score: Add self-contained mutex implementation

This mutex implementation uses a thread priority queue with a simple
priority inheritance mechanism (similar to the object based mutexes).
The storage space must be supplied by the user (16 bytes on 32-bit
targets).
This commit is contained in:
Sebastian Huber
2015-06-28 22:06:36 +02:00
parent 12f93fbb13
commit 214d8edd18
10 changed files with 933 additions and 0 deletions

View File

@@ -134,6 +134,7 @@ static const rtems_assoc_t rtems_monitor_state_assoc[] = {
{ "Wseg", STATES_WAITING_FOR_SEGMENT, 0 },
{ "Wsem", STATES_WAITING_FOR_SEMAPHORE, 0 },
{ "Wsig", STATES_WAITING_FOR_SIGNAL, 0 },
{ "Wslmtx", STATES_WAITING_FOR_SYS_LOCK_MUTEX, 0 },
{ "Wsysev", STATES_WAITING_FOR_SYSTEM_EVENT, 0 },
{ "Wterm", STATES_WAITING_FOR_TERMINATION, 0 },
{ "Wtime", STATES_WAITING_FOR_TIME, 0 },

View File

@@ -346,6 +346,7 @@ libscore_a_SOURCES += src/apiext.c src/chain.c src/chainappend.c \
libscore_a_SOURCES += src/isrisinprogress.c
libscore_a_SOURCES += src/debugisownerofallocator.c
libscore_a_SOURCES += src/profilingisrentryexit.c
libscore_a_SOURCES += src/mutex.c
libscore_a_SOURCES += src/once.c
libscore_a_SOURCES += src/resourceiterate.c
libscore_a_SOURCES += src/smpbarrierwait.c

View File

@@ -86,6 +86,8 @@ extern "C" {
#define STATES_RESTARTING 0x800000
/** This macro corresponds to a task waiting for a join. */
#define STATES_WAITING_FOR_JOIN 0x1000000
/** This macro corresponds to a task waiting for a <sys/lock.h> mutex. */
#define STATES_WAITING_FOR_SYS_LOCK_MUTEX 0x2000000
/** This macro corresponds to a task which is in an interruptible
* blocking state.
@@ -103,6 +105,7 @@ extern "C" {
STATES_WAITING_FOR_SIGNAL | \
STATES_WAITING_FOR_BARRIER | \
STATES_WAITING_FOR_BSD_WAKEUP | \
STATES_WAITING_FOR_SYS_LOCK_MUTEX | \
STATES_WAITING_FOR_RWLOCK )
/** This macro corresponds to a task waiting which is blocked. */

442
cpukit/score/src/mutex.c Normal file
View File

@@ -0,0 +1,442 @@
/*
* Copyright (c) 2015 embedded brains GmbH. All rights reserved.
*
* embedded brains GmbH
* Dornierstr. 4
* 82178 Puchheim
* Germany
* <rtems@embedded-brains.de>
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.org/license/LICENSE.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif
#if HAVE_STRUCT__THREAD_QUEUE_QUEUE
#include <sys/lock.h>
#include <errno.h>
#include <rtems/score/assert.h>
#include <rtems/score/threadimpl.h>
#include <rtems/score/threadqimpl.h>
#include <rtems/score/todimpl.h>
#define MUTEX_TQ_OPERATIONS &_Thread_queue_Operations_priority
typedef struct {
Thread_queue_Syslock_queue Queue;
Thread_Control *owner;
} Mutex_Control;
RTEMS_STATIC_ASSERT(
offsetof( Mutex_Control, Queue )
== offsetof( struct _Mutex_Control, _Queue ),
MUTEX_CONTROL_QUEUE
);
RTEMS_STATIC_ASSERT(
offsetof( Mutex_Control, owner )
== offsetof( struct _Mutex_Control, _owner ),
MUTEX_CONTROL_OWNER
);
RTEMS_STATIC_ASSERT(
sizeof( Mutex_Control ) == sizeof( struct _Mutex_Control ),
MUTEX_CONTROL_SIZE
);
typedef struct {
Mutex_Control Mutex;
unsigned int nest_level;
} Mutex_recursive_Control;
RTEMS_STATIC_ASSERT(
offsetof( Mutex_recursive_Control, Mutex )
== offsetof( struct _Mutex_recursive_Control, _Mutex ),
MUTEX_RECURSIVE_CONTROL_MUTEX
);
RTEMS_STATIC_ASSERT(
offsetof( Mutex_recursive_Control, nest_level )
== offsetof( struct _Mutex_recursive_Control, _nest_level ),
MUTEX_RECURSIVE_CONTROL_NEST_LEVEL
);
RTEMS_STATIC_ASSERT(
sizeof( Mutex_recursive_Control )
== sizeof( struct _Mutex_recursive_Control ),
MUTEX_RECURSIVE_CONTROL_SIZE
);
static Mutex_Control *_Mutex_Get( struct _Mutex_Control *_mutex )
{
return (Mutex_Control *) _mutex;
}
static Thread_Control *_Mutex_Queue_acquire(
Mutex_Control *mutex,
ISR_lock_Context *lock_context
)
{
Thread_Control *executing;
_ISR_lock_ISR_disable( lock_context );
executing = _Thread_Executing;
_Thread_queue_Queue_acquire_critical(
&mutex->Queue.Queue,
&executing->Potpourri_stats,
lock_context
);
return executing;
}
static void _Mutex_Queue_release(
Mutex_Control *mutex,
ISR_lock_Context *lock_context
)
{
_Thread_queue_Queue_release( &mutex->Queue.Queue, lock_context );
}
static void _Mutex_Acquire_slow(
Mutex_Control *mutex,
Thread_Control *owner,
Thread_Control *executing,
Watchdog_Interval timeout,
ISR_lock_Context *lock_context
)
{
/* Priority inheritance */
_Thread_Raise_priority( owner, executing->current_priority );
_Thread_queue_Enqueue_critical(
&mutex->Queue.Queue,
MUTEX_TQ_OPERATIONS,
executing,
STATES_WAITING_FOR_SYS_LOCK_MUTEX,
timeout,
ETIMEDOUT,
lock_context
);
}
static void _Mutex_Release_slow(
Mutex_Control *mutex,
Thread_Control *executing,
Thread_queue_Heads *heads,
bool keep_priority,
ISR_lock_Context *lock_context
)
{
if (heads != NULL) {
const Thread_queue_Operations *operations;
Thread_Control *first;
operations = MUTEX_TQ_OPERATIONS;
first = ( *operations->first )( heads );
mutex->owner = first;
_Thread_queue_Extract_critical(
&mutex->Queue.Queue,
operations,
first,
lock_context
);
} else {
_Mutex_Queue_release( mutex, lock_context);
}
if ( !keep_priority ) {
Per_CPU_Control *cpu_self;
cpu_self = _Thread_Dispatch_disable();
_Thread_Restore_priority( executing );
_Thread_Dispatch_enable( cpu_self );
}
}
static void _Mutex_Release_critical(
Mutex_Control *mutex,
Thread_Control *executing,
ISR_lock_Context *lock_context
)
{
Thread_queue_Heads *heads;
bool keep_priority;
mutex->owner = NULL;
--executing->resource_count;
/*
* Ensure that the owner resource count is visible to all other
* processors and that we read the latest priority restore
* hint.
*/
_Atomic_Fence( ATOMIC_ORDER_ACQ_REL );
heads = mutex->Queue.Queue.heads;
keep_priority = _Thread_Owns_resources( executing )
|| !executing->priority_restore_hint;
if ( __predict_true( heads == NULL && keep_priority ) ) {
_Mutex_Queue_release( mutex, lock_context );
} else {
_Mutex_Release_slow(
mutex,
executing,
heads,
keep_priority,
lock_context
);
}
}
void _Mutex_Acquire( struct _Mutex_Control *_mutex )
{
Mutex_Control *mutex;
ISR_lock_Context lock_context;
Thread_Control *executing;
Thread_Control *owner;
mutex = _Mutex_Get( _mutex );
executing = _Mutex_Queue_acquire( mutex, &lock_context );
owner = mutex->owner;
++executing->resource_count;
if ( __predict_true( owner == NULL ) ) {
mutex->owner = executing;
_Mutex_Queue_release( mutex, &lock_context );
} else {
_Mutex_Acquire_slow( mutex, owner, executing, 0, &lock_context );
}
}
int _Mutex_Acquire_timed(
struct _Mutex_Control *_mutex,
const struct timespec *abstime
)
{
Mutex_Control *mutex;
ISR_lock_Context lock_context;
Thread_Control *executing;
Thread_Control *owner;
mutex = _Mutex_Get( _mutex );
executing = _Mutex_Queue_acquire( mutex, &lock_context );
owner = mutex->owner;
++executing->resource_count;
if ( __predict_true( owner == NULL ) ) {
mutex->owner = executing;
_Mutex_Queue_release( mutex, &lock_context );
return 0;
} else {
Watchdog_Interval ticks;
switch ( _TOD_Absolute_timeout_to_ticks( abstime, &ticks ) ) {
case TOD_ABSOLUTE_TIMEOUT_INVALID:
_Mutex_Queue_release( mutex, &lock_context );
return EINVAL;
case TOD_ABSOLUTE_TIMEOUT_IS_IN_PAST:
case TOD_ABSOLUTE_TIMEOUT_IS_NOW:
_Mutex_Queue_release( mutex, &lock_context );
return ETIMEDOUT;
default:
break;
}
executing->Wait.return_code = 0;
_Mutex_Acquire_slow( mutex, owner, executing, ticks, &lock_context );
return (int) executing->Wait.return_code;
}
}
int _Mutex_Try_acquire( struct _Mutex_Control *_mutex )
{
Mutex_Control *mutex;
ISR_lock_Context lock_context;
Thread_Control *executing;
Thread_Control *owner;
int success;
mutex = _Mutex_Get( _mutex );
executing = _Mutex_Queue_acquire( mutex, &lock_context );
owner = mutex->owner;
if ( __predict_true( owner == NULL ) ) {
mutex->owner = executing;
++executing->resource_count;
success = 1;
} else {
success = 0;
}
_Mutex_Queue_release( mutex, &lock_context );
return success;
}
void _Mutex_Release( struct _Mutex_Control *_mutex )
{
Mutex_Control *mutex;
ISR_lock_Context lock_context;
Thread_Control *executing;
mutex = _Mutex_Get( _mutex );
executing = _Mutex_Queue_acquire( mutex, &lock_context );
_Assert( mutex->owner == executing );
_Mutex_Release_critical( mutex, executing, &lock_context );
}
static Mutex_recursive_Control *_Mutex_recursive_Get(
struct _Mutex_recursive_Control *_mutex
)
{
return (Mutex_recursive_Control *) _mutex;
}
void _Mutex_recursive_Acquire( struct _Mutex_recursive_Control *_mutex )
{
Mutex_recursive_Control *mutex;
ISR_lock_Context lock_context;
Thread_Control *executing;
Thread_Control *owner;
mutex = _Mutex_recursive_Get( _mutex );
executing = _Mutex_Queue_acquire( &mutex->Mutex, &lock_context );
owner = mutex->Mutex.owner;
if ( __predict_true( owner == NULL ) ) {
mutex->Mutex.owner = executing;
++executing->resource_count;
_Mutex_Queue_release( &mutex->Mutex, &lock_context );
} else if ( owner == executing ) {
++mutex->nest_level;
_Mutex_Queue_release( &mutex->Mutex, &lock_context );
} else {
_Mutex_Acquire_slow( &mutex->Mutex, owner, executing, 0, &lock_context );
}
}
int _Mutex_recursive_Acquire_timed(
struct _Mutex_recursive_Control *_mutex,
const struct timespec *abstime
)
{
Mutex_recursive_Control *mutex;
ISR_lock_Context lock_context;
Thread_Control *executing;
Thread_Control *owner;
mutex = _Mutex_recursive_Get( _mutex );
executing = _Mutex_Queue_acquire( &mutex->Mutex, &lock_context );
owner = mutex->Mutex.owner;
if ( __predict_true( owner == NULL ) ) {
mutex->Mutex.owner = executing;
++executing->resource_count;
_Mutex_Queue_release( &mutex->Mutex, &lock_context );
return 0;
} else if ( owner == executing ) {
++mutex->nest_level;
_Mutex_Queue_release( &mutex->Mutex, &lock_context );
return 0;
} else {
Watchdog_Interval ticks;
switch ( _TOD_Absolute_timeout_to_ticks( abstime, &ticks ) ) {
case TOD_ABSOLUTE_TIMEOUT_INVALID:
_Mutex_Queue_release( &mutex->Mutex, &lock_context );
return EINVAL;
case TOD_ABSOLUTE_TIMEOUT_IS_IN_PAST:
case TOD_ABSOLUTE_TIMEOUT_IS_NOW:
_Mutex_Queue_release( &mutex->Mutex, &lock_context );
return ETIMEDOUT;
default:
break;
}
executing->Wait.return_code = 0;
_Mutex_Acquire_slow(
&mutex->Mutex,
owner,
executing,
ticks,
&lock_context
);
return (int) executing->Wait.return_code;
}
}
int _Mutex_recursive_Try_acquire( struct _Mutex_recursive_Control *_mutex )
{
Mutex_recursive_Control *mutex;
ISR_lock_Context lock_context;
Thread_Control *executing;
Thread_Control *owner;
int success;
mutex = _Mutex_recursive_Get( _mutex );
executing = _Mutex_Queue_acquire( &mutex->Mutex, &lock_context );
owner = mutex->Mutex.owner;
if ( __predict_true( owner == NULL ) ) {
mutex->Mutex.owner = executing;
++executing->resource_count;
success = 1;
} else if ( owner == executing ) {
++mutex->nest_level;
success = 1;
} else {
success = 0;
}
_Mutex_Queue_release( &mutex->Mutex, &lock_context );
return success;
}
void _Mutex_recursive_Release( struct _Mutex_recursive_Control *_mutex )
{
Mutex_recursive_Control *mutex;
ISR_lock_Context lock_context;
Thread_Control *executing;
unsigned int nest_level;
mutex = _Mutex_recursive_Get( _mutex );
executing = _Mutex_Queue_acquire( &mutex->Mutex, &lock_context );
_Assert( mutex->Mutex.owner == executing );
nest_level = mutex->nest_level;
if ( __predict_true( nest_level == 0 ) ) {
_Mutex_Release_critical( &mutex->Mutex, executing, &lock_context );
} else {
mutex->nest_level = nest_level - 1;
_Mutex_Queue_release( &mutex->Mutex, &lock_context );
}
}
#endif /* HAVE_STRUCT__THREAD_QUEUE_QUEUE */

View File

@@ -37,6 +37,9 @@ if HAS_SMP
else
_SUBDIRS += sp29
endif
if HAS__THREAD_QUEUE_QUEUE
_SUBDIRS += spsyslock01
endif
_SUBDIRS += sptasknopreempt01
_SUBDIRS += spintrcritical23
_SUBDIRS += sptimecounter01

View File

@@ -30,6 +30,9 @@ AM_CONDITIONAL([HAS_CPLUSPLUS],[test $HAS_CPLUSPLUS = "yes"])
# FIXME: We should get rid of this. It's a cludge.
AC_CHECK_SIZEOF([time_t])
AC_CHECK_TYPES([struct _Thread_queue_Queue],[],[],[#include <sys/lock.h>])
AM_CONDITIONAL(HAS__THREAD_QUEUE_QUEUE,test x"${ac_cv_type_struct__Thread_queue_Queue}" = x"yes")
# Added to newlib pthreads for RTEMS SMP (np), may not be present
AC_CHECK_HEADERS([sys/cpuset.h])
AM_CONDITIONAL(HAS_CPUSET,test x"${ac_cv_header_sys_cpuset_h}" = x"yes")
@@ -40,6 +43,7 @@ AM_CONDITIONAL(HAS_SMP,test "$rtems_cv_RTEMS_SMP" = "yes")
# Explicitly list all Makefiles here
AC_CONFIG_FILES([Makefile
spsyslock01/Makefile
sptasknopreempt01/Makefile
spintrcritical23/Makefile
sptimecounter01/Makefile

View File

@@ -0,0 +1,19 @@
rtems_tests_PROGRAMS = spsyslock01
spsyslock01_SOURCES = init.c
dist_rtems_tests_DATA = spsyslock01.scn spsyslock01.doc
include $(RTEMS_ROOT)/make/custom/@RTEMS_BSP@.cfg
include $(top_srcdir)/../automake/compile.am
include $(top_srcdir)/../automake/leaf.am
AM_CPPFLAGS += -I$(top_srcdir)/../support/include
LINK_OBJS = $(spsyslock01_OBJECTS)
LINK_LIBS = $(spsyslock01_LDLIBS)
spsyslock01$(EXEEXT): $(spsyslock01_OBJECTS) $(spsyslock01_DEPENDENCIES)
@rm -f spsyslock01$(EXEEXT)
$(make-exe)
include $(top_srcdir)/../automake/local.am

View File

@@ -0,0 +1,438 @@
/*
* Copyright (c) 2015 embedded brains GmbH. All rights reserved.
*
* embedded brains GmbH
* Dornierstr. 4
* 82178 Puchheim
* Germany
* <rtems@embedded-brains.de>
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.org/license/LICENSE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "tmacros.h"
#include <sys/lock.h>
#include <string.h>
#include <time.h>
const char rtems_test_name[] = "SPSYSLOCK 1";
#define US_PER_TICK 10000
#define EVENT_MTX_ACQUIRE RTEMS_EVENT_0
#define EVENT_MTX_RELEASE RTEMS_EVENT_1
#define EVENT_MTX_PRIO_INV RTEMS_EVENT_2
#define EVENT_MTX_DEADLOCK RTEMS_EVENT_3
#define EVENT_REC_MTX_ACQUIRE RTEMS_EVENT_4
#define EVENT_REC_MTX_RELEASE RTEMS_EVENT_5
#define EVENT_REC_MTX_PRIO_INV RTEMS_EVENT_6
typedef struct {
rtems_id high[2];
rtems_id mid;
rtems_id low;
struct _Mutex_Control mtx;
struct _Mutex_recursive_Control rec_mtx;
int generation[2];
int current_generation[2];
} test_context;
static test_context test_instance;
static int generation(test_context *ctx, size_t idx)
{
return ++ctx->current_generation[idx];
}
static void send_event(test_context *ctx, size_t idx, rtems_event_set events)
{
rtems_status_code sc;
sc = rtems_event_send(ctx->high[idx], events);
rtems_test_assert(sc == RTEMS_SUCCESSFUL);
}
static void get_abs_timeout(struct timespec *to)
{
int rv;
rv = clock_gettime(CLOCK_REALTIME, to);
rtems_test_assert(rv == 0);
to->tv_nsec += 2 * US_PER_TICK * 1000;
if (to->tv_nsec >= 1000000000) {
++to->tv_sec;
to->tv_nsec -= 1000000000;
}
}
static void test_initialization(test_context *ctx)
{
struct _Mutex_Control mtx = _MUTEX_INITIALIZER;
struct _Mutex_recursive_Control rec_mtx = _MUTEX_RECURSIVE_INITIALIZER;
_Mutex_Initialize(&ctx->mtx);
_Mutex_recursive_Initialize(&ctx->rec_mtx);
rtems_test_assert(memcmp(&mtx, &ctx->mtx, sizeof(mtx)) == 0);
rtems_test_assert(memcmp(&rec_mtx, &ctx->rec_mtx, sizeof(rec_mtx)) == 0);
_Mutex_Destroy(&mtx);
_Mutex_recursive_Destroy(&rec_mtx);
}
static void test_recursive_acquire_normal(test_context *ctx)
{
struct _Mutex_Control *mtx = &ctx->mtx;
size_t idx = 0;
int success;
success = _Mutex_Try_acquire(mtx);
rtems_test_assert(success == 1);
success = _Mutex_Try_acquire(mtx);
rtems_test_assert(success == 0);
_Mutex_Release(mtx);
success = _Mutex_Try_acquire(mtx);
rtems_test_assert(success == 1);
_Mutex_Release(mtx);
_Mutex_Acquire(mtx);
success = _Mutex_Try_acquire(mtx);
rtems_test_assert(success == 0);
_Mutex_Release(mtx);
send_event(ctx, idx, EVENT_MTX_ACQUIRE);
success = _Mutex_Try_acquire(mtx);
rtems_test_assert(success == 0);
send_event(ctx, idx, EVENT_MTX_RELEASE);
}
static void test_recursive_acquire_recursive(test_context *ctx)
{
struct _Mutex_recursive_Control *mtx = &ctx->rec_mtx;
size_t idx = 0;
int success;
success = _Mutex_recursive_Try_acquire(mtx);
rtems_test_assert(success == 1);
_Mutex_recursive_Acquire(mtx);
success = _Mutex_recursive_Try_acquire(mtx);
rtems_test_assert(success == 1);
_Mutex_recursive_Release(mtx);
_Mutex_recursive_Release(mtx);
_Mutex_recursive_Release(mtx);
send_event(ctx, idx, EVENT_REC_MTX_ACQUIRE);
success = _Mutex_recursive_Try_acquire(mtx);
rtems_test_assert(success == 0);
send_event(ctx, idx, EVENT_REC_MTX_RELEASE);
}
static void test_prio_acquire_order(test_context *ctx)
{
struct _Mutex_Control *mtx = &ctx->mtx;
size_t a = 0;
size_t b = 1;
int gen_a;
int gen_b;
_Mutex_Acquire(mtx);
gen_a = ctx->generation[a];
gen_b = ctx->generation[b];
send_event(ctx, b, EVENT_MTX_ACQUIRE);
send_event(ctx, a, EVENT_MTX_ACQUIRE);
rtems_test_assert(ctx->generation[a] == gen_a);
rtems_test_assert(ctx->generation[b] == gen_b);
_Mutex_Release(mtx);
rtems_test_assert(ctx->generation[a] == gen_a + 1);
rtems_test_assert(ctx->generation[b] == gen_b);
send_event(ctx, a, EVENT_MTX_RELEASE);
rtems_test_assert(ctx->generation[a] == gen_a + 1);
rtems_test_assert(ctx->generation[b] == gen_b + 1);
send_event(ctx, b, EVENT_MTX_RELEASE);
}
static void test_prio_inv_normal(test_context *ctx)
{
struct _Mutex_Control *mtx = &ctx->mtx;
size_t idx = 0;
int gen;
_Mutex_Acquire(mtx);
gen = ctx->generation[idx];
send_event(ctx, idx, EVENT_MTX_PRIO_INV);
rtems_test_assert(ctx->generation[idx] == gen);
_Mutex_Release(mtx);
rtems_test_assert(ctx->generation[idx] == gen + 1);
}
static void test_prio_inv_recursive(test_context *ctx)
{
struct _Mutex_recursive_Control *mtx = &ctx->rec_mtx;
size_t idx = 0;
int gen;
_Mutex_recursive_Acquire(mtx);
gen = ctx->generation[idx];
send_event(ctx, idx, EVENT_REC_MTX_PRIO_INV);
rtems_test_assert(ctx->generation[idx] == gen);
_Mutex_recursive_Release(mtx);
rtems_test_assert(ctx->generation[idx] == gen + 1);
}
static void test_mtx_timeout_normal(test_context *ctx)
{
struct _Mutex_Control *mtx = &ctx->mtx;
size_t idx = 0;
struct timespec to;
int eno;
eno = _Mutex_Acquire_timed(mtx, NULL);
rtems_test_assert(eno == 0);
_Mutex_Release(mtx);
send_event(ctx, idx, EVENT_MTX_ACQUIRE);
memset(&to, 0x00, sizeof(to));
eno = _Mutex_Acquire_timed(mtx, &to);
rtems_test_assert(eno == ETIMEDOUT);
memset(&to, 0xff, sizeof(to));
eno = _Mutex_Acquire_timed(mtx, &to);
rtems_test_assert(eno == EINVAL);
get_abs_timeout(&to);
eno = _Mutex_Acquire_timed(mtx, &to);
rtems_test_assert(eno == ETIMEDOUT);
send_event(ctx, idx, EVENT_MTX_RELEASE);
}
static void test_mtx_timeout_recursive(test_context *ctx)
{
struct _Mutex_recursive_Control *mtx = &ctx->rec_mtx;
size_t idx = 0;
struct timespec to;
int eno;
eno = _Mutex_recursive_Acquire_timed(mtx, NULL);
rtems_test_assert(eno == 0);
eno = _Mutex_recursive_Acquire_timed(mtx, NULL);
rtems_test_assert(eno == 0);
_Mutex_recursive_Release(mtx);
_Mutex_recursive_Release(mtx);
send_event(ctx, idx, EVENT_REC_MTX_ACQUIRE);
memset(&to, 0x00, sizeof(to));
eno = _Mutex_recursive_Acquire_timed(mtx, &to);
rtems_test_assert(eno == ETIMEDOUT);
memset(&to, 0xff, sizeof(to));
eno = _Mutex_recursive_Acquire_timed(mtx, &to);
rtems_test_assert(eno == EINVAL);
get_abs_timeout(&to);
eno = _Mutex_recursive_Acquire_timed(mtx, &to);
rtems_test_assert(eno == ETIMEDOUT);
send_event(ctx, idx, EVENT_REC_MTX_RELEASE);
}
static void mid_task(rtems_task_argument arg)
{
rtems_test_assert(0);
}
static void high_task(rtems_task_argument idx)
{
test_context *ctx = &test_instance;
rtems_status_code sc;
if (idx == 0) {
sc = rtems_task_start(ctx->mid, mid_task, 0);
rtems_test_assert(sc == RTEMS_SUCCESSFUL);
sc = rtems_task_suspend(ctx->mid);
rtems_test_assert(sc == RTEMS_SUCCESSFUL);
}
while (true) {
rtems_event_set events;
sc = rtems_event_receive(
RTEMS_ALL_EVENTS,
RTEMS_EVENT_ANY | RTEMS_WAIT,
RTEMS_NO_TIMEOUT,
&events
);
rtems_test_assert(sc == RTEMS_SUCCESSFUL);
if ((events & EVENT_MTX_ACQUIRE) != 0) {
_Mutex_Acquire(&ctx->mtx);
ctx->generation[idx] = generation(ctx, idx);
}
if ((events & EVENT_MTX_RELEASE) != 0) {
_Mutex_Release(&ctx->mtx);
}
if ((events & EVENT_MTX_PRIO_INV) != 0) {
sc = rtems_task_resume(ctx->mid);
rtems_test_assert(sc == RTEMS_SUCCESSFUL);
_Mutex_Acquire(&ctx->mtx);
ctx->generation[idx] = generation(ctx, idx);
_Mutex_Release(&ctx->mtx);
sc = rtems_task_suspend(ctx->mid);
rtems_test_assert(sc == RTEMS_SUCCESSFUL);
}
if ((events & EVENT_MTX_DEADLOCK) != 0) {
struct _Mutex_Control dead = _MUTEX_INITIALIZER;
_Mutex_Acquire(&dead);
_Mutex_Acquire(&dead);
}
if ((events & EVENT_REC_MTX_ACQUIRE) != 0) {
_Mutex_recursive_Acquire(&ctx->rec_mtx);
}
if ((events & EVENT_REC_MTX_RELEASE) != 0) {
_Mutex_recursive_Release(&ctx->rec_mtx);
}
if ((events & EVENT_REC_MTX_PRIO_INV) != 0) {
sc = rtems_task_resume(ctx->mid);
rtems_test_assert(sc == RTEMS_SUCCESSFUL);
_Mutex_recursive_Acquire(&ctx->rec_mtx);
ctx->generation[idx] = generation(ctx, idx);
_Mutex_recursive_Release(&ctx->rec_mtx);
sc = rtems_task_suspend(ctx->mid);
rtems_test_assert(sc == RTEMS_SUCCESSFUL);
}
}
}
static void test(void)
{
test_context *ctx = &test_instance;
rtems_status_code sc;
test_initialization(ctx);
ctx->low = rtems_task_self();
sc = rtems_task_create(
rtems_build_name('M', 'I', 'D', ' '),
3,
RTEMS_MINIMUM_STACK_SIZE,
RTEMS_DEFAULT_MODES,
RTEMS_DEFAULT_ATTRIBUTES,
&ctx->mid
);
rtems_test_assert(sc == RTEMS_SUCCESSFUL);
sc = rtems_task_create(
rtems_build_name('H', 'I', 'G', '0'),
1,
RTEMS_MINIMUM_STACK_SIZE,
RTEMS_DEFAULT_MODES,
RTEMS_DEFAULT_ATTRIBUTES,
&ctx->high[0]
);
rtems_test_assert(sc == RTEMS_SUCCESSFUL);
sc = rtems_task_start(ctx->high[0], high_task, 0);
rtems_test_assert(sc == RTEMS_SUCCESSFUL);
sc = rtems_task_create(
rtems_build_name('H', 'I', 'G', '1'),
2,
RTEMS_MINIMUM_STACK_SIZE,
RTEMS_DEFAULT_MODES,
RTEMS_DEFAULT_ATTRIBUTES,
&ctx->high[1]
);
rtems_test_assert(sc == RTEMS_SUCCESSFUL);
sc = rtems_task_start(ctx->high[1], high_task, 1);
rtems_test_assert(sc == RTEMS_SUCCESSFUL);
test_recursive_acquire_normal(ctx);
test_recursive_acquire_recursive(ctx);
test_prio_acquire_order(ctx);
test_prio_inv_normal(ctx);
test_prio_inv_recursive(ctx);
test_mtx_timeout_normal(ctx);
test_mtx_timeout_recursive(ctx);
send_event(ctx, 0, EVENT_MTX_DEADLOCK);
_Mutex_Destroy(&ctx->mtx);
_Mutex_recursive_Destroy(&ctx->rec_mtx);
}
static void Init(rtems_task_argument arg)
{
TEST_BEGIN();
test();
TEST_END();
rtems_test_exit(0);
}
#define CONFIGURE_MICROSECONDS_PER_TICK US_PER_TICK
#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
#define CONFIGURE_USE_IMFS_AS_BASE_FILESYSTEM
#define CONFIGURE_MAXIMUM_TASKS 4
#define CONFIGURE_INITIAL_EXTENSIONS RTEMS_TEST_INITIAL_EXTENSION
#define CONFIGURE_INIT_TASK_PRIORITY 4
#define CONFIGURE_INIT_TASK_INITIAL_MODES RTEMS_DEFAULT_MODES
#define CONFIGURE_RTEMS_INIT_TASKS_TABLE
#define CONFIGURE_INIT
#include <rtems/confdefs.h>

View File

@@ -0,0 +1,20 @@
This file describes the directives and concepts tested by this test set.
test set name: spsyslock01
directives:
- _Mutex_Initialize()
- _Mutex_Acquire()
- _Mutex_Try_acquire()
- _Mutex_Release()
- _Mutex_Destroy()
- _Mutex_recursive_Initialize()
- _Mutex_recursive_Acquire()
- _Mutex_recursive_Try_acquire()
- _Mutex_recursive_Release()
- _Mutex_recursive_Destroy()
concepts:
- Ensure that self-contained mutexes and recursive mutexes work.

View File

@@ -0,0 +1,2 @@
*** BEGIN OF TEST SPSYSLOCK 1 ***
*** END OF TEST SPSYSLOCK 1 ***