updated mvme162 code from Misha (mms@eiscathq.irf.se)

This commit is contained in:
Joel Sherrill
1995-08-01 15:33:39 +00:00
parent 4a6e64d276
commit c6fb8e9096
8 changed files with 628 additions and 629 deletions

View File

@@ -36,7 +36,7 @@ standard release.
Port Description
----------------
The port was done using already existing ports to the M68020 boards,
DMV152 and MVME136.
DMV152 and MVME136.
The host system was SUN/Solaris 2.3, and the cross-development
environment consisted of Free Software Foundation (FSF)'s GNU C
@@ -74,8 +74,8 @@ configured for the board in use
monitors_vector_table = (m68k_isr *)0xFFE00000;
was made to point to the power-up location of MVME162 interrupt vector
table.
table.
- The shutdown is a temporary solution. To exit cleanly, it has to disable
all enabled interrupts and restore the board to its power-up status.
Presently this is not done satisfactorily, as a result, the board needs
@@ -112,7 +112,15 @@ parser;
crossgcc mailing list
- to FSF and Cygnus Support for great free software;
What's new
----------
- 28.07.95 BSP adjusted to rtems-3.2.0.
- Now console driver uses interrupts on receive (ring buffer
code lifted with thanks from the IDP BSP next door (../idp))
- both front-panel serial interfaces are supported
- serious bug in timer interrupts fixed
- interrupt test tm27 now supported
+----------------------------------+-------------------------------+
| Dr. Mikhail (Misha) Savitski | Voice : +46-980-79162 |
| Software Systems Engineer | Fax : +46-980-79161 |

View File

@@ -32,14 +32,13 @@
#include <clockdrv.h>
#define MS_COUNT 1000 /* T2's countdown constant (1 ms) */
#define CLOCK_INT_LEVEL 6 /* T2's interrupt level */
#define CLOCK_INT_LEVEL 6 /* T2's interrupt level */
rtems_unsigned32 Clock_isrs; /* ISRs until next tick */
volatile rtems_unsigned32 Clock_driver_ticks;
/* ticks since initialization */
rtems_unsigned32 Clock_isrs; /* ISRs until next tick */
volatile rtems_unsigned32 Clock_driver_ticks; /* ticks since initialization */
rtems_isr_entry Old_ticker;
rtems_device_driver Clock_initialize(
rtems_device_driver Clock_initialize(
rtems_device_major_number major,
rtems_device_minor_number minor,
void *pargp,
@@ -50,38 +49,36 @@ rtems_device_driver Clock_initialize(
Install_clock( Clock_isr );
}
void ReInstall_clock( clock_isr )
rtems_isr_entry clock_isr;
void ReInstall_clock(rtems_isr_entry clock_isr)
{
rtems_unsigned32 isrlevel;
rtems_interrupt_disable( isrlevel );
(void) set_vector( clock_isr, (VECTOR_BASE >> 28) * 0x10 + 0x9, 1 );
(void) set_vector( clock_isr, VBR0 * 0x10 + 0x9, 1 );
rtems_interrupt_enable( isrlevel );
}
void Install_clock( clock_isr )
rtems_isr_entry clock_isr;
void Install_clock(rtems_isr_entry clock_isr )
{
Clock_driver_ticks = 0;
Clock_isrs = BSP_Configuration.microseconds_per_tick / 1000;
if ( BSP_Configuration.ticks_per_timeslice ) {
Old_ticker = (rtems_isr_entry)
set_vector( clock_isr, (VECTOR_BASE >> 28) * 0x10 + 0x9, 1 );
lcsr->vector_base = 0x67800000; /* set vb, enable interrupts */
lcsr->to_ctl = 0xE7; /* prescaler to 1 MHz (see Appendix A1) */
Old_ticker =
(rtems_isr_entry) set_vector( clock_isr, VBR0 * 0x10 + 0x9, 1 );
lcsr->vector_base |= MASK_INT; /* unmask VMEchip2 interrupts */
lcsr->to_ctl = 0xE7; /* prescaler to 1 MHz (see Appendix A1) */
lcsr->timer_cmp_2 = MS_COUNT;
lcsr->timer_cnt_2 = 0; /* clear counter */
lcsr->board_ctl |= 0x700; /* increment, reset-on-compare, clear-ovfl-cnt */
lcsr->timer_cnt_2 = 0; /* clear counter */
lcsr->board_ctl |= 0x700; /* increment, reset-on-compare, and */
/* clear-overflow-cnt */
lcsr->intr_level[0] |= CLOCK_INT_LEVEL * 0x10; /* set int level */
lcsr->intr_ena |= 0x02000000; /* enable tick timer 2 interrupt */
lcsr->intr_level[0] |= CLOCK_INT_LEVEL * 0x10; /* set int level */
lcsr->intr_ena |= 0x02000000; /* enable tick timer 2 interrupt */
atexit( Clock_exit );
}
}
}

View File

@@ -24,18 +24,33 @@
#include <rtems.h>
#include "console.h"
#include "bsp.h"
#include "ringbuf.h"
/* console_initialize
*
* This routine initializes the console IO driver.
*
* Input parameters: NONE
*
* Output parameters: NONE
*
* Return values:
Ring_buffer_t Buffer[2];
/*
* Interrupt handler for receiver interrupts
*/
rtems_isr C_Receive_ISR(rtems_vector_number vector)
{
register int ipend, port;
ZWRITE0(1, 0x38); /* reset highest IUS */
ipend = ZREAD(1, 3); /* read int pending from A side */
if (ipend == 0x04) port = 0; /* channel B intr pending */
else if (ipend == 0x20) port = 1; /* channel A intr pending */
else return;
Ring_buffer_Add_character(&Buffer[port], ZREADD(port));
if (ZREAD(port, 1) & 0x70) { /* check error stat */
ZWRITE0(port, 0x30); /* reset error */
}
}
rtems_device_driver console_initialize(
rtems_device_major_number major,
rtems_device_minor_number minor,
@@ -44,122 +59,82 @@ rtems_device_driver console_initialize(
rtems_unsigned32 *status
)
{
int i;
/*
* Initialise receiver interrupts on both ports
*/
for (i = 0; i <= 1; i++) {
Ring_buffer_Initialize( &Buffer[i] );
ZWRITE(i, 2, SCC_VECTOR);
ZWRITE(i, 10, 0);
ZWRITE(i, 1, 0x10); /* int on all Rx chars or special condition */
ZWRITE(i, 9, 8); /* master interrupt enable */
}
set_vector(C_Receive_ISR, SCC_VECTOR, 1); /* install ISR for ports A and B */
mcchip->vector_base = 0;
mcchip->gen_control = 2; /* MIEN */
mcchip->SCC_int_ctl = 0x13; /* SCC IEN, IPL3 */
*status = RTEMS_SUCCESSFUL;
}
/* is_character_ready
*
* This routine returns TRUE if a character is available.
*
* Input parameters: NONE
*
* Output parameters: NONE
*
* Return values:
/*
* Non-blocking char input
*/
rtems_boolean is_character_ready(
char *ch
)
rtems_boolean char_ready(int port, char *ch)
{
rtems_unsigned8 rr_0;
if ( Ring_buffer_Is_empty( &Buffer[port] ) )
return FALSE;
Z8x30_READ_CONTROL( CONSOLE_CONTROL, RR_0, rr_0 );
if ( !(rr_0 & RR_0_RX_DATA_AVAILABLE) )
return( FALSE );
Z8x30_READ_DATA( CONSOLE_DATA, *ch );
return(TRUE);
}
/* inbyte
*
* This routine reads a character from the SCC.
*
* Input parameters: NONE
*
* Output parameters: NONE
*
* Return values:
* character read from SCC
*/
char inbyte( void )
{
rtems_unsigned8 rr_0;
char ch;
while ( 1 ) {
Z8x30_READ_CONTROL( CONSOLE_CONTROL, RR_0, rr_0 );
if ( (rr_0 & RR_0_RX_DATA_AVAILABLE) != 0 )
break;
}
Z8x30_READ_DATA( CONSOLE_DATA, ch );
return ch;
}
/* outbyte
*
* This routine transmits a character out the SCC. It supports
* XON/XOFF flow control.
*
* Input parameters:
* ch - character to be transmitted
*
* Output parameters: NONE
*/
void outbyte(
char ch
)
{
rtems_unsigned8 rr_0;
char flow_control;
while ( 1 ) {
Z8x30_READ_CONTROL( CONSOLE_CONTROL, RR_0, rr_0 );
if ( (rr_0 & RR_0_TX_BUFFER_EMPTY) != 0 )
break;
}
while ( 1 ) {
Z8x30_READ_CONTROL( CONSOLE_CONTROL, RR_0, rr_0 );
if ( (rr_0 & RR_0_RX_DATA_AVAILABLE) == 0 )
break;
Z8x30_READ_DATA( CONSOLE_DATA, flow_control );
if ( flow_control == XOFF )
do {
do {
Z8x30_READ_CONTROL( CONSOLE_CONTROL, RR_0, rr_0 );
} while ( (rr_0 & RR_0_RX_DATA_AVAILABLE) == 0 );
Z8x30_READ_DATA( CONSOLE_DATA, flow_control );
} while ( flow_control != XON );
}
Z8x30_WRITE_DATA( CONSOLE_DATA, ch );
Ring_buffer_Remove_character( &Buffer[port], *ch );
return TRUE;
}
/*
* __read -- read bytes from the serial port. Ignore fd, since
* we only have stdin.
* Block on char input
*/
int __read(
int fd,
char *buf,
int nbytes
)
char char_wait(int port)
{
int i = 0;
unsigned char tmp_char;
while ( !char_ready(port, &tmp_char) );
return tmp_char;
}
/*
* This routine transmits a character out the SCC. It no longer supports
* XON/XOFF flow control.
*/
void char_put(int port, char ch)
{
while (1) {
if (ZREAD0(port) & TX_BUFFER_EMPTY) break;
}
ZWRITED(port, ch);
}
/*
* Map port A (1) to stdin, stdout, and stderr.
* Map everything else to port B (0).
*/
int __read(int fd, char *buf, int nbytes)
{
int i, port;
if ( fd <= 2 ) port = 1;
else port = 0;
for (i = 0; i < nbytes; i++) {
*(buf + i) = inbyte();
*(buf + i) = char_wait(port);
if ((*(buf + i) == '\n') || (*(buf + i) == '\r')) {
(*(buf + i++)) = '\n';
(*(buf + i)) = 0;
@@ -170,24 +145,22 @@ int __read(
}
/*
* __write -- write bytes to the serial port. Ignore fd, since
* stdout and stderr are the same. Since we have no filesystem,
* open will only return an error.
* Map port A (1) to stdin, stdout, and stderr.
* Map everything else to port B (0).
*/
int __write(
int fd,
char *buf,
int nbytes
)
int __write(int fd, char *buf, int nbytes)
{
int i;
int i, port;
if ( fd <= 2 ) port = 1;
else port = 0;
for (i = 0; i < nbytes; i++) {
if (*(buf + i) == '\n') {
outbyte ('\r');
char_put (port, '\r');
}
outbyte (*(buf + i));
char_put (port, *(buf + i));
}
return (nbytes);
}

View File

@@ -29,23 +29,30 @@ extern "C" {
#include <rtems.h>
#include <iosupp.h>
#include <z8530.h>
/*
// Following defines must reflect the setup of the particular MVME162
//-----------------------------------
*/
* Following defines must reflect the setup of the particular MVME162
*/
#define GROUP_BASE_ADDRESS 0x0000F200
#define BOARD_BASE_ADDRESS 0x00000000
#define BOARD_BASE_ADDRESS 0xFFFF0000
/* Base for local interrupters' vectors (with enable bit set) */
#define VECTOR_BASE 0x67800000
#define MASK_INT 0x00800000
#define VBR0 0x6
#define VBR1 0x7
/* RAM limits */
#define RAM_START 0x00100000
#define RAM_END 0x00200000
/*
//-----------------------------------
*/
static volatile struct lcsr {
* ----------------------------------
*/
typedef volatile struct lcsr_regs {
unsigned long slave_adr[2];
unsigned long slave_trn[2];
unsigned long slave_ctl;
@@ -73,80 +80,135 @@ static volatile struct lcsr {
unsigned long intr_clear;
unsigned long intr_level[4];
unsigned long vector_base;
} *lcsr = (void *) 0xFFF40000;
} lcsr_regs;
#define USE_CHANNEL_A 1 /* 1 = use channel A for console */
#define USE_CHANNEL_B 0 /* 1 = use channel B for console */
#define lcsr ((lcsr_regs * const) 0xFFF40000)
/* Constants */
typedef volatile struct mcchip_regs {
#if (USE_CHANNEL_A == 1)
#define CONSOLE_CONTROL 0xFFF45005
#define CONSOLE_DATA 0xFFF45007
#elif (USE_CHANNEL_B == 1)
#define CONSOLE_CONTROL 0xFFF45001
#define CONSOLE_DATA 0xFFF45003
#endif
unsigned char chipID;
unsigned char chipREV;
unsigned char gen_control;
unsigned char vector_base;
unsigned long timer_cmp_1;
unsigned long timer_cnt_1;
unsigned long timer_cmp_2;
unsigned long timer_cnt_2;
unsigned char LSB_prescaler_count;
unsigned char prescaler_clock_adjust;
unsigned char time_ctl_2;
unsigned char time_ctl_1;
unsigned char time_int_ctl_4;
unsigned char time_int_ctl_3;
unsigned char time_int_ctl_2;
unsigned char time_int_ctl_1;
unsigned char dram_err_int_ctl;
unsigned char SCC_int_ctl;
unsigned char time_ctl_4;
unsigned char time_ctl_3;
unsigned short DRAM_space_base;
unsigned short SRAM_space_base;
unsigned char DRAM_size;
unsigned char DRAM_SRAM_opt;
unsigned char SRAM_size;
unsigned char reserved;
unsigned char LANC_error;
unsigned char reserved1;
unsigned char LANC_int_ctl;
unsigned char LANC_berr_ctl;
unsigned char SCSI_error;
unsigned char general_inputs;
unsigned char MVME_162_version;
unsigned char SCSI_int_ctl;
unsigned long timer_cmp_3;
unsigned long timer_cnt_3;
unsigned long timer_cmp_4;
unsigned long timer_cnt_4;
unsigned char bus_clk;
unsigned char PROM_acc_time_ctl;
unsigned char FLASH_acc_time_ctl;
unsigned char ABORT_int_ctl;
unsigned char RESET_ctl;
unsigned char watchdog_timer_ctl;
unsigned char acc_watchdog_time_base_sel;
unsigned char reserved2;
unsigned char DRAM_ctl;
unsigned char reserved4;
unsigned char MPU_status;
unsigned char reserved3;
unsigned long prescaler_count;
} mcchip_regs;
#define mcchip ((mcchip_regs * const) 0xFFF42000)
/*----------------------------------------------------------------*/
/*
* SCC Z8523(0) defines and macros
* -------------------------------
* Prototypes for the low-level serial io are also included here,
* because such stuff is bsp-specific (yet). The function bodies
* are in console.c
*/
enum {portB, portA};
rtems_boolean char_ready(int port, char *ch);
char char_wait(int port);
void char_put(int port, char ch);
#define TX_BUFFER_EMPTY 0x04
#define RX_DATA_AVAILABLE 0x01
#define SCC_VECTOR 0x40
typedef volatile struct scc_regs {
unsigned char pad1;
volatile unsigned char csr;
unsigned char pad2;
volatile unsigned char buf;
} scc_regs;
#define scc ((scc_regs * const) 0xFFF45000)
#define ZWRITE0(port, v) (scc[port].csr = (unsigned char)(v))
#define ZREAD0(port) (scc[port].csr)
#define ZREAD(port, n) (ZWRITE0(port, n), (scc[port].csr))
#define ZREADD(port) (scc[port].buf)
#define ZWRITE(port, n, v) (ZWRITE0(port, n), ZWRITE0(port, v))
#define ZWRITED(port, v) (scc[port].buf = (unsigned char)(v))
/*----------------------------------------------------------------*/
/*
// The following registers are located in the VMEbus short
// IO space and respond to address modifier codes $29 and $2D.
// On FORCE SPARC CPU use address gcsr_vme and device /dev/vme16d32.
* The following registers are located in the VMEbus short
* IO space and respond to address modifier codes $29 and $2D.
* On FORCE CPU use address gcsr_vme and device /dev/vme16d32.
*/
static volatile struct gcsr {
typedef volatile struct gcsr_regs {
unsigned char chip_revision;
unsigned char chip_id;
unsigned char lmsig;
unsigned char board_scr;
unsigned short gpr[6];
} *gcsr_vme = (void *) (GROUP_BASE_ADDRESS + BOARD_BASE_ADDRESS),
*gcsr = (void *) 0xFFF40100;
} gcsr_regs;
static volatile unsigned short *ipio[6] = { (unsigned short *) 0xFFF58000,
(unsigned short *) 0xFFF58100,
(unsigned short *) 0xFFF58200,
(unsigned short *) 0xFFF58300,
(unsigned short *) 0xFFF58400,
(unsigned short *) 0xFFF58500
};
static volatile unsigned short *ipid[6] = { (unsigned short *) 0xFFF58080,
(unsigned short *) 0xFFF58180,
(unsigned short *) 0xFFF58280,
(unsigned short *) 0xFFF58380,
(unsigned short *) 0xFFF58080,
(unsigned short *) 0xFFF58280
};
static volatile struct ipic_space {
struct sing {
unsigned short io_space[64];
unsigned short id_space[32];
unsigned short id_reptd[32];
} single[4];
struct twin {
unsigned short io_space[128];
unsigned short io_reptd[128];
} twin[2];
} *ipic_space = (void *) 0xFFF58000;
static volatile struct ipic_csr {
unsigned char chip_id;
unsigned char chip_rev;
unsigned char res[2];
unsigned short a_31_16_base;
unsigned short b_31_16_base;
unsigned short c_31_16_base;
unsigned short d_31_16_base;
unsigned char a_23_16_size;
unsigned char b_23_16_size;
unsigned char c_23_16_size;
unsigned char d_23_16_size;
unsigned short a_intr_cnt;
unsigned short b_intr_cnt;
unsigned short c_intr_cnt;
unsigned short d_intr_cnt;
} *ipic_csr = (void *) 0xFFFBC000;
#define gcsr_vme ((gcsr_regs * const) (GROUP_BASE_ADDRESS + BOARD_BASE_ADDRESS))
#define gcsr ((gcsr_regs * const) 0xFFF40100)
/*
* Define the time limits for RTEMS Test Suite test durations.
@@ -160,40 +222,25 @@ static volatile struct ipic_csr {
#define MAX_SHORT_TEST_DURATION 3 /* 3 seconds */
/*
* Define the interrupt mechanism for Time Test 27
* Define the interrupt mechanism for Time Test 27
*
* NOTE: Not implemented
* NOTE: We use software interrupt 0
*/
#define MUST_WAIT_FOR_INTERRUPT 0
#define Install_tm27_vector( handler )
#define Install_tm27_vector( handler ) \
set_vector( (handler), VBR1 * 0x10 + 0x8, 1 ); \
lcsr->intr_level[2] |= 3; \
lcsr->intr_ena |= 0x100;
#define Cause_tm27_intr()
#define Cause_tm27_intr() lcsr->intr_soft_set |= 0x100
#define Clear_tm27_intr()
#define Clear_tm27_intr() lcsr->intr_clear |= 0x100
#define Lower_tm27_intr()
/*
* Simple spin delay in microsecond units for device drivers.
* This is very dependent on the clock speed of the target.
*/
#define delay( microseconds ) \
{ register rtems_unsigned32 _delay=(microseconds); \
register rtems_unsigned32 _tmp=123; \
asm volatile( "0: \
nbcd %0 ; \
nbcd %0 ; \
dbf %1,0b" \
: "=d" (_tmp), "=d" (_delay) \
: "0" (_tmp), "1" (_delay) ); \
}
/* Constants */
#ifdef 1626_INIT
#ifdef M162_INIT
#undef EXTERN
#define EXTERN
#else

View File

@@ -103,11 +103,13 @@ int bsp_start(
m68k_set_vbr( &M68Kvec );
/*
* You may wish to make VME access round-robin here, currently
* You may wish to make the VME arbitration round-robin here, currently
* we leave it as it is.
*/
lcsr->vector_base = VECTOR_BASE; /* set the vector base register */
/* set the Interrupt Base Vectors */
lcsr->vector_base = (VBR0 << 28) | (VBR1 << 24);
m68k_enable_caching();

View File

@@ -31,41 +31,42 @@
* $Id$
*/
#include <rtems.h>
#include <bsp.h>
/* Periodic tick interval */
#define TICK_INTERVAL 0x10000
#define TIMER_INT_LEVEL 6
#define TICK_INTERVAL 0x10000U
#define TIMER_INT_LEVEL 6
int Ttimer_val;
rtems_boolean Timer_driver_Find_average_overhead;
rtems_unsigned32 Ttimer_val;
rtems_boolean Timer_driver_Find_average_overhead;
rtems_isr timerisr();
void Timer_initialize()
{
(void) set_vector( timerisr, (VECTOR_BASE >> 28) * 0x10 + 0x8, 0 );
Ttimer_val = 0; /* clear timer ISR count */
lcsr->vector_base = 0x67800000; /* set vb, enable interrupts */
(void) set_vector( timerisr, VBR0 * 0x10 + 0x8, 0 );
Ttimer_val = 0; /* clear timer ISR count */
lcsr->vector_base |= MASK_INT; /* unmask VMEchip2 interrupts */
lcsr->intr_clear |= 0x01000000; /* clear pending interrupt */
lcsr->to_ctl = 0xE7; /* prescaler to 1 MHz (see Appendix A1) */
lcsr->timer_cmp_1 = TICK_INTERVAL;
lcsr->timer_cnt_1 = 0; /* clear counter */
lcsr->board_ctl |= 7; /* increment, reset-on-compare, clear-ovfl-cnt */
lcsr->timer_cnt_1 = 0; /* clear counter */
lcsr->board_ctl |= 7; /* increment, reset-on-compare, */
/* and clear-overflow-cnt */
lcsr->intr_level[0] |= TIMER_INT_LEVEL; /* set int level */
lcsr->intr_ena |= 0x01000000; /* enable tick timer 1 interrupt */
lcsr->intr_level[0] |= TIMER_INT_LEVEL; /* set int level */
lcsr->intr_ena |= 0x01000000; /* enable tick timer 1 interrupt */
}
#define AVG_OVERHEAD 6 /* It typically takes 3.0 microseconds */
/* (6 countdowns) to start/stop the timer. */
#define LEAST_VALID 10 /* Don't trust a value lower than this */
#define AVG_OVERHEAD 3U /* It typically takes 3.0 microseconds */
/* (3 countdowns) to start/stop the timer. */
#define LEAST_VALID 10U /* Don't trust a value lower than this */
int Read_timer()
int Read_timer()
{
unsigned long total;
rtems_unsigned32 total;
total = (Ttimer_val * TICK_INTERVAL) + lcsr->timer_cnt_1;
@@ -75,9 +76,10 @@ int Read_timer()
if ( total < LEAST_VALID )
return 0; /* below timer resolution */
return (total-AVG_OVERHEAD); /* in musec units */
return (total-AVG_OVERHEAD) >> 1;
}
rtems_status_code Empty_function( void )
{
return RTEMS_SUCCESSFUL;

View File

@@ -33,6 +33,7 @@ BEGIN_CODE
.set INTR_CLEAR_REG, 0xfff40074 | interrupt clear register
.set RELOAD, 0x01000000 | clear tick 1 interrupt
PUBLIC (Ttimer_val)
PUBLIC (timerisr)
SYM (timerisr):
move.l a0, -(a7) | save a0

View File

@@ -53,255 +53,248 @@ void usage (void);
int MVMEControl(u_long entry, int reset, int go);
unsigned int ahdtoi(unsigned char digit)
/* converts a hexadecimal char to an integer
*
* entry : digit = character to convert
* : 0..15 = result
* : -1 = char is not a digit
/* converts a hexadecimal char to an integer
*
* entry : digit = character to convert
* : 0..15 = result
* : -1 = char is not a digit
*/
{
/* check digit */
if (!isxdigit(digit))
return(-1);
if (!isxdigit(digit))
return(-1);
switch (toupper(digit)) {
case 'A' : return(0xA);
case 'B' : return(0xB);
case 'C' : return(0xC);
case 'D' : return(0xD);
case 'E' : return(0xE);
case 'F' : return(0xF);
default : return(digit - 0x30);
}
switch (toupper(digit)) {
case 'A' : return(0xA);
case 'B' : return(0xB);
case 'C' : return(0xC);
case 'D' : return(0xD);
case 'E' : return(0xE);
case 'F' : return(0xF);
default : return(digit - 0x30);
}
}
int issrec(char *str)
/* attempts to identify the type of Srecord string passed
*
* entry : str = pointer to null terminated string
* returns : 0,1,2,3,5,7,8,9 for S0..S9 except S6 & S4
* : -1 = invalid header or header not found
* : -2 = invalid header number
/* attempts to identify the type of Srecord string passed
*
* entry : str = pointer to null terminated string
* returns : 0,1,2,3,5,7,8,9 for S0..S9 except S6 & S4
* : -1 = invalid header or header not found
* : -2 = invalid header number
*/
{
/* Check first character for S */
if ((isupper(str[0]) && (str[0] == 'S')) ||
(islower(str[0]) && (str[0] == 's')))
{
/* check for valid header number */
switch (str[1]) {
case '0' : return 0; /* header record */
case '1' : return 1; /* data record, 2byte addr */
case '2' : return 2; /* " " , 3byte addr */
case '3' : return 3; /* " " , 4byte addr */
case '5' : return 5; /* number of S1,S2,S3 blocks */
case '7' : return 7; /* S3 terminator */
case '8' : return 8; /* S2 terminator */
case '9' : return 9; /* S1 terminator */
default : return -2; /* all others are invalid */
}
}
return(-1);
if ((isupper(str[0]) && (str[0] == 'S')) || (islower(str[0]) && (str[0] == 's')))
{
/* check for valid header number */
switch (str[1]) {
case '0' : return 0; /* header record */
case '1' : return 1; /* data record, 2byte addr */
case '2' : return 2; /* " " , 3byte addr */
case '3' : return 3; /* " " , 4byte addr */
case '5' : return 5; /* number of S1,S2,S3 blocks */
case '7' : return 7; /* S3 terminator */
case '8' : return 8; /* S2 terminator */
case '9' : return 9; /* S1 terminator */
default : return -2; /* all others are invalid */
}
}
return(-1);
}
int validrec(char *str)
/* Tests for a valid srecord. tests checksum & for nondigit characters
* doesn't rely on any other srecord routines.
*
* entry : str = pointer to null terminated string
* returns : -1 = srecord contains invalid characters
* : -2 = srecord checksum is invalid
* : -3 = srecord record length is invalid
* : 0 = srecord is valid
/* Tests for a valid srecord. tests checksum & for nondigit characters
* doesn't rely on any other srecord routines.
*
* entry : str = pointer to null terminated string
* returns : -1 = srecord contains invalid characters
* : -2 = srecord checksum is invalid
* : -3 = srecord record length is invalid
* : 0 = srecord is valid
*/
{
int cn = 1, rlen=0;
int mchksum=0, rchksum=0;
int cn = 1, rlen=0;
int mchksum=0, rchksum=0;
/* first check if there are any non-digit characters except S */
while (str[cn]!=0)
if (!isxdigit(str[cn++]))
return(-1);
while (str[cn]!=0)
if (!isxdigit(str[cn++]))
return(-1);
/* test number of data bytes */
rlen = ahdtoi(str[2])* 0x10 + ahdtoi(str[3]);
if (((strlen(str)-4)/2U) != rlen) return(-3);
rlen = ahdtoi(str[2])* 0x10 + ahdtoi(str[3]);
if (((strlen(str)-4)/2U) != rlen) return(-3);
/* get checksum from string */
rchksum = ahdtoi(str[rlen*2+2])*0x10 + ahdtoi(str[rlen*2+3]);
/* string chksum */
rchksum = ahdtoi(str[rlen*2+2])*0x10 + ahdtoi(str[rlen*2+3]); /* string chksum */
/* now calculate my own checksum */
for (cn=2; cn <= rlen*2; )
mchksum += ahdtoi(str[cn++])*0x10 + ahdtoi(str[cn++]);
mchksum = ~mchksum & 0xFF;
if (mchksum != rchksum) return(-2); /* return -2 in not equal */
for (cn=2; cn <= rlen*2; )
mchksum += ahdtoi(str[cn++])*0x10 + ahdtoi(str[cn++]);
mchksum = ~mchksum & 0xFF;
if (mchksum != rchksum) return(-2); /* return -2 in not equal */
/* return OK if we didn't fail any of these tests */
return(0);
return(0);
}
void hdr2str(char *sstr, char *pstr)
/* converts header record (S0) string into a plain string
*
* entry : sstr = pointer to S0 string record
* exit : pstr = pointer to string long enough to hold string
* (caller must allocate enough space for string)
/* converts header record (S0) string into a plain string
*
* entry : sstr = pointer to S0 string record
* exit : pstr = pointer to string long enough to hold string
* (caller must allocate enough space for string)
*/
{
int rlen, cn, pn=0;
int rlen, cn, pn=0;
rlen = ahdtoi(sstr[2])*0x10 + ahdtoi(sstr[3]);
for (cn=8; cn <= rlen*2; )
pstr[pn++] = ahdtoi(sstr[cn++])*0x10 + ahdtoi(sstr[cn++]);
pstr[pn]=0;
rlen = ahdtoi(sstr[2])*0x10 + ahdtoi(sstr[3]);
for (cn=8; cn <= rlen*2; )
pstr[pn++] = ahdtoi(sstr[cn++])*0x10 + ahdtoi(sstr[cn++]);
pstr[pn]=0;
}
unsigned long getaddr(char *str)
/* returns the address of the srecord in str. assumes record is valid.
*
* entry : str = pointer to srecord string
* exit : address of data, word or long.
/* returns the address of the srecord in str. assumes record is valid.
*
* entry : str = pointer to srecord string
* exit : address of data, word or long.
*/
{
unsigned long addr=0;
unsigned long addr=0;
switch (issrec(str)) {
case 0 :
case 1 :
case 5 :
case 9 :
addr = ahdtoi(str[4])*0x1000 + ahdtoi(str[5])*0x100
+ ahdtoi(str[6])*0x10 + ahdtoi(str[7]);
return(addr);
case 2 :
case 8 :
addr = ahdtoi(str[4])*0x100000 + ahdtoi(str[5])*0x10000
+ ahdtoi(str[6])*0x1000 + ahdtoi(str[7])*0x100
+ ahdtoi(str[8])*0x10 + ahdtoi(str[9]);
return(addr);
case 3 :
case 7 :
addr = ahdtoi(str[4])*0x10000000 + ahdtoi(str[5])*0x1000000
+ ahdtoi(str[6])*0x100000 + ahdtoi(str[7])*0x10000
+ ahdtoi(str[8])*0x1000 + ahdtoi(str[9])*0x100
+ ahdtoi(str[10])*0x10 + ahdtoi(str[11]);
return(addr);
default : return(-1);
}
switch (issrec(str)) {
case 0 :
case 1 :
case 5 :
case 9 : addr = ahdtoi(str[4])*0x1000 + ahdtoi(str[5])*0x100
+ ahdtoi(str[6])*0x10 + ahdtoi(str[7]);
return(addr);
case 2 :
case 8 : addr = ahdtoi(str[4])*0x100000 + ahdtoi(str[5])*0x10000
+ ahdtoi(str[6])*0x1000 + ahdtoi(str[7])*0x100
+ ahdtoi(str[8])*0x10 + ahdtoi(str[9]);
return(addr);
case 3 :
case 7 : addr = ahdtoi(str[4])*0x10000000 + ahdtoi(str[5])*0x1000000
+ ahdtoi(str[6])*0x100000 + ahdtoi(str[7])*0x10000
+ ahdtoi(str[8])*0x1000 + ahdtoi(str[9])*0x100
+ ahdtoi(str[10])*0x10 + ahdtoi(str[11]);
return(addr);
default : return(-1);
}
}
unsigned int datasize(char *str)
/*
* returns the number of data bytes in the srecord. assumes record is valid.
*
* entry : str = pointer to srecord string
* exit : number of bytes of data in the data field.
* returns the number of data bytes in the srecord. assumes record is valid.
*
* entry : str = pointer to srecord string
* exit : number of bytes of data in the data field.
*/
{
unsigned int size=0;
unsigned int size=0;
switch (issrec(str)) {
case 0 :
case 1 :
case 5 :
case 7 :
case 8 :
case 9 : size = ahdtoi(str[2])*0x10 + ahdtoi(str[3]);
return(size-3);
case 2 : size = ahdtoi(str[2])*0x10 + ahdtoi(str[3]);
return(size-4);
case 3 : size = ahdtoi(str[2])*0x10 + ahdtoi(str[3]);
return(size-5);
default : return(-1);
}
switch (issrec(str)) {
case 0 :
case 1 :
case 5 :
case 7 :
case 8 :
case 9 : size = ahdtoi(str[2])*0x10 + ahdtoi(str[3]);
return(size-3);
case 2 : size = ahdtoi(str[2])*0x10 + ahdtoi(str[3]);
return(size-4);
case 3 : size = ahdtoi(str[2])*0x10 + ahdtoi(str[3]);
return(size-5);
default : return(-1);
}
}
void usage (void)
/*
* prints correct usage on stdout
* prints correct usage on stdout
*/
{
printf("\nUSAGE : sload [-v][-g][-r] [file]\n");
printf(" file is an s-record file\n");
printf(" -v for verbose summary of s-records loaded\n");
printf(" -g to start execution\n");
printf(" -r to reset MVME162\n\n");
printf("\nUSAGE : sload [-v][-g][-r] [file]\n");
printf(" file is an s-record file\n");
printf(" -v for verbose summary of s-records loaded\n");
printf(" -g to start execution\n");
printf(" -r to reset MVME162\n\n");
}
int MVMEControl(u_long entry, int reset, int go)
/* Controls MVME-162 from other VME master:
/* Controls MVME-162 from other VME master:
* if entry != 0, loads it as start address
* if go != 0, starts program execution from entry
* if reset != 0, resets mvme162's local bus
* if go != 0, starts program execution from entry
* if reset != 0, resets mvme162's local bus
* Depends upon #define'ed GROUP_BASE_ADDRESS and BOARD_BASE_ADDRESS
* which in turn are set by the 162-BUG's ENV command.
* which in turn are set by the 162-BUG's ENV command.
*/
{
int vme;
char vmedev[32] = "/dev/vme16d32"; /* d32 is important !!! */
u_long pagesize;
struct gcsr *gcsr_map;
int vme;
char vmedev[32] = "/dev/vme16d32"; /* d32 is important !!! */
u_long pagesize;
struct gcsr *gcsr_map;
pagesize = sysconf(_SC_PAGESIZE); /* mmap likes to be page-aligned */
if ((vme = open(vmedev, O_RDWR)) == -1) {
perror("open");
fprintf(stderr, "Cannot open vme as %s to access GCSR\n", vmedev);
return 1;
}
pagesize = sysconf(_SC_PAGESIZE); /* mmap likes to be page-aligned */
if ((vme = open(vmedev, O_RDWR)) == -1) {
perror("open");
fprintf(stderr, "Cannot open vme as %s to access GCSR\n", vmedev);
return 1;
}
/* "MAP_SHARED" is important here */
gcsr_map = (struct gcsr *)
mmap(0, 0x1000, PROT_WRITE|PROT_READ, MAP_SHARED,
vme, (u_long)gcsr_vme / pagesize * pagesize);
if (gcsr_map == (struct gcsr *) - 1) {
perror("mmap");
fprintf(stderr, "Cannot mmap() to remote bus address 0x%08X\n",
(u_long)gcsr_vme / pagesize * pagesize);
return 1;
}
gcsr_map = (struct gcsr *) mmap(0, 0x1000, PROT_WRITE|PROT_READ, MAP_SHARED,
vme, (u_long)gcsr_vme / pagesize * pagesize);
if (gcsr_map == (struct gcsr *) - 1) {
perror("mmap");
fprintf(stderr, "Cannot mmap() to remote bus address 0x%08X\n",
(u_long)gcsr_vme / pagesize * pagesize);
return 1;
}
/*
* use GCSR to start execution in MVME162
* adjust pointer to compensate for page alignement
* adjust pointer to compensate for page alignement
*/
gcsr_map = (struct gcsr *)((u_long)gcsr_map +
(u_long)gcsr_vme % pagesize);
gcsr_map = (struct gcsr *)((u_long)gcsr_map + (u_long)gcsr_vme % pagesize);
if (reset) { /* reset the local bus... */
gcsr_map->board_scr |= 0x80;
}
if (entry) { /* ...load start address... */
gcsr_map->gpr[0] = entry >> 16U;
gcsr_map->gpr[1] = entry & 0x0000FFFF;
}
if (go) { /* ... and kick it in the ass! */
gcsr_map->lmsig = 0x1;
}
if (reset) { /* reset the local bus... */
gcsr_map->board_scr |= 0x80;
}
if (entry) { /* ...load start address... */
gcsr_map->gpr[0] = entry >> 16U;
gcsr_map->gpr[1] = entry & 0x0000FFFF;
}
if (go) { /* ... and kick it in the ass! */
gcsr_map->lmsig = 0x1;
}
}
/*=================================================================== */
main(int argc, char *argv[])
{
char inpstr[256];
u_char image[256];
char hdrstr[64];
int i, j, k, result, size, line=0, lastrec=0;
long addr, tsize=0, naddr=0, blksize=0, blknum=1;
FILE *in;
char infile[256] = "";
char vmedev[32] = "/dev/vme32d32"; /* Assume "/dev/vme32d32" */
int vme, verbose = 0, go = 0, reset = 0, havefile = 0;
/* Parse the command line */
char inpstr[256];
u_char image[256];
char hdrstr[64];
int i, j, k, result, size, line=0, lastrec=0;
long addr, tsize=0, naddr=0, blksize=0, blknum=1;
FILE *in;
char infile[256] = "";
char vmedev[32] = "/dev/vme32d32"; /* Assume "/dev/vme32d32" */
int vme, verbose = 0, go = 0, reset = 0, havefile = 0;
/* Parse the command line */
--argc;
while (argv++, argc--) {
if (**argv != '-') {
strcpy(infile, *argv);
havefile = 1;
if (**argv != '-') {
strcpy(infile, *argv);
havefile = 1;
} else if (!strcmp(*argv, "-v")) {
verbose = 1;
} else if (!strcmp(*argv, "-g")) {
@@ -325,18 +318,18 @@ main(int argc, char *argv[])
if (!havefile) {
if (!reset && !go) {
usage();
usage();
}
else {
MVMEControl(0, reset, go);
}
exit(0);
}
if ((in = fopen(infile, "r")) == NULL) {
perror("open");
fprintf(stderr, "Cannot open input file %s\n", infile);
exit(1);
exit(1);
}
if ((vme = open(vmedev, O_RDWR)) == -1) {
@@ -347,196 +340,172 @@ main(int argc, char *argv[])
line++;
if (validrec(inpstr) == 0) {
switch (issrec(inpstr)) {
case 0 :
hdr2str(inpstr, hdrstr);
if (verbose) printf("HEADER string = `%s'\n", hdrstr);
lastrec=HEADER;
break;
case 1 :
addr = getaddr(inpstr);
size = datasize(inpstr);
if (blksize == 0) {
blksize+=size;
naddr=addr+size;
if (verbose) printf("DATA\tS19\t$%04lX", addr);
lastrec=DATA19;
}
else if ((blksize!=0) && (addr==naddr)) {
blksize+=size;
naddr=addr+size;
}
else {
if (verbose) printf("\t$%04lX\t%lu", naddr-1, blksize);
if (verbose) printf("\t%d\n", blknum);
blknum+=1;
naddr=addr+size;
blksize=size;
if (verbose) printf("DATA\tS19\t$%04lX", addr);
lastrec=DATA19;
}
tsize += size;
if (vme == -1) break;
for (i = 0, j = 8, k = size; k-- > 0; i += 1, j += 2) {
image[i] = ahdtoi(inpstr[j])*0x10 + ahdtoi(inpstr[j+1]);
}
if (lseek(vme, addr, SEEK_SET) == -1) {
fprintf(stderr, "lseek() to vme address %08X failed\n", addr);
}
else {
if (write(vme, (u_char *)image, size) != size) {
fprintf(stderr, "Write to vme address %08X failed\n", addr);
}
}
break;
case 2 :
addr = getaddr(inpstr);
size = datasize(inpstr);
if (blksize == 0) {
blksize+=size;
naddr=addr+size;
if (verbose) printf("DATA\tS28\t$%06lX",addr);
lastrec=DATA28;
}
else if ((blksize!=0) && (addr==naddr)) {
blksize+=size;
naddr=addr+size;
}
else {
if (verbose) printf("\t$%06lX\t%lu",naddr-1,blksize);
if (verbose) printf("\t%d\n",blknum);
blknum+=1;
naddr=addr+size;
blksize=size;
if (verbose) printf("DATA\tS28\t$%06lX",addr);
lastrec=DATA28;
}
tsize += size;
if (vme == -1) break;
for (i = 0, j = 10, k = size; k-- > 0; i += 1, j += 2) {
image[i] = ahdtoi(inpstr[j])*0x10 + ahdtoi(inpstr[j+1]);
}
if (lseek(vme, addr, SEEK_SET) == -1) {
fprintf(stderr, "lseek() to vme address %08X failed\n", addr);
}
else {
if (write(vme, (u_char *)image, size) != size) {
fprintf(stderr, "Write to vme address %08X failed\n", addr);
}
}
break;
case 3 :
addr = getaddr(inpstr);
size = datasize(inpstr);
if (blksize == 0) {
blksize+=size;
naddr=addr+size;
if (verbose) printf("DATA\tS37\t$%08lX",addr);
lastrec=DATA37;
}
else if ((blksize!=0) && (addr==naddr)) {
blksize+=size;
naddr=addr+size;
}
else {
if (verbose) printf("\t$%08lX\t%lu",naddr-1,blksize);
if (verbose) printf("\t%d\n",blknum);
blknum+=1;
naddr=addr+size;
blksize=size;
if (verbose) printf("DATA\tS37\t$%08lX",addr);
lastrec=DATA37;
}
tsize += size;
if (vme == -1) break;
for (i = 0, j = 12, k = size; k-- > 0; i += 1, j += 2) {
image[i] = ahdtoi(inpstr[j])*0x10 + ahdtoi(inpstr[j+1]);
}
if (lseek(vme, addr, SEEK_SET) == -1) {
fprintf(stderr, "lseek() to vme address %08X failed\n", addr);
}
else {
if (write(vme, (u_char *)image, size) != size) {
fprintf(stderr, "Write to vme address %08X failed\n", addr);
}
}
break;
case 7 :
if (lastrec==DATA19){
if (verbose) printf("\t$%04lX\t%lu",naddr-1,blksize);
}
if (lastrec==DATA28){
if (verbose) printf("\t$%06lX\t%lu",naddr-1,blksize);
}
if (lastrec==DATA37){
if (verbose) printf("\t$%08lX\t%lu",naddr-1,blksize);
}
if (verbose) printf("\t%d\n",blknum);
addr = getaddr(inpstr);
if (verbose) printf("TERM\tS37");
printf("\nExecution address = $%08lX\n", addr);
lastrec=TERMINATOR;
break;
case 8 :
if (lastrec==DATA19){
if (verbose) printf("\t$%04lX\t%lu",naddr-1,blksize);
}
if (lastrec==DATA28){
if (verbose) printf("\t$%06lX\t%lu",naddr-1,blksize);
}
if (lastrec==DATA37){
if (verbose) printf("\t$%08lX\t%lu",naddr-1,blksize);
}
if (verbose) printf("\t%d\n",blknum);
addr = getaddr(inpstr);
if (verbose) printf("TERM\tS28");
printf("\nExecution address = $%06lX\n", addr);
lastrec=TERMINATOR;
break;
case 9 :
if (lastrec==DATA19){
if (verbose) printf("\t$%04lX\t%lu",naddr-1,blksize);
}
if (lastrec==DATA28){
if (verbose) printf("\t$%06lX\t%lu",naddr-1,blksize);
}
if (lastrec==DATA37){
if (verbose) printf("\t$%08lX\t%lu",naddr-1,blksize);
}
if (verbose) printf("\t%d\n",blknum);
addr = getaddr(inpstr);
if (verbose) printf("TERM\tS19");
printf("\nExecution address = $%04lX\n", addr);
lastrec=TERMINATOR;
break;
case 0 :
hdr2str(inpstr, hdrstr);
if (verbose) printf("HEADER string = `%s'\n", hdrstr);
lastrec=HEADER;
break;
case 1 :
addr = getaddr(inpstr);
size = datasize(inpstr);
if (blksize == 0) {
blksize+=size;
naddr=addr+size;
if (verbose) printf("DATA\tS19\t$%04lX", addr);
lastrec=DATA19;
}
else if ((blksize!=0) && (addr==naddr)) {
blksize+=size;
naddr=addr+size;
}
else {
if (verbose) printf("\t$%04lX\t%lu", naddr-1, blksize);
if (verbose) printf("\t%d\n", blknum);
blknum+=1;
naddr=addr+size;
blksize=size;
if (verbose) printf("DATA\tS19\t$%04lX", addr);
lastrec=DATA19;
}
tsize += size;
if (vme == -1) break;
for (i = 0, j = 8, k = size; k-- > 0; i += 1, j += 2) {
image[i] = ahdtoi(inpstr[j])*0x10 + ahdtoi(inpstr[j+1]);
}
if (lseek(vme, addr, SEEK_SET) == -1) {
fprintf(stderr, "lseek() to vme address %08X failed\n", addr);
}
else {
if (write(vme, (u_char *)image, size) != size) {
fprintf(stderr, "Write to vme address %08X failed\n", addr);
}
}
break;
case 2 :
addr = getaddr(inpstr);
size = datasize(inpstr);
if (blksize == 0) {
blksize+=size;
naddr=addr+size;
if (verbose) printf("DATA\tS28\t$%06lX",addr);
lastrec=DATA28;
}
else if ((blksize!=0) && (addr==naddr)) {
blksize+=size;
naddr=addr+size;
}
else {
if (verbose) printf("\t$%06lX\t%lu",naddr-1,blksize);
if (verbose) printf("\t%d\n",blknum);
blknum+=1;
naddr=addr+size;
blksize=size;
if (verbose) printf("DATA\tS28\t$%06lX",addr);
lastrec=DATA28;
}
tsize += size;
if (vme == -1) break;
for (i = 0, j = 10, k = size; k-- > 0; i += 1, j += 2) {
image[i] = ahdtoi(inpstr[j])*0x10 + ahdtoi(inpstr[j+1]);
}
if (lseek(vme, addr, SEEK_SET) == -1) {
fprintf(stderr, "lseek() to vme address %08X failed\n", addr);
}
else {
if (write(vme, (u_char *)image, size) != size) {
fprintf(stderr, "Write to vme address %08X failed\n", addr);
}
}
break;
case 3 :
addr = getaddr(inpstr);
size = datasize(inpstr);
if (blksize == 0) {
blksize+=size;
naddr=addr+size;
if (verbose) printf("DATA\tS37\t$%08lX",addr);
lastrec=DATA37;
}
else if ((blksize!=0) && (addr==naddr)) {
blksize+=size;
naddr=addr+size;
}
else {
if (verbose) printf("\t$%08lX\t%lu",naddr-1,blksize);
if (verbose) printf("\t%d\n",blknum);
blknum+=1;
naddr=addr+size;
blksize=size;
if (verbose) printf("DATA\tS37\t$%08lX",addr);
lastrec=DATA37;
}
tsize += size;
if (vme == -1) break;
for (i = 0, j = 12, k = size; k-- > 0; i += 1, j += 2) {
image[i] = ahdtoi(inpstr[j])*0x10 + ahdtoi(inpstr[j+1]);
}
if (lseek(vme, addr, SEEK_SET) == -1) {
fprintf(stderr, "lseek() to vme address %08X failed\n", addr);
}
else {
if (write(vme, (u_char *)image, size) != size) {
fprintf(stderr, "Write to vme address %08X failed\n", addr);
}
}
break;
case 7 :
if (lastrec==DATA19){if (verbose) printf("\t$%04lX\t%lu",naddr-1,blksize);}
if (lastrec==DATA28){if (verbose) printf("\t$%06lX\t%lu",naddr-1,blksize);}
if (lastrec==DATA37){if (verbose) printf("\t$%08lX\t%lu",naddr-1,blksize);}
if (verbose) printf("\t%d\n",blknum);
addr = getaddr(inpstr);
if (verbose) printf("TERM\tS37");
printf("\nExecution address = $%08lX\n", addr);
lastrec=TERMINATOR;
break;
case 8 :
if (lastrec==DATA19){if (verbose) printf("\t$%04lX\t%lu",naddr-1,blksize);}
if (lastrec==DATA28){if (verbose) printf("\t$%06lX\t%lu",naddr-1,blksize);}
if (lastrec==DATA37){if (verbose) printf("\t$%08lX\t%lu",naddr-1,blksize);}
if (verbose) printf("\t%d\n",blknum);
addr = getaddr(inpstr);
if (verbose) printf("TERM\tS28");
printf("\nExecution address = $%06lX\n", addr);
lastrec=TERMINATOR;
break;
case 9 :
if (lastrec==DATA19){if (verbose) printf("\t$%04lX\t%lu",naddr-1,blksize);}
if (lastrec==DATA28){if (verbose) printf("\t$%06lX\t%lu",naddr-1,blksize);}
if (lastrec==DATA37){if (verbose) printf("\t$%08lX\t%lu",naddr-1,blksize);}
if (verbose) printf("\t%d\n",blknum);
addr = getaddr(inpstr);
if (verbose) printf("TERM\tS19");
printf("\nExecution address = $%04lX\n", addr);
lastrec=TERMINATOR;
break;
}
else {
printf("\nError on line %d. ",line);
switch (validrec(inpstr)) {
case -1 : {printf("SRecord contains invalid characters.\n"); break; }
case -2 : {printf("SRecord checksum is invalid.\n"); break;}
case -3 : {printf("SRecord length is invalid.\n"); break;}
}
exit(1);
}
}
}
else {
printf("\nError on line %d. ",line);
switch (validrec(inpstr)) {
case -1 : {printf("SRecord contains invalid characters.\n"); break; }
case -2 : {printf("SRecord checksum is invalid.\n"); break;}
case -3 : {printf("SRecord length is invalid.\n"); break;}
}
exit(1);
}
}
if ((lastrec==DATA19) || (lastrec==DATA28) || (lastrec==DATA37)) {
if (lastrec==DATA19){
if (verbose) printf("\t$%04lX\t%lu",naddr-1,blksize);
}
if (lastrec==DATA28){
if (verbose) printf("\t$%06lX\t%lu",naddr-1,blksize);
}
if (lastrec==DATA37){
if (verbose) printf("\t$%08lX\t%lu",naddr-1,blksize);
}
if (verbose) printf("\t%d\n",blknum);
printf("ERROR: terminator record not found.\n");
}
else {
for (i = 0x000FFFF; i-- > 0;) ; /* mystique delay... */
MVMEControl(addr, reset, go);
}
if (verbose) printf("total data size = %lu bytes\n", tsize);
if ((lastrec==DATA19) || (lastrec==DATA28) || (lastrec==DATA37)) {
if (lastrec==DATA19){if (verbose) printf("\t$%04lX\t%lu",naddr-1,blksize);}
if (lastrec==DATA28){if (verbose) printf("\t$%06lX\t%lu",naddr-1,blksize);}
if (lastrec==DATA37){if (verbose) printf("\t$%08lX\t%lu",naddr-1,blksize);}
if (verbose) printf("\t%d\n",blknum);
printf("ERROR: terminator record not found.\n");
}
else {
for (i = 0x000FFFF; i-- > 0;) ; /* mystique delay... */
MVMEControl(addr, reset, go);
}
if (verbose) printf("total data size = %lu bytes\n", tsize);
}