Christopher Haster 09c3749d7a Reworked how unknown file types are handled
This changes how we approach unknown file types.

Before:

> Unknown file types are allowed and may leak resources if modified,
> so attempted modification (rename/remove) will error with
> LFS_ERR_NOTSUP.

Now:

> Unknown file types are only allowed in RDONLY mode. This avoids the
> whole leaking resources headache.

Additionally, unknown types are now mapped to LFS_TYPE_UNKNOWN, instead
of just being forwarded to the user. This allows us to add internal
types/tags to the LFSR_TAG_NAME type space without worrying about
conflicts with future types:

- reg             -> LFS_TYPE_REG
- dir             -> LFS_TYPE_DIR
- stickynote      -> LFS_TYPE_STICKYNOTE
- everything else -> LFS_TYPE_UNKNOWN

Thinking about potential future types, it seems most (symlinks,
compressed files, etc) can be better implemented via custom attributes.
Using custom attributes doesn't mean the filesystem _can't_ inject
special behavior, and custom attributes allow for perfect backwards
compatibility.

So with future types less likely, forwarding type info to users is less
important (and potentially error prone). Instead, allowing on-disk +
internal types to be represented densely is much more useful.

And it avoids setting an upper bound on future types prematurely.

---

This also includes a minor rcompat/wcompat rework. Since we're probably
going to end up with 32-bit rcompat flags anyways, might as well make
them more human-readable (nibble-aligned):

  LFS_RCOMPAT_NONSTANDARD  0x00000001  Non-standard filesystem format
  LFS_RCOMPAT_WRONLY       0x00000002  Reading is disallowed
  LFS_RCOMPAT_BMOSS        0x00000010  Files may use inlined data
  LFS_RCOMPAT_BSPROUT      0x00000020  Files may use block pointers
  LFS_RCOMPAT_BSHRUB       0x00000040  Files may use inlined btrees
  LFS_RCOMPAT_BTREE        0x00000080  Files may use btrees
  LFS_RCOMPAT_MMOSS        0x00000100  May use an inlined mdir
  LFS_RCOMPAT_MSPROUT      0x00000200  May use an mdir pointer
  LFS_RCOMPAT_MSHRUB       0x00000400  May use an inlined mtree
  LFS_RCOMPAT_MTREE        0x00000800  May use an mdir btree
  LFS_RCOMPAT_GRM          0x00001000  Global-remove in use

  LFS_WCOMPAT_NONSTANDARD  0x00000001  Non-standard filesystem format
  LFS_WCOMPAT_RDONLY       0x00000002  Writing is disallowed
  LFS_WCOMPAT_REG          0x00000010  Regular file types in use
  LFS_WCOMPAT_DIR          0x00000020  Directory file types in use
  LFS_WCOMPAT_STICKYNOTE   0x00000040  Stickynote file types in use
  LFS_WCOMPAT_GCKSUM       0x00001000  Global-checksum in use

---

Code changes:

           code          stack          ctx
  before: 35928           2440          640
  after:  35924 (-0.0%)   2440 (+0.0%)  640 (+0.0%)
2025-04-24 16:29:19 -05:00
2025-04-23 23:21:18 -05:00
2019-09-01 21:11:49 -07:00
2025-04-23 23:21:18 -05:00
2022-03-20 23:03:52 -05:00
2022-11-09 11:12:20 -06:00
2022-02-18 21:13:41 -06:00

littlefs

A little fail-safe filesystem designed for microcontrollers.

   | | |     .---._____
  .-----.   |          |
--|o    |---| littlefs |
--|     |---|          |
  '-----'   '----------'
   | | |

Power-loss resilience - littlefs is designed to handle random power failures. All file operations have strong copy-on-write guarantees and if power is lost the filesystem will fall back to the last known good state.

Dynamic wear leveling - littlefs is designed with flash in mind, and provides wear leveling over dynamic blocks. Additionally, littlefs can detect bad blocks and work around them.

Bounded RAM/ROM - littlefs is designed to work with a small amount of memory. RAM usage is strictly bounded, which means RAM consumption does not change as the filesystem grows. The filesystem contains no unbounded recursion and dynamic memory is limited to configurable buffers that can be provided statically.

Example

Here's a simple example that updates a file named boot_count every time main runs. The program can be interrupted at any time without losing track of how many times it has been booted and without corrupting the filesystem:

#include "lfs.h"

// variables used by the filesystem
lfs_t lfs;
lfs_file_t file;

// configuration of the filesystem is provided by this struct
const struct lfs_config cfg = {
    // block device operations
    .read  = user_provided_block_device_read,
    .prog  = user_provided_block_device_prog,
    .erase = user_provided_block_device_erase,
    .sync  = user_provided_block_device_sync,

    // block device configuration
    .read_size = 16,
    .prog_size = 16,
    .block_size = 4096,
    .block_count = 128,
    .cache_size = 16,
    .lookahead_size = 16,
    .block_cycles = 500,
};

// entry point
int main(void) {
    // mount the filesystem
    int err = lfs_mount(&lfs, &cfg);

    // reformat if we can't mount the filesystem
    // this should only happen on the first boot
    if (err) {
        lfs_format(&lfs, &cfg);
        lfs_mount(&lfs, &cfg);
    }

    // read current count
    uint32_t boot_count = 0;
    lfs_file_open(&lfs, &file, "boot_count", LFS_O_RDWR | LFS_O_CREAT);
    lfs_file_read(&lfs, &file, &boot_count, sizeof(boot_count));

    // update boot count
    boot_count += 1;
    lfs_file_rewind(&lfs, &file);
    lfs_file_write(&lfs, &file, &boot_count, sizeof(boot_count));

    // remember the storage is not updated until the file is closed successfully
    lfs_file_close(&lfs, &file);

    // release any resources we were using
    lfs_unmount(&lfs);

    // print the boot count
    printf("boot_count: %d\n", boot_count);
}

Usage

Detailed documentation (or at least as much detail as is currently available) can be found in the comments in lfs.h.

littlefs takes in a configuration structure that defines how the filesystem operates. The configuration struct provides the filesystem with the block device operations and dimensions, tweakable parameters that tradeoff memory usage for performance, and optional static buffers if the user wants to avoid dynamic memory.

The state of the littlefs is stored in the lfs_t type which is left up to the user to allocate, allowing multiple filesystems to be in use simultaneously. With the lfs_t and configuration struct, a user can format a block device or mount the filesystem.

Once mounted, the littlefs provides a full set of POSIX-like file and directory functions, with the deviation that the allocation of filesystem structures must be provided by the user.

All POSIX operations, such as remove and rename, are atomic, even in event of power-loss. Additionally, file updates are not actually committed to the filesystem until sync or close is called on the file.

Other notes

Littlefs is written in C, and specifically should compile with any compiler that conforms to the C99 standard.

All littlefs calls have the potential to return a negative error code. The errors can be either one of those found in the enum lfs_error in lfs.h, or an error returned by the user's block device operations.

In the configuration struct, the prog and erase function provided by the user may return a LFS_ERR_CORRUPT error if the implementation already can detect corrupt blocks. However, the wear leveling does not depend on the return code of these functions, instead all data is read back and checked for integrity.

If your storage caches writes, make sure that the provided sync function flushes all the data to memory and ensures that the next read fetches the data from memory, otherwise data integrity can not be guaranteed. If the write function does not perform caching, and therefore each read or write call hits the memory, the sync function can simply return 0.

Design

At a high level, littlefs is a block based filesystem that uses small logs to store metadata and larger copy-on-write (COW) structures to store file data.

In littlefs, these ingredients form a sort of two-layered cake, with the small logs (called metadata pairs) providing fast updates to metadata anywhere on storage, while the COW structures store file data compactly and without any wear amplification cost.

Both of these data structures are built out of blocks, which are fed by a common block allocator. By limiting the number of erases allowed on a block per allocation, the allocator provides dynamic wear leveling over the entire filesystem.

                    root
                   .--------.--------.
                   | A'| B'|         |
                   |   |   |->       |
                   |   |   |         |
                   '--------'--------'
                .----'   '--------------.
       A       v                 B       v
      .--------.--------.       .--------.--------.
      | C'| D'|         |       | E'|new|         |
      |   |   |->       |       |   | E'|->       |
      |   |   |         |       |   |   |         |
      '--------'--------'       '--------'--------'
      .-'   '--.                  |   '------------------.
     v          v              .-'                        v
.--------.  .--------.        v                       .--------.
|   C    |  |   D    |   .--------.       write       | new E  |
|        |  |        |   |   E    |        ==>        |        |
|        |  |        |   |        |                   |        |
'--------'  '--------'   |        |                   '--------'
                         '--------'                   .-'    |
                         .-'    '-.    .-------------|------'
                        v          v  v              v
                   .--------.  .--------.       .--------.
                   |   F    |  |   G    |       | new F  |
                   |        |  |        |       |        |
                   |        |  |        |       |        |
                   '--------'  '--------'       '--------'

More details on how littlefs works can be found in DESIGN.md and SPEC.md.

  • DESIGN.md - A fully detailed dive into how littlefs works. I would suggest reading it as the tradeoffs at work are quite interesting.

  • SPEC.md - The on-disk specification of littlefs with all the nitty-gritty details. May be useful for tooling development.

Testing

The littlefs comes with a test suite designed to run on a PC using the emulated block device found in the bd directory. The tests assume a Linux environment and can be started with make:

make test

License

The littlefs is provided under the BSD-3-Clause license. See LICENSE.md for more information. Contributions to this project are accepted under the same license.

Individual files contain the following tag instead of the full license text.

SPDX-License-Identifier:    BSD-3-Clause

This enables machine processing of license information based on the SPDX License Identifiers that are here available: http://spdx.org/licenses/

  • littlefs-fuse - A FUSE wrapper for littlefs. The project allows you to mount littlefs directly on a Linux machine. Can be useful for debugging littlefs if you have an SD card handy.

  • littlefs-js - A javascript wrapper for littlefs. I'm not sure why you would want this, but it is handy for demos. You can see it in action here.

  • littlefs-python - A Python wrapper for littlefs. The project allows you to create images of the filesystem on your PC. Check if littlefs will fit your needs, create images for a later download to the target memory or inspect the content of a binary image of the target memory.

  • mklfs - A command line tool built by the Lua RTOS guys for making littlefs images from a host PC. Supports Windows, Mac OS, and Linux.

  • Mbed OS - The easiest way to get started with littlefs is to jump into Mbed which already has block device drivers for most forms of embedded storage. littlefs is available in Mbed OS as the LittleFileSystem class.

  • SPIFFS - Another excellent embedded filesystem for NOR flash. As a more traditional logging filesystem with full static wear-leveling, SPIFFS will likely outperform littlefs on small memories such as the internal flash on microcontrollers.

  • Dhara - An interesting NAND flash translation layer designed for small MCUs. It offers static wear-leveling and power-resilience with only a fixed O(|address|) pointer structure stored on each block and in RAM.

Description
A little fail-safe filesystem designed for microcontrollers
Readme 12 MiB
Languages
C 68.3%
Python 30.8%
Makefile 0.9%