Christina Schimpe 6ef3896cfe gdb, gdbserver: Use xstate_bv for target description creation on x86.
The XSAVE function set is organized in state components, which are a set of
registers or parts of registers.  So-called XSAVE-supported features are
organized using state-component bitmaps, each bit corresponding to a
single state component.

The Intel Software Developer's Manual uses the term xstate_bv for a
state-component bitmap, which is defined as XCR0 | IA32_XSS.  The control
register XCR0 only contains a state-component bitmap that specifies user state
components, while IA32_XSS contains a state-component bitmap that specifies
supervisor state components.

Until now, XCR0 is used as input for target description creation in GDB.
However, a following patch will add userspace support for the CET shadow
stack feature by Intel.  The CET state is configured in IA32_XSS and consists
of 2 state components:
- State component 11 used for the 2 MSRs controlling user-mode
  functionality for CET (CET_U state)
- State component 12 used for the 3 MSRs containing shadow-stack pointers
  for privilege levels 0-2 (CET_S state).

Reading the CET shadow stack pointer register on linux requires a separate
ptrace call using NT_X86_SHSTK.  To pass the CET shadow stack enablement
state we would like to pass the xstate_bv value instead of xcr0 for target
description creation.  To prepare for that, we rename the xcr0 mask
values for target description creation to xstate_bv.  However, this
patch doesn't add any functional changes in GDB.

Future states specified in IA32_XSS such as CET will create a combined
xstate_bv_mask including xcr0 register value and its corresponding bit in
the state component bitmap.  This combined mask will then be used to create
the target descriptions.

Reviewed-By: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Approved-By: Luis Machado <luis.machado@arm.com>
2025-08-29 17:02:09 +00:00
2025-08-29 12:12:24 +02:00
2025-07-13 08:35:45 +01:00
2025-07-13 08:35:45 +01:00
2025-07-23 19:49:50 -04:00
2025-08-07 22:14:49 +09:30
2025-07-19 12:54:32 -07:00
2025-08-29 06:17:19 -07:00
2025-08-07 22:14:49 +09:30
2025-08-07 10:33:44 +01:00
2025-07-31 14:45:21 +01:00
2025-02-28 16:06:25 +00:00
2025-08-28 09:01:33 -06:00
2025-07-13 08:35:45 +01:00

		   README for GNU development tools

This directory contains various GNU compilers, assemblers, linkers, 
debuggers, etc., plus their support routines, definitions, and documentation.

If you are receiving this as part of a GDB release, see the file gdb/README.
If with a binutils release, see binutils/README;  if with a libg++ release,
see libg++/README, etc.  That'll give you info about this
package -- supported targets, how to use it, how to report bugs, etc.

It is now possible to automatically configure and build a variety of
tools with one command.  To build all of the tools contained herein,
run the ``configure'' script here, e.g.:

	./configure 
	make

To install them (by default in /usr/local/bin, /usr/local/lib, etc),
then do:
	make install

(If the configure script can't determine your type of computer, give it
the name as an argument, for instance ``./configure sun4''.  You can
use the script ``config.sub'' to test whether a name is recognized; if
it is, config.sub translates it to a triplet specifying CPU, vendor,
and OS.)

If you have more than one compiler on your system, it is often best to
explicitly set CC in the environment before running configure, and to
also set CC when running make.  For example (assuming sh/bash/ksh):

	CC=gcc ./configure
	make

A similar example using csh:

	setenv CC gcc
	./configure
	make

Much of the code and documentation enclosed is copyright by
the Free Software Foundation, Inc.  See the file COPYING or
COPYING.LIB in the various directories, for a description of the
GNU General Public License terms under which you can copy the files.

REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info
on where and how to report problems.
Description
Unofficial mirror of sourceware binutils-gdb repository. Updated daily.
Readme 893 MiB
Languages
C 50.5%
Makefile 22.7%
Assembly 13.2%
C++ 5.9%
Roff 1.5%
Other 5.6%