[documentation][device_driver_model] Add NVMEM Chinese documentation - complete module 5/26

Co-authored-by: BernardXiong <1241087+BernardXiong@users.noreply.github.com>
This commit is contained in:
copilot-swe-agent[bot]
2026-01-02 23:03:57 +00:00
parent 30ccfafa37
commit c7dd64349a

View File

@@ -0,0 +1,883 @@
# NVMEM 框架
## 1. 概述
### 1.1 什么是 NVMEM
NVMEMNon-Volatile Memory是一个用于访问非易失性存储器的框架提供了统一的接口来读写各种类型的非易失性存储设备
- EEPROMI2C、SPI
- OTPOne-Time Programmable存储器
- eFuse
- NVRAM
- 电池支持的 SRAM
- Flash 存储器的特定区域
### 1.2 RT-Thread 中的实现
RT-Thread 的 NVMEM 框架基于 Linux 内核的 NVMEM 子系统设计,提供:
- **基于 Cell 的组织**将存储器划分为命名的单元cells
- **设备树集成**:通过设备树描述存储器布局
- **消费者/提供者模型**:驱动程序可以是 NVMEM 的消费者或提供者
- **类型化访问**:支持 u8/u16/u32/u64 的直接读取
- **位级访问**:支持比特级的精确访问
- **写保护支持**GPIO 控制的写保护
## 2. Kconfig 配置
### 2.1 启用 NVMEM 支持
```
Device Drivers --->
[*] Using NVMEM (Non-Volatile Memory) device drivers
```
**配置选项**
- `RT_USING_NVMEM`:启用 NVMEM 框架支持
### 2.2 在 menuconfig 中的位置
```
RT-Thread Configuration
→ Device Drivers
→ Using NVMEM (Non-Volatile Memory) device drivers
```
## 3. 设备树绑定
### 3.1 NVMEM 提供者
定义一个 NVMEM 设备(如 EEPROM
```dts
eeprom@50 {
compatible = "atmel,24c256";
reg = <0x50>;
#address-cells = <1>;
#size-cells = <1>;
/* 定义 NVMEM cells */
mac_address: mac-addr@0 {
reg = <0x0 0x6>; /* 偏移 0x0长度 6 字节 */
};
board_id: board-id@6 {
reg = <0x6 0x2>; /* 偏移 0x6长度 2 字节 */
};
serial_number: serial@8 {
reg = <0x8 0x10>; /* 偏移 0x8长度 16 字节 */
};
calibration: calib@20 {
reg = <0x20 0x10>; /* 偏移 0x20长度 16 字节 */
bits = <0 32>; /* 位偏移 0位长度 32 */
};
};
```
### 3.2 NVMEM 消费者
引用 NVMEM cells
```dts
ethernet@40028000 {
compatible = "vendor,eth";
reg = <0x40028000 0x1000>;
/* 引用 MAC 地址 cell */
nvmem-cells = <&mac_address>;
nvmem-cell-names = "mac-address";
};
adc@40012000 {
compatible = "vendor,adc";
reg = <0x40012000 0x400>;
/* 引用校准数据 */
nvmem-cells = <&calibration>;
nvmem-cell-names = "calibration";
};
```
### 3.3 写保护 GPIO
带写保护引脚的 EEPROM
```dts
eeprom@50 {
compatible = "atmel,24c256";
reg = <0x50>;
/* 写保护 GPIO */
wp-gpios = <&gpio1 10 GPIO_ACTIVE_HIGH>;
mac_address: mac-addr@0 {
reg = <0x0 0x6>;
};
};
```
## 4. 应用层 API
### 4.1 Cell 获取操作
#### 4.1.1 rt_nvmem_get_cell_by_name
通过名称获取 NVMEM cell。
```c
struct rt_nvmem_cell *rt_nvmem_get_cell_by_name(struct rt_device *dev,
const char *name);
```
**参数**
- `dev`:设备指针
- `name`cell 名称(设备树中的 nvmem-cell-names
**返回值**
- 成功cell 指针
- 失败RT_NULL
**示例**
```c
struct rt_nvmem_cell *cell;
cell = rt_nvmem_get_cell_by_name(dev, "mac-address");
if (!cell) {
rt_kprintf("Failed to get NVMEM cell\n");
return -RT_ERROR;
}
```
#### 4.1.2 rt_nvmem_get_cell_by_index
通过索引获取 NVMEM cell。
```c
struct rt_nvmem_cell *rt_nvmem_get_cell_by_index(struct rt_device *dev,
rt_uint32_t index);
```
**参数**
- `dev`:设备指针
- `index`cell 索引(从 0 开始)
**返回值**
- 成功cell 指针
- 失败RT_NULL
#### 4.1.3 rt_nvmem_put_cell
释放 NVMEM cell 引用。
```c
void rt_nvmem_put_cell(struct rt_nvmem_cell *cell);
```
**参数**
- `cell`:要释放的 cell 指针
### 4.2 数据访问操作
#### 4.2.1 rt_nvmem_cell_read
从 cell 读取数据。
```c
rt_ssize_t rt_nvmem_cell_read(struct rt_nvmem_cell *cell,
rt_off_t *offset,
void *buf,
rt_size_t size);
```
**参数**
- `cell`cell 指针
- `offset`:读取偏移(可为 RT_NULL使用 cell 的偏移)
- `buf`:数据缓冲区
- `size`:要读取的字节数
**返回值**
- 成功:实际读取的字节数
- 失败:负错误码
**示例**
```c
rt_uint8_t mac[6];
rt_ssize_t ret;
ret = rt_nvmem_cell_read(cell, RT_NULL, mac, sizeof(mac));
if (ret != sizeof(mac)) {
rt_kprintf("Failed to read MAC address\n");
return -RT_ERROR;
}
```
#### 4.2.2 rt_nvmem_cell_write
向 cell 写入数据。
```c
rt_ssize_t rt_nvmem_cell_write(struct rt_nvmem_cell *cell,
rt_off_t *offset,
const void *buf,
rt_size_t size);
```
**参数**
- `cell`cell 指针
- `offset`:写入偏移(可为 RT_NULL
- `buf`:要写入的数据
- `size`:要写入的字节数
**返回值**
- 成功:实际写入的字节数
- 失败:负错误码
**注意**
- 写操作可能受写保护 GPIO 限制
- 某些 NVMEM 设备可能是只读的
### 4.3 类型化读取操作
#### 4.3.1 rt_nvmem_cell_read_u8
读取 8 位无符号整数。
```c
rt_err_t rt_nvmem_cell_read_u8(struct rt_nvmem_cell *cell,
rt_off_t *offset,
rt_uint8_t *val);
```
#### 4.3.2 rt_nvmem_cell_read_u16
读取 16 位无符号整数。
```c
rt_err_t rt_nvmem_cell_read_u16(struct rt_nvmem_cell *cell,
rt_off_t *offset,
rt_uint16_t *val);
```
#### 4.3.3 rt_nvmem_cell_read_u32
读取 32 位无符号整数。
```c
rt_err_t rt_nvmem_cell_read_u32(struct rt_nvmem_cell *cell,
rt_off_t *offset,
rt_uint32_t *val);
```
#### 4.3.4 rt_nvmem_cell_read_u64
读取 64 位无符号整数。
```c
rt_err_t rt_nvmem_cell_read_u64(struct rt_nvmem_cell *cell,
rt_off_t *offset,
rt_uint64_t *val);
```
**参数**
- `cell`cell 指针
- `offset`:读取偏移(可为 RT_NULL
- `val`:存储读取值的指针
**返回值**
- `RT_EOK`:成功
- 负错误码:失败
**示例**
```c
rt_uint32_t board_id;
if (rt_nvmem_cell_read_u32(cell, RT_NULL, &board_id) == RT_EOK) {
rt_kprintf("Board ID: 0x%08x\n", board_id);
}
```
## 5. 应用层使用示例
### 5.1 以太网驱动:从 EEPROM 读取 MAC 地址
```c
#include <rtthread.h>
#include <rtdevice.h>
#include <drivers/ofw.h>
#include <drivers/nvmem.h>
struct eth_device {
struct rt_device parent;
struct rt_device_phy phy;
rt_uint8_t mac_addr[6];
/* 其他字段... */
};
static rt_err_t eth_load_mac_address(struct eth_device *eth,
struct rt_device *dev)
{
struct rt_nvmem_cell *cell;
rt_ssize_t ret;
/* 通过名称获取 MAC 地址 cell */
cell = rt_nvmem_get_cell_by_name(dev, "mac-address");
if (!cell) {
rt_kprintf("No MAC address in NVMEM\n");
return -RT_ERROR;
}
/* 读取 MAC 地址 */
ret = rt_nvmem_cell_read(cell, RT_NULL, eth->mac_addr, 6);
if (ret != 6) {
rt_kprintf("Failed to read MAC address: %d\n", ret);
rt_nvmem_put_cell(cell);
return -RT_ERROR;
}
/* 释放 cell */
rt_nvmem_put_cell(cell);
/* 验证 MAC 地址 */
if (eth->mac_addr[0] == 0x00 && eth->mac_addr[1] == 0x00 &&
eth->mac_addr[2] == 0x00 && eth->mac_addr[3] == 0x00 &&
eth->mac_addr[4] == 0x00 && eth->mac_addr[5] == 0x00) {
rt_kprintf("Invalid MAC address (all zeros)\n");
return -RT_ERROR;
}
rt_kprintf("MAC Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
eth->mac_addr[0], eth->mac_addr[1], eth->mac_addr[2],
eth->mac_addr[3], eth->mac_addr[4], eth->mac_addr[5]);
return RT_EOK;
}
static rt_err_t eth_probe(struct rt_platform_device *pdev)
{
struct eth_device *eth;
rt_err_t ret;
eth = rt_calloc(1, sizeof(*eth));
if (!eth) {
return -RT_ENOMEM;
}
/* 从 NVMEM 加载 MAC 地址 */
ret = eth_load_mac_address(eth, &pdev->parent);
if (ret != RT_EOK) {
/* 使用默认或随机 MAC 地址 */
rt_kprintf("Using default MAC address\n");
eth->mac_addr[0] = 0x00;
eth->mac_addr[1] = 0x11;
eth->mac_addr[2] = 0x22;
eth->mac_addr[3] = 0x33;
eth->mac_addr[4] = 0x44;
eth->mac_addr[5] = 0x55;
}
/* 将 MAC 地址写入硬件寄存器 */
/* ... */
rt_platform_device_set_data(pdev, eth);
return RT_EOK;
}
static struct rt_platform_driver eth_driver = {
.name = "eth-driver",
.ids = (struct rt_ofw_node_id[]) {
{ .compatible = "vendor,ethernet" },
{ /* sentinel */ }
},
.probe = eth_probe,
};
```
### 5.2 读取板卡 ID 和序列号
```c
static rt_err_t board_read_info(struct rt_device *dev)
{
struct rt_nvmem_cell *board_id_cell, *serial_cell;
rt_uint16_t board_id;
char serial[17] = {0}; /* 16 字节 + null */
rt_err_t ret;
/* 读取板卡 ID */
board_id_cell = rt_nvmem_get_cell_by_name(dev, "board-id");
if (board_id_cell) {
ret = rt_nvmem_cell_read_u16(board_id_cell, RT_NULL, &board_id);
if (ret == RT_EOK) {
rt_kprintf("Board ID: %u\n", board_id);
}
rt_nvmem_put_cell(board_id_cell);
}
/* 读取序列号 */
serial_cell = rt_nvmem_get_cell_by_name(dev, "serial-number");
if (serial_cell) {
ret = rt_nvmem_cell_read(serial_cell, RT_NULL, serial, 16);
if (ret > 0) {
rt_kprintf("Serial Number: %s\n", serial);
}
rt_nvmem_put_cell(serial_cell);
}
return RT_EOK;
}
```
## 6. 驱动实现接口
### 6.1 NVMEM 设备注册
#### 6.1.1 rt_nvmem_device_register
注册 NVMEM 设备。
```c
rt_err_t rt_nvmem_device_register(struct rt_nvmem_device *nvmem);
```
**参数**
- `nvmem`NVMEM 设备结构体
**返回值**
- `RT_EOK`:成功
- 负错误码:失败
#### 6.1.2 rt_nvmem_device_unregister
注销 NVMEM 设备。
```c
rt_err_t rt_nvmem_device_unregister(struct rt_nvmem_device *nvmem);
```
#### 6.1.3 rt_nvmem_device_append_cell
向 NVMEM 设备添加 cell。
```c
rt_err_t rt_nvmem_device_append_cell(struct rt_nvmem_device *nvmem,
struct rt_nvmem_cell_info *info);
```
### 6.2 NVMEM 设备结构
```c
struct rt_nvmem_device {
struct rt_device parent;
const struct rt_nvmem_ops *ops;
rt_size_t size; /* 总大小 */
rt_size_t word_size; /* 字大小 */
rt_size_t stride; /* 访问步长 */
rt_bool_t read_only; /* 只读标志 */
struct rt_ofw_node *np; /* 设备树节点 */
void *priv; /* 私有数据 */
};
```
### 6.3 NVMEM 操作接口
```c
struct rt_nvmem_ops {
rt_ssize_t (*read)(struct rt_nvmem_device *nvmem, rt_off_t offset,
void *buf, rt_size_t size);
rt_ssize_t (*write)(struct rt_nvmem_device *nvmem, rt_off_t offset,
const void *buf, rt_size_t size);
};
```
### 6.4 I2C EEPROM 驱动示例
```c
#include <rtthread.h>
#include <rtdevice.h>
#include <drivers/ofw.h>
#include <drivers/nvmem.h>
#include <drivers/i2c.h>
struct eeprom_priv {
struct rt_i2c_client *client;
struct rt_nvmem_device nvmem;
struct rt_gpio_pin *wp_gpio; /* 写保护 GPIO */
};
static rt_ssize_t eeprom_read(struct rt_nvmem_device *nvmem,
rt_off_t offset,
void *buf,
rt_size_t size)
{
struct eeprom_priv *priv = nvmem->priv;
struct rt_i2c_msg msgs[2];
rt_uint8_t addr_buf[2];
rt_ssize_t ret;
/* 设置地址(大端序) */
addr_buf[0] = (offset >> 8) & 0xFF;
addr_buf[1] = offset & 0xFF;
/* 写地址 */
msgs[0].addr = priv->client->client_addr;
msgs[0].flags = RT_I2C_WR;
msgs[0].buf = addr_buf;
msgs[0].len = 2;
/* 读数据 */
msgs[1].addr = priv->client->client_addr;
msgs[1].flags = RT_I2C_RD;
msgs[1].buf = buf;
msgs[1].len = size;
ret = rt_i2c_transfer(priv->client->bus, msgs, 2);
if (ret != 2) {
return -RT_ERROR;
}
return size;
}
static rt_ssize_t eeprom_write(struct rt_nvmem_device *nvmem,
rt_off_t offset,
const void *buf,
rt_size_t size)
{
struct eeprom_priv *priv = nvmem->priv;
struct rt_i2c_msg msg;
rt_uint8_t *write_buf;
rt_ssize_t ret;
rt_size_t written = 0;
rt_size_t page_size = 64; /* EEPROM 页大小 */
/* 禁用写保护 */
if (priv->wp_gpio) {
rt_pin_write(priv->wp_gpio->pin, PIN_LOW);
rt_thread_mdelay(1);
}
write_buf = rt_malloc(page_size + 2);
if (!write_buf) {
ret = -RT_ENOMEM;
goto out;
}
/* 逐页写入 */
while (size > 0) {
rt_size_t chunk = RT_MIN(size, page_size);
rt_size_t page_offset = offset % page_size;
/* 如果不是页对齐,调整写入大小 */
if (page_offset + chunk > page_size) {
chunk = page_size - page_offset;
}
/* 准备写缓冲区:地址 + 数据 */
write_buf[0] = (offset >> 8) & 0xFF;
write_buf[1] = offset & 0xFF;
rt_memcpy(&write_buf[2], buf + written, chunk);
/* 写入 */
msg.addr = priv->client->client_addr;
msg.flags = RT_I2C_WR;
msg.buf = write_buf;
msg.len = chunk + 2;
ret = rt_i2c_transfer(priv->client->bus, &msg, 1);
if (ret != 1) {
rt_kprintf("EEPROM write failed at offset %d\n", offset);
ret = -RT_ERROR;
goto cleanup;
}
/* 等待写周期完成(~5ms */
rt_thread_mdelay(5);
offset += chunk;
written += chunk;
size -= chunk;
}
ret = written;
cleanup:
rt_free(write_buf);
out:
/* 重新启用写保护 */
if (priv->wp_gpio) {
rt_pin_write(priv->wp_gpio->pin, PIN_HIGH);
}
return ret;
}
static const struct rt_nvmem_ops eeprom_ops = {
.read = eeprom_read,
.write = eeprom_write,
};
static rt_err_t eeprom_probe(struct rt_platform_device *pdev)
{
struct eeprom_priv *priv;
struct rt_ofw_node *np = pdev->parent.ofw_node;
rt_uint32_t size;
rt_err_t ret;
priv = rt_calloc(1, sizeof(*priv));
if (!priv) {
return -RT_ENOMEM;
}
/* 获取 I2C 客户端 */
priv->client = (struct rt_i2c_client *)pdev->parent.parent;
/* 获取 EEPROM 大小 */
if (rt_ofw_prop_read_u32(np, "size", &size)) {
size = 32768; /* 默认 32KB */
}
/* 获取写保护 GPIO */
priv->wp_gpio = rt_ofw_get_named_pin(np, "wp-gpios", 0, NULL, NULL);
if (priv->wp_gpio) {
rt_pin_mode(priv->wp_gpio->pin, PIN_MODE_OUTPUT);
rt_pin_write(priv->wp_gpio->pin, PIN_HIGH); /* 初始启用写保护 */
}
/* 初始化 NVMEM 设备 */
priv->nvmem.parent = pdev->parent;
priv->nvmem.ops = &eeprom_ops;
priv->nvmem.size = size;
priv->nvmem.word_size = 1;
priv->nvmem.stride = 1;
priv->nvmem.read_only = RT_FALSE;
priv->nvmem.np = np;
priv->nvmem.priv = priv;
/* 注册 NVMEM 设备 */
ret = rt_nvmem_device_register(&priv->nvmem);
if (ret != RT_EOK) {
rt_kprintf("Failed to register NVMEM device\n");
rt_free(priv);
return ret;
}
rt_platform_device_set_data(pdev, priv);
rt_kprintf("EEPROM registered: %u bytes\n", size);
return RT_EOK;
}
static struct rt_platform_driver eeprom_driver = {
.name = "i2c-eeprom",
.ids = (struct rt_ofw_node_id[]) {
{ .compatible = "atmel,24c256" },
{ .compatible = "microchip,24lc256" },
{ /* sentinel */ }
},
.probe = eeprom_probe,
};
```
## 7. 最佳实践
### 7.1 消费者最佳实践
1. **总是检查返回值**
```c
cell = rt_nvmem_get_cell_by_name(dev, "mac-address");
if (!cell) {
/* 处理错误 */
}
```
2. **及时释放 cells**
```c
rt_nvmem_put_cell(cell);
```
3. **验证数据有效性**
```c
if (rt_nvmem_cell_read(cell, RT_NULL, data, size) == size) {
/* 检查数据是否有效 */
if (is_data_valid(data)) {
use_data(data);
}
}
```
4. **提供默认值**
```c
if (rt_nvmem_cell_read_u32(cell, RT_NULL, &value) != RT_EOK) {
value = DEFAULT_VALUE;
}
```
### 7.2 提供者最佳实践
1. **实现错误处理**
```c
static rt_ssize_t nvmem_read(struct rt_nvmem_device *nvmem,
rt_off_t offset, void *buf, rt_size_t size)
{
/* 检查参数 */
if (offset + size > nvmem->size) {
return -RT_EINVAL;
}
/* 执行读取 */
/* ... */
}
```
2. **处理写保护**
```c
static rt_ssize_t nvmem_write(struct rt_nvmem_device *nvmem,
rt_off_t offset, const void *buf, rt_size_t size)
{
struct priv *priv = nvmem->priv;
/* 禁用写保护 */
if (priv->wp_gpio) {
rt_pin_write(priv->wp_gpio->pin, PIN_LOW);
}
/* 执行写入 */
/* ... */
/* 重新启用写保护 */
if (priv->wp_gpio) {
rt_pin_write(priv->wp_gpio->pin, PIN_HIGH);
}
return size;
}
```
3. **实现页写入**
```c
/* 对于 EEPROM尊重页边界 */
while (size > 0) {
rt_size_t chunk = RT_MIN(size, page_size);
/* 写入块 */
/* 等待写周期 */
rt_thread_mdelay(write_cycle_time);
}
```
## 8. 故障排除
### 8.1 常见问题
**问题:获取 cell 失败**
```
错误rt_nvmem_get_cell_by_name() 返回 RT_NULL
```
**解决方案**
- 检查设备树中的 nvmem-cells 和 nvmem-cell-names 属性
- 验证 NVMEM 提供者已正确注册
- 确认 cell 名称拼写正确
**问题:读取操作返回错误**
```
错误rt_nvmem_cell_read() 返回负值
```
**解决方案**
- 检查 NVMEM 设备是否可访问
- 验证偏移和大小是否在范围内
- 检查总线通信I2C、SPI
**问题:写入操作失败**
```
错误rt_nvmem_cell_write() 失败
```
**解决方案**
- 检查设备是否为只读
- 验证写保护 GPIO 是否正确配置
- 确认写入时序(等待写周期)
### 8.2 调试技巧
1. **启用 NVMEM 调试日志**
```c
#define NVMEM_DEBUG
```
2. **验证设备树配置**
```bash
# 检查 NVMEM 节点
cat /proc/device-tree/eeprom@50/compatible
```
3. **测试读写操作**
```c
/* 读取测试 */
rt_uint8_t test_data[16];
ret = rt_nvmem_cell_read(cell, RT_NULL, test_data, sizeof(test_data));
rt_kprintf("Read %d bytes\n", ret);
/* 转储数据 */
for (int i = 0; i < ret; i++) {
rt_kprintf("%02x ", test_data[i]);
}
rt_kprintf("\n");
```
## 9. 性能考虑
### 9.1 读取优化
1. **批量读取**
```c
/* 好:一次读取所有数据 */
rt_nvmem_cell_read(cell, RT_NULL, buffer, total_size);
/* 差:多次小读取 */
for (i = 0; i < count; i++) {
rt_nvmem_cell_read(cell, &offset, &buffer[i], 1);
}
```
2. **缓存数据**
```c
/* 在初始化时读取,然后缓存 */
static rt_uint8_t cached_mac[6];
static rt_bool_t mac_loaded = RT_FALSE;
if (!mac_loaded) {
rt_nvmem_cell_read(cell, RT_NULL, cached_mac, 6);
mac_loaded = RT_TRUE;
}
```
### 9.2 写入优化
1. **页对齐写入**
```c
/* 对齐到页边界以获得最佳性能 */
offset = ALIGN(offset, page_size);
```
2. **最小化写周期**
```c
/* 仅写入更改的数据 */
if (memcmp(old_data, new_data, size) != 0) {
rt_nvmem_cell_write(cell, RT_NULL, new_data, size);
}
```
## 10. 相关模块
- **OFW**:设备树解析和 cell 查找
- **I2C/SPI**EEPROM 设备的总线接口
- **GPIO**:写保护引脚控制
- **Platform**NVMEM 驱动注册
## 11. 参考资料
- `components/drivers/include/drivers/nvmem.h`NVMEM API 头文件
- `components/drivers/nvmem/`NVMEM 核心实现
- Linux Kernel NVMEM 子系统文档
- 设备树规范 - NVMEM 绑定