sptests/sprmsched01: Merge and fix

Merge into one file and fix obvious problems (e.g. out of bounds array
access).

Update #2795.
This commit is contained in:
Sebastian Huber
2017-01-24 15:34:47 +01:00
parent b8d6eb719a
commit 29e08d41f4
4 changed files with 112 additions and 196 deletions

View File

@@ -1,6 +1,6 @@
rtems_tests_PROGRAMS = sprmsched01
sprmsched01_SOURCES = init.c tasks.c system.h
sprmsched01_SOURCES = init.c
dist_rtems_tests_DATA = sprmsched01.scn
dist_rtems_tests_DATA += sprmsched01.doc

View File

@@ -1,7 +1,21 @@
/**
* @file sprmsched01/init.c
* @brief A heuristic example to demonstrate how the postponed jobs are handled.
*
* @brief A init task body for sprmsched01 example.
* Given two tasks with implicit deadline under fixed-priority scheudling.
* Task 1 has (6, 10) and task 2 has (1, 2), where (execution time, deadline/period).
* To force deadline misses, we reverse the rate-monotonic priority assignment
* and only execute the highest priority task twice.
*
* In the original implementation in v4.11, no matter how many periods are
* expired, RMS manager only releases a job with a shifted deadline assignment
* in the watchdog. As the results written in sprmsched01.scn, we can see that
* the timeout of task 2 period will be detected right after Job3 of Task2 is finished.
* If the overrun handling is correct, the status of task 2 period will return back to
* RTEMS_SUCCESSFUL after periodically releasing those postponed jobs (the last one is Job 9).
*
* Otherwise, we can see that the release time of Job 4 is no longer periodic,
* and the RTEMS returns back to RTEMS_SUCCESSFUL right after Job 4 is finished
* without releasing all the other postponed jobs.
*
*/
@@ -17,24 +31,89 @@
#include "config.h"
#endif
#define CONFIGURE_INIT
#include "system.h"
#include <rtems/cpuuse.h>
#include <rtems/counter.h>
#include <rtems/rtems/tasksimpl.h>
#include <rtems/test.h>
#include <rtems/status-checks.h>
#include <stdio.h>
#include <inttypes.h>
const char rtems_test_name[] = "Rate Monotonic 01 - Overrun Test";
#include "tmacros.h"
/* Global variables */
rtems_id Task_id[ 2 ]; /* array of task ids */
rtems_name Task_name[ 2 ]; /* array of task names */
uint32_t tick_per_second; /* time reference */
int testnumber = 11; /* stop condition */
const char rtems_test_name[] = "SPRMSCHED 1";
rtems_task_priority Prio[3] = { 0, 2, 5 };
static const uint32_t Periods[] = { 10000, 2000 };
static const uint32_t Iterations[] = { 6000, 1000 };
static const rtems_name Task_name[] = {
rtems_build_name( 'T', 'A', '1', ' ' ),
rtems_build_name( 'T', 'A', '2', ' ' )
};
static const rtems_task_priority Prio[3] = { 2, 5 };
static const uint32_t testnumber = 11; /* stop condition */
rtems_task Init(
static uint32_t tsk_counter[] = { 0, 0 };
static rtems_id Task_id[ 2 ];
/**
* @brief Task body
*/
static rtems_task Task(
rtems_task_argument argument
)
{
rtems_status_code status;
rtems_id RM_period;
rtems_id selfid=rtems_task_self();
uint32_t start, end, flag=0, index;
rtems_counter_ticks t0;
t0 = rtems_counter_nanoseconds_to_ticks( 1000000 ); //1ms ticks counter
/*create period*/
status = rtems_rate_monotonic_create( Task_name[ argument ], &RM_period );
directive_failed( status, "rtems_rate_monotonic_create" );
while ( FOREVER ) {
status = rtems_rate_monotonic_period( RM_period, Periods[ argument ] );
//directive_failed( status, "rtems_rate_monotonic_period" ); let TIMEOUT pass
if( argument == 1 && flag == 0 && status == RTEMS_TIMEOUT ){
flag = 1;
printf( "RTEMS_TIMEOUT\n" );
} else if ( flag == 1 && status == RTEMS_SUCCESSFUL ) {
flag = 0;
printf( "RTEMS_SUCCESSFUL\n" );
}
start = rtems_clock_get_ticks_since_boot();
if ( argument == 1 )
printf( "Job %" PRIu32 " Task %" PRIuPTR " starts at tick %" PRIu32 ".\n", tsk_counter[ argument ]+1, argument, start );
else
printf( "Task %" PRIuPTR " starts at tick %" PRIu32 ".\n", argument, start );
for( index = 0; index < Iterations[ argument ]; index++ ){
rtems_counter_delay_ticks( t0 );
}
end = rtems_clock_get_ticks_since_boot();
printf( " Job %" PRIu32" Task %" PRIuPTR " ends at tick %" PRIu32".\n", tsk_counter[ argument ]+1, argument, end );
if( argument == 1 ){
if( tsk_counter[ argument ] == testnumber ){
TEST_END();
status = rtems_rate_monotonic_delete( RM_period );
directive_failed( status, "rtems_rate_monotonic_delete" );
rtems_test_exit( 0 );
}
}
tsk_counter[ argument ]+=1;
if ( argument == 0 ){
if( tsk_counter[ argument ] == 2 ){
status = rtems_rate_monotonic_delete( RM_period );
directive_failed( status, "rtems_rate_monotonic_delete" );
status = rtems_task_delete( selfid );
directive_failed( status, "rtems_task_delete" );
}
}
}
}
static rtems_task Init(
rtems_task_argument argument
)
{
@@ -43,14 +122,10 @@ rtems_task Init(
TEST_BEGIN();
tick_per_second = rtems_clock_get_ticks_per_second();
printf( "\nTicks per second in your system: %" PRIu32 "\n", tick_per_second );
Task_name[ 1 ] = rtems_build_name( 'T', 'A', '1', ' ' );
Task_name[ 2 ] = rtems_build_name( 'T', 'A', '2', ' ' );
printf( "\nTicks per second in your system: %" PRIu32 "\n", rtems_clock_get_ticks_per_second() );
/* Create two tasks */
for ( index = 1; index <= 2; index++ ){
for ( index = 0; index < RTEMS_ARRAY_SIZE(Task_name); ++index ){
status = rtems_task_create(
Task_name[ index ], Prio[index], RTEMS_MINIMUM_STACK_SIZE, RTEMS_DEFAULT_MODES,
RTEMS_DEFAULT_ATTRIBUTES, &Task_id[ index ]
@@ -60,7 +135,7 @@ rtems_task Init(
/* After creating the periods for tasks, start to run them sequencially. */
for ( index = 1; index <= 2; index++ ){
for ( index = 0; index < RTEMS_ARRAY_SIZE(Task_name); ++index ){
status = rtems_task_start( Task_id[ index ], Task, index);
directive_failed( status, "rtems_task_start loop");
}
@@ -68,3 +143,17 @@ rtems_task Init(
directive_failed( status, "rtems_task_delete of RTEMS_SELF" );
}
#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
#define CONFIGURE_MICROSECONDS_PER_TICK 1000
#define CONFIGURE_MAXIMUM_TASKS 3
#define CONFIGURE_MAXIMUM_PERIODS 2
#define CONFIGURE_RTEMS_INIT_TASKS_TABLE
#define CONFIGURE_INITIAL_EXTENSIONS \
RTEMS_TEST_INITIAL_EXTENSION
#define CONFIGURE_INIT
#include <rtems/confdefs.h>

View File

@@ -1,61 +0,0 @@
/**
* @file sprmsched01/system.h
*
* @brief sprmsched01 example header
*/
/*
* COPYRIGHT (c) 1989-2007.
* On-Line Applications Research Corporation (OAR).
*
* COPYRIGHT (c) 2016 Kuan-Hsun Chen.
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.com/license/LICENSE.
*/
#include <inttypes.h>
#include <rtems.h>
#include <tmacros.h>
/* function prototypes */
rtems_task Init(
rtems_task_argument argument
);
rtems_task Task(
rtems_task_argument argument
);
/*
* Keep the names and IDs in global variables so another task can use them.
*/
extern rtems_id Task_id[ 2 ]; /* array of task ids */
extern rtems_name Task_name[ 2 ]; /* array of task names */
extern uint32_t tick_per_second; /* time reference */
extern int testnumber; /* stop condition */
/* configuration information */
#include <bsp.h> /* for device driver prototypes */
#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
#define CONFIGURE_MICROSECONDS_PER_TICK 1000 // NB: 10 and lower gives system failure for erc32 simulator
#define CONFIGURE_MAXIMUM_TASKS 3
#define CONFIGURE_MAXIMUM_SEMAPHORES 1
#define CONFIGURE_MAXIMUM_PRIORITY 15
#define CONFIGURE_EXTRA_TASK_STACKS (20 * RTEMS_MINIMUM_STACK_SIZE)
#define CONFIGURE_MAXIMUM_PERIODS 3
#define CONFIGURE_RTEMS_INIT_TASKS_TABLE
#include <rtems/confdefs.h>
/* end of include file */

View File

@@ -1,112 +0,0 @@
/**
* @file sprmsched01/tasks.c
*
* @brief A heuristic example to demonstrate how the postponed jobs are handled.
*
* Given two tasks with implicit deadline under fixed-priority scheudling.
* Task 1 has (6, 10) and task 2 has (1, 2), where (execution time, deadline/period).
* To force deadline misses, we reverse the rate-monotonic priority assignment
* and only execute the highest priority task twice.
*
* In the original implementation in v4.11, no matter how many periods are
* expired, RMS manager only releases a job with a shifted deadline assignment
* in the watchdog. As the results written in sprmsched01.scn, we can see that
* the timeout of task 2 period will be detected right after Job3 of Task2 is finished.
* If the overrun handling is correct, the status of task 2 period will return back to
* RTEMS_SUCCESSFUL after periodically releasing those postponed jobs (the last one is Job 9).
*
* Otherwise, we can see that the release time of Job 4 is no longer periodic,
* and the RTEMS returns back to RTEMS_SUCCESSFUL right after Job 4 is finished
* without releasing all the other postponed jobs.
*
*/
/*
* COPYRIGHT (c) 2016 Kuan-Hsun Chen.
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.com/license/LICENSE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "system.h"
/* CPU usage and Rate monotonic manger statistics */
#include "rtems/cpuuse.h"
#include "rtems/counter.h"
/* Periods for the various tasks [ticks] */
uint32_t Periods[3] = { 0, 10000, 2000 };
uint32_t Iterations[3] = { 0, 6000, 1000 };
uint32_t tsk_counter[3] = { 0, 0, 0 };
/**
* @brief Task body
*/
rtems_task Task(
rtems_task_argument argument
)
{
rtems_status_code status;
rtems_id RM_period;
rtems_id selfid=rtems_task_self();
uint32_t start, end, flag=0, index;
rtems_counter_ticks t0;
t0 = rtems_counter_nanoseconds_to_ticks( 1000000 ); //1ms ticks counter
/*create period*/
status = rtems_rate_monotonic_create( argument, &RM_period );
directive_failed( status, "rtems_rate_monotonic_create" );
switch ( argument ) {
case 1:
case 2:
while ( FOREVER ) {
status = rtems_rate_monotonic_period( RM_period, Periods[ argument ] );
//directive_failed( status, "rtems_rate_monotonic_period" ); let TIMEOUT pass
if( argument == 2 && flag == 0 && status == RTEMS_TIMEOUT ){
flag = 1;
printf( "RTEMS_TIMEOUT\n" );
} else if ( flag == 1 && status == RTEMS_SUCCESSFUL ) {
flag = 0;
printf( "RTEMS_SUCCESSFUL\n" );
}
start = rtems_clock_get_ticks_since_boot();
if ( argument == 2 )
printf( "Job %d Task %d starts at tick %d.\n", tsk_counter[ argument ]+1, argument, start );
else
printf( "Task %d starts at tick %d.\n", argument, start );
for( index = 0; index < Iterations[ argument ]; index++ ){
rtems_counter_delay_ticks( t0 );
}
end = rtems_clock_get_ticks_since_boot();
printf( " Job %d Task %d ends at tick %d.\n", tsk_counter[ argument ]+1, argument, end );
if( argument == 2 ){
if( tsk_counter[ argument ] == testnumber ){
TEST_END();
status = rtems_rate_monotonic_delete( RM_period );
directive_failed( status, "rtems_rate_monotonic_delete" );
rtems_test_exit( 0 );
}
}
tsk_counter[ argument ]+=1;
if ( argument == 1 ){
if( tsk_counter[ argument ] == 2 ){
status = rtems_rate_monotonic_delete( RM_period );
directive_failed( status, "rtems_rate_monotonic_delete" );
status = rtems_task_delete( selfid );
directive_failed( status, "rtems_task_delete" );
}
}
}
break;
}
}