEGIN_CODE
/*
* _CPU_Context_save_fp_context
*
* This routine is responsible for saving the FP context
* at *fp_context_ptr. If the point to load the FP context
* from is changed then the pointer is modified by this routine.
*
* Sometimes a macro implementation of this is in cpu.h which dereferences
* the ** and a similarly named routine in this file is passed something
* like a (Context_Control_fp *). The general rule on making this decision
* is to avoid writing assembly language.
*/
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
PUBLIC_PROC (_CPU_Context_save_fp)
PROC (_CPU_Context_save_fp):
#if (PPC_HAS_FPU == 1)
lwz r3, 0(r3)
#if (PPC_HAS_DOUBLE == 1)
stfd f0, FP_0(r3)
stfd f1, FP_1(r3)
stfd f2, FP_2(r3)
stfd f3, FP_3(r3)
stfd f4, FP_4(r3)
stfd f5, FP_5(r3)
stfd f6, FP_6(r3)
stfd f7, FP_7(r3)
stfd f8, FP_8(r3)
stfd f9, FP_9(r3)
stfd f10, FP_10(r3)
stfd f11, FP_11(r3)
stfd f12, FP_12(r3)
stfd f13, FP_13(r3)
stfd f14, FP_14(r3)
stfd f15, FP_15(r3)
stfd f16, FP_16(r3)
stfd f17, FP_17(r3)
stfd f18, FP_18(r3)
stfd f19, FP_19(r3)
stfd f20, FP_20(r3)
stfd f21, FP_21(r3)
stfd f22, FP_22(r3)
stfd f23, FP_23(r3)
stfd f24, FP_24(r3)
stfd f25, FP_25(r3)
stfd f26, FP_26(r3)
stfd f27, FP_27(r3)
stfd f28, FP_28(r3)
stfd f29, FP_29(r3)
stfd f30, FP_30(r3)
stfd f31, FP_31(r3)
mffs f2
stfd f2, FP_FPSCR(r3)
#else
stfs f0, FP_0(r3)
stfs f1, FP_1(r3)
stfs f2, FP_2(r3)
stfs f3, FP_3(r3)
stfs f4, FP_4(r3)
stfs f5, FP_5(r3)
stfs f6, FP_6(r3)
stfs f7, FP_7(r3)
stfs f8, FP_8(r3)
stfs f9, FP_9(r3)
stfs f10, FP_10(r3)
stfs f11, FP_11(r3)
stfs f12, FP_12(r3)
stfs f13, FP_13(r3)
stfs f14, FP_14(r3)
stfs f15, FP_15(r3)
stfs f16, FP_16(r3)
stfs f17, FP_17(r3)
stfs f18, FP_18(r3)
stfs f19, FP_19(r3)
stfs f20, FP_20(r3)
stfs f21, FP_21(r3)
stfs f22, FP_22(r3)
stfs f23, FP_23(r3)
stfs f24, FP_24(r3)
stfs f25, FP_25(r3)
stfs f26, FP_26(r3)
stfs f27, FP_27(r3)
stfs f28, FP_28(r3)
stfs f29, FP_29(r3)
stfs f30, FP_30(r3)
stfs f31, FP_31(r3)
mffs f2
stfs f2, FP_FPSCR(r3)
#endif
#endif
blr
/*
* _CPU_Context_restore_fp_context
*
* This routine is responsible for restoring the FP context
* at *fp_context_ptr. If the point to load the FP context
* from is changed then the pointer is modified by this routine.
*
* Sometimes a macro implementation of this is in cpu.h which dereferences
* the ** and a similarly named routine in this file is passed something
* like a (Context_Control_fp *). The general rule on making this decision
* is to avoid writing assembly language.
*/
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
PUBLIC_PROC (_CPU_Context_restore_fp)
PROC (_CPU_Context_restore_fp):
#if (PPC_HAS_FPU == 1)
lwz r3, 0(r3)
#if (PPC_HAS_DOUBLE == 1)
lfd f2, FP_FPSCR(r3)
mtfsf 255, f2
lfd f0, FP_0(r3)
lfd f1, FP_1(r3)
lfd f2, FP_2(r3)
lfd f3, FP_3(r3)
lfd f4, FP_4(r3)
lfd f5, FP_5(r3)
lfd f6, FP_6(r3)
lfd f7, FP_7(r3)
lfd f8, FP_8(r3)
lfd f9, FP_9(r3)
lfd f10, FP_10(r3)
lfd f11, FP_11(r3)
lfd f12, FP_12(r3)
lfd f13, FP_13(r3)
lfd f14, FP_14(r3)
lfd f15, FP_15(r3)
lfd f16, FP_16(r3)
lfd f17, FP_17(r3)
lfd f18, FP_18(r3)
lfd f19, FP_19(r3)
lfd f20, FP_20(r3)
lfd f21, FP_21(r3)
lfd f22, FP_22(r3)
lfd f23, FP_23(r3)
lfd f24, FP_24(r3)
lfd f25, FP_25(r3)
lfd f26, FP_26(r3)
lfd f27, FP_27(r3)
lfd f28, FP_28(r3)
lfd f29, FP_29(r3)
lfd f30, FP_30(r3)
lfd f31, FP_31(r3)
#else
lfs f2, FP_FPSCR(r3)
mtfsf 255, f2
lfs f0, FP_0(r3)
lfs f1, FP_1(r3)
lfs f2, FP_2(r3)
lfs f3, FP_3(r3)
lfs f4, FP_4(r3)
lfs f5, FP_5(r3)
lfs f6, FP_6(r3)
lfs f7, FP_7(r3)
lfs f8, FP_8(r3)
lfs f9, FP_9(r3)
lfs f10, FP_10(r3)
lfs f11, FP_11(r3)
lfs f12, FP_12(r3)
lfs f13, FP_13(r3)
lfs f14, FP_14(r3)
lfs f15, FP_15(r3)
lfs f16, FP_16(r3)
lfs f17, FP_17(r3)
lfs f18, FP_18(r3)
lfs f19, FP_19(r3)
lfs f20, FP_20(r3)
lfs f21, FP_21(r3)
lfs f22, FP_22(r3)
lfs f23, FP_23(r3)
lfs f24, FP_24(r3)
lfs f25, FP_25(r3)
lfs f26, FP_26(r3)
lfs f27, FP_27(r3)
lfs f28, FP_28(r3)
lfs f29, FP_29(r3)
lfs f30, FP_30(r3)
lfs f31, FP_31(r3)
#endif
#endif
blr
/* _CPU_Context_switch
*
* This routine performs a normal non-FP context switch.
*/
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
PUBLIC_PROC (_CPU_Context_switch)
PROC (_CPU_Context_switch):
sync
isync
#if (PPC_CACHE_ALIGNMENT == 4) /* No cache */
stw r1, GP_1(r3)
lwz r1, GP_1(r4)
stw r2, GP_2(r3)
lwz r2, GP_2(r4)
#if (PPC_USE_MULTIPLE == 1)
stmw r13, GP_13(r3)
lmw r13, GP_13(r4)
#else
stw r13, GP_13(r3)
lwz r13, GP_13(r4)
stw r14, GP_14(r3)
lwz r14, GP_14(r4)
stw r15, GP_15(r3)
lwz r15, GP_15(r4)
stw r16, GP_16(r3)
lwz r16, GP_16(r4)
stw r17, GP_17(r3)
lwz r17, GP_17(r4)
stw r18, GP_18(r3)
lwz r18, GP_18(r4)
stw r19, GP_19(r3)
lwz r19, GP_19(r4)
stw r20, GP_20(r3)
lwz r20, GP_20(r4)
stw r21, GP_21(r3)
lwz r21, GP_21(r4)
stw r22, GP_22(r3)
lwz r22, GP_22(r4)
stw r23, GP_23(r3)
lwz r23, GP_23(r4)
stw r24, GP_24(r3)
lwz r24, GP_24(r4)
stw r25, GP_25(r3)
lwz r25, GP_25(r4)
stw r26, GP_26(r3)
lwz r26, GP_26(r4)
stw r27, GP_27(r3)
lwz r27, GP_27(r4)
stw r28, GP_28(r3)
lwz r28, GP_28(r4)
stw r29, GP_29(r3)
lwz r29, GP_29(r4)
stw r30, GP_30(r3)
lwz r30, GP_30(r4)
stw r31, GP_31(r3)
lwz r31, GP_31(r4)
#endif
mfcr r5
stw r5, GP_CR(r3)
lwz r5, GP_CR(r4)
mflr r6
mtcrf 255, r5
stw r6, GP_PC(r3)
lwz r6, GP_PC(r4)
mfmsr r7
mtlr r6
stw r7, GP_MSR(r3)
lwz r7, GP_MSR(r4)
mtmsr r7
#endif
#if (PPC_CACHE_ALIGNMENT == 16)
/* This assumes that all the registers are in the given order */
li r5, 16
addi r3,r3,-4
#if ( PPC_USE_DATA_CACHE )
dcbz r5, r3
#endif
stw r1, GP_1+4(r3)
stw r2, GP_2+4(r3)
#if (PPC_USE_MULTIPLE == 1)
addi r3, r3, GP_14+4
#if ( PPC_USE_DATA_CACHE )
dcbz r5, r3
#endif
addi r3, r3, GP_18-GP_14
#if ( PPC_USE_DATA_CACHE )
dcbz r5, r3
#endif
addi r3, r3, GP_22-GP_18
#if ( PPC_USE_DATA_CACHE )
dcbz r5, r3
#endif
addi r3, r3, GP_26-GP_22
#if ( PPC_USE_DATA_CACHE )
dcbz r5, r3
#endif
stmw r13, GP_13-GP_26(r3)
#else
stw r13, GP_13+4(r3)
stwu r14, GP_14+4(r3)
#if ( PPC_USE_DATA_CACHE )
dcbz r5, r3
#endif
stw r15, GP_15-GP_14(r3)
stw r16, GP_16-GP_14(r3)
stw r17, GP_17-GP_14(r3)
stwu r18, GP_18-GP_14(r3)
#if ( PPC_USE_DATA_CACHE )
dcbz r5, r3
#endif
stw r19, GP_19-GP_18(r3)
stw r20, GP_20-GP_18(r3)
stw r21, GP_21-GP_18(r3)
stwu r22, GP_22-GP_18(r3)
#if ( PPC_USE_DATA_CACHE )
dcbz r5, r3
#endif
stw r23, GP_23-GP_22(r3)
stw r24, GP_24-GP_22(r3)
stw r25, GP_25-GP_22(r3)
stwu r26, GP_26-GP_22(r3)
#if ( PPC_USE_DATA_CACHE )
dcbz r5, r3
#endif
stw r27, GP_27-GP_26(r3)
stw r28, GP_28-GP_26(r3)
stw r29, GP_29-GP_26(r3)
stw r30, GP_30-GP_26(r3)
stw r31, GP_31-GP_26(r3)
#endif
#if ( PPC_USE_DATA_CACHE )
dcbt r0, r4
#endif
mfcr r6
stw r6, GP_CR-GP_26(r3)
mflr r7
stw r7, GP_PC-GP_26(r3)
mfmsr r8
stw r8, GP_MSR-GP_26(r3)
#if ( PPC_USE_DATA_CACHE )
dcbt r5, r4
#endif
lwz r1, GP_1(r4)
lwz r2, GP_2(r4)
#if (PPC_USE_MULTIPLE == 1)
addi r4, r4, GP_15
#if ( PPC_USE_DATA_CACHE )
dcbt r5, r4
#endif
addi r4, r4, GP_19-GP_15
#if ( PPC_USE_DATA_CACHE )
dcbt r5, r4
#endif
addi r4, r4, GP_23-GP_19
#if ( PPC_USE_DATA_CACHE )
dcbt r5, r4
#endif
addi r4, r4, GP_27-GP_23
#if ( PPC_USE_DATA_CACHE )
dcbt r5, r4
#endif
lmw r13, GP_13-GP_27(r4)
#else
lwz r13, GP_13(r4)
lwz r14, GP_14(r4)
lwzu r15, GP_15(r4)
#if ( PPC_USE_DATA_CACHE )
dcbt r5, r4
#endif
lwz r16, GP_16-GP_15(r4)
lwz r17, GP_17-GP_15(r4)
lwz r18, GP_18-GP_15(r4)
lwzu r19, GP_19-GP_15(r4)
#if ( PPC_USE_DATA_CACHE )
dcbt r5, r4
#endif
lwz r20, GP_20-GP_19(r4)
lwz r21, GP_21-GP_19(r4)
lwz r22, GP_22-GP_19(r4)
lwzu r23, GP_23-GP_19(r4)
#if ( PPC_USE_DATA_CACHE )
dcbt r5, r4
#endif
lwz r24, GP_24-GP_23(r4)
lwz r25, GP_25-GP_23(r4)
lwz r26, GP_26-GP_23(r4)
lwzu r27, GP_27-GP_23(r4)
#if ( PPC_USE_DATA_CACHE )
dcbt r5, r4
#endif
lwz r28, GP_28-GP_27(r4)
lwz r29, GP_29-GP_27(r4)
lwz r30, GP_30-GP_27(r4)
lwz r31, GP_31-GP_27(r4)
#endif
lwz r6, GP_CR-GP_27(r4)
lwz r7, GP_PC-GP_27(r4)
lwz r8, GP_MSR-GP_27(r4)
mtcrf 255, r6
mtlr r7
mtmsr r8
#endif
#if (PPC_CACHE_ALIGNMENT == 32)
/* This assumes that all the registers are in the given order */
li r5, 32
addi r3,r3,-4
#if ( PPC_USE_DATA_CACHE )
dcbz r5, r3
#endif
stw r1, GP_1+4(r3)
stw r2, GP_2+4(r3)
#if (PPC_USE_MULTIPLE == 1)
addi r3, r3, GP_18+4
#if ( PPC_USE_DATA_CACHE )
dcbz r5, r3
#endif
stmw r13, GP_13-GP_18(r3)
#else
stw r13, GP_13+4(r3)
stw r14, GP_14+4(r3)
stw r15, GP_15+4(r3)
stw r16, GP_16+4(r3)
stw r17, GP_17+4(r3)
stwu r18, GP_18+4(r3)
#if ( PPC_USE_DATA_CACHE )
dcbz r5, r3
#endif
stw r19, GP_19-GP_18(r3)
stw r20, GP_20-GP_18(r3)
stw r21, GP_21-GP_18(r3)
stw r22, GP_22-GP_18(r3)
stw r23, GP_23-GP_18(r3)
stw r24, GP_24-GP_18(r3)
stw r25, GP_25-GP_18(r3)
stw r26, GP_26-GP_18(r3)
stw r27, GP_27-GP_18(r3)
stw r28, GP_28-GP_18(r3)
stw r29, GP_29-GP_18(r3)
stw r30, GP_30-GP_18(r3)
stw r31, GP_31-GP_18(r3)
#endif
#if ( PPC_USE_DATA_CACHE )
dcbt r0, r4
#endif
mfcr r6
stw r6, GP_CR-GP_18(r3)
mflr r7
stw r7, GP_PC-GP_18(r3)
mfmsr r8
stw r8, GP_MSR-GP_18(r3)
#if ( PPC_USE_DATA_CACHE )
dcbt r5, r4
#endif
lwz r1, GP_1(r4)
lwz r2, GP_2(r4)
#if (PPC_USE_MULTIPLE == 1)
addi r4, r4, GP_19
#if ( PPC_USE_DATA_CACHE )
dcbt r5, r4
#endif
lmw r13, GP_13-GP_19(r4)
#else
lwz r13, GP_13(r4)
lwz r14, GP_14(r4)
lwz r15, GP_15(r4)
lwz r16, GP_16(r4)
lwz r17, GP_17(r4)
lwz r18, GP_18(r4)
lwzu r19, GP_19(r4)
#if ( PPC_USE_DATA_CACHE )
dcbt r5, r4
#endif
lwz r20, GP_20-GP_19(r4)
lwz r21, GP_21-GP_19(r4)
lwz r22, GP_22-GP_19(r4)
lwz r23, GP_23-GP_19(r4)
lwz r24, GP_24-GP_19(r4)
lwz r25, GP_25-GP_19(r4)
lwz r26, GP_26-GP_19(r4)
lwz r27, GP_27-GP_19(r4)
lwz r28, GP_28-GP_19(r4)
lwz r29, GP_29-GP_19(r4)
lwz r30, GP_30-GP_19(r4)
lwz r31, GP_31-GP_19(r4)
#endif
lwz r6, GP_CR-GP_19(r4)
lwz r7, GP_PC-GP_19(r4)
lwz r8, GP_MSR-GP_19(r4)
mtcrf 255, r6
mtlr r7
mtmsr r8
#endif
blr
/*
* _CPU_Context_restore
*
* This routine is generallu used only to restart self in an
* efficient manner. It may simply be a label in _CPU_Context_switch.
*
* NOTE: May be unnecessary to reload some registers.
*/
/*
* ACB: Don't worry about cache optimisation here - this is not THAT critical.
*/
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
PUBLIC_PROC (_CPU_Context_restore)
PROC (_CPU_Context_restore):
lwz r5, GP_CR(r3)
lwz r6, GP_PC(r3)
lwz r7, GP_MSR(r3)
mtcrf 255, r5
mtlr r6
mtmsr r7
lwz r1, GP_1(r3)
lwz r2, GP_2(r3)
#if (PPC_USE_MULTIPLE == 1)
lmw r13, GP_13(r3)
#else
lwz r13, GP_13(r3)
lwz r14, GP_14(r3)
lwz r15, GP_15(r3)
lwz r16, GP_16(r3)
lwz r17, GP_17(r3)
lwz r18, GP_18(r3)
lwz r19, GP_19(r3)
lwz r20, GP_20(r3)
lwz r21, GP_21(r3)
lwz r22, GP_22(r3)
lwz r23, GP_23(r3)
lwz r24, GP_24(r3)
lwz r25, GP_25(r3)
lwz r26, GP_26(r3)
lwz r27, GP_27(r3)
lwz r28, GP_28(r3)
lwz r29, GP_29(r3)
lwz r30, GP_30(r3)
lwz r31, GP_31(r3)
#endif
blr
/* Individual interrupt prologues look like this:
* #if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27)
* #if (PPC_HAS_FPU)
* stwu r1, -(20*4 + 18*8 + IP_END)(r1)
* #else
* stwu r1, -(20*4 + IP_END)(r1)
* #endif
* #else
* stwu r1, -(IP_END)(r1)
* #endif
* stw r0, IP_0(r1)
*
* li r0, vectornum
* b PROC (_ISR_Handler{,C})
*/
/* void __ISR_Handler()
*
* This routine provides the RTEMS interrupt management.
* The vector number is in r0. R0 has already been stacked.
*
*/
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
PUBLIC_PROC (_ISR_Handler)
PROC (_ISR_Handler):
#define LABEL(x) x
/* XXX ??
#define MTSAVE(x) mtspr sprg0, x
#define MFSAVE(x) mfspr x, sprg0
*/
#define MTPC(x) mtspr srr0, x
#define MFPC(x) mfspr x, srr0
#define MTMSR(x) mtspr srr1, x
#define MFMSR(x) mfspr x, srr1
#include "irq_stub.S"
rfi
#if (PPC_HAS_RFCI == 1)
/* void __ISR_HandlerC()
*
* This routine provides the RTEMS interrupt management.
* For critical interrupts
*
*/
ALIGN (PPC_CACHE_ALIGNMENT, PPC_CACHE_ALIGN_POWER)
PUBLIC_PROC (_ISR_HandlerC)
PROC (_ISR_HandlerC):
#undef LABEL
#undef MTSAVE
#undef MFSAVE
#undef MTPC
#undef MFPC
#undef MTMSR
#undef MFMSR
#define LABEL(x) x##_C
/* XXX??
#define MTSAVE(x) mtspr sprg1, x
#define MFSAVE(x) mfspr x, sprg1
*/
#define MTPC(x) mtspr srr2, x
#define MFPC(x) mfspr x, srr2
#define MTMSR(x) mtspr srr3, x
#define MFMSR(x) mfspr x, srr3
#include "irq_stub.S"
rfci
#endif
/* PowerOpen descriptors for indirect function calls.
*/
#if (PPC_ABI == PPC_ABI_POWEROPEN)
DESCRIPTOR (_CPU_Context_save_fp)
DESCRIPTOR (_CPU_Context_restore_fp)
DESCRIPTOR (_CPU_Context_switch)
DESCRIPTOR (_CPU_Context_restore)
DESCRIPTOR (_ISR_Handler)
#if (PPC_HAS_RFCI == 1)
DESCRIPTOR (_ISR_HandlerC)
#endif
#endif

View File

@@ -1,270 +0,0 @@
/*
* This file contains the interrupt handler assembly code for the PowerPC
* implementation of RTEMS. It is #included from cpu_asm.s.
*
* Author: Andrew Bray <andy@i-cubed.co.uk>
*
* COPYRIGHT (c) 1995 by i-cubed ltd.
*
* To anyone who acknowledges that this file is provided "AS IS"
* without any express or implied warranty:
* permission to use, copy, modify, and distribute this file
* for any purpose is hereby granted without fee, provided that
* the above copyright notice and this notice appears in all
* copies, and that the name of i-cubed limited not be used in
* advertising or publicity pertaining to distribution of the
* software without specific, written prior permission.
* i-cubed limited makes no representations about the suitability
* of this software for any purpose.
*
* $Id$
*/
/* void __ISR_Handler()
*
* This routine provides the RTEMS interrupt management.
* The vector number is in r0. R0 has already been stacked.
*
*/
PUBLIC_VAR (_CPU_IRQ_info )
/* Finish off the interrupt frame */
stw r2, IP_2(r1)
stw r3, IP_3(r1)
stw r4, IP_4(r1)
stw r5, IP_5(r1)
stw r6, IP_6(r1)
stw r7, IP_7(r1)
stw r8, IP_8(r1)
stw r9, IP_9(r1)
stw r10, IP_10(r1)
stw r11, IP_11(r1)
stw r12, IP_12(r1)
stw r13, IP_13(r1)
stmw r28, IP_28(r1)
mfcr r5
mfctr r6
mfxer r7
mflr r8
MFPC (r9)
MFMSR (r10)
/* Establish addressing */
#if (PPC_USE_SPRG)
mfspr r11, sprg3
#else
lis r11,_CPU_IRQ_info@ha
addi r11,r11,_CPU_IRQ_info@l
#endif
#if ( PPC_USE_DATA_CACHE )
dcbt r0, r11
#endif
stw r5, IP_CR(r1)
stw r6, IP_CTR(r1)
stw r7, IP_XER(r1)
stw r8, IP_LR(r1)
stw r9, IP_PC(r1)
stw r10, IP_MSR(r1)
lwz r30, Vector_table(r11)
slwi r4,r0,2
lwz r28, Nest_level(r11)
add r4, r4, r30
lwz r30, 0(r28)
mr r3, r0
lwz r31, Stack(r11)
/*
* #if ( CPU_HAS_SOFTWARE_INTERRUPT_STACK == TRUE )
* if ( _ISR_Nest_level == 0 )
* switch to software interrupt stack
* #endif
*/
/* Switch stacks, here we must prevent ALL interrupts */
#if (PPC_USE_SPRG)
mfmsr r5
mfspr r6, sprg2
#else
lwz r6,msr_initial(r11)
lis r5,~PPC_MSR_DISABLE_MASK@ha
ori r5,r5,~PPC_MSR_DISABLE_MASK@l
and r6,r6,r5
mfmsr r5
#endif
mtmsr r6
cmpwi r30, 0
lwz r29, Disable_level(r11)
subf r31,r1,r31
bne LABEL (nested)
stwux r1,r1,r31
LABEL (nested):
/*
* _ISR_Nest_level++;
*/
lwz r31, 0(r29)
addi r30,r30,1
stw r30,0(r28)
/* From here on out, interrupts can be re-enabled. RTEMS
* convention says not.
*/
lwz r4,0(r4)
/*
* _Thread_Dispatch_disable_level++;
*/
addi r31,r31,1
stw r31, 0(r29)
/* SCE 980217
*
* We need address translation ON when we call our ISR routine
mtmsr r5
*/
/*
* (*_ISR_Vector_table[ vector ])( vector );
*/
#if (PPC_ABI == PPC_ABI_POWEROPEN)
lwz r6,0(r4)
lwz r2,4(r4)
mtlr r6
lwz r11,8(r4)
#endif
#if (PPC_ABI == PPC_ABI_GCC27)
lwz r2, Default_r2(r11)
mtlr r4
#lwz r2, 0(r2)
#endif
#if (PPC_ABI == PPC_ABI_SVR4 || PPC_ABI == PPC_ABI_EABI)
mtlr r4
lwz r2, Default_r2(r11)
lwz r13, Default_r13(r11)
#lwz r2, 0(r2)
#lwz r13, 0(r13)
#endif
mr r4,r1
blrl
/* NOP marker for debuggers */
or r6,r6,r6
/* We must re-disable the interrupts */
#if (PPC_USE_SPRG)
mfspr r11, sprg3
mfspr r0, sprg2
#else
lis r11,_CPU_IRQ_info@ha
addi r11,r11,_CPU_IRQ_info@l
lwz r0,msr_initial(r11)
lis r30,~PPC_MSR_DISABLE_MASK@ha
ori r30,r30,~PPC_MSR_DISABLE_MASK@l
and r0,r0,r30
#endif
mtmsr r0
lwz r30, 0(r28)
lwz r31, 0(r29)
/*
* if (--Thread_Dispatch_disable,--_ISR_Nest_level)
* goto easy_exit;
*/
addi r30, r30, -1
cmpwi r30, 0
addi r31, r31, -1
stw r30, 0(r28)
stw r31, 0(r29)
bne LABEL (easy_exit)
cmpwi r31, 0
lwz r30, Switch_necessary(r11)
/*
* #if ( CPU_HAS_SOFTWARE_INTERRUPT_STACK == TRUE )
* restore stack
* #endif
*/
lwz r1,0(r1)
bne LABEL (easy_exit)
lwz r30, 0(r30)
lwz r31, Signal(r11)
/*
* if ( _Context_Switch_necessary )
* goto switch
*/
cmpwi r30, 0
lwz r28, 0(r31)
li r6,0
bne LABEL (switch)
/*
* if ( !_ISR_Signals_to_thread_executing )
* goto easy_exit
* _ISR_Signals_to_thread_executing = 0;
*/
cmpwi r28, 0
beq LABEL (easy_exit)
/*
* switch:
* call _Thread_Dispatch() or prepare to return to _ISR_Dispatch
*/
LABEL (switch):
stw r6, 0(r31)
/* Re-enable interrupts */
lwz r0, IP_MSR(r1)
#if (PPC_ABI == PPC_ABI_POWEROPEN)
lwz r2, Dispatch_r2(r11)
#else
/* R2 and R13 still hold their values from the last call */
#endif
mtmsr r0
bl SYM (_Thread_Dispatch)
/* NOP marker for debuggers */
or r6,r6,r6
/*
* prepare to get out of interrupt
*/
/* Re-disable IRQs */
#if (PPC_USE_SPRG)
mfspr r0, sprg2
#else
lis r11,_CPU_IRQ_info@ha
addi r11,r11,_CPU_IRQ_info@l
lwz r0,msr_initial(r11)
lis r5,~PPC_MSR_DISABLE_MASK@ha
ori r5,r5,~PPC_MSR_DISABLE_MASK@l
and r0,r0,r5
#endif
mtmsr r0
/*
* easy_exit:
* prepare to get out of interrupt
* return from interrupt
*/
LABEL (easy_exit):
lwz r5, IP_CR(r1)
lwz r6, IP_CTR(r1)
lwz r7, IP_XER(r1)
lwz r8, IP_LR(r1)
lwz r9, IP_PC(r1)
lwz r10, IP_MSR(r1)
mtcrf 255,r5
mtctr r6
mtxer r7
mtlr r8
MTPC (r9)
MTMSR (r10)
lwz r0, IP_0(r1)
lwz r2, IP_2(r1)
lwz r3, IP_3(r1)
lwz r4, IP_4(r1)
lwz r5, IP_5(r1)
lwz r6, IP_6(r1)
lwz r7, IP_7(r1)
lwz r8, IP_8(r1)
lwz r9, IP_9(r1)
lwz r10, IP_10(r1)
lwz r11, IP_11(r1)
lwz r12, IP_12(r1)
lwz r13, IP_13(r1)
lmw r28, IP_28(r1)
lwz r1, 0(r1)

View File

@@ -1,132 +0,0 @@
/* rtems.s
*
* This file contains the single entry point code for
* the PowerPC implementation of RTEMS.
*
* Author: Andrew Bray <andy@i-cubed.co.uk>
*
* COPYRIGHT (c) 1995 by i-cubed ltd.
*
* To anyone who acknowledges that this file is provided "AS IS"
* without any express or implied warranty:
* permission to use, copy, modify, and distribute this file
* for any purpose is hereby granted without fee, provided that
* the above copyright notice and this notice appears in all
* copies, and that the name of i-cubed limited not be used in
* advertising or publicity pertaining to distribution of the
* software without specific, written prior permission.
* i-cubed limited makes no representations about the suitability
* of this software for any purpose.
*
* Derived from c/src/exec/cpu/no_cpu/rtems.c:
*
* COPYRIGHT (c) 1989-1997.
* On-Line Applications Research Corporation (OAR).
* Copyright assigned to U.S. Government, 1994.
*
* The license and distribution terms for this file may in
* the file LICENSE in this distribution or at
* http://www.OARcorp.com/rtems/license.html.
*
* $Id$
*/
#include <asm.h>
BEGIN_CODE
/*
* RTEMS
*
* This routine jumps to the directive indicated in r11.
* This routine is used when RTEMS is linked by itself and placed
* in ROM. This routine is the first address in the ROM space for
* RTEMS. The user "calls" this address with the directive arguments
* in the normal place.
* This routine then jumps indirectly to the correct directive
* preserving the arguments. The directive should not realize
* it has been "wrapped" in this way. The table "_Entry_points"
* is used to look up the directive.
*/
ALIGN (4, 2)
PUBLIC_PROC (RTEMS)
PROC (RTEMS):
#if (PPC_ABI == PPC_ABI_POWEROPEN)
mflr r0
stw r0, 8(r1)
stwu r1, -64(r1)
/* Establish addressing */
bl base
base:
mflr r12
addi r12, r12, tabaddr - base
lwz r12, Entry_points-abase(r12)
slwi r11, r11, 2
lwzx r12, r12, r11
stw r2, 56(r1)
lwz r0, 0(r12)
mtlr r0
lwz r2, 4(r12)
lwz r11, 8(r12)
blrl
lwz r2, 56(r1)
addi r1, r1, 64
lwz r0, 8(r1)
mtlr r0
#else
mflr r0
stw r0, 4(r1)
stwu r1, -16(r1)
/* Establish addressing */
bl base
base:
mflr r12
addi r12, r12, tabaddr - base
lwz r12, Entry_points-abase(r12)
slwi r11, r11, 2
lwzx r11, r12, r11
stw r2, 8(r1)
#if (PPC_ABI != PPC_ABI_GCC27)
stw r13, 12(r1)
#endif
mtlr r11
lwz r11, irqinfo-abase(r12)
lwz r2, 0(r11)
#if (PPC_ABI != PPC_ABI_GCC27)
lwz r13, 4(r11)
#endif
blrl
lwz r2, 8(r1)
#if (PPC_ABI != PPC_ABI_GCC27)
lwz r13, 12(r1)
#endif
addi r1, r1, 16
lwz r0, 4(r1)
mtlr r0
#endif
blr
/* Addressability stuff */
tabaddr:
abase:
EXTERN_VAR (_Entry_points)
Entry_points:
EXT_SYM_REF (_Entry_points)
#if (PPC_ABI != PPC_ABI_POWEROPEN)
EXTERN_VAR (_CPU_IRQ_info)
irqinfo:
EXT_SYM_REF (_CPU_IRQ_info)
#endif
#if (PPC_ABI == PPC_ABI_POWEROPEN)
DESCRIPTOR (RTEMS)
#endif