Files
binutils-gdb/gdb/x86-linux-nat.c
Christina Schimpe 6ef3896cfe gdb, gdbserver: Use xstate_bv for target description creation on x86.
The XSAVE function set is organized in state components, which are a set of
registers or parts of registers.  So-called XSAVE-supported features are
organized using state-component bitmaps, each bit corresponding to a
single state component.

The Intel Software Developer's Manual uses the term xstate_bv for a
state-component bitmap, which is defined as XCR0 | IA32_XSS.  The control
register XCR0 only contains a state-component bitmap that specifies user state
components, while IA32_XSS contains a state-component bitmap that specifies
supervisor state components.

Until now, XCR0 is used as input for target description creation in GDB.
However, a following patch will add userspace support for the CET shadow
stack feature by Intel.  The CET state is configured in IA32_XSS and consists
of 2 state components:
- State component 11 used for the 2 MSRs controlling user-mode
  functionality for CET (CET_U state)
- State component 12 used for the 3 MSRs containing shadow-stack pointers
  for privilege levels 0-2 (CET_S state).

Reading the CET shadow stack pointer register on linux requires a separate
ptrace call using NT_X86_SHSTK.  To pass the CET shadow stack enablement
state we would like to pass the xstate_bv value instead of xcr0 for target
description creation.  To prepare for that, we rename the xcr0 mask
values for target description creation to xstate_bv.  However, this
patch doesn't add any functional changes in GDB.

Future states specified in IA32_XSS such as CET will create a combined
xstate_bv_mask including xcr0 register value and its corresponding bit in
the state component bitmap.  This combined mask will then be used to create
the target descriptions.

Reviewed-By: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Approved-By: Luis Machado <luis.machado@arm.com>
2025-08-29 17:02:09 +00:00

228 lines
6.8 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Native-dependent code for GNU/Linux x86 (i386 and x86-64).
Copyright (C) 1999-2025 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "inferior.h"
#include "elf/common.h"
#include "gdb_proc_service.h"
#include "nat/gdb_ptrace.h"
#include <sys/user.h>
#include <sys/procfs.h>
#include <sys/uio.h>
#include "x86-nat.h"
#ifndef __x86_64__
#include "nat/i386-linux.h"
#endif
#include "x86-linux-nat.h"
#include "i386-linux-tdep.h"
#ifdef __x86_64__
#include "amd64-linux-tdep.h"
#endif
#include "gdbsupport/x86-xstate.h"
#include "nat/x86-xstate.h"
#include "nat/linux-btrace.h"
#include "nat/linux-nat.h"
#include "nat/x86-linux.h"
#include "nat/x86-linux-dregs.h"
#include "nat/linux-ptrace.h"
#include "nat/x86-linux-tdesc.h"
/* linux_nat_target::low_new_fork implementation. */
void
x86_linux_nat_target::low_new_fork (struct lwp_info *parent, pid_t child_pid)
{
pid_t parent_pid;
struct x86_debug_reg_state *parent_state;
struct x86_debug_reg_state *child_state;
/* NULL means no watchpoint has ever been set in the parent. In
that case, there's nothing to do. */
if (parent->arch_private == NULL)
return;
/* Linux kernel before 2.6.33 commit
72f674d203cd230426437cdcf7dd6f681dad8b0d
will inherit hardware debug registers from parent
on fork/vfork/clone. Newer Linux kernels create such tasks with
zeroed debug registers.
GDB core assumes the child inherits the watchpoints/hw
breakpoints of the parent, and will remove them all from the
forked off process. Copy the debug registers mirrors into the
new process so that all breakpoints and watchpoints can be
removed together. The debug registers mirror will become zeroed
in the end before detaching the forked off process, thus making
this compatible with older Linux kernels too. */
parent_pid = parent->ptid.pid ();
parent_state = x86_debug_reg_state (parent_pid);
child_state = x86_debug_reg_state (child_pid);
*child_state = *parent_state;
}
x86_linux_nat_target::~x86_linux_nat_target ()
{
}
/* Implement the virtual inf_ptrace_target::post_startup_inferior method. */
void
x86_linux_nat_target::post_startup_inferior (ptid_t ptid)
{
x86_cleanup_dregs ();
linux_nat_target::post_startup_inferior (ptid);
}
/* Get Linux/x86 target description from running target. */
const struct target_desc *
x86_linux_nat_target::read_description ()
{
/* The x86_linux_tdesc_for_tid call only reads xcr0 the first time it is
called. The mask is stored in XSTATE_BV_STORAGE and reused on
subsequent calls. Note that GDB currently supports features for user
state components only. However, once supervisor state components are
supported in GDB, the value XSTATE_BV_STORAGE will not be configured
based on xcr0 only. */
static uint64_t xstate_bv_storage;
if (inferior_ptid == null_ptid)
return this->beneath ()->read_description ();
int tid = inferior_ptid.pid ();
return x86_linux_tdesc_for_tid (tid, &xstate_bv_storage,
&this->m_xsave_layout);
}
/* Enable branch tracing. */
struct btrace_target_info *
x86_linux_nat_target::enable_btrace (thread_info *tp,
const struct btrace_config *conf)
{
struct btrace_target_info *tinfo = nullptr;
ptid_t ptid = tp->ptid;
try
{
tinfo = linux_enable_btrace (ptid, conf);
}
catch (const gdb_exception_error &exception)
{
error (_("Could not enable branch tracing for %s: %s"),
target_pid_to_str (ptid).c_str (), exception.what ());
}
return tinfo;
}
/* Disable branch tracing. */
void
x86_linux_nat_target::disable_btrace (struct btrace_target_info *tinfo)
{
enum btrace_error errcode = linux_disable_btrace (tinfo);
if (errcode != BTRACE_ERR_NONE)
error (_("Could not disable branch tracing."));
}
/* Teardown branch tracing. */
void
x86_linux_nat_target::teardown_btrace (struct btrace_target_info *tinfo)
{
/* Ignore errors. */
linux_disable_btrace (tinfo);
}
enum btrace_error
x86_linux_nat_target::read_btrace (struct btrace_data *data,
struct btrace_target_info *btinfo,
enum btrace_read_type type)
{
return linux_read_btrace (data, btinfo, type);
}
/* See to_btrace_conf in target.h. */
const struct btrace_config *
x86_linux_nat_target::btrace_conf (const struct btrace_target_info *btinfo)
{
return linux_btrace_conf (btinfo);
}
/* Helper for ps_get_thread_area. Sets BASE_ADDR to a pointer to
the thread local storage (or its descriptor) and returns PS_OK
on success. Returns PS_ERR on failure. */
ps_err_e
x86_linux_get_thread_area (pid_t pid, void *addr, unsigned int *base_addr)
{
/* NOTE: cagney/2003-08-26: The definition of this buffer is found
in the kernel header <asm-i386/ldt.h>. It, after padding, is 4 x
4 byte integers in size: `entry_number', `base_addr', `limit',
and a bunch of status bits.
The values returned by this ptrace call should be part of the
regcache buffer, and ps_get_thread_area should channel its
request through the regcache. That way remote targets could
provide the value using the remote protocol and not this direct
call.
Is this function needed? I'm guessing that the `base' is the
address of a descriptor that libthread_db uses to find the
thread local address base that GDB needs. Perhaps that
descriptor is defined by the ABI. Anyway, given that
libthread_db calls this function without prompting (gdb
requesting tls base) I guess it needs info in there anyway. */
unsigned int desc[4];
/* This code assumes that "int" is 32 bits and that
GET_THREAD_AREA returns no more than 4 int values. */
gdb_assert (sizeof (int) == 4);
#ifndef PTRACE_GET_THREAD_AREA
#define PTRACE_GET_THREAD_AREA 25
#endif
if (ptrace (PTRACE_GET_THREAD_AREA, pid, addr, &desc) < 0)
return PS_ERR;
*base_addr = desc[1];
return PS_OK;
}
INIT_GDB_FILE (x86_linux_nat)
{
/* Initialize the debug register function vectors. */
x86_dr_low.set_control = x86_linux_dr_set_control;
x86_dr_low.set_addr = x86_linux_dr_set_addr;
x86_dr_low.get_addr = x86_linux_dr_get_addr;
x86_dr_low.get_status = x86_linux_dr_get_status;
x86_dr_low.get_control = x86_linux_dr_get_control;
x86_set_debug_register_length (sizeof (void *));
}