Backport of development SPI SD-card patches to RTEMS 4.10.

Arnout Vandecappelle:

        PR 1569/misc
        * libchip/i2c/spi-sd-card.c: Added CRC checks.

        PR 1576/misc
        * libchip/i2c/spi-sd-card.c: Enable CRC checks.

        PR 1567/misc
        * libchip/i2c/spi-sd-card.h, libchip/i2c/spi-sd-card.c: Fixed
        timeouts.

        PR 1579/misc
        * libchip/i2c/spi-sd-card.c: Gradually increasing sleep times when
        waiting for write to finish.

        PR 1580/misc
        * libchip/i2c/spi-sd-card.c: Use bigger chunks and yield processor
        while waiting for read data.

        PR 1586/misc
        * libchip/i2c/spi-sd-card.h, libchip/i2c/spi-sd-card.c: Add retries to
        SD card accesses.

Signed-off-by: Pavel Pisa <ppisa@pikron.com>
This commit is contained in:
Pavel Pisa
2013-10-08 10:43:40 +02:00
committed by Sebastian Huber
parent ab0da63e3c
commit 7c709c05e9
2 changed files with 176 additions and 47 deletions

View File

@@ -12,11 +12,13 @@
* Germany
* rtems@embedded-brains.de
*
* The license and distribution terms for this file may be found in the file
* LICENSE in this distribution or at http://www.rtems.com/license/LICENSE.
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.com/license/LICENSE.
*/
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <inttypes.h>
@@ -301,9 +303,55 @@ static inline uint32_t sd_card_access_time( const uint8_t *csd)
static inline uint32_t sd_card_max_access_time( const uint8_t *csd, uint32_t transfer_speed)
{
uint64_t ac = sd_card_access_time( csd);
uint32_t ac_100ms = transfer_speed / 80;
uint32_t n = SD_CARD_CSD_GET_NSAC( csd) * 100;
ac = (ac * transfer_speed) / 8000000000ULL;
return n + (uint32_t) ac;
/* ac is in ns, transfer_speed in bps, max_access_time in bytes.
max_access_time is 100 times typical access time (taac+nsac) */
ac = ac * transfer_speed / 80000000;
ac = ac + 100*n;
if ((uint32_t)ac > ac_100ms)
return ac_100ms;
else
return (uint32_t)ac;
}
/** @} */
/**
* @name CRC functions
*
* Based on http://en.wikipedia.org/wiki/Computation_of_CRC
*
* @{
*/
static uint8_t sd_card_compute_crc7 (uint8_t *data, size_t len)
{
uint8_t e, f, crc;
size_t i;
crc = 0;
for (i = 0; i < len; i++) {
e = crc ^ data[i];
f = e ^ (e >> 4) ^ (e >> 7);
crc = (f << 1) ^ (f << 4);
}
return crc >> 1;
}
static uint16_t sd_card_compute_crc16 (uint8_t *data, size_t len)
{
uint8_t s, t;
uint16_t crc;
size_t i;
crc = 0;
for (i = 0; i < len; i++) {
s = data[i] ^ (crc >> 8);
t = s ^ (s >> 4);
crc = (crc << 8) ^ t ^ (t << 5) ^ (t << 12);
}
return crc;
}
/** @} */
@@ -323,6 +371,14 @@ static int sd_card_wait( sd_card_driver_entry *e)
int rv = 0;
int r = 0;
int n = 2;
/* For writes, the timeout is 2.5 times that of reads; since we
don't know if it is a write or read, assume write.
FIXME should actually look at R2W_FACTOR for non-HC cards. */
int retries = e->n_ac_max * 25 / 10;
/* n_ac_max/100 is supposed to be the average waiting time. To
approximate this, we start with waiting n_ac_max/150 and
gradually increase the waiting time. */
int wait_time_bytes = (retries + 149) / 150;
while (e->busy) {
/* Query busy tokens */
rv = sd_card_query( e, e->response, n);
@@ -335,11 +391,20 @@ static int sd_card_wait( sd_card_driver_entry *e)
return 0;
}
}
n = SD_CARD_COMMAND_SIZE;
retries -= n;
if (retries <= 0) {
return -RTEMS_TIMEOUT;
}
if (e->schedule_if_busy) {
/* Invoke the scheduler */
rtems_task_wake_after( RTEMS_YIELD_PROCESSOR);
uint64_t wait_time_us = wait_time_bytes;
wait_time_us *= 8000000;
wait_time_us /= e->transfer_mode.baudrate;
rtems_task_wake_after( RTEMS_MICROSECONDS_TO_TICKS(wait_time_us));
retries -= wait_time_bytes;
wait_time_bytes = wait_time_bytes * 15 / 10;
} else {
n = SD_CARD_COMMAND_SIZE;
}
}
return 0;
@@ -354,6 +419,7 @@ static int sd_card_send_command( sd_card_driver_entry *e, uint32_t command, uint
.byte_cnt = SD_CARD_COMMAND_SIZE
};
int r = 0;
uint8_t crc7;
SD_CARD_INVALIDATE_RESPONSE_INDEX( e);
@@ -364,6 +430,8 @@ static int sd_card_send_command( sd_card_driver_entry *e, uint32_t command, uint
/* Write command and read response */
SD_CARD_COMMAND_SET_COMMAND( e->command, command);
SD_CARD_COMMAND_SET_ARGUMENT( e->command, argument);
crc7 = sd_card_compute_crc7( e->command + 1, 5);
SD_CARD_COMMAND_SET_CRC7( e->command, crc7);
rv = rtems_libi2c_ioctl( e->bus, RTEMS_LIBI2C_IOCTL_READ_WRITE, &rw);
RTEMS_CHECK_RV( rv, "Write command and read response");
@@ -404,6 +472,7 @@ sd_card_send_command_error:
static int sd_card_send_register_command( sd_card_driver_entry *e, uint32_t command, uint32_t argument, uint32_t *reg)
{
int rv = 0;
uint8_t crc7;
rv = sd_card_send_command( e, command, argument);
RTEMS_CHECK_RV( rv, "Send command");
@@ -417,6 +486,13 @@ static int sd_card_send_register_command( sd_card_driver_entry *e, uint32_t comm
return -RTEMS_IO_ERROR;
}
crc7 = sd_card_compute_crc7( e->response + e->response_index, 5);
if (crc7 != SD_CARD_COMMAND_GET_CRC7( e->response + e->response_index) &&
SD_CARD_COMMAND_GET_CRC7( e->response + e->response_index) != 0x7f) {
RTEMS_SYSLOG_ERROR( "CRC check failed on register command\n");
return -RTEMS_IO_ERROR;
}
*reg = sd_card_get_uint32( e->response + e->response_index + 1);
return 0;
@@ -456,54 +532,65 @@ static int sd_card_read( sd_card_driver_entry *e, uint8_t start_token, uint8_t *
{
int rv = 0;
/* Access time idle tokens */
uint32_t n_ac = 1;
/* Discard command response */
int r = e->response_index + 1;
/* Minimum token number before data start */
int next_response_size = 2;
/* Standard response size */
int response_size = SD_CARD_COMMAND_SIZE;
/* Where the response is stored */
uint8_t *response = e->response;
/* Data input index */
int i = 0;
/* CRC check of data */
uint16_t crc16;
/* Maximum number of tokens to read. */
int retries = e->n_ac_max;
SD_CARD_INVALIDATE_RESPONSE_INDEX( e);
while (true) {
RTEMS_DEBUG_PRINT( "Search from %u to %u\n", r, response_size - 1);
/* Search the data start token in in current response buffer */
retries -= (response_size - r);
while (r < response_size) {
RTEMS_DEBUG_PRINT( "Token [%02u]: 0x%02x\n", r, e->response [r]);
if (n_ac > e->n_ac_max) {
RTEMS_SYSLOG_ERROR( "Timeout\n");
return -RTEMS_IO_ERROR;
} else if (e->response [r] == start_token) {
RTEMS_DEBUG_PRINT( "Token [%02u]: 0x%02x\n", r, response [r]);
if (response [r] == start_token) {
/* Discard data start token */
++r;
goto sd_card_read_start;
} else if (SD_CARD_IS_DATA_ERROR( e->response [r])) {
RTEMS_SYSLOG_ERROR( "Data error token [%02i]: 0x%02" PRIx8 "\n", r, e->response [r]);
} else if (SD_CARD_IS_DATA_ERROR( response [r])) {
RTEMS_SYSLOG_ERROR( "Data error token [%02i]: 0x%02" PRIx8 "\n", r, response [r]);
return -RTEMS_IO_ERROR;
} else if (e->response [r] != SD_CARD_IDLE_TOKEN) {
RTEMS_SYSLOG_ERROR( "Unexpected token [%02i]: 0x%02" PRIx8 "\n", r, e->response [r]);
} else if (response [r] != SD_CARD_IDLE_TOKEN) {
RTEMS_SYSLOG_ERROR( "Unexpected token [%02i]: 0x%02" PRIx8 "\n", r, response [r]);
return -RTEMS_IO_ERROR;
}
++n_ac;
++r;
}
/* Query more */
rv = sd_card_query( e, e->response, next_response_size);
RTEMS_CHECK_RV( rv, "Query data start token");
if (retries <= 0) {
RTEMS_SYSLOG_ERROR( "Timeout\n");
return -RTEMS_IO_ERROR;
}
/* Set standard query size */
response_size = next_response_size;
next_response_size = SD_CARD_COMMAND_SIZE;
if (e->schedule_if_busy)
rtems_task_wake_after( RTEMS_YIELD_PROCESSOR);
/* Query more. We typically have to wait between 10 and 100
bytes. To reduce overhead, read the response in chunks of
50 bytes - this doesn't introduce too much copy overhead
but does allow SPI DMA transfers to work efficiently. */
response = in;
response_size = 50;
if (response_size > n)
response_size = n;
rv = sd_card_query( e, response, response_size);
RTEMS_CHECK_RV( rv, "Query data start token");
/* Reset start position */
r = 0;
@@ -513,7 +600,7 @@ sd_card_read_start:
/* Read data */
while (r < response_size && i < n) {
in [i++] = e->response [r++];
in [i++] = response [r++];
}
/* Read more data? */
@@ -527,13 +614,21 @@ sd_card_read_start:
rv = sd_card_query( e, e->response, 3);
RTEMS_CHECK_RV( rv, "Read CRC 16");
crc16 = sd_card_compute_crc16 (in, n);
if ((e->response[0] != ((crc16 >> 8) & 0xff)) ||
(e->response[1] != (crc16 & 0xff))) {
RTEMS_SYSLOG_ERROR( "CRC check failed on read\n");
return -RTEMS_IO_ERROR;
}
return i;
}
static int sd_card_write( sd_card_driver_entry *e, uint8_t start_token, uint8_t *out, int n)
{
int rv = 0;
uint8_t crc16 [2] = { 0, 0 };
uint8_t crc16_bytes [2] = { 0, 0 };
uint16_t crc16;
/* Data output index */
int o = 0;
@@ -551,7 +646,10 @@ static int sd_card_write( sd_card_driver_entry *e, uint8_t start_token, uint8_t
RTEMS_CHECK_RV( o, "Write data");
/* Write CRC 16 */
rv = rtems_libi2c_write_bytes( e->bus, crc16, 2);
crc16 = sd_card_compute_crc16(out, n);
crc16_bytes[0] = (crc16>>8) & 0xff;
crc16_bytes[1] = (crc16) & 0xff;
rv = rtems_libi2c_write_bytes( e->bus, crc16_bytes, 2);
RTEMS_CHECK_RV( rv, "Write CRC 16");
/* Read data response */
@@ -605,6 +703,7 @@ static rtems_status_code sd_card_init( sd_card_driver_entry *e)
uint32_t write_block_size = 0;
uint8_t csd_structure = 0;
uint64_t capacity = 0;
uint8_t crc7;
/* Assume first that we have a SD card and not a MMC card */
bool assume_sd = true;
@@ -671,12 +770,8 @@ static rtems_status_code sd_card_init( sd_card_driver_entry *e)
* getting the High Capacity Support flag HCS and checks that the
* voltage is right. Some MMCs accept this command but will still fail
* on ACMD41. SD 1.x cards will fails this command and do not support
* HCS (> 2G capacity). SD spec requires the correct CRC7 be sent even
* when in SPI mode. So this will just change the default CRC7 and
* keep it there for all subsequent commands (which just require a do
* not care CRC byte).
* HCS (> 2G capacity).
*/
SD_CARD_COMMAND_SET_CRC7( e->command, 0x43U);
rv = sd_card_send_register_command( e, SD_CARD_CMD_SEND_IF_COND, if_cond_reg, &if_cond_reg);
/*
@@ -692,6 +787,9 @@ static rtems_status_code sd_card_init( sd_card_driver_entry *e)
cmd_arg = SD_CARD_FLAG_HCS;
}
/* Enable CRC */
sd_card_send_command( e, SD_CARD_CMD_CRC_ON_OFF, 1);
/* Initialize card */
while (true) {
if (assume_sd) {
@@ -840,6 +938,9 @@ static rtems_status_code sd_card_init( sd_card_driver_entry *e)
RTEMS_SYSLOG( "Product serial number : %" PRIu32 "\n", SD_CARD_CID_GET_PSN( block));
RTEMS_SYSLOG( "Manufacturing date : %" PRIu8 "\n", SD_CARD_CID_GET_MDT( block));
RTEMS_SYSLOG( "7-bit CRC checksum : %" PRIu8 "\n", SD_CARD_CID_GET_CRC7( block));
crc7 = sd_card_compute_crc7( block, 15);
if (crc7 != SD_CARD_CID_GET_CRC7( block))
RTEMS_SYSLOG( " Failed! (computed %02" PRIx8 ")\n", crc7);
}
/* Card Specific Data */
@@ -850,6 +951,13 @@ static rtems_status_code sd_card_init( sd_card_driver_entry *e)
rv = sd_card_read( e, SD_CARD_START_BLOCK_SINGLE_BLOCK_READ, block, SD_CARD_CSD_SIZE);
RTEMS_CLEANUP_RV_SC( rv, sc, sd_card_driver_init_cleanup, "Read: SD_CARD_CMD_SEND_CSD");
crc7 = sd_card_compute_crc7( block, 15);
if (crc7 != SD_CARD_CID_GET_CRC7( block)) {
RTEMS_SYSLOG( "SD_CARD_CMD_SEND_CSD CRC failed\n");
sc = RTEMS_IO_ERROR;
goto sd_card_driver_init_cleanup;
}
/* CSD Structure */
csd_structure = SD_CARD_CSD_GET_CSD_STRUCTURE( block);
@@ -883,6 +991,9 @@ static rtems_status_code sd_card_init( sd_card_driver_entry *e)
capacity = (c_size + 1) * 512 * 1024;
read_block_size = 512;
write_block_size = 512;
/* Timeout is fixed at 100ms in CSD Version 2.0 */
e->n_ac_max = transfer_speed / 80;
} else {
RTEMS_DO_CLEANUP_SC( RTEMS_IO_ERROR, sc, sd_card_driver_init_cleanup, "Unexpected CSD Structure number");
}
@@ -893,6 +1004,7 @@ static rtems_status_code sd_card_init( sd_card_driver_entry *e)
RTEMS_SYSLOG( "CSD structure : %" PRIu8 "\n", SD_CARD_CSD_GET_CSD_STRUCTURE( block));
RTEMS_SYSLOG( "Spec version : %" PRIu8 "\n", SD_CARD_CSD_GET_SPEC_VERS( block));
RTEMS_SYSLOG( "Access time [ns] : %" PRIu32 "\n", sd_card_access_time( block));
RTEMS_SYSLOG( "Access time [N] : %" PRIu32 "\n", SD_CARD_CSD_GET_NSAC( block)*100);
RTEMS_SYSLOG( "Max access time [N] : %" PRIu32 "\n", e->n_ac_max);
RTEMS_SYSLOG( "Max read block size [B] : %" PRIu32 "\n", read_block_size);
RTEMS_SYSLOG( "Max write block size [B] : %" PRIu32 "\n", write_block_size);
@@ -1023,7 +1135,7 @@ sd_card_disk_block_read_cleanup:
/* Done */
r->req_done( r->done_arg, RTEMS_IO_ERROR);
return rv;
return 0;
}
static int sd_card_disk_block_write( sd_card_driver_entry *e, rtems_blkdev_request *r)
@@ -1116,7 +1228,7 @@ sd_card_disk_block_write_cleanup:
/* Done */
r->req_done( r->done_arg, RTEMS_IO_ERROR);
return rv;
return 0;
}
static int sd_card_disk_ioctl( rtems_disk_device *dd, uint32_t req, void *arg)
@@ -1126,20 +1238,31 @@ static int sd_card_disk_ioctl( rtems_disk_device *dd, uint32_t req, void *arg)
rtems_device_minor_number minor = rtems_disk_get_minor_number( dd);
sd_card_driver_entry *e = &sd_card_driver_table [minor];
rtems_blkdev_request *r = (rtems_blkdev_request *) arg;
int (*f)( sd_card_driver_entry *, rtems_blkdev_request *);
uint32_t retries = e->retries;
int result;
switch (r->req) {
case RTEMS_BLKDEV_REQ_READ:
return sd_card_disk_block_read( e, r);
f = sd_card_disk_block_read;
break;
case RTEMS_BLKDEV_REQ_WRITE:
return sd_card_disk_block_write( e, r);
f = sd_card_disk_block_write;
break;
default:
errno = EINVAL;
errno = EINVAL;
return -1;
}
do {
result = f( e, r);
} while (retries-- > 0 && result != 0);
return result;
} else if (req == RTEMS_BLKIO_CAPABILITIES) {
*(uint32_t *) arg = RTEMS_BLKDEV_CAP_MULTISECTOR_CONT;
return 0;
} else {
errno = EINVAL;
errno = EINVAL;
return -1;
}
}
@@ -1155,9 +1278,12 @@ static rtems_status_code sd_card_disk_init( rtems_device_major_number major, rte
for (minor = 0; minor < sd_card_driver_table_size; ++minor) {
sd_card_driver_entry *e = &sd_card_driver_table [minor];
dev_t dev = rtems_filesystem_make_dev_t( major, minor);
uint32_t retries = e->retries;
/* Initialize SD Card */
sc = sd_card_init( e);
do {
sc = sd_card_init( e);
} while (retries-- > 0 && sc != RTEMS_SUCCESSFUL);
RTEMS_CHECK_SC( sc, "Initialize SD Card");
/* Create disk device */

View File

@@ -12,8 +12,9 @@
* Germany
* rtems@embedded-brains.de
*
* The license and distribution terms for this file may be found in the file
* LICENSE in this distribution or at http://www.rtems.com/license/LICENSE.
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.com/license/LICENSE.
*/
#ifndef LIBI2C_SD_CARD_H
@@ -52,7 +53,8 @@ extern "C" {
SD_CARD_IDLE_TOKEN \
}
#define SD_CARD_N_AC_MAX_DEFAULT 8
/* Default speed = 400kbps, default timeout = 100ms, n_ac_max is in bytes */
#define SD_CARD_N_AC_MAX_DEFAULT 5000
typedef struct {
const char *device_name;
@@ -68,6 +70,7 @@ typedef struct {
bool busy;
bool verbose;
bool schedule_if_busy;
uint32_t retries;
} sd_card_driver_entry;
extern sd_card_driver_entry sd_card_driver_table [];