score: Simplify SMP processor state handling

The per-CPU states which control the SMP system initialization were added quite
early during the SMP support development.  Replace this initial implementation
with a simplified one.  There is no longer a global SMP lock required which
serialized the state changes of all processors.  The new implementation better
integrates with the per-CPU jobs.
This commit is contained in:
Sebastian Huber
2021-07-27 13:40:51 +02:00
parent 4adaed7328
commit cbb1103a3c
10 changed files with 270 additions and 250 deletions

View File

@@ -102,15 +102,18 @@ struct Scheduler_Context;
* The processor state controls the life cycle of processors at the lowest
* level. No multi-threading or other high-level concepts matter here.
*
* State changes must be initiated via _Per_CPU_State_change(). This function
* may not return in case someone requested a shutdown. The
* _SMP_Send_message() function will be used to notify other processors about
* state changes if the other processor is in the up state.
* The state of a processor is indicated by the Per_CPU_Control::state membe.
* The current state of a processor can be get by _Per_CPU_Get_state(). Only
* the processor associated with the control may change its state using
* _Per_CPU_Set_state().
*
* Due to the sequential nature of the basic system initialization one
* processor has a special role. It is the processor executing the boot_card()
* function. This processor is called the boot processor. All other
* processors are called secondary.
* processors are called secondary. The boot processor uses
* _SMP_Request_start_multitasking() to indicate that processors should start
* multiprocessing. Secondary processors will wait for this request in
* _SMP_Start_multitasking_on_secondary_processor().
*
* @dot
* digraph states {
@@ -150,22 +153,12 @@ typedef enum {
* the first time. The boot processor will wait for all secondary processors
* to change into this state. In case a secondary processor does not reach
* this state the system will not start. The secondary processors wait now
* for a change into the PER_CPU_STATE_REQUEST_START_MULTITASKING state set
* by the boot processor once all secondary processors reached the
* PER_CPU_STATE_READY_TO_START_MULTITASKING state.
* for a change into the PER_CPU_STATE_UP state set requested by the boot
* processor through ::_SMP_Ready_to_start_multitasking once all secondary
* processors reached the PER_CPU_STATE_READY_TO_START_MULTITASKING state.
*/
PER_CPU_STATE_READY_TO_START_MULTITASKING,
/**
* @brief Multitasking start of processor is requested.
*
* The boot processor completed system initialization and is about to perform
* a context switch to its heir thread. Secondary processors should now
* issue a context switch to the heir thread. This normally enables
* interrupts on the processor for the first time.
*/
PER_CPU_STATE_REQUEST_START_MULTITASKING,
/**
* @brief Normal multitasking state.
*/
@@ -547,11 +540,12 @@ typedef struct Per_CPU_Control {
char *data;
/**
* @brief Indicates the current state of the CPU.
* @brief Indicates the current state of the processor.
*
* This member is protected by the _Per_CPU_State_lock lock.
* Only the processor associated with this control is allowed to change
* this member.
*
* @see _Per_CPU_State_change().
* @see _Per_CPU_Get_state() and _Per_CPU_Set_state().
*/
Atomic_Uint state;
@@ -801,6 +795,7 @@ static inline void _Per_CPU_Set_state(
Per_CPU_State state
)
{
_Assert( cpu_self == _Per_CPU_Get() );
_Atomic_Store_uint(
&cpu_self->state,
(unsigned int) state,
@@ -808,11 +803,6 @@ static inline void _Per_CPU_Set_state(
);
}
void _Per_CPU_State_change(
Per_CPU_Control *cpu,
Per_CPU_State new_state
);
/**
* @brief Waits for a processor to change into a non-initial state.
*

View File

@@ -50,6 +50,16 @@ extern "C" {
*/
#define SMP_MESSAGE_PERFORM_JOBS 0x2UL
/**
* @brief SMP message to force the message processing in
* _SMP_Try_to_process_message().
*
* This message bit is never sent to a processor. It is only used to force the
* message processing in _SMP_Try_to_process_message(). Any non-zero value
* would do it.
*/
#define SMP_MESSAGE_FORCE_PROCESSING 0x4UL
/**
* @brief SMP fatal codes.
*/
@@ -130,11 +140,47 @@ RTEMS_NO_RETURN void _SMP_Start_multitasking_on_secondary_processor(
);
/**
* @brief Interrupts handler for inter-processor interrupts.
* @brief Processes the SMP message.
*
* @param[in, out] cpu_self The cpu control for the operation.
* @param[in, out] cpu_self is the processor control of the processor executing
* this function.
*
* @return The received message.
* @return Returns the processed message.
*/
long unsigned _SMP_Process_message(
Per_CPU_Control *cpu_self,
long unsigned message
);
/**
* @brief Tries to process the current SMP message.
*
* This function may be used in busy wait loops.
*
* @param cpu_self is the processor control of the processor executing this
* function.
*
* @param message is used to check if the SMP message processing should be
* carried out. If it is not equal to zero, then _SMP_Process_message() is
* called with a newly fetched message. This parameter is not used to process
* the message. It is only used to check if the processing is necessary.
* Use #SMP_MESSAGE_FORCE_PROCESSING to force the message processing.
*/
void _SMP_Try_to_process_message(
Per_CPU_Control *cpu_self,
unsigned long message
);
/**
* @brief Processes an inter-processor interrupt.
*
* Use this function for the inter-processor interrupt handler. Never call
* this function in a tight loop.
*
* @param[in, out] cpu_self is the processor control of the processor executing
* this function.
*
* @return Returns the processed message.
*/
static inline long unsigned _SMP_Inter_processor_interrupt_handler(
Per_CPU_Control *cpu_self
@@ -155,14 +201,7 @@ static inline long unsigned _SMP_Inter_processor_interrupt_handler(
);
if ( RTEMS_PREDICT_FALSE( message != 0 ) ) {
if ( ( message & SMP_MESSAGE_SHUTDOWN ) != 0 ) {
_SMP_Fatal( SMP_FATAL_SHUTDOWN_RESPONSE );
/* does not continue past here */
}
if ( ( message & SMP_MESSAGE_PERFORM_JOBS ) != 0 ) {
_Per_CPU_Perform_jobs( cpu_self );
}
return _SMP_Process_message( cpu_self, message );
}
return message;

View File

@@ -3,8 +3,8 @@
*
* @ingroup RTEMSScorePerCPU
*
* @brief This source file contains a definition of ::_Per_CPU_Information and
* the implementation of _Per_CPU_State_change().
* @brief This source file contains the uniprocessor definition of
* ::_Per_CPU_Information and some static assertions.
*/
/*
@@ -21,10 +21,6 @@
#endif
#include <rtems/score/percpu.h>
#include <rtems/score/assert.h>
#include <rtems/score/isrlock.h>
#include <rtems/score/smpimpl.h>
#include <rtems/config.h>
RTEMS_STATIC_ASSERT(
sizeof( CPU_Uint32ptr ) >= sizeof( uintptr_t ),
@@ -36,148 +32,7 @@ RTEMS_STATIC_ASSERT(
CPU_Uint32ptr_greater_equal_uint32_t
);
#if defined(RTEMS_SMP)
ISR_LOCK_DEFINE( static, _Per_CPU_State_lock, "Per-CPU State" )
static void _Per_CPU_State_acquire( ISR_lock_Context *lock_context )
{
_ISR_lock_ISR_disable_and_acquire( &_Per_CPU_State_lock, lock_context );
}
static void _Per_CPU_State_release( ISR_lock_Context *lock_context )
{
_ISR_lock_Release_and_ISR_enable( &_Per_CPU_State_lock, lock_context );
}
static void _Per_CPU_State_busy_wait(
Per_CPU_Control *cpu,
Per_CPU_State new_state
)
{
Per_CPU_State state;
state = _Per_CPU_Get_state( cpu );
switch ( new_state ) {
case PER_CPU_STATE_REQUEST_START_MULTITASKING:
while (
state != PER_CPU_STATE_READY_TO_START_MULTITASKING
&& state != PER_CPU_STATE_SHUTDOWN
) {
_Per_CPU_Perform_jobs( cpu );
state = _Per_CPU_Get_state( cpu );
}
break;
case PER_CPU_STATE_UP:
while (
state != PER_CPU_STATE_REQUEST_START_MULTITASKING
&& state != PER_CPU_STATE_SHUTDOWN
) {
_Per_CPU_Perform_jobs( cpu );
state = _Per_CPU_Get_state( cpu );
}
break;
default:
/* No need to wait */
break;
}
}
static Per_CPU_State _Per_CPU_State_get_next(
Per_CPU_State current_state,
Per_CPU_State new_state
)
{
switch ( current_state ) {
case PER_CPU_STATE_INITIAL:
switch ( new_state ) {
case PER_CPU_STATE_READY_TO_START_MULTITASKING:
case PER_CPU_STATE_SHUTDOWN:
/* Change is acceptable */
break;
default:
new_state = PER_CPU_STATE_SHUTDOWN;
break;
}
break;
case PER_CPU_STATE_READY_TO_START_MULTITASKING:
switch ( new_state ) {
case PER_CPU_STATE_REQUEST_START_MULTITASKING:
case PER_CPU_STATE_SHUTDOWN:
/* Change is acceptable */
break;
default:
new_state = PER_CPU_STATE_SHUTDOWN;
break;
}
break;
case PER_CPU_STATE_REQUEST_START_MULTITASKING:
switch ( new_state ) {
case PER_CPU_STATE_UP:
case PER_CPU_STATE_SHUTDOWN:
/* Change is acceptable */
break;
default:
new_state = PER_CPU_STATE_SHUTDOWN;
break;
}
break;
default:
new_state = PER_CPU_STATE_SHUTDOWN;
break;
}
return new_state;
}
void _Per_CPU_State_change(
Per_CPU_Control *cpu,
Per_CPU_State new_state
)
{
ISR_lock_Context lock_context;
Per_CPU_State next_state;
_Per_CPU_State_busy_wait( cpu, new_state );
_Per_CPU_State_acquire( &lock_context );
next_state = _Per_CPU_State_get_next( _Per_CPU_Get_state( cpu ), new_state );
_Per_CPU_Set_state( cpu, next_state );
if ( next_state == PER_CPU_STATE_SHUTDOWN ) {
uint32_t cpu_max = rtems_configuration_get_maximum_processors();
uint32_t cpu_index;
for ( cpu_index = 0 ; cpu_index < cpu_max ; ++cpu_index ) {
Per_CPU_Control *cpu_other = _Per_CPU_Get_by_index( cpu_index );
if ( cpu_other != cpu ) {
switch ( _Per_CPU_Get_state( cpu_other ) ) {
case PER_CPU_STATE_UP:
_SMP_Send_message( cpu_index, SMP_MESSAGE_SHUTDOWN );
break;
default:
/* Nothing to do */
break;
}
_Per_CPU_Set_state( cpu_other, PER_CPU_STATE_SHUTDOWN );
}
}
}
_Per_CPU_State_release( &lock_context );
if (
next_state == PER_CPU_STATE_SHUTDOWN
&& new_state != PER_CPU_STATE_SHUTDOWN
) {
_SMP_Fatal( SMP_FATAL_SHUTDOWN );
}
}
#else
#if !defined(RTEMS_SMP)
/*
* On single core systems, we can efficiently directly access a single
* statically allocated per cpu structure. And the fields are initialized

View File

@@ -5,11 +5,12 @@
*
* @brief This source file contains the definition of ::_SMP_Online_processors
* and ::_SMP_Processor_maximum and the implementation of
* _SMP_Handler_initialize(), _SMP_Request_shutdown(),
* _SMP_Request_start_multitasking(), _SMP_Send_message(),
* _SMP_Send_message_broadcast(), _SMP_Send_message_multicast(),
* _SMP_Should_start_processor(), and
* _SMP_Start_multitasking_on_secondary_processor().
* _SMP_Handler_initialize(), _SMP_Process_message(),
* _SMP_Request_shutdown(), _SMP_Request_start_multitasking(),
* _SMP_Send_message(), _SMP_Send_message_broadcast(),
* _SMP_Send_message_multicast(), _SMP_Should_start_processor(),
* _SMP_Start_multitasking_on_secondary_processor(), and
* _SMP_Try_to_process_message().
*/
/*
@@ -35,6 +36,15 @@
#error "deferred FP switch not implemented for SMP"
#endif
/**
* @brief Indicates if the system is ready to start multitasking.
*
* Only the boot processor is allowed to change this object. If the object has
* a non-zero value and no fatal error occurred, then secondary processors
* should call _Thread_Start_multitasking() to start multiprocessing.
*/
static Atomic_Uint _SMP_Ready_to_start_multitasking;
Processor_mask _SMP_Online_processors;
uint32_t _SMP_Processor_maximum;
@@ -159,20 +169,38 @@ void _SMP_Request_start_multitasking( void )
uint32_t cpu_max;
uint32_t cpu_index;
cpu_self = _Per_CPU_Get();
_Per_CPU_State_change( cpu_self, PER_CPU_STATE_READY_TO_START_MULTITASKING );
cpu_max = _SMP_Get_processor_maximum();
cpu_self = _Per_CPU_Get();
/*
* Wait until all other online processors reached the
* PER_CPU_STATE_READY_TO_START_MULTITASKING state. The waiting is done
* without a timeout. If secondary processors cannot reach this state, then
* it is expected that they indicate this failure with an
* ::SMP_MESSAGE_SHUTDOWN message or reset the system.
*/
for ( cpu_index = 0 ; cpu_index < cpu_max ; ++cpu_index ) {
Per_CPU_Control *cpu;
cpu = _Per_CPU_Get_by_index( cpu_index );
if ( _Per_CPU_Is_processor_online( cpu ) ) {
_Per_CPU_State_change( cpu, PER_CPU_STATE_REQUEST_START_MULTITASKING );
if ( cpu != cpu_self && _Per_CPU_Is_processor_online( cpu ) ) {
while (
_Per_CPU_Get_state( cpu ) != PER_CPU_STATE_READY_TO_START_MULTITASKING
) {
_SMP_Try_to_process_message(
cpu_self,
_Atomic_Load_ulong( &cpu_self->message, ATOMIC_ORDER_RELAXED )
);
}
}
}
_Atomic_Store_uint(
&_SMP_Ready_to_start_multitasking,
1U,
ATOMIC_ORDER_RELEASE
);
}
bool _SMP_Should_start_processor( uint32_t cpu_index )
@@ -183,6 +211,22 @@ bool _SMP_Should_start_processor( uint32_t cpu_index )
return _Scheduler_Should_start_processor( assignment );
}
static void _SMP_Wait_for_start_multitasking( Per_CPU_Control *cpu_self )
{
unsigned int ready;
do {
_SMP_Try_to_process_message(
cpu_self,
_Atomic_Load_ulong( &cpu_self->message, ATOMIC_ORDER_RELAXED )
);
ready = _Atomic_Load_uint(
&_SMP_Ready_to_start_multitasking,
ATOMIC_ORDER_ACQUIRE
);
} while ( ready == 0U );
}
void _SMP_Start_multitasking_on_secondary_processor(
Per_CPU_Control *cpu_self
)
@@ -199,28 +243,96 @@ void _SMP_Start_multitasking_on_secondary_processor(
_SMP_Fatal( SMP_FATAL_MULTITASKING_START_ON_UNASSIGNED_PROCESSOR );
}
_Per_CPU_State_change( cpu_self, PER_CPU_STATE_READY_TO_START_MULTITASKING );
_Per_CPU_Set_state( cpu_self, PER_CPU_STATE_READY_TO_START_MULTITASKING );
_SMP_Wait_for_start_multitasking( cpu_self );
_Thread_Start_multitasking();
}
void _SMP_Request_shutdown( void )
{
ISR_Level level;
uint32_t cpu_max;
uint32_t cpu_index_self;
uint32_t cpu_index;
_ISR_Local_disable( level );
(void) level;
_Per_CPU_State_change( _Per_CPU_Get(), PER_CPU_STATE_SHUTDOWN );
cpu_max = _SMP_Processor_configured_maximum;
cpu_index_self = _SMP_Get_current_processor();
for ( cpu_index = 0 ; cpu_index < cpu_max ; ++cpu_index ) {
Per_CPU_Control *cpu;
cpu = _Per_CPU_Get_by_index( cpu_index );
if ( cpu_index == cpu_index_self ) {
_Per_CPU_Set_state( cpu, PER_CPU_STATE_SHUTDOWN );
} else {
_Atomic_Fetch_or_ulong(
&cpu->message,
SMP_MESSAGE_SHUTDOWN,
ATOMIC_ORDER_RELEASE
);
if ( _Per_CPU_Get_state( cpu ) == PER_CPU_STATE_UP ) {
_CPU_SMP_Send_interrupt( cpu_index );
}
}
}
}
long unsigned _SMP_Process_message(
Per_CPU_Control *cpu_self,
long unsigned message
)
{
if ( ( message & SMP_MESSAGE_SHUTDOWN ) != 0 ) {
/* Check the state to prevent recursive shutdowns */
if ( _Per_CPU_Get_state( cpu_self ) != PER_CPU_STATE_SHUTDOWN ) {
_Per_CPU_Set_state( cpu_self, PER_CPU_STATE_SHUTDOWN );
_SMP_Fatal( SMP_FATAL_SHUTDOWN_RESPONSE );
}
}
if ( ( message & SMP_MESSAGE_PERFORM_JOBS ) != 0 ) {
_Per_CPU_Perform_jobs( cpu_self );
}
}
void _SMP_Try_to_process_message(
Per_CPU_Control *cpu_self,
unsigned long message
)
{
if ( message != 0 ) {
/*
* Fetch the current message. Only a read-modify-write operation
* guarantees that we get an up to date message. This is especially
* important if the function was called using SMP_MESSAGE_FORCE_PROCESSING.
*/
message = _Atomic_Exchange_ulong(
&cpu_self->message,
0,
ATOMIC_ORDER_ACQUIRE
);
_SMP_Process_message( cpu_self, message );
}
}
void _SMP_Send_message( uint32_t cpu_index, unsigned long message )
{
Per_CPU_Control *cpu = _Per_CPU_Get_by_index( cpu_index );
_Atomic_Fetch_or_ulong( &cpu->message, message, ATOMIC_ORDER_RELEASE );
(void) _Atomic_Fetch_or_ulong(
&cpu->message, message,
ATOMIC_ORDER_RELEASE
);
_CPU_SMP_Send_interrupt( cpu_index );
if ( _Per_CPU_Get_state( cpu ) == PER_CPU_STATE_UP ) {
_CPU_SMP_Send_interrupt( cpu_index );
}
}
void _SMP_Send_message_broadcast( unsigned long message )

View File

@@ -92,27 +92,6 @@ void _Per_CPU_Add_job( Per_CPU_Control *cpu, Per_CPU_Job *job )
_Per_CPU_Jobs_release_and_ISR_enable( cpu, &lock_context );
}
static void _Per_CPU_Try_perform_jobs( Per_CPU_Control *cpu_self )
{
unsigned long message;
message = _Atomic_Load_ulong( &cpu_self->message, ATOMIC_ORDER_RELAXED );
if ( ( message & SMP_MESSAGE_PERFORM_JOBS ) != 0 ) {
bool success;
success = _Atomic_Compare_exchange_ulong(
&cpu_self->message, &message,
message & ~SMP_MESSAGE_PERFORM_JOBS, ATOMIC_ORDER_RELAXED,
ATOMIC_ORDER_RELAXED
);
if ( success ) {
_Per_CPU_Perform_jobs( cpu_self );
}
}
}
void _Per_CPU_Wait_for_job(
const Per_CPU_Control *cpu,
const Per_CPU_Job *job
@@ -122,17 +101,22 @@ void _Per_CPU_Wait_for_job(
_Atomic_Load_ulong( &job->done, ATOMIC_ORDER_ACQUIRE )
!= PER_CPU_JOB_DONE
) {
Per_CPU_Control *cpu_self;
switch ( _Per_CPU_Get_state( cpu ) ) {
case PER_CPU_STATE_INITIAL:
case PER_CPU_STATE_READY_TO_START_MULTITASKING:
case PER_CPU_STATE_REQUEST_START_MULTITASKING:
case PER_CPU_STATE_UP:
/*
* Calling this function with the current processor is intentional.
* We have to perform our own jobs here in case inter-processor
* interrupts are not working.
* Calling this function with the current processor is intentional. We
* have to perform our own jobs here in case inter-processor interrupts
* are not working.
*/
_Per_CPU_Try_perform_jobs( _Per_CPU_Get() );
cpu_self = _Per_CPU_Get();
_SMP_Try_to_process_message(
cpu_self,
_Atomic_Load_ulong( &cpu_self->message, ATOMIC_ORDER_RELAXED )
);
break;
default:
_SMP_Fatal( SMP_FATAL_WRONG_CPU_STATE_TO_PERFORM_JOBS );

View File

@@ -22,6 +22,7 @@
#include <rtems/score/threadimpl.h>
#include <rtems/score/assert.h>
#include <rtems/score/smpimpl.h>
void _Thread_Start_multitasking( void )
{
@@ -29,7 +30,8 @@ void _Thread_Start_multitasking( void )
Thread_Control *heir;
#if defined(RTEMS_SMP)
_Per_CPU_State_change( cpu_self, PER_CPU_STATE_UP );
_Per_CPU_Set_state( cpu_self, PER_CPU_STATE_UP );
_SMP_Try_to_process_message( cpu_self, SMP_MESSAGE_FORCE_PROCESSING );
/*
* Threads begin execution in the _Thread_Handler() function. This

View File

@@ -32,6 +32,8 @@ const char rtems_test_name[] = "SMPFATAL 1";
static uint32_t main_cpu;
static uint32_t other_cpu;
static SMP_barrier_Control barrier = SMP_BARRIER_CONTROL_INITIALIZER;
static void Init(rtems_task_argument arg)
@@ -45,35 +47,59 @@ static void fatal_extension(
rtems_fatal_code code
)
{
SMP_barrier_State barrier_state = SMP_BARRIER_STATE_INITIALIZER;
assert(!always_set_to_false);
if (source == RTEMS_FATAL_SOURCE_SMP) {
SMP_barrier_State barrier_state = SMP_BARRIER_STATE_INITIALIZER;
uint32_t cpu_count = rtems_scheduler_get_processor_maximum();
uint32_t self = rtems_scheduler_get_processor();
assert(!always_set_to_false);
assert(code == SMP_FATAL_SHUTDOWN);
if (self == other_cpu) {
assert(code == SMP_FATAL_SHUTDOWN);
} else {
assert(code == SMP_FATAL_SHUTDOWN_RESPONSE);
}
_SMP_barrier_Wait(&barrier, &barrier_state, cpu_count);
if (self == main_cpu) {
uint32_t cpu;
for (cpu = 0; cpu < MAX_CPUS; ++cpu) {
for (cpu = 0; cpu < cpu_count; ++cpu) {
const Per_CPU_Control *per_cpu = _Per_CPU_Get_by_index( cpu );
Per_CPU_State state = _Per_CPU_Get_state(per_cpu);
assert(state == PER_CPU_STATE_SHUTDOWN);
}
for (cpu = cpu_count; cpu < MAX_CPUS; ++cpu) {
const Per_CPU_Control *per_cpu = _Per_CPU_Get_by_index( cpu );
Per_CPU_State state = _Per_CPU_Get_state(per_cpu);
assert(state == PER_CPU_STATE_INITIAL);
}
TEST_END();
} else {
_SMP_barrier_Wait(&barrier, &barrier_state, cpu_count);
}
}
_SMP_barrier_Wait(
&barrier,
&barrier_state,
rtems_scheduler_get_processor_maximum()
);
}
static void shutdown_handler(void *arg)
{
_SMP_Request_shutdown();
_SMP_Fatal(SMP_FATAL_SHUTDOWN);
}
static const Per_CPU_Job_context shutdown_context = {
.handler = shutdown_handler
};
static Per_CPU_Job shutdown_job = {
.context = &shutdown_context
};
static rtems_status_code test_driver_init(
rtems_device_major_number major,
rtems_device_minor_number minor,
@@ -89,6 +115,7 @@ static rtems_status_code test_driver_init(
assert(rtems_configuration_get_maximum_processors() == MAX_CPUS);
main_cpu = self;
other_cpu = (self + 1) % cpu_count;
for (cpu = 0; cpu < MAX_CPUS; ++cpu) {
const Per_CPU_Control *per_cpu = _Per_CPU_Get_by_index( cpu );
@@ -107,10 +134,14 @@ static rtems_status_code test_driver_init(
}
if (cpu_count > 1) {
uint32_t other = (self + 1) % cpu_count;
Per_CPU_Control *per_cpu = _Per_CPU_Get_by_index( other );
Per_CPU_Control *per_cpu = _Per_CPU_Get_by_index( other_cpu );
_Per_CPU_Set_state(per_cpu, PER_CPU_STATE_SHUTDOWN);
_Per_CPU_Add_job(per_cpu, &shutdown_job);
_Atomic_Fetch_or_ulong(
&per_cpu->message,
SMP_MESSAGE_PERFORM_JOBS,
ATOMIC_ORDER_RELEASE
);
} else {
TEST_END();
exit(0);

View File

@@ -4,7 +4,8 @@ test set name: smpfatal01
directives:
- _Per_CPU_State_change()
- _SMP_Request_shutdown()
- _SMP_Request_start_multitasking()
concepts:

View File

@@ -47,6 +47,7 @@ static void fatal_extension(
{
SMP_barrier_State barrier_state = SMP_BARRIER_STATE_INITIALIZER;
uint32_t self = rtems_scheduler_get_processor();
uint32_t cpu_count = rtems_scheduler_get_processor_maximum();
assert(!always_set_to_false);
@@ -57,25 +58,29 @@ static void fatal_extension(
assert(code == 0xdeadbeef);
_SMP_Request_shutdown();
_SMP_barrier_Wait(&barrier, &barrier_state, cpu_count);
for (cpu = 0; cpu < MAX_CPUS; ++cpu) {
for (cpu = 0; cpu < cpu_count; ++cpu) {
const Per_CPU_Control *per_cpu = _Per_CPU_Get_by_index( cpu );
Per_CPU_State state = _Per_CPU_Get_state(per_cpu);
assert(state == PER_CPU_STATE_SHUTDOWN);
}
for (cpu = cpu_count; cpu < MAX_CPUS; ++cpu) {
const Per_CPU_Control *per_cpu = _Per_CPU_Get_by_index( cpu );
Per_CPU_State state = _Per_CPU_Get_state(per_cpu);
assert(state == PER_CPU_STATE_INITIAL);
}
TEST_END();
} else if ( source == RTEMS_FATAL_SOURCE_SMP ) {
assert(self != main_cpu);
assert(code == SMP_FATAL_SHUTDOWN);
assert(code == SMP_FATAL_SHUTDOWN_RESPONSE);
_SMP_barrier_Wait(&barrier, &barrier_state, cpu_count);
_SMP_barrier_Wait(&barrier, &barrier_state, cpu_count);
}
_SMP_barrier_Wait(
&barrier,
&barrier_state,
rtems_scheduler_get_processor_maximum()
);
}
static rtems_status_code test_driver_init(

View File

@@ -4,7 +4,8 @@ test set name: smpfatal02
directives:
- _Per_CPU_State_change()
- _Terminate()
- _SMP_Start_multitasking_on_secondary_processor()
concepts: