new files submitted by Craig Lebakken (lebakken@minn.net) and Derrick Ostertag

(ostertag@transition.com).
This commit is contained in:
Joel Sherrill
1996-09-18 20:45:27 +00:00
parent 5961dbab25
commit a4d97d942b
14 changed files with 4334 additions and 0 deletions

View File

@@ -0,0 +1,75 @@
/* a29k.h
*
* COPYRIGHT (c) 1989, 1990, 1991, 1992, 1993, 1994.
* On-Line Applications Research Corporation (OAR).
*
* This material may be reproduced by or for the U.S. Government pursuant
* to the copyright license under the clause at DFARS 252.227-7013. This
* notice must appear in all copies of this file and its derivatives.
*
* $Id$
*
*/
/* @(#)a29k.h 09/12/96 1.2 */
#ifndef _INCLUDE_A29K_h
#define _INCLUDE_A29K_h
#ifdef __cplusplus
extern "C" {
#endif
/*
* The following define the CPU Family and Model within the family
*
* NOTE: The string "REPLACE_THIS_WITH_THE_CPU_MODEL" is replaced
* with the name of the appropriate macro for this target CPU.
*/
#ifdef a29k
#undef a29k
#endif
#define a29k
#ifdef REPLACE_THIS_WITH_THE_CPU_MODEL
#undef REPLACE_THIS_WITH_THE_CPU_MODEL
#endif
#define REPLACE_THIS_WITH_THE_CPU_MODEL
#ifdef REPLACE_THIS_WITH_THE_BSP
#undef REPLACE_THIS_WITH_THE_BSP
#endif
#define REPLACE_THIS_WITH_THE_BSP
/*
* This file contains the information required to build
* RTEMS for a particular member of the "no cpu"
* family when executing in protected mode. It does
* this by setting variables to indicate which implementation
* dependent features are present in a particular member
* of the family.
*/
#if defined(a29205)
#define CPU_MODEL_NAME "a29205"
#define A29K_HAS_FPU 0
#else
#error "Unsupported CPU Model"
#endif
/*
* Define the name of the CPU family.
*/
#define CPU_NAME "AMD 29K"
#ifdef __cplusplus
}
#endif
#endif /* ! _INCLUDE_A29K_h */
/* end of include file */

View File

@@ -0,0 +1,57 @@
/* no_cputypes.h
*
* This include file contains type definitions pertaining to the Intel
* no_cpu processor family.
*
* COPYRIGHT (c) 1989, 1990, 1991, 1992, 1993, 1994.
* On-Line Applications Research Corporation (OAR).
* All rights assigned to U.S. Government, 1994.
*
* This material may be reproduced by or for the U.S. Government pursuant
* to the copyright license under the clause at DFARS 252.227-7013. This
* notice must appear in all copies of this file and its derivatives.
*
* $Id$
*/
#ifndef __NO_CPU_TYPES_h
#define __NO_CPU_TYPES_h
#ifndef ASM
#ifdef __cplusplus
extern "C" {
#endif
/*
* This section defines the basic types for this processor.
*/
typedef unsigned char unsigned8; /* unsigned 8-bit integer */
typedef unsigned short unsigned16; /* unsigned 16-bit integer */
typedef unsigned int unsigned32; /* unsigned 32-bit integer */
typedef unsigned long unsigned64; /* unsigned 64-bit integer */
typedef unsigned16 Priority_Bit_map_control;
typedef signed char signed8; /* 8-bit signed integer */
typedef signed short signed16; /* 16-bit signed integer */
typedef signed int signed32; /* 32-bit signed integer */
typedef signed long signed64; /* 64 bit signed integer */
typedef unsigned32 boolean; /* Boolean value */
typedef float single_precision; /* single precision float */
typedef double double_precision; /* double precision float */
typedef void no_cpu_isr;
typedef void ( *no_cpu_isr_entry )( void );
#ifdef __cplusplus
}
#endif
#endif /* !ASM */
#endif
/* end of include file */

View File

@@ -0,0 +1,531 @@
; /* @(#)amd.ah 1.1 96/05/23 08:56:58, TEI */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Initialization values for registers after RESET
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
' /* $Id */
;* File information and includes.
.file "amd.ah"
.ident "@(#)amd.ah 1.1 96/05/23 08:56:58, TEI"
;
;* AMD PROCESSOR SPECIFIC VALUES...
;
;
;* Processor revision levels...
;
; PRL values: 31-28 27-24
; Am29000 0 x
; Am29005 1 x
; Am29050 2 x
; Am29035 3 x
; Am29030 4 x
; Am29200 5 x
; Am29205 5 1x
; Am29240 6 0
; Manx 7 0
; Cougar 8 0
.equ AM29000_PRL, 0x00
.equ AM29005_PRL, 0x10
.equ AM29050_PRL, 0x20
.equ AM29035_PRL, 0x30
.equ AM29030_PRL, 0x40
.equ AM29200_PRL, 0x50
.equ AM29205_PRL, 0x58
.equ AM29240_PRL, 0x60
.equ AM29040_PRL, 0x70
.equ MANX_PRL, 0x70
.equ COUGAR_PRL, 0x80
;
;* data structures sizes.
;
.equ CFGINFO_SIZE, 16*4
.equ PGMINFO_SIZE, 16*4
.equ VARARGS_SPACE, 16*4
.equ WINDOWSIZE, 0x80
;
;* Am29027 Mode registers
;
.equ Am29027Mode1, 0x0fc00820
.equ Am29027Mode2, 0x00001375
;* Processor Based Equates and Defines
.equ SIG_SYNC, -1
.equ ENABLE, (SM)
.equ DISABLE, (ENABLE | DI | DA)
.equ DISABLE_FZ, (FZ | ENABLE | DI | DA)
.equ CLR_TRAP, (FZ | DA)
.equ InitOPS, (TD | SM | (3<<IMShift) | DI | DA)
.equ InitCPS, (TD | SM | (0<<IMShift) | DI | DA)
.equ InitCPS1, (TD | SM | (0<<IMShift) | DI )
.equ CPS_TMR, (SM | (0<<IMShift) | DI)
.equ CPS_INT0, (TD | SM | (0<<IMShift))
.equ CPS_TMRINT0, (SM | (0<<IMShift))
.equ InitCFG, 0x0
.equ InitRBP, (B0|B1|B2|B3|B4|B5)
.equ TMC_VALUE, 0xFFFFFF
.equ TMR_VALUE, (IE | TMC_VALUE)
;* 29205 specific (internal) peripheral initialization constants.
; Current Processor Status (CPS) Register.
; Old Processor Status Register (OPS).
.equ DA, 0x00001
.equ DI, 0x00002
.equ IMShift,0x2
.equ SM, 0x00010
.equ PI, 0x00020
.equ PD, 0x00040
.equ WM, 0x00080
.equ RE, 0x00100
.equ LK, 0x00200
.equ FZ, 0x00400
.equ TU, 0x00800
.equ TP, 0x01000
.equ TE, 0x02000
.equ IP, 0x04000
.equ CA, 0x08000
.equ MM, 0x10000
.equ TD, 0x20000
; Configuration Register (CFG)
.equ CD, 0x01
.equ CP, 0x02
.equ BO, 0x04
.equ RV, 0x08
.equ VF, 0x10
.equ DW, 0x20
.equ CO, 0x40
.equ EE, 0x80
.equ IDShift, 8
.equ CFG_ID, 0x100
.equ ILShift, 9
.equ CFG_ILMask, 0x600
.equ DDShift, 11
.equ CFG_DD, 0x800
.equ DLShift, 12
.equ CFG_DLMask, 0x3000
.equ PCEShift, 14
.equ CFG_PCE, 0x4000
.equ PMBShift, 16
.equ D16, 0x8000
.equ TBOShift, 23
.equ PRLShift, 24
; Channel Control Register (CHC)
.equ CV, 0x1
.equ NN, 0x2
.equ TRShift, 2
.equ TF, 0x400
.equ PER, 0x800
.equ LA, 0x1000
.equ ST, 0x2000
.equ ML, 0x4000
.equ LS, 0x8000
.equ CRShift, 16
.equ CNTLShift, 24
.equ CEShift, 31
.equ WBERShift, 31
; Register Bank Protect (RBP)
.equ B0, 0x1
.equ B1, 0x2
.equ B2, 0x4
.equ B3, 0x8
.equ B4, 0x10
.equ B5, 0x20
.equ B6, 0x40
.equ B7, 0x80
.equ B8, 0x100
.equ B9, 0x200
.equ B10, 0x400
.equ B11, 0x800
.equ B12, 0x1000
.equ B13, 0x2000
.equ B14, 0x4000
.equ B15, 0x8000
; Timer Counter
.equ TCVMask, 0xffffff
; Timer Reload Register
.equ IE, 0x1000000
.equ IN, 0x2000000
.equ OV, 0x4000000
.equ TRVMAsk, 0xffffff
; MMU Configuration
.equ PSShift, 8
.equ PS0Shift, 8
.equ PS1Shift, 12
; LRU Recommendation (LRU)
.equ LRUMask, 0xff
; Reason Vector (RSN)
.equ RSNMask, 0xff
; Region Mapping Address (RMA0 | RMA1)
.equ PBAMask,0xffff
.equ VBAShift, 16
; Region Mapping Control (RMC0 | RMC1)
.equ TIDMask, 0xff
.equ RMC_UE, 0x100
.equ RMC_UW, 0x200
.equ RMC_UR, 0x400
.equ RMC_SE, 0x800
.equ RMC_SW, 0x1000
.equ RMC_SR, 0x2000
.equ RMC_VE, 0x4000
.equ RMC_IO, 0x10000
.equ RGSShift, 17
.equ RMC_PGMShift, 22
; Instruction breakpoint Control (IBC0 | IBC1)
.equ BPIDMask, 0xff
.equ BTE, 0x100
.equ BRM, 0x200
.equ IBC_BSY, 0x400
.equ BEN, 0x800
.equ BHO, 0x1000
; Cache Data Register (CDR)
.equ CDR_US, 0x1
.equ P, 0x2
.equ CDR_V, 0x4
.equ IATAGShift, 20
; Cache Interface Register (CIR)
.equ CPTRShift, 2
.equ CIR_RW, 0x1000000
.equ FSELShift, 28
; Indirect Pointer A, B, C (IPA, IPB, IPC)
.equ IPShift, 2
; ALU Status (ALU)
.equ FCMask, 0x1F
.equ BPShift, 5
.equ C, 0x80
.equ Z, 0x100
.equ N, 0x200
.equ ALU_V, 0x400
.equ DF, 0x800
; Byte Pointer
.equ BPMask, 0x3
; Load/Store Count Remaining (CR)
.equ CRMask, 0xff
; Floating Point Environment (FPE)
.equ NM, 0x1
.equ RM, 0x2
.equ VM, 0x4
.equ UM, 0x8
.equ XM, 0x10
.equ DM, 0x20
.equ FRMShift, 6
.equ FF, 0x100
.equ ACFShift, 9
; Integer Environment (INTE)
.equ MO, 0x1
.equ DO, 0x2
; Floating Point Status (FPS)
.equ NS, 0x1
.equ RS, 0x2
.equ VS, 0x4
.equ FPS_US, 0x8
.equ XS, 0x10
.equ DS, 0x20
.equ NT, 0x100
.equ RT, 0x200
.equ VT, 0x400
.equ UT, 0x800
.equ XT, 0x1000
.equ DT, 0x2000
; Exception Opcode (EXOP)
.equ IOPMask, 0xff
; TLB Entry Word 0
; .equ TIDMask, 0xff already defined above
.equ TLB_UE, 0x100
.equ TLB_UW, 0x200
.equ TLB_UR, 0x400
.equ TLB_SE, 0x800
.equ TLB_SW, 0x1000
.equ TLB_SR, 0x2000
.equ TLB_VE, 0x4000
.equ VTAGShift, 15
; TLB Entry Word 1
.equ TLB_IO, 0x1
.equ U, 0x2
.equ TLB_PGMShift, 6
.equ RPNShift, 10
; Am29200 ROM Control bits.
.equ RMCT_DW0Shift, 29
.equ RMCT_DW1Shift, 21
.equ RMCT_DW2Shift, 13
.equ RMCT_DW3Shift, 5
; Am29200 DRAM Control bits.
.equ DW3, (1<<18)
.equ DW2, (1<<22)
.equ DW1, (1<<26)
.equ DW0, (1<<30)
; Internal peripheral address assignments.
.equ RMCT, 0x80000000
.equ RMCF, 0x80000004
.equ DRCT, 0x80000008
.equ DRCF, 0x8000000C
.equ DRM0, 0x80000010
.equ DRM1, 0x80000014
.equ DRM2, 0x80000018
.equ DRM3, 0x8000001C
.equ PIACT0, 0x80000020
.equ PIACT1, 0x80000020
.equ ICT, 0x80000028
.equ DMCT0, 0x80000030
.equ DMAD0, 0x80000034
.ifdef revA
.equ TAD0, 0x80000036
.equ TCN0, 0x8000003A
.else
.equ TAD0, 0x80000070 ; default
.equ TCN0, 0x8000003C ; default
.endif
.equ DMCN0, 0x80000038
.equ DMCT1, 0x80000040
.equ DMAD1, 0x80000044
.equ DMCN1, 0x80000048
.equ SPCT, 0x80000080
.equ SPST, 0x80000084
.equ SPTH, 0x80000088
.equ SPRB, 0x8000008C
.equ BAUD, 0x80000090
.equ PPCT, 0x800000C0
.equ PPST, 0x800000C1
.equ PPDT, 0x800000C4
.equ POCT, 0x800000D0
.equ PIN, 0x800000D4
.equ POUT, 0x800000D8
.equ POEN, 0x800000DC
.equ VCT, 0x800000E0
.equ TOP, 0x800000E4
.equ SIDE, 0x800000E8
.equ VDT, 0x800000EC
; Interrupt Controller Register bits.
.equ TXDI, (1<<5)
.equ RXDI, (1<<6)
.equ RXSI, (1<<7)
.equ PPI, (1<<11)
.equ DMA1I, (1<<13)
.equ DMA0I, (1<<14)
.equ IOPIMask, (0xFF<<16)
.equ VDI, (1<<27)
.equ ICT200_I, (TXDI|RXDI|RXSI|PPI|DMA1I|DMA0I|IOPIMask|VDI)
.equ ICT205_I, (TXDI|RXDI|RXSI|PPI|DMA1I|DMA0I|IOPIMask|VDI)
; Serial port Initialization bits
.equ NO_PARITY, 0
; SPST bits
.equ THREShift, 22
;* REGISTER Addresses
.equ ROMCntlRegAddr, 0x80000000
.equ ROMCfgRegAddr, 0x80000004
.equ DRAMCntlRegAddr, 0x80000008
.equ DRAMCfgRegAddr, 0x8000000C
.equ DRAMMap0RegAddr, 0x80000010
.equ DRAMMap1RegAddr, 0x80000014
.equ DRAMMap2RegAddr, 0x80000018
.equ DRAMMap3RegAddr, 0x8000001C
.equ PIACntl0RegAddr, 0x80000020
.equ PIACntl1RegAddr, 0x80000024
.equ INTRCntlRegAddr, 0x80000028
.equ DMACntl0RegAddr, 0x80000030
.equ DMACntl1RegAddr, 0x80000040
.equ SERPortCntlRegAddr, 0x80000080
.equ SERPortStatRegAddr, 0x80000084
.equ SERPortTHLDRegAddr, 0x80000088
.equ SERPortRbufRegAddr, 0x8000008C
.equ SERPortBaudRegAddr, 0x80000090
.equ PARPortCntlRegAddr, 0x800000C0
.equ PIOCntlRegAddr, 0x800000D0
.equ PIOInpRegAddr, 0x800000D4
.equ PIOOutRegAddr, 0x800000D8
.equ PIOOutEnaRegAddr, 0x800000DC
.equ VCTCntlRegAddr, 0x800000E0
;
;* Control constants
;
;* AM29030 Timer related constants.
.equ TMR_IE, 0x01000000
.equ TMR_IN, 0x02000000
.equ TMR_OV, 0x04000000
.equ TMC_INITCNT, 1613
;
;* System initialization values.
;
.equ __os_version, 0x0001 ;
.equ STACKSize, 0x8000 ;
.equ PGMExecMode, 0x0000 ;
.equ TSTCK_OFST, 28 * 4
.equ CSTCK_OFST, 29 * 4
.equ TMSTCK_OFST, 30 * 4
.equ CMSTCK_OFST, 31 * 4
.equ CTXSW_OK, 0xA55A ; ctx switch ok
.set NV_STARTOFST, 0x20 ; 32 bytes
.set NV_BAUDOFST, 0x00 ; 00 bytes
.set reg_cir, 29
.set reg_cdr, 30
.equ MSG_BUFSIZE, 0x1000 ; serial buffer size
.equ ILLOPTRAP, 0
.equ UATRAP, 1
.equ PVTRAP, 5
.equ UITLBMISSTRAP, 8
.equ UDTLBMISSTRAP, 9
.equ TIMERTRAP, 14
.equ TRACETRAP, 15
.equ XLINXTRAP, 16
.equ SERIALTRAP, 17
.equ SLOWTMRTRAP, 18
.equ PORTTRAP, 19
.equ SVSCTRAP, 80
.equ SVSCTRAP1, 81
.equ V_CACHETRAP, 66 ;
.equ V_SETSERVICE, 67 ;
.equ INIT_TIMER, 100
.equ DISABLE_TIMER, 101
.equ GET_TIMER, 102
.equ CLEAR_TIMER, 103
.equ V_SPILL, 64
.equ V_FILL, 65
.equ SIGDFL, 105

View File

@@ -0,0 +1,98 @@
/* asm.h
*
* This include file attempts to address the problems
* caused by incompatible flavors of assemblers and
* toolsets. It primarily addresses variations in the
* use of leading underscores on symbols and the requirement
* that register names be preceded by a %.
*
*
* NOTE: The spacing in the use of these macros
* is critical to them working as advertised.
*
* COPYRIGHT:
*
* This file is based on similar code found in newlib available
* from ftp.cygnus.com. The file which was used had no copyright
* notice. This file is freely distributable as long as the source
* of the file is noted. This file is:
*
* COPYRIGHT (c) 1994.
* On-Line Applications Research Corporation (OAR).
*
* $Id$
*/
#ifndef __NO_CPU_ASM_h
#define __NO_CPU_ASM_h
/*
* Indicate we are in an assembly file and get the basic CPU definitions.
*/
#define ASM
#include <rtems/score/no_cpu.h>
/*
* Recent versions of GNU cpp define variables which indicate the
* need for underscores and percents. If not using GNU cpp or
* the version does not support this, then you will obviously
* have to define these as appropriate.
*/
#ifndef __USER_LABEL_PREFIX__
#define __USER_LABEL_PREFIX__ _
#endif
#ifndef __REGISTER_PREFIX__
#define __REGISTER_PREFIX__
#endif
/* ANSI concatenation macros. */
#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b
/* Use the right prefix for global labels. */
#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)
/* Use the right prefix for registers. */
#define REG(x) CONCAT1 (__REGISTER_PREFIX__, x)
/*
* define macros for all of the registers on this CPU
*
* EXAMPLE: #define d0 REG (d0)
*/
/*
* Define macros to handle section beginning and ends.
*/
#define BEGIN_CODE_DCL .text
#define END_CODE_DCL
#define BEGIN_DATA_DCL .data
#define END_DATA_DCL
#define BEGIN_CODE .text
#define END_CODE
#define BEGIN_DATA
#define END_DATA
#define BEGIN_BSS
#define END_BSS
#define END
/*
* Following must be tailor for a particular flavor of the C compiler.
* They may need to put underscores in front of the symbols.
*/
#define PUBLIC(sym) .globl SYM (sym)
#define EXTERN(sym) .globl SYM (sym)
#endif
/* end of include file */

View File

@@ -0,0 +1,256 @@
/*
* AMD 29K CPU Dependent Source
*
* Author: Craig Lebakken <craigl@transition.com>
*
* COPYRIGHT (c) 1996 by Transition Networks Inc.
*
* To anyone who acknowledges that this file is provided "AS IS"
* without any express or implied warranty:
* permission to use, copy, modify, and distribute this file
* for any purpose is hereby granted without fee, provided that
* the above copyright notice and this notice appears in all
* copies, and that the name of Transition Networks not be used in
* advertising or publicity pertaining to distribution of the
* software without specific, written prior permission.
* Transition Networks makes no representations about the suitability
* of this software for any purpose.
*
* Derived from c/src/exec/score/cpu/no_cpu/cpu.c:
*
* COPYRIGHT (c) 1989, 1990, 1991, 1992, 1993, 1994.
* On-Line Applications Research Corporation (OAR).
* All rights assigned to U.S. Government, 1994.
*
* This material may be reproduced by or for the U.S. Government pursuant
* to the copyright license under the clause at DFARS 252.227-7013. This
* notice must appear in all copies of this file and its derivatives.
*
* $Id$
*/
#ifndef lint
static char _sccsid[] = "@(#)cpu.c 21 Aug 1996 1.6\n";
#endif
#include <rtems/system.h>
#include <rtems/score/isr.h>
#include <rtems/score/wkspace.h>
#include <rtems/score/thread.h>
#include <stdio.h>
#include <stdlib.h>
void a29k_ISR_Handler(unsigned32 vector);
/* _CPU_Initialize
*
* This routine performs processor dependent initialization.
*
* INPUT PARAMETERS:
* cpu_table - CPU table to initialize
* thread_dispatch - address of disptaching routine
*/
void _CPU_Initialize(
rtems_cpu_table *cpu_table,
void (*thread_dispatch)() /* ignored on this CPU */
)
{
unsigned int i;
/*
* The thread_dispatch argument is the address of the entry point
* for the routine called at the end of an ISR once it has been
* decided a context switch is necessary. On some compilation
* systems it is difficult to call a high-level language routine
* from assembly. This allows us to trick these systems.
*
* If you encounter this problem save the entry point in a CPU
* dependent variable.
*/
_CPU_Thread_dispatch_pointer = thread_dispatch;
/*
* If there is not an easy way to initialize the FP context
* during Context_Initialize, then it is usually easier to
* save an "uninitialized" FP context here and copy it to
* the task's during Context_Initialize.
*/
/* FP context initialization support goes here */
_CPU_Table = *cpu_table;
for ( i = 0; i < ISR_NUMBER_OF_VECTORS; i++ )
{
_ISR_Vector_table[i] = (proc_ptr)NULL;
}
}
/*PAGE
*
* _CPU_ISR_Get_level
*/
unsigned32 _CPU_ISR_Get_level( void )
{
/*
* This routine returns the current interrupt level.
*/
return 0;
}
/*PAGE
*
* _CPU_ISR_install_raw_handler
*/
extern void intr14( void );
extern void intr3( void );
extern void intr2( void );
void _CPU_ISR_install_raw_handler(
unsigned32 vector,
proc_ptr new_handler,
proc_ptr *old_handler
)
{
/*
* This is where we install the interrupt handler into the "raw" interrupt
* table used by the CPU to dispatch interrupt handlers.
*/
switch( vector )
{
case 14:
_settrap( vector, intr14 );
break;
case 3:
_settrap( vector, intr3 );
break;
case 2:
_settrap( vector, intr2 );
break;
default:
break;
}
}
/*PAGE
*
* _CPU_ISR_install_vector
*
* This kernel routine installs the RTEMS handler for the
* specified vector.
*
* Input parameters:
* vector - interrupt vector number
* old_handler - former ISR for this vector number
* new_handler - replacement ISR for this vector number
*
* Output parameters: NONE
*
*/
void _CPU_ISR_install_vector(
unsigned32 vector,
proc_ptr new_handler,
proc_ptr *old_handler
)
{
*old_handler = _ISR_Vector_table[ vector ];
/*
* If the interrupt vector table is a table of pointer to isr entry
* points, then we need to install the appropriate RTEMS interrupt
* handler for this vector number.
*/
_CPU_ISR_install_raw_handler( vector, new_handler, old_handler );
/*
* We put the actual user ISR address in '_ISR_vector_table'. This will
* be used by the _ISR_Handler so the user gets control.
*/
_ISR_Vector_table[ vector ] = new_handler;
}
/*PAGE
*
* _CPU_Install_interrupt_stack
*/
void _CPU_Install_interrupt_stack( void )
{
}
/*PAGE
*
* _CPU_Internal_threads_Idle_thread_body
*
* NOTES:
*
* 1. This is the same as the regular CPU independent algorithm.
*
* 2. If you implement this using a "halt", "idle", or "shutdown"
* instruction, then don't forget to put it in an infinite loop.
*
* 3. Be warned. Some processors with onboard DMA have been known
* to stop the DMA if the CPU were put in IDLE mode. This might
* also be a problem with other on-chip peripherals. So use this
* hook with caution.
*/
void _CPU_Internal_threads_Idle_thread_body( void )
{
for( ; ; )
{
}
/* insert your "halt" instruction here */ ;
}
void a29k_fatal_error( unsigned32 error )
{
printf("\n\nfatal error %d, rebooting!!!\n",error );
exit(error);
}
/*
* This discussion ignores a lot of the ugly details in a real
* implementation such as saving enough registers/state to be
* able to do something real. Keep in mind that the goal is
* to invoke a user's ISR handler which is written in C and
* uses a certain set of registers.
*
* Also note that the exact order is to a large extent flexible.
* Hardware will dictate a sequence for a certain subset of
* _ISR_Handler while requirements for setting
*/
/*
* At entry to "common" _ISR_Handler, the vector number must be
* available. On some CPUs the hardware puts either the vector
* number or the offset into the vector table for this ISR in a
* known place. If the hardware does not give us this information,
* then the assembly portion of RTEMS for this port will contain
* a set of distinct interrupt entry points which somehow place
* the vector number in a known place (which is safe if another
* interrupt nests this one) and branches to _ISR_Handler.
*
*/
void a29k_ISR_Handler(unsigned32 vector)
{
_ISR_Nest_level++;
_Thread_Dispatch_disable_level++;
if ( _ISR_Vector_table[ vector ] )
(*_ISR_Vector_table[ vector ])( vector );
--_Thread_Dispatch_disable_level;
--_ISR_Nest_level;
if ( !_Thread_Dispatch_disable_level && !_ISR_Nest_level &&
(_Context_Switch_necessary || _ISR_Signals_to_thread_executing ))
_Thread_Dispatch();
return;
}

View File

@@ -0,0 +1,953 @@
/* cpu.h
*
* This include file contains information pertaining to the AMD 29K
* processor.
*
* Author: Craig Lebakken <craigl@transition.com>
*
* COPYRIGHT (c) 1996 by Transition Networks Inc.
*
* To anyone who acknowledges that this file is provided "AS IS"
* without any express or implied warranty:
* permission to use, copy, modify, and distribute this file
* for any purpose is hereby granted without fee, provided that
* the above copyright notice and this notice appears in all
* copies, and that the name of Transition Networks not be used in
* advertising or publicity pertaining to distribution of the
* software without specific, written prior permission.
* Transition Networks makes no representations about the suitability
* of this software for any purpose.
*
* Derived from c/src/exec/score/cpu/no_cpu/cpu_asm.c:
*
* COPYRIGHT (c) 1989, 1990, 1991, 1992, 1993, 1994.
* On-Line Applications Research Corporation (OAR).
* All rights assigned to U.S. Government, 1994.
*
* This material may be reproduced by or for the U.S. Government pursuant
* to the copyright license under the clause at DFARS 252.227-7013. This
* notice must appear in all copies of this file and its derivatives.
*
* $Id$
*/
/* @(#)cpu.h 09/06/96 1.10 */
#ifndef __CPU_h
#define __CPU_h
#ifdef __cplusplus
extern "C" {
#endif
#include <rtems/score/a29k.h> /* pick up machine definitions */
#ifndef ASM
#include <rtems/score/a29ktypes.h>
#endif
extern unsigned int a29k_disable( void );
extern void a29k_enable( unsigned int cookie );
extern void a29k_disable_sup( void );
extern void a29k_enable_sup( void );
extern void a29k_disable_all( void );
extern void a29k_disable_all_sup( void );
extern void a29k_enable_all( void );
extern void a29k_enable_all_sup( void );
extern void a29k_halt( void );
extern void a29k_fatal_error( unsigned32 error );
extern void a29k_as70( void );
extern void a29k_super_mode( void );
extern void a29k_context_switch_sup(void);
extern void a29k_context_restore_sup(void);
extern void a29k_context_save_sup(void);
extern void a29k_sigdfl_sup(void);
/* conditional compilation parameters */
/*
* Should the calls to _Thread_Enable_dispatch be inlined?
*
* If TRUE, then they are inlined.
* If FALSE, then a subroutine call is made.
*
* Basically this is an example of the classic trade-off of size
* versus speed. Inlining the call (TRUE) typically increases the
* size of RTEMS while speeding up the enabling of dispatching.
* [NOTE: In general, the _Thread_Dispatch_disable_level will
* only be 0 or 1 unless you are in an interrupt handler and that
* interrupt handler invokes the executive.] When not inlined
* something calls _Thread_Enable_dispatch which in turns calls
* _Thread_Dispatch. If the enable dispatch is inlined, then
* one subroutine call is avoided entirely.]
*/
#define CPU_INLINE_ENABLE_DISPATCH TRUE
/*
* Should the body of the search loops in _Thread_queue_Enqueue_priority
* be unrolled one time? In unrolled each iteration of the loop examines
* two "nodes" on the chain being searched. Otherwise, only one node
* is examined per iteration.
*
* If TRUE, then the loops are unrolled.
* If FALSE, then the loops are not unrolled.
*
* The primary factor in making this decision is the cost of disabling
* and enabling interrupts (_ISR_Flash) versus the cost of rest of the
* body of the loop. On some CPUs, the flash is more expensive than
* one iteration of the loop body. In this case, it might be desirable
* to unroll the loop. It is important to note that on some CPUs, this
* code is the longest interrupt disable period in RTEMS. So it is
* necessary to strike a balance when setting this parameter.
*/
#define CPU_UNROLL_ENQUEUE_PRIORITY TRUE
/*
* Does RTEMS manage a dedicated interrupt stack in software?
*
* If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
* If FALSE, nothing is done.
*
* If the CPU supports a dedicated interrupt stack in hardware,
* then it is generally the responsibility of the BSP to allocate it
* and set it up.
*
* If the CPU does not support a dedicated interrupt stack, then
* the porter has two options: (1) execute interrupts on the
* stack of the interrupted task, and (2) have RTEMS manage a dedicated
* interrupt stack.
*
* If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
*
* Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
* CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
* possible that both are FALSE for a particular CPU. Although it
* is unclear what that would imply about the interrupt processing
* procedure on that CPU.
*/
#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
/*
* Does this CPU have hardware support for a dedicated interrupt stack?
*
* If TRUE, then it must be installed during initialization.
* If FALSE, then no installation is performed.
*
* If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
*
* Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
* CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is
* possible that both are FALSE for a particular CPU. Although it
* is unclear what that would imply about the interrupt processing
* procedure on that CPU.
*/
#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
/*
* Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
*
* If TRUE, then the memory is allocated during initialization.
* If FALSE, then the memory is allocated during initialization.
*
* This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
* or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
*/
#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
/*
* Does the CPU have hardware floating point?
*
* If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
* If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
*
* If there is a FP coprocessor such as the i387 or mc68881, then
* the answer is TRUE.
*
* The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
* It indicates whether or not this CPU model has FP support. For
* example, it would be possible to have an i386_nofp CPU model
* which set this to false to indicate that you have an i386 without
* an i387 and wish to leave floating point support out of RTEMS.
*/
#if ( A29K_HAS_FPU == 1 )
#define CPU_HARDWARE_FP TRUE
#else
#define CPU_HARDWARE_FP FALSE
#endif
/*
* Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
*
* If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
* If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
*
* So far, the only CPU in which this option has been used is the
* HP PA-RISC. The HP C compiler and gcc both implicitly use the
* floating point registers to perform integer multiplies. If
* a function which you would not think utilize the FP unit DOES,
* then one can not easily predict which tasks will use the FP hardware.
* In this case, this option should be TRUE.
*
* If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
*/
#define CPU_ALL_TASKS_ARE_FP FALSE
/*
* Should the IDLE task have a floating point context?
*
* If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
* and it has a floating point context which is switched in and out.
* If FALSE, then the IDLE task does not have a floating point context.
*
* Setting this to TRUE negatively impacts the time required to preempt
* the IDLE task from an interrupt because the floating point context
* must be saved as part of the preemption.
*/
#define CPU_IDLE_TASK_IS_FP FALSE
/*
* Should the saving of the floating point registers be deferred
* until a context switch is made to another different floating point
* task?
*
* If TRUE, then the floating point context will not be stored until
* necessary. It will remain in the floating point registers and not
* disturned until another floating point task is switched to.
*
* If FALSE, then the floating point context is saved when a floating
* point task is switched out and restored when the next floating point
* task is restored. The state of the floating point registers between
* those two operations is not specified.
*
* If the floating point context does NOT have to be saved as part of
* interrupt dispatching, then it should be safe to set this to TRUE.
*
* Setting this flag to TRUE results in using a different algorithm
* for deciding when to save and restore the floating point context.
* The deferred FP switch algorithm minimizes the number of times
* the FP context is saved and restored. The FP context is not saved
* until a context switch is made to another, different FP task.
* Thus in a system with only one FP task, the FP context will never
* be saved or restored.
*/
#define CPU_USE_DEFERRED_FP_SWITCH TRUE
/*
* Does this port provide a CPU dependent IDLE task implementation?
*
* If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body
* must be provided and is the default IDLE thread body instead of
* _Internal_threads_Idle_thread_body.
*
* If FALSE, then use the generic IDLE thread body if the BSP does
* not provide one.
*
* This is intended to allow for supporting processors which have
* a low power or idle mode. When the IDLE thread is executed, then
* the CPU can be powered down.
*
* The order of precedence for selecting the IDLE thread body is:
*
* 1. BSP provided
* 2. CPU dependent (if provided)
* 3. generic (if no BSP and no CPU dependent)
*/
#define CPU_PROVIDES_IDLE_THREAD_BODY TRUE
/*
* Does the stack grow up (toward higher addresses) or down
* (toward lower addresses)?
*
* If TRUE, then the grows upward.
* If FALSE, then the grows toward smaller addresses.
*/
#define CPU_STACK_GROWS_UP FALSE
/*
* The following is the variable attribute used to force alignment
* of critical RTEMS structures. On some processors it may make
* sense to have these aligned on tighter boundaries than
* the minimum requirements of the compiler in order to have as
* much of the critical data area as possible in a cache line.
*
* The placement of this macro in the declaration of the variables
* is based on the syntactically requirements of the GNU C
* "__attribute__" extension. For example with GNU C, use
* the following to force a structures to a 32 byte boundary.
*
* __attribute__ ((aligned (32)))
*
* NOTE: Currently only the Priority Bit Map table uses this feature.
* To benefit from using this, the data must be heavily
* used so it will stay in the cache and used frequently enough
* in the executive to justify turning this on.
*/
#define CPU_STRUCTURE_ALIGNMENT
/*
* The following defines the number of bits actually used in the
* interrupt field of the task mode. How those bits map to the
* CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
*/
#define CPU_MODES_INTERRUPT_MASK 0x00000001
/*
* Processor defined structures
*
* Examples structures include the descriptor tables from the i386
* and the processor control structure on the i960ca.
*/
/* may need to put some structures here. */
/*
* Contexts
*
* Generally there are 2 types of context to save.
* 1. Interrupt registers to save
* 2. Task level registers to save
*
* This means we have the following 3 context items:
* 1. task level context stuff:: Context_Control
* 2. floating point task stuff:: Context_Control_fp
* 3. special interrupt level context :: Context_Control_interrupt
*
* On some processors, it is cost-effective to save only the callee
* preserved registers during a task context switch. This means
* that the ISR code needs to save those registers which do not
* persist across function calls. It is not mandatory to make this
* distinctions between the caller/callee saves registers for the
* purpose of minimizing context saved during task switch and on interrupts.
* If the cost of saving extra registers is minimal, simplicity is the
* choice. Save the same context on interrupt entry as for tasks in
* this case.
*
* Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
* care should be used in designing the context area.
*
* On some CPUs with hardware floating point support, the Context_Control_fp
* structure will not be used or it simply consist of an array of a
* fixed number of bytes. This is done when the floating point context
* is dumped by a "FP save context" type instruction and the format
* is not really defined by the CPU. In this case, there is no need
* to figure out the exact format -- only the size. Of course, although
* this is enough information for RTEMS, it is probably not enough for
* a debugger such as gdb. But that is another problem.
*/
typedef struct {
unsigned32 signal;
unsigned32 gr1;
unsigned32 rab;
unsigned32 PC0;
unsigned32 PC1;
unsigned32 PC2;
unsigned32 CHA;
unsigned32 CHD;
unsigned32 CHC;
unsigned32 ALU;
unsigned32 OPS;
unsigned32 tav;
unsigned32 lr1;
unsigned32 rfb;
unsigned32 msp;
unsigned32 FPStat0;
unsigned32 FPStat1;
unsigned32 FPStat2;
unsigned32 IPA;
unsigned32 IPB;
unsigned32 IPC;
unsigned32 Q;
unsigned32 gr96;
unsigned32 gr97;
unsigned32 gr98;
unsigned32 gr99;
unsigned32 gr100;
unsigned32 gr101;
unsigned32 gr102;
unsigned32 gr103;
unsigned32 gr104;
unsigned32 gr105;
unsigned32 gr106;
unsigned32 gr107;
unsigned32 gr108;
unsigned32 gr109;
unsigned32 gr110;
unsigned32 gr111;
unsigned32 gr112;
unsigned32 gr113;
unsigned32 gr114;
unsigned32 gr115;
unsigned32 gr116;
unsigned32 gr117;
unsigned32 gr118;
unsigned32 gr119;
unsigned32 gr120;
unsigned32 gr121;
unsigned32 gr122;
unsigned32 gr123;
unsigned32 gr124;
unsigned32 local_count;
unsigned32 locals[128];
} Context_Control;
typedef struct {
double some_float_register;
} Context_Control_fp;
typedef struct {
unsigned32 special_interrupt_register;
} CPU_Interrupt_frame;
/*
* The following table contains the information required to configure
* the XXX processor specific parameters.
*
* NOTE: The interrupt_stack_size field is required if
* CPU_ALLOCATE_INTERRUPT_STACK is defined as TRUE.
*
* The pretasking_hook, predriver_hook, and postdriver_hook,
* and the do_zero_of_workspace fields are required on ALL CPUs.
*/
typedef struct {
void (*pretasking_hook)( void );
void (*predriver_hook)( void );
void (*postdriver_hook)( void );
void (*idle_task)( void );
boolean do_zero_of_workspace;
unsigned32 interrupt_stack_size;
unsigned32 extra_system_initialization_stack;
unsigned32 some_other_cpu_dependent_info;
} rtems_cpu_table;
/*
* This variable is optional. It is used on CPUs on which it is difficult
* to generate an "uninitialized" FP context. It is filled in by
* _CPU_Initialize and copied into the task's FP context area during
* _CPU_Context_Initialize.
*/
EXTERN Context_Control_fp _CPU_Null_fp_context;
/*
* On some CPUs, RTEMS supports a software managed interrupt stack.
* This stack is allocated by the Interrupt Manager and the switch
* is performed in _ISR_Handler. These variables contain pointers
* to the lowest and highest addresses in the chunk of memory allocated
* for the interrupt stack. Since it is unknown whether the stack
* grows up or down (in general), this give the CPU dependent
* code the option of picking the version it wants to use.
*
* NOTE: These two variables are required if the macro
* CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
*/
EXTERN void *_CPU_Interrupt_stack_low;
EXTERN void *_CPU_Interrupt_stack_high;
/*
* With some compilation systems, it is difficult if not impossible to
* call a high-level language routine from assembly language. This
* is especially true of commercial Ada compilers and name mangling
* C++ ones. This variable can be optionally defined by the CPU porter
* and contains the address of the routine _Thread_Dispatch. This
* can make it easier to invoke that routine at the end of the interrupt
* sequence (if a dispatch is necessary).
*/
EXTERN void (*_CPU_Thread_dispatch_pointer)();
/*
* Nothing prevents the porter from declaring more CPU specific variables.
*/
/* XXX: if needed, put more variables here */
/*
* The size of the floating point context area. On some CPUs this
* will not be a "sizeof" because the format of the floating point
* area is not defined -- only the size is. This is usually on
* CPUs with a "floating point save context" instruction.
*/
#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
/*
* Amount of extra stack (above minimum stack size) required by
* system initialization thread. Remember that in a multiprocessor
* system the system intialization thread becomes the MP server thread.
*/
#define CPU_SYSTEM_INITIALIZATION_THREAD_EXTRA_STACK 0
/*
* This defines the number of entries in the ISR_Vector_table managed
* by RTEMS.
*/
#define CPU_INTERRUPT_NUMBER_OF_VECTORS 256
#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
/*
* Should be large enough to run all RTEMS tests. This insures
* that a "reasonable" small application should not have any problems.
*/
#define CPU_STACK_MINIMUM_SIZE (8192)
/*
* CPU's worst alignment requirement for data types on a byte boundary. This
* alignment does not take into account the requirements for the stack.
*/
#define CPU_ALIGNMENT 4
/*
* This number corresponds to the byte alignment requirement for the
* heap handler. This alignment requirement may be stricter than that
* for the data types alignment specified by CPU_ALIGNMENT. It is
* common for the heap to follow the same alignment requirement as
* CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap,
* then this should be set to CPU_ALIGNMENT.
*
* NOTE: This does not have to be a power of 2. It does have to
* be greater or equal to than CPU_ALIGNMENT.
*/
#define CPU_HEAP_ALIGNMENT CPU_ALIGNMENT
/*
* This number corresponds to the byte alignment requirement for memory
* buffers allocated by the partition manager. This alignment requirement
* may be stricter than that for the data types alignment specified by
* CPU_ALIGNMENT. It is common for the partition to follow the same
* alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict
* enough for the partition, then this should be set to CPU_ALIGNMENT.
*
* NOTE: This does not have to be a power of 2. It does have to
* be greater or equal to than CPU_ALIGNMENT.
*/
#define CPU_PARTITION_ALIGNMENT CPU_ALIGNMENT
/*
* This number corresponds to the byte alignment requirement for the
* stack. This alignment requirement may be stricter than that for the
* data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT
* is strict enough for the stack, then this should be set to 0.
*
* NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
*/
#define CPU_STACK_ALIGNMENT 0
/* ISR handler macros */
/*
* Disable all interrupts for an RTEMS critical section. The previous
* level is returned in _level.
*/
#define _CPU_ISR_Disable( _isr_cookie ) \
do{ _isr_cookie = a29k_disable(); }while(0)
/*
* Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
* This indicates the end of an RTEMS critical section. The parameter
* _level is not modified.
*/
#define _CPU_ISR_Enable( _isr_cookie ) \
do{ a29k_enable(_isr_cookie) ; }while(0)
/*
* This temporarily restores the interrupt to _level before immediately
* disabling them again. This is used to divide long RTEMS critical
* sections into two or more parts. The parameter _level is not
* modified.
*/
#define _CPU_ISR_Flash( _isr_cookie ) \
do{ \
_CPU_ISR_Enable( _isr_cookie ); \
_CPU_ISR_Disable( _isr_cookie ); \
}while(0)
/*
* Map interrupt level in task mode onto the hardware that the CPU
* actually provides. Currently, interrupt levels which do not
* map onto the CPU in a generic fashion are undefined. Someday,
* it would be nice if these were "mapped" by the application
* via a callout. For example, m68k has 8 levels 0 - 7, levels
* 8 - 255 would be available for bsp/application specific meaning.
* This could be used to manage a programmable interrupt controller
* via the rtems_task_mode directive.
*/
#define _CPU_ISR_Set_level( new_level ) \
do{ \
if ( new_level ) a29k_disable_all(); \
else a29k_enable_all(); \
}while(0);
/* end of ISR handler macros */
/* Context handler macros */
extern void _CPU_Context_save(
Context_Control *new_context
);
/*
* Initialize the context to a state suitable for starting a
* task after a context restore operation. Generally, this
* involves:
*
* - setting a starting address
* - preparing the stack
* - preparing the stack and frame pointers
* - setting the proper interrupt level in the context
* - initializing the floating point context
*
* This routine generally does not set any unnecessary register
* in the context. The state of the "general data" registers is
* undefined at task start time.
*
* NOTE: This is_fp parameter is TRUE if the thread is to be a floating
* point thread. This is typically only used on CPUs where the
* FPU may be easily disabled by software such as on the SPARC
* where the PSR contains an enable FPU bit.
*/
#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
_isr, _entry_point, _is_fp ) \
do{ /* allocate 1/4 of stack for memory stack, 3/4 of stack for register stack */ \
unsigned32 _mem_stack_tmp = (unsigned32)(_stack_base) + (_size); \
unsigned32 _reg_stack_tmp = (unsigned32)(_stack_base) + (((_size)*3)/4); \
_mem_stack_tmp &= ~(CPU_ALIGNMENT-1); \
_reg_stack_tmp &= ~(CPU_ALIGNMENT-1); \
_CPU_Context_save(_the_context); \
(_the_context)->msp = _mem_stack_tmp; /* gr125 */ \
(_the_context)->lr1 = \
(_the_context)->locals[1] = \
(_the_context)->rfb = _reg_stack_tmp; /* gr127 */ \
(_the_context)->gr1 = _reg_stack_tmp - 4 * 4; \
(_the_context)->rab = _reg_stack_tmp - 128 * 4; /* gr126 */ \
(_the_context)->local_count = 1-1; \
(_the_context)->PC1 = _entry_point; \
(_the_context)->PC0 = (unsigned32)((char *)_entry_point + 4); \
}while(0)
/*
* This routine is responsible for somehow restarting the currently
* executing task. If you are lucky, then all that is necessary
* is restoring the context. Otherwise, there will need to be
* a special assembly routine which does something special in this
* case. Context_Restore should work most of the time. It will
* not work if restarting self conflicts with the stack frame
* assumptions of restoring a context.
*/
#define _CPU_Context_Restart_self( _the_context ) \
_CPU_Context_restore( (_the_context) )
/*
* The purpose of this macro is to allow the initial pointer into
* a floating point context area (used to save the floating point
* context) to be at an arbitrary place in the floating point
* context area.
*
* This is necessary because some FP units are designed to have
* their context saved as a stack which grows into lower addresses.
* Other FP units can be saved by simply moving registers into offsets
* from the base of the context area. Finally some FP units provide
* a "dump context" instruction which could fill in from high to low
* or low to high based on the whim of the CPU designers.
*/
#define _CPU_Context_Fp_start( _base, _offset ) \
( (char *) (_base) + (_offset) )
/*
* This routine initializes the FP context area passed to it to.
* There are a few standard ways in which to initialize the
* floating point context. The code included for this macro assumes
* that this is a CPU in which a "initial" FP context was saved into
* _CPU_Null_fp_context and it simply copies it to the destination
* context passed to it.
*
* Other models include (1) not doing anything, and (2) putting
* a "null FP status word" in the correct place in the FP context.
*/
#define _CPU_Context_Initialize_fp( _destination ) \
do { \
*((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
} while(0)
/* end of Context handler macros */
/* Fatal Error manager macros */
/*
* This routine copies _error into a known place -- typically a stack
* location or a register, optionally disables interrupts, and
* halts/stops the CPU.
*/
#define _CPU_Fatal_halt( _error ) \
a29k_fatal_error(_error)
/* end of Fatal Error manager macros */
/* Bitfield handler macros */
/*
* This routine sets _output to the bit number of the first bit
* set in _value. _value is of CPU dependent type Priority_Bit_map_control.
* This type may be either 16 or 32 bits wide although only the 16
* least significant bits will be used.
*
* There are a number of variables in using a "find first bit" type
* instruction.
*
* (1) What happens when run on a value of zero?
* (2) Bits may be numbered from MSB to LSB or vice-versa.
* (3) The numbering may be zero or one based.
* (4) The "find first bit" instruction may search from MSB or LSB.
*
* RTEMS guarantees that (1) will never happen so it is not a concern.
* (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
* _CPU_Priority_bits_index(). These three form a set of routines
* which must logically operate together. Bits in the _value are
* set and cleared based on masks built by _CPU_Priority_mask().
* The basic major and minor values calculated by _Priority_Major()
* and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
* to properly range between the values returned by the "find first bit"
* instruction. This makes it possible for _Priority_Get_highest() to
* calculate the major and directly index into the minor table.
* This mapping is necessary to ensure that 0 (a high priority major/minor)
* is the first bit found.
*
* This entire "find first bit" and mapping process depends heavily
* on the manner in which a priority is broken into a major and minor
* components with the major being the 4 MSB of a priority and minor
* the 4 LSB. Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
* priority. And (15 << 4) + 14 corresponds to priority 254 -- the next
* to the lowest priority.
*
* If your CPU does not have a "find first bit" instruction, then
* there are ways to make do without it. Here are a handful of ways
* to implement this in software:
*
* - a series of 16 bit test instructions
* - a "binary search using if's"
* - _number = 0
* if _value > 0x00ff
* _value >>=8
* _number = 8;
*
* if _value > 0x0000f
* _value >=8
* _number += 4
*
* _number += bit_set_table[ _value ]
*
* where bit_set_table[ 16 ] has values which indicate the first
* bit set
*/
#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
{ \
(_output) = 0; /* do something to prevent warnings */ \
}
#endif
/* end of Bitfield handler macros */
/*
* This routine builds the mask which corresponds to the bit fields
* as searched by _CPU_Bitfield_Find_first_bit(). See the discussion
* for that routine.
*/
#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
#define _CPU_Priority_Mask( _bit_number ) \
( 1 << (_bit_number) )
#endif
/*
* This routine translates the bit numbers returned by
* _CPU_Bitfield_Find_first_bit() into something suitable for use as
* a major or minor component of a priority. See the discussion
* for that routine.
*/
#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
#define _CPU_Priority_bits_index( _priority ) \
(_priority)
#endif
/* end of Priority handler macros */
/* functions */
/*
* _CPU_Initialize
*
* This routine performs CPU dependent initialization.
*/
void _CPU_Initialize(
rtems_cpu_table *cpu_table,
void (*thread_dispatch)()
);
/*
* _CPU_ISR_install_raw_handler
*
* This routine installs a "raw" interrupt handler directly into the
* processor's vector table.
*/
void _CPU_ISR_install_raw_handler(
unsigned32 vector,
proc_ptr new_handler,
proc_ptr *old_handler
);
/*
* _CPU_ISR_install_vector
*
* This routine installs an interrupt vector.
*/
void _CPU_ISR_install_vector(
unsigned32 vector,
proc_ptr new_handler,
proc_ptr *old_handler
);
/*
* _CPU_Install_interrupt_stack
*
* This routine installs the hardware interrupt stack pointer.
*
* NOTE: It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
* is TRUE.
*/
void _CPU_Install_interrupt_stack( void );
/*
* _CPU_Internal_threads_Idle_thread_body
*
* This routine is the CPU dependent IDLE thread body.
*
* NOTE: It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
* is TRUE.
*/
void _CPU_Internal_threads_Idle_thread_body( void );
/*
* _CPU_Context_switch
*
* This routine switches from the run context to the heir context.
*/
void _CPU_Context_switch(
Context_Control *run,
Context_Control *heir
);
/*
* _CPU_Context_restore
*
* This routine is generallu used only to restart self in an
* efficient manner. It may simply be a label in _CPU_Context_switch.
*
* NOTE: May be unnecessary to reload some registers.
*/
void _CPU_Context_restore(
Context_Control *new_context
);
/*
* _CPU_Context_save_fp
*
* This routine saves the floating point context passed to it.
*/
void _CPU_Context_save_fp(
void **fp_context_ptr
);
/*
* _CPU_Context_restore_fp
*
* This routine restores the floating point context passed to it.
*/
void _CPU_Context_restore_fp(
void **fp_context_ptr
);
/* The following routine swaps the endian format of an unsigned int.
* It must be static because it is referenced indirectly.
*
* This version will work on any processor, but if there is a better
* way for your CPU PLEASE use it. The most common way to do this is to:
*
* swap least significant two bytes with 16-bit rotate
* swap upper and lower 16-bits
* swap most significant two bytes with 16-bit rotate
*
* Some CPUs have special instructions which swap a 32-bit quantity in
* a single instruction (e.g. i486). It is probably best to avoid
* an "endian swapping control bit" in the CPU. One good reason is
* that interrupts would probably have to be disabled to insure that
* an interrupt does not try to access the same "chunk" with the wrong
* endian. Another good reason is that on some CPUs, the endian bit
* endianness for ALL fetches -- both code and data -- so the code
* will be fetched incorrectly.
*/
#define CPU_swap_u32( value ) \
((value&0xff) << 24) | (((value >> 8)&0xff) << 16) | (((value >> 16)&0xff) << 8) | ((value>>24)&0xff)
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -0,0 +1,71 @@
/*
* cpu_asm.h
*
* Very loose template for an include file for the cpu_asm.? file
* if it is implemented as a ".S" file (preprocessed by cpp) instead
* of a ".s" file (preprocessed by gm4 or gasp).
*
* COPYRIGHT (c) 1989, 1990, 1991, 1992, 1993, 1994.
* On-Line Applications Research Corporation (OAR).
*
* This material may be reproduced by or for the U.S. Government pursuant
* to the copyright license under the clause at DFARS 252.227-7013. This
* notice must appear in all copies of this file and its derivatives.
*
* $Id$
*
*/
/* @(#)cpu_asm.h 06/08/96 1.2 */
#ifndef __CPU_ASM_h
#define __CPU_ASM_h
/* pull in the generated offsets */
/* #include <rtems/score/offsets.h> */
/*
* Hardware General Registers
*/
/* put something here */
/*
* Hardware Floating Point Registers
*/
/* put something here */
/*
* Hardware Control Registers
*/
/* put something here */
/*
* Calling Convention
*/
/* put something here */
/*
* Temporary registers
*/
/* put something here */
/*
* Floating Point Registers - SW Conventions
*/
/* put something here */
/*
* Temporary floating point registers
*/
/* put something here */
#endif
/* end of file */

View File

@@ -0,0 +1,476 @@
;/* cpu_asm.c ===> cpu_asm.S or cpu_asm.s
; *
; * Author: Craig Lebakken <craigl@transition.com>
; *
; * COPYRIGHT (c) 1996 by Transition Networks Inc.
; *
; * To anyone who acknowledges that this file is provided "AS IS"
; * without any express or implied warranty:
; * permission to use, copy, modify, and distribute this file
; * for any purpose is hereby granted without fee, provided that
; * the above copyright notice and this notice appears in all
; * copies, and that the name of Transition Networks not be used in
; * advertising or publicity pertaining to distribution of the
; * software without specific, written prior permission.
; * Transition Networks makes no representations about the suitability
; * of this software for any purpose.
; *
; *
; * This file contains the basic algorithms for all assembly code used
; * in an specific CPU port of RTEMS. These algorithms must be implemented
; * in assembly language
; *
; * NOTE: This is supposed to be a .S or .s file NOT a C file.
; *
; * COPYRIGHT (c) 1989, 1990, 1991, 1992, 1993, 1994.
; * On-Line Applications Research Corporation (OAR).
; * All rights assigned to U.S. Government, 1994.
; *
; * This material may be reproduced by or for the U.S. Government pursuant
; * to the copyright license under the clause at DFARS 252.227-7013. This
; * notice must appear in all copies of this file and its derivatives.
; *
; * $Id$
; */
;/*
; * This is supposed to be an assembly file. This means that system.h
; * and cpu.h should not be included in a "real" cpu_asm file. An
; * implementation in assembly should include "cpu_asm.h>
; */
;#include <cpu_asm.h>
.include "register.ah"
.include "amd.ah"
.include "pswmacro.ah"
; .extern _bsp_exit
;
; push a register onto the struct
.macro spush, sp, reg
store 0, 0, reg, sp ; push register
add sp, sp, 4 ; adjust stack pointer
.endm
; push a register onto the struct
.macro spushsr, sp, reg, sr
mfsr reg, sr
store 0, 0, reg, sp ; push register
add sp, sp, 4 ; adjust stack pointer
.endm
; pop a register from the struct
.macro spop, reg, sp
load 0, 0, reg, sp
add sp,sp,4
.endm
; pop a special register from the struct
.macro spopsr, sreg, reg, sp
load 0, 0, reg, sp
mtsr sreg, reg
add sp,sp,4
.endm
;
;/*
; * _CPU_Context_save_fp_context
; *
; * This routine is responsible for saving the FP context
; * at *fp_context_ptr. If the point to load the FP context
; * from is changed then the pointer is modified by this routine.
; *
; * Sometimes a macro implementation of this is in cpu.h which dereferences
; * the ** and a similarly named routine in this file is passed something
; * like a (Context_Control_fp *). The general rule on making this decision
; * is to avoid writing assembly language.
; */
;#if 0
;void _CPU_Context_save_fp(
; void **fp_context_ptr
;)
;{
;}
;#endif
.global _CPU_Context_save_fp
_CPU_Context_save_fp:
jmpi lr0
nop
;/*
; * _CPU_Context_restore_fp_context
; *
; * This routine is responsible for restoring the FP context
; * at *fp_context_ptr. If the point to load the FP context
; * from is changed then the pointer is modified by this routine.
; *
; * Sometimes a macro implementation of this is in cpu.h which dereferences
; * the ** and a similarly named routine in this file is passed something
; * like a (Context_Control_fp *). The general rule on making this decision
; * is to avoid writing assembly language.
; */
;#if 0
;void _CPU_Context_restore_fp(
; void **fp_context_ptr
;)
;{
;}
;#endif
.global __CPU_Context_restore_fp
__CPU_Context_restore_fp:
jmpi lr0
nop
;/* _CPU_Context_switch
; *
; * This routine performs a normal non-FP context switch.
; */
;#if 0
;void _CPU_Context_switch(
; Context_Control *run,
; Context_Control *heir
;)
;{
;}
;#endif
.global __CPU_Context_switch
__CPU_Context_switch:
asneq 106, gr1, gr1 ; syscall
jmpi lr0 ;
nop ;
.global _a29k_context_switch_sup
_a29k_context_switch_sup:
add pcb,lr2,0
add kt1,lr3,0 ;move heir pointer to safe location
constn it0,SIG_SYNC
spush pcb,it0
spush pcb,gr1
spush pcb,rab ;push rab
spushsr pcb,it0,pc0 ;push specials
spushsr pcb,it0,pc1
add pcb,pcb,1*4 ;space pc2
spushsr pcb,it0,CHA ;push CHA
spushsr pcb,it0,CHD ;push CHD
spushsr pcb,it0,CHC ;push CHC
add pcb,pcb,1*4 ;space for alu
spushsr pcb,it0,ops ;push OPS
mfsr kt0,cps ;current status
const it1,FZ ;FZ constant
andn it1,kt0,it1 ;clear FZ bit
mtsr cps,it1 ;cps without FZ
add pcb,pcb,1*4 ;space for tav
mtsrim chc,0 ;possible DERR
;
spush pcb,lr1 ;push R-stack
spush pcb,rfb ; support
spush pcb,msp ;push M-stack pnt.
;
add pcb,pcb,3*4 ;space for floating point
; spush pcb,FPStat0 ;floating point
; spush pcb,FPStat1
; spush pcb,FPStat2
;
add pcb,pcb,4*4 ;space for IPA..Q
;
mtsrim cr,29-1
storem 0,0,gr96,pcb ;push gr96-124, optional
add pcb,pcb,29*4 ;space for gr96-124
;
sub it0,rfb,gr1 ;get bytes in cache
srl it0,it0,2 ;adjust to words
sub it0,it0,1
spush pcb,it0
mtsr cr,it0
storem 0,0,lr0,pcb ;save lr0-rfb
;
context_restore:
add pcb,kt1,0 ;pcb=heir
add pcb,pcb,4 ;space for signal num
spop gr1,pcb ;restore freeze registers
add gr1,gr1,0 ;alu op
add pcb,pcb,9*4 ;move past freeze registers
add pcb,pcb,1*4 ;space for tav
spop lr1,pcb
spop rfb,pcb
spop msp,pcb
; spop FPStat0,pcb
; spop FPStat1,pcb
; spop FPStat2,pcb
add pcb,pcb,3*4 ;space for floating point
add pcb,pcb,4*4 ;space for IPA..Q
mtsrim cr,29-1
loadm 0,0,gr96,pcb ;pop gr96-gr124
add pcb,pcb,29*4 ;space for gr96-124
spop it1,pcb ;pop locals count
mtsr cr,it1
loadm 0,0,lr0,pcb ;load locals
add pcb,kt1,0 ;pcb=heir
mtsr cps,kt0 ;cps with FZ
nop
add pcb,pcb,4 ;space for signal num
spop gr1,pcb ;restore freeze registers
add gr1,gr1,0 ;alu op
spop rab,pcb
spopsr pc0,it1,pcb
spopsr pc1,it1,pcb
add pcb,pcb,4 ;space for pc2
spopsr CHA,it1,pcb
spopsr CHD,it1,pcb
spopsr CHC,it1,pcb
add pcb,pcb,4 ;space for alu
spopsr ops,it1,pcb
nop
iret
;/*
; * _CPU_Context_restore
; *
; * This routine is generallu used only to restart self in an
; * efficient manner. It may simply be a label in _CPU_Context_switch.
; *
; * NOTE: May be unnecessary to reload some registers.
; */
;#if 0
;void _CPU_Context_restore(
; Context_Control *new_context
;)
;{
;}
;#endif
.global __CPU_Context_restore
__CPU_Context_restore:
asneq 107, gr1, gr1 ; syscall
jmpi lr0 ;
nop ;
.global _a29k_context_restore_sup
_a29k_context_restore_sup:
add kt1,lr2,0 ;kt1 = restore context
mfsr kt0,cps ;current status
const it1,FZ ;FZ constant
andn it1,kt0,it1 ;clear FZ bit
mtsr cps,it1 ;cps without FZ
jmp context_restore
nop
.global _a29k_context_save_sup
_a29k_context_save_sup:
add pcb,lr2,0
constn it0,SIG_SYNC
spush pcb,it0
spush pcb,gr1
spush pcb,rab ;push rab
spushsr pcb,it0,pc0 ;push specials
spushsr pcb,it0,pc1
add pcb,pcb,1*4 ;space pc2
spushsr pcb,it0,CHA ;push CHA
spushsr pcb,it0,CHD ;push CHD
spushsr pcb,it0,CHC ;push CHC
add pcb,pcb,1*4 ;space for alu
spushsr pcb,it0,ops ;push OPS
mfsr it0,cps ;current status
SaveFZState it1,it2
add pcb,pcb,1*4 ;space for tav
mtsrim chc,0 ;possible DERR
;
spush pcb,lr1 ;push R-stack
spush pcb,rfb ; support
spush pcb,msp ;push M-stack pnt.
;
spush pcb,FPStat0 ;floating point
spush pcb,FPStat1
spush pcb,FPStat2
;
add pcb,pcb,4*4 ;space for IPA..Q
;
mtsrim cr,29-1
storem 0,0,gr96,pcb ;push gr96-124, optional
add pcb,pcb,29*4 ;space for gr96-124
;
sub kt0,rfb,gr1 ;get bytes in cache
srl kt0,kt0,2 ;adjust to words
sub kt0,kt0,1
spush pcb,kt0 ;push number of words
mtsr cr,kt0
storem 0,0,lr0,pcb ;save lr0-rfb
;
mtsr cps,it0 ;cps with FZ
RestoreFZState it1,it2
nop
nop
nop
;
iret
;
.global __CPU_Context_save
__CPU_Context_save:
asneq 108, gr1, gr1 ; syscall
jmpi lr0 ;
nop ;
;/* void __ISR_Handler()
; *
; * This routine provides the RTEMS interrupt management.
; *
; */
;#if 0
;void _ISR_Handler()
;{
; /*
; * This discussion ignores a lot of the ugly details in a real
; * implementation such as saving enough registers/state to be
; * able to do something real. Keep in mind that the goal is
; * to invoke a user's ISR handler which is written in C and
; * uses a certain set of registers.
; *
; * Also note that the exact order is to a large extent flexible.
; * Hardware will dictate a sequence for a certain subset of
; * _ISR_Handler while requirements for setting
; */
; /*
; * At entry to "common" _ISR_Handler, the vector number must be
; * available. On some CPUs the hardware puts either the vector
; * number or the offset into the vector table for this ISR in a
; * known place. If the hardware does not give us this information,
; * then the assembly portion of RTEMS for this port will contain
; * a set of distinct interrupt entry points which somehow place
; * the vector number in a known place (which is safe if another
; * interrupt nests this one) and branches to _ISR_Handler.
; *
; * save some or all context on stack
; * may need to save some special interrupt information for exit
; *
; * #if ( CPU_HAS_SOFTWARE_INTERRUPT_STACK == TRUE )
; * if ( _ISR_Nest_level == 0 )
; * switch to software interrupt stack
; * #endif
; *
; * _ISR_Nest_level++;
; *
; * _Thread_Dispatch_disable_level++;
; *
; * (*_ISR_Vector_table[ vector ])( vector );
; *
; * --_ISR_Nest_level;
; *
; * if ( _ISR_Nest_level )
; * goto the label "exit interrupt (simple case)"
; *
; * #if ( CPU_HAS_SOFTWARE_INTERRUPT_STACK == TRUE )
; * restore stack
; * #endif
; *
; * if ( !_Context_Switch_necessary )
; * goto the label "exit interrupt (simple case)"
; *
; * if ( !_ISR_Signals_to_thread_executing )
; * goto the label "exit interrupt (simple case)"
; *
; * call _Thread_Dispatch() or prepare to return to _ISR_Dispatch
; *
; * prepare to get out of interrupt
; * return from interrupt (maybe to _ISR_Dispatch)
; *
; * LABEL "exit interrupt (simple case):
; * prepare to get out of interrupt
; * return from interrupt
; */
;}
;#endif
; .global __ISR_Handler
;__ISR_Handler:
; jmpi lr0
; nop
.global _a29k_disable
_a29k_disable:
asneq 110, gr96, gr96
jmpi lr0
nop
.global _a29k_disable_sup
_a29k_disable_sup:
mfsr kt0, ops
const kt1, (DI | TD)
consth kt1, (DI | TD)
or kt1, kt0, kt1
mtsr ops, kt1
iret
nop
.global _a29k_disable_all
_a29k_disable_all:
asneq 112, gr96, gr96
jmpi lr0
nop
.global _a29k_disable_all_sup
_a29k_disable_all_sup:
mfsr kt0, ops
const kt1, DA
consth kt1, DA
or kt1, kt0, kt1
mtsr ops, kt1
iret
nop
.global _a29k_enable_all
_a29k_enable_all:
asneq 111, gr96, gr96
jmpi lr0
nop
.global _a29k_enable_all_sup
_a29k_enable_all_sup:
mfsr kt0, ops
const kt1, DA
consth kt1, DA
andn kt1, kt0, kt1
mtsr ops, kt1
iret
nop
.global _a29k_enable
_a29k_enable:
asneq 109, gr96, gr96
jmpi lr0
nop
.global _a29k_enable_sup
_a29k_enable_sup:
mfsr kt0, ops
const kt1, (DI | TD)
consth kt1, (DI | TD)
andn kt1, kt0, kt1
mtsr ops, kt1
iret
nop
.global _a29k_halt
_a29k_halt:
halt
jmp _a29k_halt
nop
.global _a29k_super_mode
_a29k_super_mode:
mfsr gr96, ops
or gr96, gr96, 0x10
mtsr ops, gr96
iret
nop
.global _a29k_as70
_a29k_as70:
asneq 70,gr96,gr96
jmpi lr0
nop

View File

@@ -0,0 +1,442 @@
; /* @(#)pswmacro.ah 1.1 96/05/23 08:56:58, TEI */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; macros: Do_install and init_TLB
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; /* $Id$ */
;* File information and includes.
.file "macro.ah"
.ident "@(#)pswmacro.ah 1.1 96/05/23 08:56:58, TEI"
.macro CONST32, RegName, RegValue
const RegName, RegValue
consth RegName, RegValue
.endm
.macro CONSTX, RegName, RegValue
.if (RegValue) <= 0x0000ffff
const RegName, RegValue
.else
const RegName, RegValue
consth RegName, RegValue
.endif
.endm
.macro PRODEV, RegName
srl RegName, RegName, 24
.endm
;
;* MACRO TO INSTALL VECTOR TABLE ENTRIES
;
;* Assumes vector table address in v0
.macro _setvec, trapnum, trapaddr
mfsr v0, vab ;
const v2, trapnum ;
sll v1, v2, 2 ;
add v1, v1, v0 ; v0 has location of vector tab
const v2, trapaddr ;
consth v2, trapaddr ;
store 0, 0, v2, v1 ;
nop ;
.endm
.macro syscall, name
const tav, HIF_@name ;
asneq V_SYSCALL, gr1, gr1 ;
nop ;
nop ;
.endm
;* MACRO TO INSTALL VECTOR TABLE ENTRIES
.macro Do_Install, V_Number, V_Address
const lr4, V_Address
consth lr4, V_Address
const lr3, V_Number * 4
consth lr3, V_Number * 4
call lr0, V_Install
nop
.endm
.macro Do_InstallX, V_Number, V_Address
const lr4, V_Address
consth lr4, V_Address
const lr3, V_Number * 4
consth lr3, V_Number * 4
call lr0, V_InstallX
nop
.endm
; push a register onto the stack
.macro pushreg, reg, sp
sub sp, sp, 4 ; adjust stack pointer
store 0, 0, reg, sp ; push register
.endm
.macro push, sp, reg
sub sp, sp, 4
store 0, 0, reg, sp
.endm
; pop the register from stack
.macro popreg, reg, sp
load 0, 0, reg, sp ; pop register
add sp, sp, 4 ; adjust stack pointer
.endm
.macro pop, reg, sp
load 0, 0, reg, sp
add sp, sp, 4
.endm
; push a special register onto stack
.macro pushspcl, spcl, tmpreg, sp
sub sp, sp, 4 ; adjust stack pointer
mfsr tmpreg, spcl ; get spcl reg
store 0, 0, tmpreg, sp ; push onto stack
.endm
.macro pushsr, sp, reg, sreg
mfsr reg, sreg
sub sp, sp, 4
store 0, 0, reg, sp
.endm
; pop a special register from stack
.macro popspcl, spcl, tmpreg, sp
load 0, 0, tmpreg, sp ; pop from stack
add sp, sp, 4 ; adjust stack pointer
mtsr spcl, tmpreg ; set spcl reg
.endm
.macro popsr, sreg, reg, sp
load 0, 0, reg, sp
add sp, sp, 4
mtsr sreg, reg
.endm
;
; save freeze mode registers on memory stack.
;
.macro SaveFZState, tmp1, tmp2
; save freeze mode registers.
pushspcl pc0, tmp1, msp
pushspcl pc1, tmp1, msp
pushspcl alu, tmp1, msp
pushspcl cha, tmp1, msp
pushspcl chd, tmp1, msp
pushspcl chc, tmp1, msp
pushspcl ops, tmp1, msp
; turn freeze off
const tmp2, FZ
mfsr tmp1, cps
andn tmp1, tmp1, tmp2
mtsr cps, tmp1
.endm
; restore freeze mode registers from memory stack.
.macro RestoreFZState, tmp1, tmp2
; turn freeze on
const tmp2, (FZ|DI|DA)
mfsr tmp1, cps
or tmp1, tmp1, tmp2
mtsr cps, tmp1
; restore freeze mode registers.
popspcl ops, tmp1, msp
popspcl chc, tmp1, msp
popspcl chd, tmp1, msp
popspcl cha, tmp1, msp
popspcl alu, tmp1, msp
popspcl pc1, tmp1, msp
popspcl pc0, tmp1, msp
.endm
;
;*
;
.equ WS, 512 ; window size
.equ RALLOC, 4 * 4 ; stack alloc for C
.equ SIGCTX_UM_SIZE, 40 * 4 ;
.equ SIGCTX_RFB, (38) * 4 ; user mode saved
.equ SIGCTX_SM_SIZE, 12 * 4 ;
.equ SIGCTX_SIG, (11)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_GR1, (10)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_RAB, (9)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_PC0, (8)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_PC1, (7)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_PC2, (6)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_CHC, (3)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_OPS, (1)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_TAV, (0)*4 + SIGCTX_UM_SIZE ;
.macro sup_sv
add it2, trapreg, 0 ; transfer signal #
sub msp, msp, 4 ;
store 0, 0, it2, msp ; save signal number
sub msp, msp, 4 ; push gr1
store 0, 0, gr1, msp ;
sub msp, msp, 4 ; push rab
store 0, 0, rab, msp ;
const it0, WS ; Window size
sub rab, rfb, it0 ; set rab = rfb-512
pushsr msp, it0, PC0 ; save program counter0
pushsr msp, it0, PC1 ; save program counter1
pushsr msp, it0, PC2 ; save program counter2
pushsr msp, it0, CHA ; save channel address
pushsr msp, it0, CHD ; save channel data
pushsr msp, it0, CHC ; save channel control
pushsr msp, it0, ALU ; save alu
pushsr msp, it0, OPS ; save ops
sub msp, msp, 4 ;
store 0, 0, tav, msp ; push tav
mtsrim chc, 0 ; no loadm/storem
mfsr it0, ops ; get ops value
const it1, (TD | DI) ; disable interrupts
consth it1, (TD | DI) ; disable interrupts
or it0, it0, it1 ; set bits
mtsr ops, it0 ; set new ops
const it0, _sigcode ; signal handler
consth it0, _sigcode ; signal handler
mtsr pc1, it0 ; store pc1
add it1, it0, 4 ; next addr
mtsr pc0, it1 ; store pc1 location
iret ; return
nop ; ALIGN
.endm
.macro sig_return
mfsr it0, cps ; get processor status
const it1, FZ|DA ; Freeze + traps disable
or it0, it0, it1 ; to set FZ+DA
mtsr cps, it0 ; in freeze mode
load 0, 0, tav, msp ; restore tav
add msp, msp, 4 ;
popsr OPS,it0, msp ;
popsr ALU,it0, msp ;
popsr CHC,it0, msp ;
popsr CHD,it0, msp ;
popsr CHA,it0, msp ;
popsr PC2,it0, msp ;
popsr PC1,it0, msp ;
popsr PC0,it0, msp ;
load 0, 0, rab, msp ;
add msp, msp, 4 ;
load 0, 0, it0, msp ;
add gr1, it0, 0 ; pop rsp
add msp, msp, 8 ; discount signal #
iret
.endm
.macro repair_R_stack
add v0, msp, SIGCTX_GR1 ; interrupted gr1
load 0, 0, v2, v0 ;
add v0, msp, SIGCTX_RFB ;
load 0, 0, v3, v0 ; interupted rfb
const v1, WS ;
sub v1, v3, v1 ; rfb-512
cpltu v0, v2, v1 ; test gr1 < rfb-512
jmpf v0, $1 ;
add gr1, rab, 0 ;
add v2, v1, 0 ; set LB = rfb-512
$1:
;* if gr1 < rfb-512 yes LB = rfb-512 signalled during spill
;* if no, LB=gr1 interrupted cache < 126 registers
cpleu v0, v2, rfb ; test LB<=rfb
jmpf v0, $2 ;
nop ;
add v2, rfb, 0 ;
$2:
cpeq v0, v3, rfb ; fill rfb->'rfb
jmpt v0, $3 ; if rfb==rfb'
const tav, (0x80<<2) ; prepare for fill
or tav, tav, v2 ;
mtsr IPA, tav ; IPA=LA<<2
sub tav, v3, gr98 ; cache fill LA->rfb
srl tav, tav, 2 ; convert to words
sub tav, tav, 1 ;
mtsr cr, tav ;
loadm 0, 0, gr0, v2 ; fill from LA->rfb
$3:
add rfb, v3, 0 ; move rfb upto 'rfb
sub rab, v1, 0 ; assign rab to rfb-512
add v0, msp, SIGCTX_GR1 ;
load 0, 0, v2, v0 ; v0 = interrupted gr1
add gr1, v2, 0 ; move gr1 upto 'gr1
nop ;
.endm
.macro repair_regs
mtsrim cr, 29 - 1 ; to restore locals
loadm 0, 0, v0, msp ;
add msp, msp, 29*4 ;
popsr Q, tav, msp ;
popsr IPC, tav, msp ;
popsr IPB, tav, msp ;
popsr IPA, tav, msp ;
pop FPStat3, msp ; floating point regs
pop FPStat2, msp ; floating point regs
pop FPStat1, msp ; floating point regs
pop FPStat0, msp ; floating point regs
add msp, msp, 3*4 ; R-stack repaired
.endm
;
;*HIF related...
;
; send the message in bufaddr to Montip.
.macro SendMessageToMontip, bufaddr
const lr2, bufaddr
$1:
call lr0, _msg_send
consth lr2, bufaddr
cpeq gr96, gr96, 0
jmpf gr96, $1
const lr2, bufaddr
.endm
; build a HIF_CALL message in bufaddr to send to montip.
.macro BuildHIFCALLMsg, bufaddr, tmp1, tmp2
const tmp1, bufaddr
consth tmp1, bufaddr
const tmp2, HIF_CALL_MSGCODE
store 0, 0, tmp2, tmp1 ; msg code
add tmp1, tmp1, 4
const tmp2, HIF_CALL_MSGLEN
store 0, 0, tmp2, tmp1 ; msg len
add tmp1, tmp1, 4
store 0, 0, gr121, tmp1 ; service number
add tmp1, tmp1, 4
store 0, 0, lr2, tmp1 ; lr2
add tmp1, tmp1, 4
store 0, 0, lr3, tmp1 ; lr3
add tmp1, tmp1, 4
store 0, 0, lr4, tmp1 ; lr4
.endm
;
;*
;* All the funky AMD style macros go in here...simply for
;* compatility
;
;
.macro IMPORT, symbol
.extern symbol
.endm
.macro GLOBAL, symbol
.global symbol
.endm
.macro USESECT, name, type
.sect name, type
.use name
.endm
.macro SECTION, name, type
.sect name, type
.endm
.macro FUNC, fname, lineno
.global fname
fname:
.endm
.macro ENDFUNC, fname, lineno
.endm
;*************************************LONG
.macro LONG, varname
varname:
.block 4
.endm
;*************************************UNSIGNED LONG
.macro ULONG, varname
varname:
.block 4
.endm
;*************************************SHORT
.macro SHORT, varname
varname:
.block 2
.endm
;*************************************CHAR
.macro CHAR, varname
varname:
.block 1
.endm
;*************************************LONGARRAY
.macro LONGARRAY, name, count
name:
.block count*4
.endm
;*************************************SHORTARRAY
.macro SHORTARRAY, name, count
name:
.block count*2
.endm
;*************************************CHARARRAY
.macro CHARARRAY, name, count
name:
.block count
.endm
;*************************************VOID_FPTR
.macro VOID_FPTR, name
name:
.block 4
.endm

View File

@@ -0,0 +1,48 @@
/* rtems.c ===> rtems.S or rtems.s
*
* This file contains the single entry point code for
* the XXX implementation of RTEMS.
*
* NOTE: This is supposed to be a .S or .s file NOT a C file.
*
* COPYRIGHT (c) 1989, 1990, 1991, 1992, 1993, 1994.
* On-Line Applications Research Corporation (OAR).
* All rights assigned to U.S. Government, 1994.
*
* This material may be reproduced by or for the U.S. Government pursuant
* to the copyright license under the clause at DFARS 252.227-7013. This
* notice must appear in all copies of this file and its derivatives.
*
* $Id$
*/
#ifndef lint
static char _sccsid[] = "@(#)rtems.c 04/08/96 1.1\n";
#endif
/*
* This is supposed to be an assembly file. This means that system.h
* and cpu.h should not be included in a "real" rtems file.
*/
#include <rtems/system.h>
#include <rtems/score/cpu.h>
/* #include "asm.h> */
/*
* RTEMS
*
* This routine jumps to the directive indicated in the
* CPU defined register. This routine is used when RTEMS is
* linked by itself and placed in ROM. This routine is the
* first address in the ROM space for RTEMS. The user "calls"
* this address with the directive arguments in the normal place.
* This routine then jumps indirectly to the correct directive
* preserving the arguments. The directive should not realize
* it has been "wrapped" in this way. The table "_Entry_points"
* is used to look up the directive.
*/
void RTEMS()
{
}

View File

@@ -0,0 +1,531 @@
; /* @(#)amd.ah 1.1 96/05/23 08:56:58, TEI */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Initialization values for registers after RESET
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
' /* $Id */
;* File information and includes.
.file "amd.ah"
.ident "@(#)amd.ah 1.1 96/05/23 08:56:58, TEI"
;
;* AMD PROCESSOR SPECIFIC VALUES...
;
;
;* Processor revision levels...
;
; PRL values: 31-28 27-24
; Am29000 0 x
; Am29005 1 x
; Am29050 2 x
; Am29035 3 x
; Am29030 4 x
; Am29200 5 x
; Am29205 5 1x
; Am29240 6 0
; Manx 7 0
; Cougar 8 0
.equ AM29000_PRL, 0x00
.equ AM29005_PRL, 0x10
.equ AM29050_PRL, 0x20
.equ AM29035_PRL, 0x30
.equ AM29030_PRL, 0x40
.equ AM29200_PRL, 0x50
.equ AM29205_PRL, 0x58
.equ AM29240_PRL, 0x60
.equ AM29040_PRL, 0x70
.equ MANX_PRL, 0x70
.equ COUGAR_PRL, 0x80
;
;* data structures sizes.
;
.equ CFGINFO_SIZE, 16*4
.equ PGMINFO_SIZE, 16*4
.equ VARARGS_SPACE, 16*4
.equ WINDOWSIZE, 0x80
;
;* Am29027 Mode registers
;
.equ Am29027Mode1, 0x0fc00820
.equ Am29027Mode2, 0x00001375
;* Processor Based Equates and Defines
.equ SIG_SYNC, -1
.equ ENABLE, (SM)
.equ DISABLE, (ENABLE | DI | DA)
.equ DISABLE_FZ, (FZ | ENABLE | DI | DA)
.equ CLR_TRAP, (FZ | DA)
.equ InitOPS, (TD | SM | (3<<IMShift) | DI | DA)
.equ InitCPS, (TD | SM | (0<<IMShift) | DI | DA)
.equ InitCPS1, (TD | SM | (0<<IMShift) | DI )
.equ CPS_TMR, (SM | (0<<IMShift) | DI)
.equ CPS_INT0, (TD | SM | (0<<IMShift))
.equ CPS_TMRINT0, (SM | (0<<IMShift))
.equ InitCFG, 0x0
.equ InitRBP, (B0|B1|B2|B3|B4|B5)
.equ TMC_VALUE, 0xFFFFFF
.equ TMR_VALUE, (IE | TMC_VALUE)
;* 29205 specific (internal) peripheral initialization constants.
; Current Processor Status (CPS) Register.
; Old Processor Status Register (OPS).
.equ DA, 0x00001
.equ DI, 0x00002
.equ IMShift,0x2
.equ SM, 0x00010
.equ PI, 0x00020
.equ PD, 0x00040
.equ WM, 0x00080
.equ RE, 0x00100
.equ LK, 0x00200
.equ FZ, 0x00400
.equ TU, 0x00800
.equ TP, 0x01000
.equ TE, 0x02000
.equ IP, 0x04000
.equ CA, 0x08000
.equ MM, 0x10000
.equ TD, 0x20000
; Configuration Register (CFG)
.equ CD, 0x01
.equ CP, 0x02
.equ BO, 0x04
.equ RV, 0x08
.equ VF, 0x10
.equ DW, 0x20
.equ CO, 0x40
.equ EE, 0x80
.equ IDShift, 8
.equ CFG_ID, 0x100
.equ ILShift, 9
.equ CFG_ILMask, 0x600
.equ DDShift, 11
.equ CFG_DD, 0x800
.equ DLShift, 12
.equ CFG_DLMask, 0x3000
.equ PCEShift, 14
.equ CFG_PCE, 0x4000
.equ PMBShift, 16
.equ D16, 0x8000
.equ TBOShift, 23
.equ PRLShift, 24
; Channel Control Register (CHC)
.equ CV, 0x1
.equ NN, 0x2
.equ TRShift, 2
.equ TF, 0x400
.equ PER, 0x800
.equ LA, 0x1000
.equ ST, 0x2000
.equ ML, 0x4000
.equ LS, 0x8000
.equ CRShift, 16
.equ CNTLShift, 24
.equ CEShift, 31
.equ WBERShift, 31
; Register Bank Protect (RBP)
.equ B0, 0x1
.equ B1, 0x2
.equ B2, 0x4
.equ B3, 0x8
.equ B4, 0x10
.equ B5, 0x20
.equ B6, 0x40
.equ B7, 0x80
.equ B8, 0x100
.equ B9, 0x200
.equ B10, 0x400
.equ B11, 0x800
.equ B12, 0x1000
.equ B13, 0x2000
.equ B14, 0x4000
.equ B15, 0x8000
; Timer Counter
.equ TCVMask, 0xffffff
; Timer Reload Register
.equ IE, 0x1000000
.equ IN, 0x2000000
.equ OV, 0x4000000
.equ TRVMAsk, 0xffffff
; MMU Configuration
.equ PSShift, 8
.equ PS0Shift, 8
.equ PS1Shift, 12
; LRU Recommendation (LRU)
.equ LRUMask, 0xff
; Reason Vector (RSN)
.equ RSNMask, 0xff
; Region Mapping Address (RMA0 | RMA1)
.equ PBAMask,0xffff
.equ VBAShift, 16
; Region Mapping Control (RMC0 | RMC1)
.equ TIDMask, 0xff
.equ RMC_UE, 0x100
.equ RMC_UW, 0x200
.equ RMC_UR, 0x400
.equ RMC_SE, 0x800
.equ RMC_SW, 0x1000
.equ RMC_SR, 0x2000
.equ RMC_VE, 0x4000
.equ RMC_IO, 0x10000
.equ RGSShift, 17
.equ RMC_PGMShift, 22
; Instruction breakpoint Control (IBC0 | IBC1)
.equ BPIDMask, 0xff
.equ BTE, 0x100
.equ BRM, 0x200
.equ IBC_BSY, 0x400
.equ BEN, 0x800
.equ BHO, 0x1000
; Cache Data Register (CDR)
.equ CDR_US, 0x1
.equ P, 0x2
.equ CDR_V, 0x4
.equ IATAGShift, 20
; Cache Interface Register (CIR)
.equ CPTRShift, 2
.equ CIR_RW, 0x1000000
.equ FSELShift, 28
; Indirect Pointer A, B, C (IPA, IPB, IPC)
.equ IPShift, 2
; ALU Status (ALU)
.equ FCMask, 0x1F
.equ BPShift, 5
.equ C, 0x80
.equ Z, 0x100
.equ N, 0x200
.equ ALU_V, 0x400
.equ DF, 0x800
; Byte Pointer
.equ BPMask, 0x3
; Load/Store Count Remaining (CR)
.equ CRMask, 0xff
; Floating Point Environment (FPE)
.equ NM, 0x1
.equ RM, 0x2
.equ VM, 0x4
.equ UM, 0x8
.equ XM, 0x10
.equ DM, 0x20
.equ FRMShift, 6
.equ FF, 0x100
.equ ACFShift, 9
; Integer Environment (INTE)
.equ MO, 0x1
.equ DO, 0x2
; Floating Point Status (FPS)
.equ NS, 0x1
.equ RS, 0x2
.equ VS, 0x4
.equ FPS_US, 0x8
.equ XS, 0x10
.equ DS, 0x20
.equ NT, 0x100
.equ RT, 0x200
.equ VT, 0x400
.equ UT, 0x800
.equ XT, 0x1000
.equ DT, 0x2000
; Exception Opcode (EXOP)
.equ IOPMask, 0xff
; TLB Entry Word 0
; .equ TIDMask, 0xff already defined above
.equ TLB_UE, 0x100
.equ TLB_UW, 0x200
.equ TLB_UR, 0x400
.equ TLB_SE, 0x800
.equ TLB_SW, 0x1000
.equ TLB_SR, 0x2000
.equ TLB_VE, 0x4000
.equ VTAGShift, 15
; TLB Entry Word 1
.equ TLB_IO, 0x1
.equ U, 0x2
.equ TLB_PGMShift, 6
.equ RPNShift, 10
; Am29200 ROM Control bits.
.equ RMCT_DW0Shift, 29
.equ RMCT_DW1Shift, 21
.equ RMCT_DW2Shift, 13
.equ RMCT_DW3Shift, 5
; Am29200 DRAM Control bits.
.equ DW3, (1<<18)
.equ DW2, (1<<22)
.equ DW1, (1<<26)
.equ DW0, (1<<30)
; Internal peripheral address assignments.
.equ RMCT, 0x80000000
.equ RMCF, 0x80000004
.equ DRCT, 0x80000008
.equ DRCF, 0x8000000C
.equ DRM0, 0x80000010
.equ DRM1, 0x80000014
.equ DRM2, 0x80000018
.equ DRM3, 0x8000001C
.equ PIACT0, 0x80000020
.equ PIACT1, 0x80000020
.equ ICT, 0x80000028
.equ DMCT0, 0x80000030
.equ DMAD0, 0x80000034
.ifdef revA
.equ TAD0, 0x80000036
.equ TCN0, 0x8000003A
.else
.equ TAD0, 0x80000070 ; default
.equ TCN0, 0x8000003C ; default
.endif
.equ DMCN0, 0x80000038
.equ DMCT1, 0x80000040
.equ DMAD1, 0x80000044
.equ DMCN1, 0x80000048
.equ SPCT, 0x80000080
.equ SPST, 0x80000084
.equ SPTH, 0x80000088
.equ SPRB, 0x8000008C
.equ BAUD, 0x80000090
.equ PPCT, 0x800000C0
.equ PPST, 0x800000C1
.equ PPDT, 0x800000C4
.equ POCT, 0x800000D0
.equ PIN, 0x800000D4
.equ POUT, 0x800000D8
.equ POEN, 0x800000DC
.equ VCT, 0x800000E0
.equ TOP, 0x800000E4
.equ SIDE, 0x800000E8
.equ VDT, 0x800000EC
; Interrupt Controller Register bits.
.equ TXDI, (1<<5)
.equ RXDI, (1<<6)
.equ RXSI, (1<<7)
.equ PPI, (1<<11)
.equ DMA1I, (1<<13)
.equ DMA0I, (1<<14)
.equ IOPIMask, (0xFF<<16)
.equ VDI, (1<<27)
.equ ICT200_I, (TXDI|RXDI|RXSI|PPI|DMA1I|DMA0I|IOPIMask|VDI)
.equ ICT205_I, (TXDI|RXDI|RXSI|PPI|DMA1I|DMA0I|IOPIMask|VDI)
; Serial port Initialization bits
.equ NO_PARITY, 0
; SPST bits
.equ THREShift, 22
;* REGISTER Addresses
.equ ROMCntlRegAddr, 0x80000000
.equ ROMCfgRegAddr, 0x80000004
.equ DRAMCntlRegAddr, 0x80000008
.equ DRAMCfgRegAddr, 0x8000000C
.equ DRAMMap0RegAddr, 0x80000010
.equ DRAMMap1RegAddr, 0x80000014
.equ DRAMMap2RegAddr, 0x80000018
.equ DRAMMap3RegAddr, 0x8000001C
.equ PIACntl0RegAddr, 0x80000020
.equ PIACntl1RegAddr, 0x80000024
.equ INTRCntlRegAddr, 0x80000028
.equ DMACntl0RegAddr, 0x80000030
.equ DMACntl1RegAddr, 0x80000040
.equ SERPortCntlRegAddr, 0x80000080
.equ SERPortStatRegAddr, 0x80000084
.equ SERPortTHLDRegAddr, 0x80000088
.equ SERPortRbufRegAddr, 0x8000008C
.equ SERPortBaudRegAddr, 0x80000090
.equ PARPortCntlRegAddr, 0x800000C0
.equ PIOCntlRegAddr, 0x800000D0
.equ PIOInpRegAddr, 0x800000D4
.equ PIOOutRegAddr, 0x800000D8
.equ PIOOutEnaRegAddr, 0x800000DC
.equ VCTCntlRegAddr, 0x800000E0
;
;* Control constants
;
;* AM29030 Timer related constants.
.equ TMR_IE, 0x01000000
.equ TMR_IN, 0x02000000
.equ TMR_OV, 0x04000000
.equ TMC_INITCNT, 1613
;
;* System initialization values.
;
.equ __os_version, 0x0001 ;
.equ STACKSize, 0x8000 ;
.equ PGMExecMode, 0x0000 ;
.equ TSTCK_OFST, 28 * 4
.equ CSTCK_OFST, 29 * 4
.equ TMSTCK_OFST, 30 * 4
.equ CMSTCK_OFST, 31 * 4
.equ CTXSW_OK, 0xA55A ; ctx switch ok
.set NV_STARTOFST, 0x20 ; 32 bytes
.set NV_BAUDOFST, 0x00 ; 00 bytes
.set reg_cir, 29
.set reg_cdr, 30
.equ MSG_BUFSIZE, 0x1000 ; serial buffer size
.equ ILLOPTRAP, 0
.equ UATRAP, 1
.equ PVTRAP, 5
.equ UITLBMISSTRAP, 8
.equ UDTLBMISSTRAP, 9
.equ TIMERTRAP, 14
.equ TRACETRAP, 15
.equ XLINXTRAP, 16
.equ SERIALTRAP, 17
.equ SLOWTMRTRAP, 18
.equ PORTTRAP, 19
.equ SVSCTRAP, 80
.equ SVSCTRAP1, 81
.equ V_CACHETRAP, 66 ;
.equ V_SETSERVICE, 67 ;
.equ INIT_TIMER, 100
.equ DISABLE_TIMER, 101
.equ GET_TIMER, 102
.equ CLEAR_TIMER, 103
.equ V_SPILL, 64
.equ V_FILL, 65
.equ SIGDFL, 105

View File

@@ -0,0 +1,98 @@
/* asm.h
*
* This include file attempts to address the problems
* caused by incompatible flavors of assemblers and
* toolsets. It primarily addresses variations in the
* use of leading underscores on symbols and the requirement
* that register names be preceded by a %.
*
*
* NOTE: The spacing in the use of these macros
* is critical to them working as advertised.
*
* COPYRIGHT:
*
* This file is based on similar code found in newlib available
* from ftp.cygnus.com. The file which was used had no copyright
* notice. This file is freely distributable as long as the source
* of the file is noted. This file is:
*
* COPYRIGHT (c) 1994.
* On-Line Applications Research Corporation (OAR).
*
* $Id$
*/
#ifndef __NO_CPU_ASM_h
#define __NO_CPU_ASM_h
/*
* Indicate we are in an assembly file and get the basic CPU definitions.
*/
#define ASM
#include <rtems/score/no_cpu.h>
/*
* Recent versions of GNU cpp define variables which indicate the
* need for underscores and percents. If not using GNU cpp or
* the version does not support this, then you will obviously
* have to define these as appropriate.
*/
#ifndef __USER_LABEL_PREFIX__
#define __USER_LABEL_PREFIX__ _
#endif
#ifndef __REGISTER_PREFIX__
#define __REGISTER_PREFIX__
#endif
/* ANSI concatenation macros. */
#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b
/* Use the right prefix for global labels. */
#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)
/* Use the right prefix for registers. */
#define REG(x) CONCAT1 (__REGISTER_PREFIX__, x)
/*
* define macros for all of the registers on this CPU
*
* EXAMPLE: #define d0 REG (d0)
*/
/*
* Define macros to handle section beginning and ends.
*/
#define BEGIN_CODE_DCL .text
#define END_CODE_DCL
#define BEGIN_DATA_DCL .data
#define END_DATA_DCL
#define BEGIN_CODE .text
#define END_CODE
#define BEGIN_DATA
#define END_DATA
#define BEGIN_BSS
#define END_BSS
#define END
/*
* Following must be tailor for a particular flavor of the C compiler.
* They may need to put underscores in front of the symbols.
*/
#define PUBLIC(sym) .globl SYM (sym)
#define EXTERN(sym) .globl SYM (sym)
#endif
/* end of include file */

256
cpukit/score/cpu/a29k/cpu.c Normal file
View File

@@ -0,0 +1,256 @@
/*
* AMD 29K CPU Dependent Source
*
* Author: Craig Lebakken <craigl@transition.com>
*
* COPYRIGHT (c) 1996 by Transition Networks Inc.
*
* To anyone who acknowledges that this file is provided "AS IS"
* without any express or implied warranty:
* permission to use, copy, modify, and distribute this file
* for any purpose is hereby granted without fee, provided that
* the above copyright notice and this notice appears in all
* copies, and that the name of Transition Networks not be used in
* advertising or publicity pertaining to distribution of the
* software without specific, written prior permission.
* Transition Networks makes no representations about the suitability
* of this software for any purpose.
*
* Derived from c/src/exec/score/cpu/no_cpu/cpu.c:
*
* COPYRIGHT (c) 1989, 1990, 1991, 1992, 1993, 1994.
* On-Line Applications Research Corporation (OAR).
* All rights assigned to U.S. Government, 1994.
*
* This material may be reproduced by or for the U.S. Government pursuant
* to the copyright license under the clause at DFARS 252.227-7013. This
* notice must appear in all copies of this file and its derivatives.
*
* $Id$
*/
#ifndef lint
static char _sccsid[] = "@(#)cpu.c 21 Aug 1996 1.6\n";
#endif
#include <rtems/system.h>
#include <rtems/score/isr.h>
#include <rtems/score/wkspace.h>
#include <rtems/score/thread.h>
#include <stdio.h>
#include <stdlib.h>
void a29k_ISR_Handler(unsigned32 vector);
/* _CPU_Initialize
*
* This routine performs processor dependent initialization.
*
* INPUT PARAMETERS:
* cpu_table - CPU table to initialize
* thread_dispatch - address of disptaching routine
*/
void _CPU_Initialize(
rtems_cpu_table *cpu_table,
void (*thread_dispatch)() /* ignored on this CPU */
)
{
unsigned int i;
/*
* The thread_dispatch argument is the address of the entry point
* for the routine called at the end of an ISR once it has been
* decided a context switch is necessary. On some compilation
* systems it is difficult to call a high-level language routine
* from assembly. This allows us to trick these systems.
*
* If you encounter this problem save the entry point in a CPU
* dependent variable.
*/
_CPU_Thread_dispatch_pointer = thread_dispatch;
/*
* If there is not an easy way to initialize the FP context
* during Context_Initialize, then it is usually easier to
* save an "uninitialized" FP context here and copy it to
* the task's during Context_Initialize.
*/
/* FP context initialization support goes here */
_CPU_Table = *cpu_table;
for ( i = 0; i < ISR_NUMBER_OF_VECTORS; i++ )
{
_ISR_Vector_table[i] = (proc_ptr)NULL;
}
}
/*PAGE
*
* _CPU_ISR_Get_level
*/
unsigned32 _CPU_ISR_Get_level( void )
{
/*
* This routine returns the current interrupt level.
*/
return 0;
}
/*PAGE
*
* _CPU_ISR_install_raw_handler
*/
extern void intr14( void );
extern void intr3( void );
extern void intr2( void );
void _CPU_ISR_install_raw_handler(
unsigned32 vector,
proc_ptr new_handler,
proc_ptr *old_handler
)
{
/*
* This is where we install the interrupt handler into the "raw" interrupt
* table used by the CPU to dispatch interrupt handlers.
*/
switch( vector )
{
case 14:
_settrap( vector, intr14 );
break;
case 3:
_settrap( vector, intr3 );
break;
case 2:
_settrap( vector, intr2 );
break;
default:
break;
}
}
/*PAGE
*
* _CPU_ISR_install_vector
*
* This kernel routine installs the RTEMS handler for the
* specified vector.
*
* Input parameters:
* vector - interrupt vector number
* old_handler - former ISR for this vector number
* new_handler - replacement ISR for this vector number
*
* Output parameters: NONE
*
*/
void _CPU_ISR_install_vector(
unsigned32 vector,
proc_ptr new_handler,
proc_ptr *old_handler
)
{
*old_handler = _ISR_Vector_table[ vector ];
/*
* If the interrupt vector table is a table of pointer to isr entry
* points, then we need to install the appropriate RTEMS interrupt
* handler for this vector number.
*/
_CPU_ISR_install_raw_handler( vector, new_handler, old_handler );
/*
* We put the actual user ISR address in '_ISR_vector_table'. This will
* be used by the _ISR_Handler so the user gets control.
*/
_ISR_Vector_table[ vector ] = new_handler;
}
/*PAGE
*
* _CPU_Install_interrupt_stack
*/
void _CPU_Install_interrupt_stack( void )
{
}
/*PAGE
*
* _CPU_Internal_threads_Idle_thread_body
*
* NOTES:
*
* 1. This is the same as the regular CPU independent algorithm.
*
* 2. If you implement this using a "halt", "idle", or "shutdown"
* instruction, then don't forget to put it in an infinite loop.
*
* 3. Be warned. Some processors with onboard DMA have been known
* to stop the DMA if the CPU were put in IDLE mode. This might
* also be a problem with other on-chip peripherals. So use this
* hook with caution.
*/
void _CPU_Internal_threads_Idle_thread_body( void )
{
for( ; ; )
{
}
/* insert your "halt" instruction here */ ;
}
void a29k_fatal_error( unsigned32 error )
{
printf("\n\nfatal error %d, rebooting!!!\n",error );
exit(error);
}
/*
* This discussion ignores a lot of the ugly details in a real
* implementation such as saving enough registers/state to be
* able to do something real. Keep in mind that the goal is
* to invoke a user's ISR handler which is written in C and
* uses a certain set of registers.
*
* Also note that the exact order is to a large extent flexible.
* Hardware will dictate a sequence for a certain subset of
* _ISR_Handler while requirements for setting
*/
/*
* At entry to "common" _ISR_Handler, the vector number must be
* available. On some CPUs the hardware puts either the vector
* number or the offset into the vector table for this ISR in a
* known place. If the hardware does not give us this information,
* then the assembly portion of RTEMS for this port will contain
* a set of distinct interrupt entry points which somehow place
* the vector number in a known place (which is safe if another
* interrupt nests this one) and branches to _ISR_Handler.
*
*/
void a29k_ISR_Handler(unsigned32 vector)
{
_ISR_Nest_level++;
_Thread_Dispatch_disable_level++;
if ( _ISR_Vector_table[ vector ] )
(*_ISR_Vector_table[ vector ])( vector );
--_Thread_Dispatch_disable_level;
--_ISR_Nest_level;
if ( !_Thread_Dispatch_disable_level && !_ISR_Nest_level &&
(_Context_Switch_necessary || _ISR_Signals_to_thread_executing ))
_Thread_Dispatch();
return;
}

View File

@@ -0,0 +1,442 @@
; /* @(#)pswmacro.ah 1.1 96/05/23 08:56:58, TEI */
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; macros: Do_install and init_TLB
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; /* $Id$ */
;* File information and includes.
.file "macro.ah"
.ident "@(#)pswmacro.ah 1.1 96/05/23 08:56:58, TEI"
.macro CONST32, RegName, RegValue
const RegName, RegValue
consth RegName, RegValue
.endm
.macro CONSTX, RegName, RegValue
.if (RegValue) <= 0x0000ffff
const RegName, RegValue
.else
const RegName, RegValue
consth RegName, RegValue
.endif
.endm
.macro PRODEV, RegName
srl RegName, RegName, 24
.endm
;
;* MACRO TO INSTALL VECTOR TABLE ENTRIES
;
;* Assumes vector table address in v0
.macro _setvec, trapnum, trapaddr
mfsr v0, vab ;
const v2, trapnum ;
sll v1, v2, 2 ;
add v1, v1, v0 ; v0 has location of vector tab
const v2, trapaddr ;
consth v2, trapaddr ;
store 0, 0, v2, v1 ;
nop ;
.endm
.macro syscall, name
const tav, HIF_@name ;
asneq V_SYSCALL, gr1, gr1 ;
nop ;
nop ;
.endm
;* MACRO TO INSTALL VECTOR TABLE ENTRIES
.macro Do_Install, V_Number, V_Address
const lr4, V_Address
consth lr4, V_Address
const lr3, V_Number * 4
consth lr3, V_Number * 4
call lr0, V_Install
nop
.endm
.macro Do_InstallX, V_Number, V_Address
const lr4, V_Address
consth lr4, V_Address
const lr3, V_Number * 4
consth lr3, V_Number * 4
call lr0, V_InstallX
nop
.endm
; push a register onto the stack
.macro pushreg, reg, sp
sub sp, sp, 4 ; adjust stack pointer
store 0, 0, reg, sp ; push register
.endm
.macro push, sp, reg
sub sp, sp, 4
store 0, 0, reg, sp
.endm
; pop the register from stack
.macro popreg, reg, sp
load 0, 0, reg, sp ; pop register
add sp, sp, 4 ; adjust stack pointer
.endm
.macro pop, reg, sp
load 0, 0, reg, sp
add sp, sp, 4
.endm
; push a special register onto stack
.macro pushspcl, spcl, tmpreg, sp
sub sp, sp, 4 ; adjust stack pointer
mfsr tmpreg, spcl ; get spcl reg
store 0, 0, tmpreg, sp ; push onto stack
.endm
.macro pushsr, sp, reg, sreg
mfsr reg, sreg
sub sp, sp, 4
store 0, 0, reg, sp
.endm
; pop a special register from stack
.macro popspcl, spcl, tmpreg, sp
load 0, 0, tmpreg, sp ; pop from stack
add sp, sp, 4 ; adjust stack pointer
mtsr spcl, tmpreg ; set spcl reg
.endm
.macro popsr, sreg, reg, sp
load 0, 0, reg, sp
add sp, sp, 4
mtsr sreg, reg
.endm
;
; save freeze mode registers on memory stack.
;
.macro SaveFZState, tmp1, tmp2
; save freeze mode registers.
pushspcl pc0, tmp1, msp
pushspcl pc1, tmp1, msp
pushspcl alu, tmp1, msp
pushspcl cha, tmp1, msp
pushspcl chd, tmp1, msp
pushspcl chc, tmp1, msp
pushspcl ops, tmp1, msp
; turn freeze off
const tmp2, FZ
mfsr tmp1, cps
andn tmp1, tmp1, tmp2
mtsr cps, tmp1
.endm
; restore freeze mode registers from memory stack.
.macro RestoreFZState, tmp1, tmp2
; turn freeze on
const tmp2, (FZ|DI|DA)
mfsr tmp1, cps
or tmp1, tmp1, tmp2
mtsr cps, tmp1
; restore freeze mode registers.
popspcl ops, tmp1, msp
popspcl chc, tmp1, msp
popspcl chd, tmp1, msp
popspcl cha, tmp1, msp
popspcl alu, tmp1, msp
popspcl pc1, tmp1, msp
popspcl pc0, tmp1, msp
.endm
;
;*
;
.equ WS, 512 ; window size
.equ RALLOC, 4 * 4 ; stack alloc for C
.equ SIGCTX_UM_SIZE, 40 * 4 ;
.equ SIGCTX_RFB, (38) * 4 ; user mode saved
.equ SIGCTX_SM_SIZE, 12 * 4 ;
.equ SIGCTX_SIG, (11)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_GR1, (10)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_RAB, (9)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_PC0, (8)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_PC1, (7)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_PC2, (6)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_CHC, (3)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_OPS, (1)*4 + SIGCTX_UM_SIZE ;
.equ SIGCTX_TAV, (0)*4 + SIGCTX_UM_SIZE ;
.macro sup_sv
add it2, trapreg, 0 ; transfer signal #
sub msp, msp, 4 ;
store 0, 0, it2, msp ; save signal number
sub msp, msp, 4 ; push gr1
store 0, 0, gr1, msp ;
sub msp, msp, 4 ; push rab
store 0, 0, rab, msp ;
const it0, WS ; Window size
sub rab, rfb, it0 ; set rab = rfb-512
pushsr msp, it0, PC0 ; save program counter0
pushsr msp, it0, PC1 ; save program counter1
pushsr msp, it0, PC2 ; save program counter2
pushsr msp, it0, CHA ; save channel address
pushsr msp, it0, CHD ; save channel data
pushsr msp, it0, CHC ; save channel control
pushsr msp, it0, ALU ; save alu
pushsr msp, it0, OPS ; save ops
sub msp, msp, 4 ;
store 0, 0, tav, msp ; push tav
mtsrim chc, 0 ; no loadm/storem
mfsr it0, ops ; get ops value
const it1, (TD | DI) ; disable interrupts
consth it1, (TD | DI) ; disable interrupts
or it0, it0, it1 ; set bits
mtsr ops, it0 ; set new ops
const it0, _sigcode ; signal handler
consth it0, _sigcode ; signal handler
mtsr pc1, it0 ; store pc1
add it1, it0, 4 ; next addr
mtsr pc0, it1 ; store pc1 location
iret ; return
nop ; ALIGN
.endm
.macro sig_return
mfsr it0, cps ; get processor status
const it1, FZ|DA ; Freeze + traps disable
or it0, it0, it1 ; to set FZ+DA
mtsr cps, it0 ; in freeze mode
load 0, 0, tav, msp ; restore tav
add msp, msp, 4 ;
popsr OPS,it0, msp ;
popsr ALU,it0, msp ;
popsr CHC,it0, msp ;
popsr CHD,it0, msp ;
popsr CHA,it0, msp ;
popsr PC2,it0, msp ;
popsr PC1,it0, msp ;
popsr PC0,it0, msp ;
load 0, 0, rab, msp ;
add msp, msp, 4 ;
load 0, 0, it0, msp ;
add gr1, it0, 0 ; pop rsp
add msp, msp, 8 ; discount signal #
iret
.endm
.macro repair_R_stack
add v0, msp, SIGCTX_GR1 ; interrupted gr1
load 0, 0, v2, v0 ;
add v0, msp, SIGCTX_RFB ;
load 0, 0, v3, v0 ; interupted rfb
const v1, WS ;
sub v1, v3, v1 ; rfb-512
cpltu v0, v2, v1 ; test gr1 < rfb-512
jmpf v0, $1 ;
add gr1, rab, 0 ;
add v2, v1, 0 ; set LB = rfb-512
$1:
;* if gr1 < rfb-512 yes LB = rfb-512 signalled during spill
;* if no, LB=gr1 interrupted cache < 126 registers
cpleu v0, v2, rfb ; test LB<=rfb
jmpf v0, $2 ;
nop ;
add v2, rfb, 0 ;
$2:
cpeq v0, v3, rfb ; fill rfb->'rfb
jmpt v0, $3 ; if rfb==rfb'
const tav, (0x80<<2) ; prepare for fill
or tav, tav, v2 ;
mtsr IPA, tav ; IPA=LA<<2
sub tav, v3, gr98 ; cache fill LA->rfb
srl tav, tav, 2 ; convert to words
sub tav, tav, 1 ;
mtsr cr, tav ;
loadm 0, 0, gr0, v2 ; fill from LA->rfb
$3:
add rfb, v3, 0 ; move rfb upto 'rfb
sub rab, v1, 0 ; assign rab to rfb-512
add v0, msp, SIGCTX_GR1 ;
load 0, 0, v2, v0 ; v0 = interrupted gr1
add gr1, v2, 0 ; move gr1 upto 'gr1
nop ;
.endm
.macro repair_regs
mtsrim cr, 29 - 1 ; to restore locals
loadm 0, 0, v0, msp ;
add msp, msp, 29*4 ;
popsr Q, tav, msp ;
popsr IPC, tav, msp ;
popsr IPB, tav, msp ;
popsr IPA, tav, msp ;
pop FPStat3, msp ; floating point regs
pop FPStat2, msp ; floating point regs
pop FPStat1, msp ; floating point regs
pop FPStat0, msp ; floating point regs
add msp, msp, 3*4 ; R-stack repaired
.endm
;
;*HIF related...
;
; send the message in bufaddr to Montip.
.macro SendMessageToMontip, bufaddr
const lr2, bufaddr
$1:
call lr0, _msg_send
consth lr2, bufaddr
cpeq gr96, gr96, 0
jmpf gr96, $1
const lr2, bufaddr
.endm
; build a HIF_CALL message in bufaddr to send to montip.
.macro BuildHIFCALLMsg, bufaddr, tmp1, tmp2
const tmp1, bufaddr
consth tmp1, bufaddr
const tmp2, HIF_CALL_MSGCODE
store 0, 0, tmp2, tmp1 ; msg code
add tmp1, tmp1, 4
const tmp2, HIF_CALL_MSGLEN
store 0, 0, tmp2, tmp1 ; msg len
add tmp1, tmp1, 4
store 0, 0, gr121, tmp1 ; service number
add tmp1, tmp1, 4
store 0, 0, lr2, tmp1 ; lr2
add tmp1, tmp1, 4
store 0, 0, lr3, tmp1 ; lr3
add tmp1, tmp1, 4
store 0, 0, lr4, tmp1 ; lr4
.endm
;
;*
;* All the funky AMD style macros go in here...simply for
;* compatility
;
;
.macro IMPORT, symbol
.extern symbol
.endm
.macro GLOBAL, symbol
.global symbol
.endm
.macro USESECT, name, type
.sect name, type
.use name
.endm
.macro SECTION, name, type
.sect name, type
.endm
.macro FUNC, fname, lineno
.global fname
fname:
.endm
.macro ENDFUNC, fname, lineno
.endm
;*************************************LONG
.macro LONG, varname
varname:
.block 4
.endm
;*************************************UNSIGNED LONG
.macro ULONG, varname
varname:
.block 4
.endm
;*************************************SHORT
.macro SHORT, varname
varname:
.block 2
.endm
;*************************************CHAR
.macro CHAR, varname
varname:
.block 1
.endm
;*************************************LONGARRAY
.macro LONGARRAY, name, count
name:
.block count*4
.endm
;*************************************SHORTARRAY
.macro SHORTARRAY, name, count
name:
.block count*2
.endm
;*************************************CHARARRAY
.macro CHARARRAY, name, count
name:
.block count
.endm
;*************************************VOID_FPTR
.macro VOID_FPTR, name
name:
.block 4
.endm