We don't want to execute this test if Python support is not compiled in
GDB, add the necessary check.
gdb/testsuite/ChangeLog:
* gdb.python/flexible-array-member.exp: Add check for Python
support.
Change-Id: I853b937d2a193a0bb216566bef1a35354264b1c5
As reported in bug 27757, we get an internal error when doing:
$ cat test.c
struct foo {
int len;
int items[];
};
struct foo *p;
int main() {
return 0;
}
$ gcc test.c -g -O0 -o test
$ ./gdb -q -nx --data-directory=data-directory ./test -ex 'python gdb.parse_and_eval("p").type.target()["items"].type.range()'
Reading symbols from ./test...
/home/simark/src/binutils-gdb/gdb/gdbtypes.h:435: internal-error: LONGEST dynamic_prop::const_val() const: Assertion `m_kind == PROP_CONST' failed.
A problem internal to GDB has been detected,
further debugging may prove unreliable.
Quit this debugging session? (y or n)
This is because the Python code (typy_range) blindly reads the high
bound of the type of `items` as a constant value. Since it is a
flexible array member, it has no high bound, the property is undefined.
Since commit 8c2e4e0689 ("gdb: add accessors to struct dynamic_prop"),
the getters check that you are not getting a property value of the wrong
kind, so this causes a failed assertion.
Fix it by checking if the property is indeed a constant value before
accessing it as such. Otherwise, use 0. This restores the previous GDB
behavior: because the structure was zero-initialized, this is what was
returned before. But now this behavior is explicit and not accidental.
Add a test, gdb.python/flexible-array-member.exp, that is derived from
gdb.base/flexible-array-member.exp. It tests the same things, but
through the Python API. It also specifically tests getting the range
from the various kinds of flexible array member types (AFAIK it wasn't
possible to do the equivalent through the CLI).
gdb/ChangeLog:
PR gdb/27757
* python/py-type.c (typy_range): Check that bounds are constant
before accessing them as such.
* guile/scm-type.c (gdbscm_type_range): Likewise.
gdb/testsuite/ChangeLog:
PR gdb/27757
* gdb.python/flexible-array-member.c: New test.
* gdb.python/flexible-array-member.exp: New test.
* gdb.guile/scm-type.exp (test_range): Add test for flexible
array member.
* gdb.guile/scm-type.c (struct flex_member): New.
(main): Use it.
Change-Id: Ibef92ee5fd871ecb7c791db2a788f203dff2b841
As described in PR 27541, we hit an internal error when loading a binary
the standard way and then loading it with the -readnow option:
$ ./gdb -nx -q --data-directory=data-directory ~/a.out -ex "set confirm off" -ex "file -readnow ~/a.out"
Reading symbols from /home/simark/a.out...
Reading symbols from ~/a.out...
/home/simark/src/binutils-gdb/gdb/dwarf2/read.c:8098: internal-error: void create_all_comp_units(dwarf2_per_objfile*): Assertion `per_objfile->per_bfd->all_comp_units.empty ()' failed.
This is a recurring problem that exposes a design issue in the DWARF
per-BFD sharing feature. Things work well when loading a binary with
the same method (with/without index, with/without readnow) twice in a
row. But they don't work so well when loading a binary with different
methods. See this previous fix, for example:
efb763a5ea ("gdb: check for partial symtab presence in dwarf2_initialize_objfile")
That one handled the case where the first load is normal (uses partial
symbols) and the second load uses an index.
The problem is that when loading an objfile with a method A, we create a
dwarf2_per_bfd and some dwarf2_per_cu_data and initialize them with the
data belonging to that method. When loading another obfile sharing the
same BFD but with a different method B, it's not clear how to re-use the
dwarf2_per_bfd/dwarf2_per_cu_data previously created, because they
contain the data specific to method A.
I think the most sensible fix would be to not share a dwarf2_per_bfd
between two objfiles loaded with different methods. That means that two
objfiles sharing the same BFD and loaded the same way would share a
dwarf2_per_bfd. Two objfiles sharing the same BFD but loaded with
different methods would use two different dwarf2_per_bfd structures.
However, this isn't a trivial change. So to fix the known issue quickly
(including in the gdb 10 branch), this patch just disables all
dwarf2_per_bfd sharing for objfiles using READNOW.
Generalize the gdb.base/index-cache-load-twice.exp test to test all
the possible combinations of loading a file with partial symtabs, index
and readnow. Move it to gdb.dwarf2, since it really exercises features
of the DWARF reader.
gdb/ChangeLog:
PR gdb/27541
* dwarf2/read.c (dwarf2_has_info): Don't share dwarf2_per_bfd
with objfiles using READNOW.
gdb/testsuite/ChangeLog:
PR gdb/27541
* gdb.base/index-cache-load-twice.exp: Remove.
* gdb.base/index-cache-load-twice.c: Remove.
* gdb.dwarf2/per-bfd-sharing.exp: New.
* gdb.dwarf2/per-bfd-sharing.c: New.
Change-Id: I9ffcf1e136f3e75242f70e4e58e4ba1fd3083389
This avoids using a thread-local extern variable, which causes link errors
on some platforms, notably Cygwin. But I think this is a better pattern
even outside of working around linker bugs because it encapsulates direct
access to the variable inside the class, instead of having a global extern
variable.
The cygwin link error is:
cp-support.o: in function `gdb_demangle(char const*, int)':
/home/Christian/binutils-gdb/obj/gdb/../../gdb/cp-support.c:1619:(.text+0x6472): relocation truncated to fit: R_X86_64_PC32 against undefined symbol `TLS init function for thread_local_segv_handler'
/home/Christian/binutils-gdb/obj/gdb/../../gdb/cp-support.c:1619:(.text+0x648b): relocation truncated to fit: R_X86_64_PC32 against undefined symbol `TLS init function for thread_local_segv_handler'
collect2: error: ld returned 1 exit status
2021-03-12 Christian Biesinger <cbiesinger@google.com>
PR threads/27239
* cp-support.c: Use scoped_segv_handler_restore.
* event-top.c (thread_local_segv_handler): Made static.
(scoped_segv_handler_restore::scoped_segv_handler_restore):
New function.
(scoped_segv_handler_restore::~scoped_segv_handler_restore): New
function.
* event-top.h (class scoped_segv_handler_restore): New class.
(thread_local_segv_handler): Removed.
When running test-case gdb.fortran/function-calls.exp with target board
unix/gdb:debug_flags=-gdwarf-5, I run into:
...
(gdb) PASS: gdb.fortran/function-calls.exp: \
p derived_types_and_module_calls::pass_cart(c)
p derived_types_and_module_calls::pass_cart_nd(c_nd)^M
^M
Program received signal SIGSEGV, Segmentation fault.^M
0x0000000000400f73 in derived_types_and_module_calls::pass_cart_nd \
(c=<error reading variable: Cannot access memory at address 0xc>) at \
function-calls.f90:130^M
130 pass_cart_nd = ubound(c%d,1,4)^M
The program being debugged was signaled while in a function called from GDB.^M
GDB has restored the context to what it was before the call.^M
To change this behavior use "set unwindonsignal off".^M
Evaluation of the expression containing the function^M
(derived_types_and_module_calls::pass_cart_nd) will be abandoned.^M
(gdb) FAIL: gdb.fortran/function-calls.exp: p
...
The problem originates in read_array_type, when reading a DW_TAG_array_type
with a dwarf-5 DW_TAG_generic_subrange child. This is not supported, and the
fallout of this is that rather than constructing a new array type, the code
proceeds to modify the element type.
Fix this conservatively by issuing a complaint and bailing out in
read_array_type when not being able to construct an array type, such that we
have:
...
(gdb) maint expand-symtabs function-calls.f90^M
During symbol reading: unable to find array range \
- DIE at 0xe1e [in module function-calls]^M
During symbol reading: unable to find array range \
- DIE at 0xe1e [in module function-calls]^M
(gdb) KFAIL: gdb.fortran/function-calls.exp: no complaints in srcfile \
(PRMS: symtab/27388)
...
Tested on x86_64-linux.
gdb/ChangeLog:
2021-03-07 Tom de Vries <tdevries@suse.de>
PR symtab/27341
* dwarf2/read.c (read_array_type): Return NULL when not being able to
construct an array type. Add assert to ensure that element_type is
not being modified.
gdb/testsuite/ChangeLog:
2021-03-07 Tom de Vries <tdevries@suse.de>
PR symtab/27341
* lib/gdb.exp (with_complaints): New proc, factored out of ...
(gdb_load_no_complaints): ... here.
* gdb.fortran/function-calls.exp: Add test-case.
Due to a recent glibc header file change, the file
nat/aarch64-linux-hw-point.c no longer builds on Fedora rawhide.
An enum for PTRACE_SYSEMU is now provided by <sys/ptrace.h>. In the
past, PTRACE_SYSEMU was defined only in <asm/ptrace.h>. This is
what it looks like...
In <asm/ptrace.h>:
#define PTRACE_SYSEMU 31
In <sys/ptrace.h>:
enum __ptrace_request
{
...
PTRACE_SYSEMU = 31,
#define PT_SYSEMU PTRACE_SYSEMU
...
}
When <asm/ptrace.h> and <sys/ptrace.h> are both included in a source
file, we run into the following build problem when the former is
included before the latter:
In file included from nat/aarch64-linux-hw-point.c:26:
/usr/include/sys/ptrace.h:86:3: error: expected identifier before numeric constant
86 | PTRACE_SYSEMU = 31,
| ^~~~~~~~~~~~~
(There are more errors after this one too.)
The file builds without error when <asm/ptrace.h> is included after
<sys/ptrace.h>. I found that this is already done in
nat/aarch64-sve-linux-ptrace.h (which is included by
nat/aarch64-linux-ptrace.c).
I've tested this change on Fedora rawhide and Fedora 33, both
running on an aarch64 machine.
gdb/ChangeLog:
PR build/27536
* nat/aarch64-linux-hw-point.c: Include <asm/ptrace.h> after
<sys/ptrace.h>.
On Fedora rawhide, after updating to glibc-2.33, I'm seeing the
following build failure:
CXX nat/amd64-linux-siginfo.o
In file included from /usr/include/bits/sigstksz.h:24,
from /usr/include/signal.h:315,
from ../gnulib/import/signal.h:52,
from /ironwood1/sourceware-git/rawhide-gnulib/bld/../../worktree-gnulib/gdbserver/../gdb/nat/amd64-linux-siginfo.c:20:
../gnulib/import/unistd.h:663:3: error: #error "Please include config.h first."
663 | #error "Please include config.h first."
| ^~~~~
glibc-2.33 has changed signal.h to now include <bits/sigstksz.h> which,
in turn, includes <unistd.h>. For a gdb build, this causes the gnulib
version of unistd.h to be pulled in first. The build failure shown
above happens because gnulib's config.h has not been included before
the include of <signal.h>.
The fix is simple - we just rearrange the order of the header file
includes to make sure that gdbsupport/commondefs.h is included before
attempting to include signal.h. Note that gdbsupport/commondefs.h
includes <gnulib/config.h>.
Build and regression tested on Fedora 33. On Fedora rawhide, GDB
builds again.
gdb/ChangeLog:
PR build/27535
* nat/amd64-linux-siginfo.c: Include "gdbsupport/common-defs.h"
(which in turn includes <gnulib/config.h>) before include
of <signal.h>.
When running test-case gdb.cp/cpexprs-debug-types.exp with target board
unix/gdb:debug_flags=-gdwarf-5, I run into:
...
(gdb) file cpexprs-debug-types^M
Reading symbols from cpexprs-debug-types...^M
ERROR: Couldn't load cpexprs-debug-types into GDB (eof).
ERROR: Couldn't send delete breakpoints to GDB.
ERROR: GDB process no longer exists
GDB process exited with wait status 23054 exp9 0 0 CHILDKILLED SIGABRT SIGABRT
...
We're running into this abort in process_psymtab_comp_unit:
...
switch (reader.comp_unit_die->tag)
{
case DW_TAG_compile_unit:
this_cu->unit_type = DW_UT_compile;
break;
case DW_TAG_partial_unit:
this_cu->unit_type = DW_UT_partial;
break;
default:
abort ();
}
...
because reader.comp_unit_die->tag == DW_TAG_type_unit.
Fix this by adding a DW_TAG_type_unit case.
Tested on x86_64-linux.
gdb/ChangeLog:
2021-02-05 Tom de Vries <tdevries@suse.de>
PR symtab/27333
* dwarf2/read.c (process_psymtab_comp_unit): Handle DW_TAG_type_unit.
(cherry picked from commit e77b0004dd)
PR 27147 shows that on sparc64, GDB is unable to properly unwind:
Expected result (from GDB 9.2):
#0 0x0000000000108de4 in puts ()
#1 0x0000000000100950 in hello () at gdb-test.c:4
#2 0x0000000000100968 in main () at gdb-test.c:8
Actual result (from GDB latest git):
#0 0x0000000000108de4 in puts ()
#1 0x0000000000100950 in hello () at gdb-test.c:4
Backtrace stopped: previous frame inner to this frame (corrupt stack?)
The first failing commit is 5b6d1e4fa4 ("Multi-target support"). The cause
of the change in behavior is due to (thanks for Andrew Burgess for finding
this):
- inferior_ptid is no longer set on entry of target_ops::wait, whereas
it was set to something valid previously
- deep down in linux_nat_target::wait (see stack trace below), we fetch
the registers of the event thread
- on sparc64, fetching registers involves reading memory (in
sparc_supply_rwindow, see stack trace below)
- reading memory (target_ops::xfer_partial) relies on inferior_ptid
being set to the thread from which we want to read memory
This is where things go wrong:
#0 linux_nat_target::xfer_partial (this=0x10000fa2c40 <the_sparc64_linux_nat_target>, object=TARGET_OBJECT_MEMORY, annex=0x0, readbuf=0x7feffe3b000 "", writebuf=0x0, offset=8791798050744, len=8, xfered_len=0x7feffe3ae88) at /home/simark/src/binutils-gdb/gdb/linux-nat.c:3697
#1 0x00000100007f5b10 in raw_memory_xfer_partial (ops=0x10000fa2c40 <the_sparc64_linux_nat_target>, readbuf=0x7feffe3b000 "", writebuf=0x0, memaddr=8791798050744, len=8, xfered_len=0x7feffe3ae88) at /home/simark/src/binutils-gdb/gdb/target.c:912
#2 0x00000100007f60e8 in memory_xfer_partial_1 (ops=0x10000fa2c40 <the_sparc64_linux_nat_target>, object=TARGET_OBJECT_MEMORY, readbuf=0x7feffe3b000 "", writebuf=0x0, memaddr=8791798050744, len=8, xfered_len=0x7feffe3ae88) at /home/simark/src/binutils-gdb/gdb/target.c:1043
#3 0x00000100007f61b4 in memory_xfer_partial (ops=0x10000fa2c40 <the_sparc64_linux_nat_target>, object=TARGET_OBJECT_MEMORY, readbuf=0x7feffe3b000 "", writebuf=0x0, memaddr=8791798050744, len=8, xfered_len=0x7feffe3ae88) at /home/simark/src/binutils-gdb/gdb/target.c:1072
#4 0x00000100007f6538 in target_xfer_partial (ops=0x10000fa2c40 <the_sparc64_linux_nat_target>, object=TARGET_OBJECT_MEMORY, annex=0x0, readbuf=0x7feffe3b000 "", writebuf=0x0, offset=8791798050744, len=8, xfered_len=0x7feffe3ae88) at /home/simark/src/binutils-gdb/gdb/target.c:1129
#5 0x00000100007f7094 in target_read_partial (ops=0x10000fa2c40 <the_sparc64_linux_nat_target>, object=TARGET_OBJECT_MEMORY, annex=0x0, buf=0x7feffe3b000 "", offset=8791798050744, len=8, xfered_len=0x7feffe3ae88) at /home/simark/src/binutils-gdb/gdb/target.c:1375
#6 0x00000100007f721c in target_read (ops=0x10000fa2c40 <the_sparc64_linux_nat_target>, object=TARGET_OBJECT_MEMORY, annex=0x0, buf=0x7feffe3b000 "", offset=8791798050744, len=8) at /home/simark/src/binutils-gdb/gdb/target.c:1415
#7 0x00000100007f69d4 in target_read_memory (memaddr=8791798050744, myaddr=0x7feffe3b000 "", len=8) at /home/simark/src/binutils-gdb/gdb/target.c:1218
#8 0x0000010000758520 in sparc_supply_rwindow (regcache=0x10000fea4f0, sp=8791798050736, regnum=-1) at /home/simark/src/binutils-gdb/gdb/sparc-tdep.c:1960
#9 0x000001000076208c in sparc64_supply_gregset (gregmap=0x10000be3190 <sparc64_linux_ptrace_gregmap>, regcache=0x10000fea4f0, regnum=-1, gregs=0x7feffe3b230) at /home/simark/src/binutils-gdb/gdb/sparc64-tdep.c:1974
#10 0x0000010000751b64 in sparc_fetch_inferior_registers (regcache=0x10000fea4f0, regnum=80) at /home/simark/src/binutils-gdb/gdb/sparc-nat.c:170
#11 0x0000010000759d68 in sparc64_linux_nat_target::fetch_registers (this=0x10000fa2c40 <the_sparc64_linux_nat_target>, regcache=0x10000fea4f0, regnum=80) at /home/simark/src/binutils-gdb/gdb/sparc64-linux-nat.c:38
#12 0x00000100008146ec in target_fetch_registers (regcache=0x10000fea4f0, regno=80) at /home/simark/src/binutils-gdb/gdb/target.c:3287
#13 0x00000100006a8c5c in regcache::raw_update (this=0x10000fea4f0, regnum=80) at /home/simark/src/binutils-gdb/gdb/regcache.c:584
#14 0x00000100006a8d94 in readable_regcache::raw_read (this=0x10000fea4f0, regnum=80, buf=0x7feffe3b7c0 "") at /home/simark/src/binutils-gdb/gdb/regcache.c:598
#15 0x00000100006a93b8 in readable_regcache::cooked_read (this=0x10000fea4f0, regnum=80, buf=0x7feffe3b7c0 "") at /home/simark/src/binutils-gdb/gdb/regcache.c:690
#16 0x00000100006b288c in readable_regcache::cooked_read<unsigned long, void> (this=0x10000fea4f0, regnum=80, val=0x7feffe3b948) at /home/simark/src/binutils-gdb/gdb/regcache.c:777
#17 0x00000100006a9b44 in regcache_cooked_read_unsigned (regcache=0x10000fea4f0, regnum=80, val=0x7feffe3b948) at /home/simark/src/binutils-gdb/gdb/regcache.c:791
#18 0x00000100006abf3c in regcache_read_pc (regcache=0x10000fea4f0) at /home/simark/src/binutils-gdb/gdb/regcache.c:1295
#19 0x0000010000507920 in save_stop_reason (lp=0x10000fc5b10) at /home/simark/src/binutils-gdb/gdb/linux-nat.c:2612
#20 0x00000100005095a4 in linux_nat_filter_event (lwpid=520983, status=1407) at /home/simark/src/binutils-gdb/gdb/linux-nat.c:3050
#21 0x0000010000509f9c in linux_nat_wait_1 (ptid=..., ourstatus=0x7feffe3c8f0, target_options=...) at /home/simark/src/binutils-gdb/gdb/linux-nat.c:3194
#22 0x000001000050b1d0 in linux_nat_target::wait (this=0x10000fa2c40 <the_sparc64_linux_nat_target>, ptid=..., ourstatus=0x7feffe3c8f0, target_options=...) at /home/simark/src/binutils-gdb/gdb/linux-nat.c:3432
#23 0x00000100007f8ac0 in target_wait (ptid=..., status=0x7feffe3c8f0, options=...) at /home/simark/src/binutils-gdb/gdb/target.c:2000
#24 0x00000100004ac17c in do_target_wait_1 (inf=0x1000116d280, ptid=..., status=0x7feffe3c8f0, options=...) at /home/simark/src/binutils-gdb/gdb/infrun.c:3464
#25 0x00000100004ac3b8 in operator() (__closure=0x7feffe3c678, inf=0x1000116d280) at /home/simark/src/binutils-gdb/gdb/infrun.c:3527
#26 0x00000100004ac7cc in do_target_wait (wait_ptid=..., ecs=0x7feffe3c8c8, options=...) at /home/simark/src/binutils-gdb/gdb/infrun.c:3540
#27 0x00000100004ad8c4 in fetch_inferior_event () at /home/simark/src/binutils-gdb/gdb/infrun.c:3880
#28 0x0000010000485568 in inferior_event_handler (event_type=INF_REG_EVENT) at /home/simark/src/binutils-gdb/gdb/inf-loop.c:42
#29 0x000001000050d394 in handle_target_event (error=0, client_data=0x0) at /home/simark/src/binutils-gdb/gdb/linux-nat.c:4060
#30 0x0000010000ab5c8c in handle_file_event (file_ptr=0x10001207270, ready_mask=1) at /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:575
#31 0x0000010000ab6334 in gdb_wait_for_event (block=0) at /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:701
#32 0x0000010000ab487c in gdb_do_one_event () at /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:212
#33 0x0000010000542668 in start_event_loop () at /home/simark/src/binutils-gdb/gdb/main.c:348
#34 0x000001000054287c in captured_command_loop () at /home/simark/src/binutils-gdb/gdb/main.c:408
#35 0x0000010000544e84 in captured_main (data=0x7feffe3d188) at /home/simark/src/binutils-gdb/gdb/main.c:1242
#36 0x0000010000544f2c in gdb_main (args=0x7feffe3d188) at /home/simark/src/binutils-gdb/gdb/main.c:1257
#37 0x00000100000c1f14 in main (argc=4, argv=0x7feffe3d548) at /home/simark/src/binutils-gdb/gdb/gdb.c:32
There is a target_read_memory call in sparc_supply_rwindow, whose return
value is not checked. That call fails, because inferior_ptid does not
contain a valid ptid, and uninitialized buffer contents is used.
Ultimately it results in a corrupt stop_pc.
target_ops::fetch_registers can be (and should remain, in my opinion)
independent of inferior_ptid, because the ptid of the thread from which
to fetch registers can be obtained from the regcache. In other words,
implementations of target_ops::fetch_registers should not rely on
inferior_ptid having a sensible value on entry.
The sparc64_linux_nat_target::fetch_registers case is special, because it calls
a target method that is dependent on the inferior_ptid value
(target_read_inferior, and ultimately target_ops::xfer_partial). So I would
say it's the responsibility of sparc64_linux_nat_target::fetch_registers to set
up inferior_ptid correctly prior to calling target_read_inferior.
This patch makes sparc64_linux_nat_target::fetch_registers (and
store_registers, since it works the same) temporarily set inferior_ptid. If we
ever make target_ops::xfer_partial independent of inferior_ptid, setting
inferior_ptid won't be necessary, we'll simply pass down the ptid as a
parameter in some way.
I chose to set/restore inferior_ptid in sparc_fetch_inferior_registers, because
I am not convinced that doing so in an inner location (in sparc_supply_rwindow
for instance) would always be correct. We have access to the ptid in
sparc_supply_rwindow (from the regcache), so we _could_ set inferior_ptid
there. However, I don't want to just set inferior_ptid, as that would make it
not desync'ed with `current_thread ()` and `current_inferior ()`. It's
preferable to use switch_to_thread instead, as that switches all the global
"current" stuff in a coherent way. But doing so requires a `thread_info *`,
and getting a `thread_info *` from a ptid requires a `process_stratum_target
*`. We could use `current_inferior()->process_target()` in
sparc_supply_rwindow for this (using target_read_memory uses the current
inferior's target stack anyway). However, sparc_supply_rwindow is also used in
the context of BSD uthreads, where a thread stratum target defines threads. I
presume the ptid in the regcache would be the ptid of the uthread, defined by
the thread stratum target (bsd_uthread_target). Using
`current_inferior()->process_target()` would look up a ptid defined by the
thread stratum target using the process stratum target. I don't think it would
give good results. So I prefer playing it safe and looking up the thread
earlier, in sparc_fetch_inferior_registers.
I added some assertions (in sparc_supply_rwindow and others) to verify
that the regcache's ptid matches inferior_ptid. That verifies that the
caller has properly set the correct global context. This would have
caught (though a failed assertion) the current problem.
gdb/ChangeLog:
PR gdb/27147
* sparc-nat.h (sparc_fetch_inferior_registers): Add
process_stratum_target parameter,
sparc_store_inferior_registers): update callers.
* sparc-nat.c (sparc_fetch_inferior_registers,
sparc_store_inferior_registers): Add process_stratum_target
parameter. Switch current thread before calling
sparc_supply_gregset / sparc_collect_rwindow.
(sparc_store_inferior_registers): Likewise.
* sparc-obsd-tdep.c (sparc32obsd_supply_uthread): Add assertion.
(sparc32obsd_collect_uthread): Likewise.
* sparc-tdep.c (sparc_supply_rwindow, sparc_collect_rwindow):
Add assertion.
* sparc64-obsd-tdep.c (sparc64obsd_collect_uthread,
sparc64obsd_supply_uthread): Add assertion.
Change-Id: I16c658cd70896cea604516714f7e2428fbaf4301
As reported in PR 26861, when killing an inferior on macOS, we hit the
assert:
../../gdb-10.1/gdb/target.c:2149: internal-error: void target_mourn_inferior(ptid_t): Assertion `ptid == inferior_ptid' failed.
This is because darwin_nat_target::kill passes a pid-only ptid to
target_mourn_inferior, with the pid of the current inferior:
target_mourn_inferior (ptid_t (inf->pid));
... which doesn't satisfy the assert in target_mourn_inferior:
gdb_assert (ptid == inferior_ptid);
The reason for this assertion is that target_mourn_inferior is a
prototype shared between GDB and GDBserver, so that shared code in
gdb/nat (used in both GDB and GDBserver) can call target_mourn_inferior.
In GDB's implementation, it is likely that some targets still rely on
inferior_ptid being set to "the current thread we are working on". So
until targets are completely decoupled from inferior_ptid (at least
their mourn_inferior implementations), we need to ensure the passed in
ptid matches inferior_ptid, to ensure the calling code called
target_mourn_inferior with the right global context.
However, I think the assert is a bit too restrictive. The
mourn_inferior operation works on an inferior, not a specific thread.
And by the time we call mourn_inferior, the threads of the inferior
don't exist anymore, the process is gone, so it doesn't really make
sense to require inferior_ptid to point a specific thread.
I looked at all the target_ops::mourn_inferior implementations, those
that read inferior_ptid only care about the pid field, which supports
the idea that only the inferior matters. Other implementations look at
the current inferior (call `current_inferior ()`).
I think it would make sense to change target_mourn_inferior to accept
only a pid rather than a ptid. It would then assert that the pid is the
same as the current inferior's pid. However, this would be a quite
involved change, so I'll keep it for later.
To fix the macOS issue immediately, I propose to relax the assert to
only compare the pids, as is done in this patch.
Another solution would obviously be to make darwin_nat_target::kill pass
inferior_ptid to target_mourn_inferior. However, the solution I propose
is more in line with where I think we want to go (passing a pid to
target_mourn_inferior).
gdb/ChangeLog:
PR gdb/26861
* target.c (target_mourn_inferior): Only compare pids in
target_mourn_inferior.
Change-Id: If2439ccc5aa67272ea16148a43c5362ef23fb2b8
As described in the log of patch "gdb/dwarf: add assertion in
maybe_queue_comp_unit", it would happen that a call to
maybe_queue_comp_unit would enqueue a CU in the to-expand queue while
nothing up the stack was processing the queue. This is not desirable,
as items are then left lingering in the queue when we exit the
dwarf2/read code. This is an inconsistent state.
The normal case of using the queue is when we go through
dw2_do_instantiate_symtab and process_queue. As depended-on CUs are
found, they get added to the queue. process_queue expands CUs until the
queue is empty.
To catch these cases where things are enqueued while nothing up the
stack is processing the queue, change dwarf2_per_bfd::queue to be an
optional. The optional is instantiated in dwarf2_queue_guard, just
before where we call process_queue. In the dwarf2_queue_guard
destructor, the optional gets reset. Therefore, the queue object is
instantiated only when something up the stack is handling it. If
another entry point tries to enqueue a CU for expansion, an assertion
will fail and we know we have something to fix.
dwarf2_queue_guard sounds like the good place for this, as it's
currently responsible for making sure the queue gets cleared if we exit
due to an error.
This also allows asserting that when age_comp_units or remove_all_cus
run, the queue is not instantiated, and gives us one more level of
assurance that we won't free the DIEs of a CU that is in the
CUs-to-expand queue.
gdb/ChangeLog:
PR gdb/26828
* dwarf2/read.c (dwarf2_queue_guard) <dwarf2_queue_guard>:
Instantiate queue.
(~dwarf2_queue_guard): Clear queue.
(queue_comp_unit): Assert that queue is
instantiated.
(process_queue): Adjust.
* dwarf2/read.h (struct dwarf2_per_bfd) <queue>: Make optional.
Change-Id: I8fe3d77845bb4ad3d309eac906acebe79d9f0a9d
The previous commit log described how items could be left lingering in
the dwarf2_per_bfd::queue and how that could cause trouble.
This patch fixes the issue by changing maybe_queue_comp_unit so that it
doesn't put a CU in the to-expand queue if that CU is already expanded.
This will make it so that when dwarf2_fetch_die_type_sect_off calls
follow_die_offset and maybe_queue_comp_unit, it won't enqueue the target
CU, because it will see the CU is already expanded.
This assumes that if a CU is dwarf2_fetch_die_type_sect_off's target CU,
it will have previously been expanded. I think it is the case, but I
can't be 100% sure. If that's not true, the assertions added in the
following patch will catch it, and it means we'll have to re-think a bit
more how things work (it wouldn't be well handled at all today anyway).
This fixes something else in maybe_queue_comp_unit that looks wrong.
Imagine the DIEs of a CU are loaded in memory, but that CU is not
expanded. In that case, maybe_queue_comp_unit will use this early
return:
/* If the compilation unit is already loaded, just mark it as
used. */
dwarf2_cu *cu = per_objfile->get_cu (per_cu);
if (cu != nullptr)
{
cu->last_used = 0;
return 0;
}
... so the CU won't be queued for expansion. Whether the DIEs of a CU
are loaded in memory and whether that CU is expanded are two orthogonal
things, but that function appears to mix them. So, move the queuing
above that check / early return, so that if the CU's DIEs are loaded in
memory but the CU is not expanded yet, it gets enqueued.
I tried to improve maybe_queue_comp_unit's documentation to clarify what
the return value means. By clarifying this, I noticed that two callers
(follow_die_offset and follow_die_sig_1) access the CU's DIEs after
calling maybe_queue_comp_unit, only relying on maybe_queue_comp_unit's
return value to tell whether DIEs need to be loaded first or not. As
explained in the new comment, this is problematic:
maybe_queue_comp_unit's return value doesn't tell whether DIEs are
currently loaded, it means whether maybe_queue_comp_unit requires the
caller to load them. If the CU is already expanded but the DIEs to have
been freed, maybe_queue_comp_unit returns 0, meaning "I don't need you
to load the DIEs". So if these two functions (follow_die_offset and
follow_die_sig_1) need to access the DIEs in any case, for their own
usage, they should make sure to load them if they are not loaded
already. I therefore added an extra check to the condition they use,
making it so they will always load the DIEs if they aren't already.
From what I found, other callers don't care for the CU's DIEs, they call
maybe_queue_comp_unit to ensure the CU gets expanded eventually, but
don't care for it after that.
gdb/ChangeLog:
PR gdb/26828
* dwarf2/read.c (maybe_queue_comp_unit): Check if CU is expanded
to decide whether or not to enqueue it for expansion.
(follow_die_offset, follow_die_sig_1): Ensure we load the DIEs
after calling maybe_queue_comp_unit.
Change-Id: Id98c6b60669f4b4b21b9be16d0518fc62bdf686a
Since this is a GDB 9 -> 10 regression, I would like to push it to
gdb-10-branch.
This is a follow-up to:
https://sourceware.org/pipermail/gdb-patches/2021-February/176202.html
This patch fixes a segfault seen when attaching to a process on Solaris.
The steps leading to the segfault are:
- procfs_target::attach calls do_attach, at this point the inferior's
process slot in the target stack is empty.
- do_attach adds a thread with `add_thread (&the_procfs_target, ptid)`
- in add_thread_silent, the passed target (&the_procfs_target) is
passed to find_inferior_ptid
- find_inferior_ptid returns nullptr, as there is no inferior with this
ptid that has &the_procfs_target as its process target
- the nullptr `inf` is passed to find_thread_ptid, which dereferences
it, causing a segfault
- back in procfs_target::attach, after do_attach, we push the
the_procfs_target on the inferior's target stack, although we never
reach this because the segfault happens before.
To fix this, I think we need to do the same as is done in
inf_ptrace_target::attach: push the target early and unpush it in case
the attach fails (and keep it if the attach succeeds).
Implement it by moving target_unpush_up to target.h, so it can be
re-used here. Make procfs_target::attach use it. Note that just like
is mentioned in inf_ptrace_target::attach, we should push the target
before calling target_pid_to_str, so that calling target_pid_to_str ends
up in procfs_target::pid_to_str.
Tested by trying to attach on a process on gcc211 on the gcc compile
farm.
gdb/ChangeLog:
PR gdb/27435
* inf-ptrace.c (struct target_unpusher): Move to target.h.
(target_unpush_up): Likewise.
* procfs.c (procfs_target::attach): Push target early. Use
target_unpush_up to unpush target in case of error.
* target.h (struct target_unpusher): Move here.
(target_unpush_up): Likewise.
Change-Id: I88aff8b20204e1ca1d792e27ac6bc34fc1aa0d52
Building an arc target:
$ configulre --target=arc-elf32 \
--enable-targets=arc-linux-uclibc \
...
On a system with gcc-4.8 (CentOS 7.x), fails with:
--------8<---------
../../gdb/arch/arc.c:117:43: required from here
/usr/include/c++/4.8.2/bits/hashtable_policy.h:195:39: error: no matching
function for call to 'std::pair<const arc_arch_features, const
std::unique_ptr<target_desc, target_desc_deleter> >::pair(const
arc_arch_features&, target_desc*&)'
: _M_v(std::forward<_Args>(__args)...) { }
^
/usr/include/c++/4.8.2/bits/hashtable_policy.h:195:39: note: candidates are:
In file included from /usr/include/c++/4.8.2/utility:70:0,
from /usr/include/c++/4.8.2/tuple:38,
from /usr/include/c++/4.8.2/functional:55,
from ../../gdb/../gdbsupport/ptid.h:35,
from ../../gdb/../gdbsupport/common-defs.h:123,
from ../../gdb/arch/arc.c:19:
/usr/include/c++/4.8.2/bits/stl_pair.h:206:9: note: template<class ...
_Args1, long unsigned int ..._Indexes1, class ... _Args2, long unsigned int
..._Indexes2> std::pair<_T1, _T2>::pair(std::tuple<_Args1 ...>&,
std::tuple<_Args2 ...>&, std::_Index_tuple<_Indexes1 ...>,
std::_Index_tuple<_Indexes2 ...>)
pair(tuple<_Args1...>&, tuple<_Args2...>&,
^
-------->8---------
The corresponding line in arc.c must use an explicit ctor:
--------8<---------
arc_lookup_target_description (...)
{
/* Add the newly created target description to the repertoire. */
- arc_tdesc_cache.emplace (features, tdesc);
+ arc_tdesc_cache.emplace (features, target_desc_up (tdesc));
return tdesc;
}
-------->8---------
See "PR gcc/96537" for more details.
Last but not least, this problem has originally been investigated
by Tom de Vries for RISCV targets (see 38f8aa06d9).
gdb/ChangeLog:
PR build/27385
* arch/arc.c (arc_lookup_target_description): Use
target_desc_up() ctor explicitly.
When stepping over thread-lock related codes (in uClibc), the inferior process
gets stuck and never manages to enter the critical section:
------8<-------
1 size_t fwrite(const void * __restrict ptr, size_t size,
2 size_t nmemb, register FILE * __restrict stream)
3 {
4 size_t retval;
5 __STDIO_AUTO_THREADLOCK_VAR;
6
7 > __STDIO_AUTO_THREADLOCK(stream);
8
9 retval = fwrite_unlocked(ptr, size, nmemb, stream);
10
11 __STDIO_AUTO_THREADUNLOCK(stream);
12
13 return retval;
14 }
------>8-------
Here, we are at line 7. Using the "next" command leads no where.
However, setting a breakpoint on line 9 and issuing "continue" works.
Looking at the assembly instructions reveals that we're dealing with the
critical section entry code [1] that should never be interrupted, in this
case by the debugger's implicit breakpoints:
------8<-------
...
1 add_s r0,r13,0x38
2 mov_s r3,1
3 llock r2,[r0] <-.
4 brne.nt r2,0,14 --. |
5 scond r3,[r0] | |
6 bne -10 --|--'
7 brne_s r2,0,84 <-'
...
------>8-------
Lines 3 until 5 (inclusive) are supposed to be executed atomically.
Therefore, GDB should never (implicitly) insert a breakpoint on lines
4 and 5, else the program will try to acquire the lock again by jumping
back to line 3 and gets stuck in an infinite loop.
The solution is to make GDB aware of these patterns so it inserts
breakpoints after the sequence -- line 6 in this example.
[1]
https://cgit.uclibc-ng.org/cgi/cgit/uclibc-ng.git/tree/libc/sysdeps/linux/arc/bits/atomic.h#n46
------8<-------
({ \
__typeof(oldval) prev; \
\
__asm__ __volatile__( \
"1: llock %0, [%1] \n" \
" brne %0, %2, 2f \n" \
" scond %3, [%1] \n" \
" bnz 1b \n" \
"2: \n" \
: "=&r"(prev) \
: "r"(mem), "ir"(oldval), \
"r"(newval) /* can't be "ir". scond can't take limm for "b" */\
: "cc", "memory"); \
\
prev; \
})
------>8-------
"llock" (Load Locked) loads the 32-bit word pointed by the source
operand. If the load is completed without any interruption or
exception, the physical address is remembered, in Lock Physical Address
(LPA), and the Lock Flag (LF) is set to 1. LF is a non-architecturally
visible flag and is cleared whenever an interrupt or exception takes
place. LF is also cleared (atomically) whenever another process writes
to the LPA.
"scond" (Store Conditional) will write to the destination address if
and only if the LF is set to 1. When finished, with or without a write,
it atomically copies the LF value to ZF (Zero Flag).
These two instructions together provide the mechanism for entering a
critical section. The code snippet above comes from uClibc:
-----------------------
v3 (after Tom's remarks[2]):
handle_atomic_sequence()
- no need to initialize the std::vector with "{}"
- fix typo in comments: "conditial" -> "conditional"
- add braces to the body of "if" condition because of the comment line
arc_linux_software_single_step()
- make the performance slightly more efficient by moving a few
variables after the likely "return" point.
v2 (after Simon's remarks[3]):
- handle_atomic_sequence() gets a copy of an instruction instead of
a reference.
- handle_atomic_sequence() asserts if the given instruction is an llock.
[2]
https://sourceware.org/pipermail/gdb-patches/2021-February/175805.html
[3]
https://sourceware.org/pipermail/gdb-patches/2021-January/175487.html
gdb/ChangeLog:
PR tdep/27369
* arc-linux-tdep.c (handle_atomic_sequence): New.
(arc_linux_software_single_step): Call handle_atomic_sequence().
The test-case nextoverthrow.exp is failing on targets with unstripped libc.
This is a regression since commit 1940319c0e "[gdb] Fix internal-error in
process_event_stop_test".
The problem is that this code in create_exception_master_breakpoint:
...
for (objfile *sepdebug = obj->separate_debug_objfile;
sepdebug != nullptr; sepdebug = sepdebug->separate_debug_objfile)
if (create_exception_master_breakpoint_hook (sepdebug))
...
iterates over all the separate debug object files, but fails to handle the
case that obj itself has the debug info we're looking for.
Fix this by using the separate_debug_objfiles () range instead, which does
iterate both over obj and the obj->separate_debug_objfile chain.
Tested on x86_64-linux.
gdb/ChangeLog:
2021-02-05 Tom de Vries <tdevries@suse.de>
PR breakpoints/27330
* breakpoint.c (create_exception_master_breakpoint): Handle case that
glibc object file has debug info.
It is possible for the tables in the .debug_{rng,loc}lists sections to
not have an array of offsets. In that case, the offset_entry_count
field of the header is 0. The forms DW_FORM_{rng,loc}listx (reference
by index) can't be used with that table. Instead, the
DW_FORM_sec_offset form, which references a {rng,loc}list by direct
offset in the section, must be used. From what I saw, this is what GCC
currently produces.
Add tests for this case. I didn't see any bug related to this, I just
think that it would be nice to have coverage for this. A new
`-with-offset-array` option is added to the `table` procs, used when
generating {rng,loc}lists, to decide whether to generate the offset
array.
gdb/testsuite/ChangeLog:
* lib/dwarf.exp (rnglists): Add -no-offset-array option to
table proc.
* gdb.dwarf2/rnglists-sec-offset.exp: Add test for
.debug_rnglists table without offset array.
* gdb.dwarf2/loclists-sec-offset.exp: Add test for
.debug_loclists table without offset array.
Change-Id: I8e34a7bf68c9682215ffbbf66600da5b7db91ef7
Add tests for the various issues fixed in the previous patches.
Add a new "loclists" procedure to the DWARF assembler, to allow
generating .debug_loclists sections.
gdb/testsuite/ChangeLog:
PR gdb/26813
* lib/dwarf.exp (_handle_DW_FORM): Handle DW_FORM_loclistx.
(loclists): New proc.
* gdb.dwarf2/loclists-multiple-cus.c: New.
* gdb.dwarf2/loclists-multiple-cus.exp: New.
* gdb.dwarf2/loclists-sec-offset.c: New.
* gdb.dwarf2/loclists-sec-offset.exp: New.
Change-Id: I209bcb2a9482762ae943e518998d1f7761f76928
The _location proc is used to assemble a location description. It needs
to know some contextual information:
- size of an address
- size of an offset (into another DWARF section)
- DWARF version
It currently get all this directly from global variables holding the
compilation unit information. This is fine because as of now, all
location descriptions are generated in the context of creating a
compilation unit. However, a subsequent patch will generate location
descriptions while generating a .debug_loclists section. _location
should therefore no longer rely on the current compilation unit's
properties.
Change it to accept these values as parameters instead of accessing the
values for the CU.
No functional changes intended.
gdb/testsuite/ChangeLog:
* lib/dwarf.exp (_location): Add parameters.
(_handle_DW_FORM): Adjust.
Change-Id: Ib94981979c83ffbebac838081d645ad71c221637
Add tests for the various issues fixed in the previous patches.
Add a new "rnglists" procedure to the DWARF assembler, to allow
generating .debug_rnglists sections. A trivial change is required to
support the DWARF 5 CU header layout.
gdb/testsuite/ChangeLog:
PR gdb/26813
* lib/dwarf.exp (_handle_DW_FORM): Handle DW_FORM_rnglistx.
(cu): Generate header for DWARF 5.
(rnglists): New proc.
* gdb.dwarf2/rnglists-multiple-cus.exp: New.
* gdb.dwarf2/rnglists-sec-offset.exp: New.
Change-Id: I5b297e59c370c60cf671dec19796a6c3b9a9f632
When loading the binary from PR 26813 in GDB, we get:
DW_FORM_rnglistx index pointing outside of .debug_rnglists offset array [in module /home/simark/build/binutils-gdb/gdb/MagicPurse]
... and the symbols fail to load.
In read_rnglist_index and read_loclist_index, we read the header
(documented in sections 7.28 and 7.29 of DWARF 5) of the CU's
contribution to the .debug_rnglists / .debug_loclists sections to
validate that the index we want to read makes sense. However, we always
read the header at the beginning of the section, rather than the header
for the contribution from which we want to read the index.
To illustrate, here's what the binary from PR 26813 contains. There are
two compile units:
0x0000000c: DW_TAG_compile_unit 1
DW_AT_ranges [DW_FORM_rnglistx]: 0x0
DW_AT_rnglists_base [DW_FORM_sec_offset]: 0xC
0x00003ec9: DW_TAG_compile_unit 2
DW_AT_ranges [DW_FORM_rnglistx]: 0xB
DW_AT_rnglists_base [DW_FORM_sec_offset]: 0x85
The layout of the .debug_rnglists is the following:
[0x00, 0x0B]: header for CU 1's contribution
[0x0C, 0x0F]: list of offsets for CU 1 (1 element)
[0x10, 0x78]: range lists data for CU 1
[0x79, 0x84]: header for CU 2's contribution
[0x85, 0xB4]: list of offsets for CU 2 (12 elements)
[0xB5, 0xBD7]: range lists data for CU 2
The DW_AT_rnglists_base attrbute points to the beginning of the list of
offsets for that CU, relative to the start of the .debug_rnglists
section. That's right after the header for that contribution.
When we try to read the DW_AT_ranges attribute for CU 2,
read_rnglist_index reads the header for CU 1 instead of the one for CU
2. Since there's only one element in CU 1's offset list, it believes
(wrongfully) that the index 0xB is out of range.
Fix it by reading the header just before where DW_AT_rnglists_base
points to. With this patch, I am able to load GDB built with clang-11
and -gdwarf-5 in itself, with and without -readnow.
gdb/ChangeLog:
PR gdb/26813
* dwarf2/read.c (read_loclists_rnglists_header): Add
header_offset parameter and use it.
(read_loclist_index): Read header of the current contribution,
not the one at the beginning of the section.
(read_rnglist_index): Likewise.
Change-Id: Ie53ff8251af8c1556f0a83a31aa8572044b79e3d
read_rnglist_index has a bound check to make sure that we don't go past
the end of the section while reading the offset, but read_loclist_index
doesn't. Add it to read_loclist_index.
gdb/ChangeLog:
* dwarf2/read.c (read_loclist_index): Add bound check for the end
of the offset.
Change-Id: Ic4b55c88860fdc3e007740949c78ec84cdb4da60
I think this check in read_rnglist_index is wrong:
/* Validate that reading won't go beyond the end of the section. */
if (start_offset + cu->header.offset_size > rnglist_base + section->size)
error (_("Reading DW_FORM_rnglistx index beyond end of"
".debug_rnglists section [in module %s]"),
objfile_name (objfile));
The addition `rnglist_base + section->size` doesn't make sense.
rnglist_base is an offset into `section`, so it doesn't make sense to
add it to `section`'s size. `start_offset` also is an offset into
`section`, so we should just compare it to just `section->size`.
gdb/ChangeLog:
* dwarf2/read.c (read_rnglist_index): Fix bound check.
Change-Id: If0ff7c73f4f80f79aac447518f4e8f131f2db8f2
Unlike read_rnglists_index, read_loclist_index uses complaints when it
detects an inconsistency (a DW_FORM_loclistx value without a
.debug_loclists section or an offset outside of the section). I really
think they should be errors, since there's no point in continuing if
this situation happens, we will likely segfault or read garbage.
gdb/ChangeLog:
* dwarf2/read.c (read_loclist_index): Change complaints into
errors.
Change-Id: Ic3a1cf6e682d47cb6e739dd76fd7ca5be2637e10
The function create_exception_master_breakpoint in gdb/breakpoint.c attempts
to set a master exception breakpoint in each objfile. It tries this using
a libgcc/unwind probe, and if that fails then using the
_Unwind_DebugHook symbol:
...
for (objfile *objfile : current_program_space->objfiles ())
{
/* Try using probes. */
if (/* successful */)
continue;
/* Try using _Unwind_DebugHook */
}
...
The preference scheme works ok both if the objfile has debug info, and if it's
stripped.
But it doesn't work when the objfile has a .gnu_debuglink to a .debug file
(and the .debug file is present). What happens is that:
- we first encounter objfile libgcc.debug
- we try using probes, and this fails
- so we try _Unwind_DebugHook, which succeeds
- next we encounter objfile libgcc
- we try using probes, and this succeeds.
So, we end up with a master exception breakpoint in both libgcc (using probes)
and libgcc.debug (using _Unwind_DebugHook).
This eventually causes:
...
(gdb) PASS: gdb.cp/nextoverthrow.exp: post-check - next over a throw 3
next^M
src/gdb/infrun.c:6384: internal-error: \
void process_event_stop_test(execution_control_state*): \
Assertion `ecs->event_thread->control.exception_resume_breakpoint != NULL' \
failed.^M
A problem internal to GDB has been detected,^M
further debugging may prove unreliable.^M
Quit this debugging session? (y or n) FAIL: gdb.cp/nextoverthrow.exp: next
past catch (GDB internal error)
...
To trigger this internal-error, we need to use gcc-10 or later to compile the
test-case, such that it contains the fix for gcc PR97774 - "Incorrect line
info for try/catch".
Fix this by only trying to install the master exception breakpoint in
libgcc.debug using the _Unwind_DebugHook method, if the install using probes
in libgcc failed.
Tested on x86_64-linux.
gdb/ChangeLog:
2021-01-08 Tom de Vries <tdevries@suse.de>
PR gdb/26881
* breakpoint.c (create_exception_master_breakpoint_probe)
(create_exception_master_breakpoint_hook): Factor out
of ...
(create_exception_master_breakpoint): ... here. Only try to install
the master exception breakpoint in objfile.debug using the
_Unwind_DebugHook method, if the install using probes in objfile
failed.
On rare occasions, we run into this ERROR/UNRESOLVED on gdb-10-branch:
...
(gdb) PASS: gdb.multi/multi-target.exp: continue: non-stop=on: inferior 2
Remote debugging from host ::1, port 34088^M
Process outputs/gdb.multi/multi-target/multi-target created; pid = 8649^M
monitor exit^M
(gdb) Killing process(es): 8649^M
ERROR: GDB process no longer exists
GDB process exited with wait status 8627 exp14 0 0 CHILDKILLED SIGABRT SIGABRT
UNRESOLVED: gdb.multi/multi-target.exp: continue: non-stop=on: inferior 5
...
A trigger patch makes the crash happen all the time:
...
diff --git a/gdb/remote.c b/gdb/remote.c
index 71f814efb365..53ff8b63a1dc 100644
--- a/gdb/remote.c
+++ b/gdb/remote.c
@@ -14161,14 +14161,12 @@ remote_target::is_async_p ()
will be able to delay notifying the client of an event until the
point where an entire packet has been received. */
-static serial_event_ftype remote_async_serial_handler;
-
static void
remote_async_serial_handler (struct serial *scb, void *context)
{
- /* Don't propogate error information up to the client. Instead let
- the client find out about the error by querying the target. */
- inferior_event_handler (INF_REG_EVENT);
+ remote_state *rs = (remote_state *) context;
+
+ mark_async_event_handler (rs->remote_async_inferior_event_token);
}
static void
...
And using -fsanitizer=address we can get a more elaborate error message:
...
==7196==ERROR: AddressSanitizer: heap-use-after-free on address \
0x6170000bf258 at pc 0x000001481755 bp 0x7fff05b20840 sp 0x7fff05b20838
READ of size 8 at 0x6170000bf258 thread T0
#0 0x1481754 in std::_Hashtable<gdbarch*, std::pair<gdbarch* const,
remote_arch_state>, std::allocator<std::pair<gdbarch* const,
remote_arch_state> >, std::__detail::_Select1st, std::equal_to<gdbarch*>,
std::hash<gdbarch*>, std::__detail::_Mod_range_hashing,
std::__detail::_Default_ranged_hash, std::__detail::_Prime_rehash_policy,
std::__detail::_Hashtable_traits<false, false, true>
>::_M_bucket_index(unsigned long) const
/usr/include/c++/11/bits/hashtable.h:719
#1 0x147c8ab in std::_Hashtable<gdbarch*, std::pair<gdbarch* const,
remote_arch_state>, std::allocator<std::pair<gdbarch* const,
remote_arch_state> >, std::__detail::_Select1st, std::equal_to<gdbarch*>,
std::hash<gdbarch*>, std::__detail::_Mod_range_hashing,
std::__detail::_Default_ranged_hash, std::__detail::_Prime_rehash_policy,
std::__detail::_Hashtable_traits<false, false, true> >::find(gdbarch*
const&) /usr/include/c++/11/bits/hashtable.h:1500
#2 0x147852c in std::unordered_map<gdbarch*, remote_arch_state,
std::hash<gdbarch*>, std::equal_to<gdbarch*>,
std::allocator<std::pair<gdbarch* const, remote_arch_state> >
>::find(gdbarch* const&) /usr/include/c++/11/bits/unordered_map.h:869
#3 0x14306db in remote_state::get_remote_arch_state(gdbarch*)
src/gdb/remote.c:1203
#4 0x14309dc in remote_target::get_remote_state() src/gdb/remote.c:1232
#5 0x1470c08 in remote_async_inferior_event_handler src/gdb/remote.c:14169
#6 0xaa9f6b in check_async_event_handlers() src/gdb/async-event.c:295
#7 0x1e93ab4 in gdb_do_one_event() src/gdbsupport/event-loop.cc:194
#8 0x118f5f9 in start_event_loop src/gdb/main.c:356
#9 0x118f8ed in captured_command_loop src/gdb/main.c:416
#10 0x1192d6a in captured_main src/gdb/main.c:1253
#11 0x1192dfa in gdb_main(captured_main_args*) src/gdb/main.c:1268
#12 0x97b380 in main src/gdb/gdb.c:32
#13 0x7f550c211349 in __libc_start_main ../csu/libc-start.c:308
#14 0x97b199 in _start (build/gdb/gdb+0x97b199)
0x6170000bf258 is located 600 bytes inside of 648-byte region \
[0x6170000bf000,0x6170000bf288)
freed by thread T0 here:
#0 0x7f550f516a57 in operator delete(void*, unsigned long)
(/usr/lib64/libasan.so.6+0xaea57)
#1 0x148b1fe in extended_remote_target::~extended_remote_target()
src/gdb/remote.c:958
#2 0x143b483 in remote_target::close() src/gdb/remote.c:4074
#3 0x16cb90f in target_close(target_ops*) src/gdb/target.c:3230
#4 0x16a2635 in decref_target(target_ops*) src/gdb/target.c:557
#5 0x16a2abb in target_stack::unpush(target_ops*) src/gdb/target.c:645
#6 0x16d01ef in inferior::unpush_target(target_ops*)
src/gdb/inferior.h:356
#7 0x16a2877 in unpush_target(target_ops*) src/gdb/target.c:607
#8 0x16a2adf in unpush_target_and_assert src/gdb/target.c:655
#9 0x16a2c57 in pop_all_targets_at_and_above(strata) src/gdb/target.c:678
#10 0x1442749 in remote_unpush_target src/gdb/remote.c:5522
#11 0x1458c16 in remote_target::readchar(int) src/gdb/remote.c:9137
#12 0x145b25b in remote_target::getpkt_or_notif_sane_1(std::vector<char,
gdb::default_init_allocator<char, std::allocator<char> > >*, int, int,
int*) src/gdb/remote.c:9683
#13 0x145bc9a in remote_target::getpkt_sane(std::vector<char,
gdb::default_init_allocator<char, std::allocator<char> > >*, int)
src/gdb/remote.c:9790
#14 0x145b040 in remote_target::getpkt(std::vector<char,
gdb::default_init_allocator<char, std::allocator<char> > >*, int)
src/gdb/remote.c:9623
#15 0x145780b in remote_target::remote_read_bytes_1(unsigned long,
unsigned char*, unsigned long, int, unsigned long*) src/gdb/remote.c:8860
#16 0x145805e in remote_target::remote_read_bytes(unsigned long,
unsigned char*, unsigned long, int, unsigned long*) src/gdb/remote.c:8987
#17 0x146113a in remote_target::xfer_partial(target_object, char const*,
unsigned char*, unsigned char const*, unsigned long, unsigned long,
unsigned long*) src/gdb/remote.c:10987
#18 0x16a4004 in raw_memory_xfer_partial(target_ops*, unsigned char*,
unsigned char const*, unsigned long, long, unsigned long*)
src/gdb/target.c:918
#19 0x16a4fcf in target_xfer_partial(target_ops*, target_object, char
const*, unsigned char*, unsigned char const*, unsigned long, unsigned
long, unsigned long*) src/gdb/target.c:1156
#20 0x16a5d65 in target_read_partial src/gdb/target.c:1387
#21 0x16a5f19 in target_read(target_ops*, target_object, char const*,
unsigned char*, unsigned long, long) src/gdb/target.c:1427
#22 0x16a5666 in target_read_raw_memory(unsigned long, unsigned char*,
long) src/gdb/target.c:1260
#23 0xd22f2a in dcache_read_line src/gdb/dcache.c:336
#24 0xd232b7 in dcache_peek_byte src/gdb/dcache.c:403
#25 0xd23845 in dcache_read_memory_partial(target_ops*, dcache_struct*,
unsigned long, unsigned char*, unsigned long, unsigned long*) src/gdb/dcache.c:484
#26 0x16a47da in memory_xfer_partial_1 src/gdb/target.c:1041
#27 0x16a4a1e in memory_xfer_partial src/gdb/target.c:1084
#28 0x16a4f44 in target_xfer_partial(target_ops*, target_object,
char const*, unsigned char*, unsigned char const*, unsigned long,
unsigned long, unsigned long*) src/gdb/target.c:1141
#29 0x18203d4 in read_value_memory(value*, long, int, unsigned long,
unsigned char*, unsigned long) src/gdb/valops.c:956
previously allocated by thread T0 here:
#0 0x7f550f515c37 in operator new(unsigned long)
(/usr/lib64/libasan.so.6+0xadc37)
#1 0x14429f0 in remote_target::open_1(char const*, int, int)
src/gdb/remote.c:5562
#2 0x14405e6 in extended_remote_target::open(char const*, int)
src/gdb/remote.c:4907
#3 0x16a0f3c in open_target src/gdb/target.c:242
#4 0xc19ff5 in do_sfunc src/gdb/cli/cli-decode.c:111
#5 0xc221db in cmd_func(cmd_list_element*, char const*, int)
src/gdb/cli/cli-decode.c:2181
#6 0x16feda6 in execute_command(char const*, int) src/gdb/top.c:668
#7 0xee9dc9 in command_handler(char const*) src/gdb/event-top.c:588
#8 0xeea6a8 in command_line_handler(std::unique_ptr<char,
gdb::xfree_deleter<char> >&&) src/gdb/event-top.c:773
#9 0xee8a12 in gdb_rl_callback_handler src/gdb/event-top.c:219
#10 0x7f550f24aead in rl_callback_read_char
(/lib64/libreadline.so.7+0x31ead)
...
The problem is here in remote_async_inferior_event_handler:
...
static void
remote_async_inferior_event_handler (gdb_client_data data)
{
inferior_event_handler (INF_REG_EVENT);
remote_target *remote = (remote_target *) data;
remote_state *rs = remote->get_remote_state ();
...
The remote target (passed in the data argument) can be destroyed during the
call to inferior_event_handler. If so, the call to remote->get_remote_state
() is done using a dangling pointer.
Fix this by increasing the reference count on the remote target before calling
inferior_event_handler, such that it won't get destroyed until right before
returning from remote_async_inferior_event_handler.
Tested on x86_64-linux.
Intended for gdb-10-branch.
The problem has stopped reproducing with the trigger patch since master commit
79952e6963 "Make scoped_restore_current_thread's cdtors exception free
(RFC)". We could still apply this to master though.
gdb/ChangeLog:
2021-01-07 Pedro Alves <pedro@palves.net>
Simon Marchi <simon.marchi@polymtl.ca>
Tom de Vries <tdevries@suse.de>
PR remote/26614
* remote.c (remote_async_inferior_event_handler): Hold a strong
reference to the remote target while handling an event.
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
This commit adjusts GDB's copyright.py script, following two past changes:
- gdb/gdbserver/ being move to the toplevel directory;
- gdb/common/ being renamed to gdbsupport/.
gdb/ChangeLog:
* copyright.py (get_update_list): Add "gdbserver" and "gdbsupport"
to the list of directories to update.
(cherry picked from commit ff7e39b613)
gdb/doc/ChangeLog:
2020-12-26 Jeanne Rasata <jeanne@fsf.org>
* gdb.texinfo: Fix capitalization in many sections following CMS
style-guide rules, remove period at end of a few headings.
Copyright-paperwork-exempt: yes
I forgot to include fixes for review comments I got before pushing the
previous commits (or I pushed the wrong commits). This one fixes it.
- Return {} instead of false in get_discrete_low_bound and
get_discrete_high_bound.
- Compute high bound after confirming low bound is valid in
get_discrete_bounds.
gdb/ChangeLog:
* gdbtypes.c (get_discrete_low_bound, get_discrete_high_bound):
Return {} instead of false.
(get_discrete_bounds): Compute high bound only if low bound is
valid.
Change-Id: I5f9a66b3672adfac9441068c899ab113ab2c331a
Since commit 7c6f271296 ("gdb: make get_discrete_bounds check for
non-constant range bounds"), subscripting flexible array member fails:
struct no_size
{
int n;
int items[];
};
(gdb) p *ns
$1 = {n = 3, items = 0x5555555592a4}
(gdb) p ns->items[0]
Cannot access memory at address 0xfffe555b733a0164
(gdb) p *((int *) 0x5555555592a4)
$2 = 101 <--- we would expect that
(gdb) p &ns->items[0]
$3 = (int *) 0xfffe5559ee829a24 <--- wrong address
Since the flexible array member (items) has an unspecified size, the array type
created for it in the DWARF doesn't have dimensions (this is with gcc 9.3.0,
Ubuntu 20.04):
0x000000a4: DW_TAG_array_type
DW_AT_type [DW_FORM_ref4] (0x00000038 "int")
DW_AT_sibling [DW_FORM_ref4] (0x000000b3)
0x000000ad: DW_TAG_subrange_type
DW_AT_type [DW_FORM_ref4] (0x00000031 "long unsigned int")
This causes GDB to create a range type (TYPE_CODE_RANGE) with a defined
constant low bound (dynamic_prop with kind PROP_CONST) and an undefined
high bound (dynamic_prop with kind PROP_UNDEFINED).
value_subscript gets both bounds of that range using
get_discrete_bounds. Before commit 7c6f271296, get_discrete_bounds
didn't check the kind of the dynamic_props and would just blindly read
them as if they were PROP_CONST. It would return 0 for the high bound,
because we zero-initialize the range_bounds structure. And it didn't
really matter in this case, because the returned high bound wasn't used
in the end.
Commit 7c6f271296 changed get_discrete_bounds to return a failure if
either the low or high bound is not a constant, to make sure we don't
read a dynamic prop that isn't a PROP_CONST as a PROP_CONST. This
change made get_discrete_bounds start to return a failure for that
range, and as a result would not set *lowp and *highp. And since
value_subscript doesn't check get_discrete_bounds' return value, it just
carries on an uses an uninitialized value for the low bound. If
value_subscript did check the return value of get_discrete_bounds, we
would get an error message instead of a bogus value. But it would still
be a bug, as we wouldn't be able to print the flexible array member's
elements.
Looking at value_subscript, we see that the low bound is always needed,
but the high bound is only needed if !c_style. So, change
value_subscript to use get_discrete_low_bound and
get_discrete_high_bound separately. This fixes the case described
above, where the low bound is known but the high bound isn't (and is not
needed). This restores the original behavior without accessing a
dynamic_prop in a wrong way.
A test is added. In addition to the case described above, a case with
an array member of size 0 is added, which is a GNU C extension that
existed before flexible array members were introduced. That case
currently fails when compiled with gcc <= 8. gcc <= 8 produces DWARF
similar to the one shown above, while gcc 9 adds a DW_AT_count of 0 in
there, which makes the high bound known. A case where an array member
of size 0 is the only member of the struct is also added, as that was
how PR 28675 was originally reported, and it's an interesting corner
case that I think could trigger other funny bugs.
Question about the implementation: in value_subscript, I made it such
that if the low or high bound is unknown, we fall back to zero. That
effectively makes it the same as it was before 7c6f271296. But should
we instead error() out?
gdb/ChangeLog:
PR 26875, PR 26901
* gdbtypes.c (get_discrete_low_bound): Make non-static.
(get_discrete_high_bound): Make non-static.
* gdbtypes.h (get_discrete_low_bound): New declaration.
(get_discrete_high_bound): New declaration.
* valarith.c (value_subscript): Only fetch high bound if
necessary.
gdb/testsuite/ChangeLog:
PR 26875, PR 26901
* gdb.base/flexible-array-member.c: New test.
* gdb.base/flexible-array-member.exp: New test.
Change-Id: I832056f80e6c56f621f398b4780d55a3a1e299d7
get_discrete_bounds is not flexible for ranges (TYPE_CODE_RANGE), in the
sense that it returns true (success) only if both bounds are present and
constant values.
This is a problem for code that only needs to know the low bound and
fails unnecessarily if the high bound is unknown.
Split the function in two, get_discrete_low_bound and
get_discrete_high_bound, that both return an optional. Provide a new
implementation of get_discrete_bounds based on the two others, so the
callers don't have to be changed.
gdb/ChangeLog:
* gdbtypes.c (get_discrete_bounds): Implement with
get_discrete_low_bound and get_discrete_high_bound.
(get_discrete_low_bound): New.
(get_discrete_high_bound): New.
Change-Id: I986b5e9c0dd969800e3fb9546af9c827d52e80d0
get_discrete_bounds currently has three possible return values (see its
current doc for details). It appears that for all callers, it would be
sufficient to have a boolean "worked" / "didn't work" return value.
Change the return type of get_discrete_bounds to bool and adjust all
callers. Doing so simplifies the following patch.
gdb/ChangeLog:
* gdbtypes.h (get_discrete_bounds): Return bool, adjust all
callers.
* gdbtypes.c (get_discrete_bounds): Return bool.
Change-Id: Ie51feee23c75f0cd7939742604282d745db59172
Instead of returning a boolean status and returning the value through a
pointer, return an optional that does both jobs. This helps in the
following patches, and I think it is an improvement in general.
gdb/ChangeLog:
* ada-lang.c (ada_value_slice_from_ptr): Adjust.
(ada_value_slice): Adjust.
(pos_atr): Adjust.
* gdbtypes.c (get_discrete_bounds): Adjust.
(discrete_position): Return optional.
* gdbtypes.h (discrete_position): Return optional.
Change-Id: I758dbd8858b296ee472ed39ec35db1dbd624a5ae
This fixes a long-lived bug in the s390 port.
When trying to step over a breakpoint set on a BC (branch on condition)
instruction with displaced stepping on IBM Z, gdb would incorrectly
adjust the pc regardless of whether or not the branch was taken. Since
the branch target is an absolute address, this would cause the inferior
to jump around wildly whenever the branch was taken, either crashing it
or causing it to behave unpredictably.
It turns out that the logic to handle BC instructions correctly was in
the code, but that the enum value representing its opcode has always
been incorrect.
This patch corrects the enum value to the actual opcode, fixing the
stepping problem. The enum value is also used in the prologue analysis
code, so this also fixes a minor bug where more of the prologue would
be read than was necessary.
gdb/ChangeLog:
PR breakpoints/27009
* s390-tdep.h (op_bc): Correct BC opcode value.
This is just an update in the gdb/ChangeLog to reflect a newly
created PR [27015] for a bugfix commit:
abaf3df9 arc: Write correct "eret" value during register collection
In collect_register() function of arc-linux-tdep.c, the "eret"
(exception return) register value was not being reported correctly.
This patch fixes that.
Background:
When asked for the "pc" value, we have to update the "eret" register
with GDB's STOP_PC. The "eret" instructs the kernel code where to
jump back when an instruction has stopped due to a breakpoint. This
is how collect_register() was doing so:
--------------8<--------------
if (regnum == gdbarch_pc_regnum (gdbarch))
regnum = ARC_ERET_REGNUM;
regcache->raw_collect (regnum, buf + arc_linux_core_reg_offsets[regnum]);
-------------->8--------------
Root cause:
Although this is using the correct offset (ERET register's), it is also
changing the REGNUM itself. Therefore, raw_collect (regnum, ...) is
not reading from "pc" anymore.
v2:
- Fix a copy/paste issue as rightfully addressed by Tom [1].
[1]
https://sourceware.org/pipermail/gdb-patches/2020-November/173208.html
gdb/ChangeLog:
* arc-linux-tdep.c (collect_register): Populate "eret" by
"pc" value from the regcache when asked for "pc" value.
The argument is called static_members, not static_fields.
gdb/doc/ChangeLog:
2020-11-29 Hannes Domani <ssbssa@yahoo.de>
PR python/26974
* python.texi: Fix docu for static members argument.
The locator win info is special because it is static, all the others are
created dynamically.
gdb/ChangeLog:
2020-11-29 Hannes Domani <ssbssa@yahoo.de>
PR tui/26973
* tui/tui-layout.c (tui_apply_current_layout): Don't delete the
static locator win info.
In python 3, itertools is a builtin module, so whether or not the
python you link against is a shared or a static one, importing it
works.
Change the import test to use ctypes which is a dynamic module in both
python 2 and 3.
gdb/ChangeLog:
PR python/26832
* configure: Regenerate.
* configure.ac: Check for python modules ctypes instead of
itertools.
This causes gdb to crash in strlen.
Happens if init_complex_type is called for a type created by
dbx_init_float_type in stabsread.c.
gdb/ChangeLog:
2020-10-22 Hannes Domani <ssbssa@yahoo.de>
* gdbtypes.c (init_complex_type): Check target type name.
The disassembler function should return a valid disassembler function
even when there is no BFD present. This is implied (I believe) by the
comment in dis-asm.h which says the BFD may be NULL. Further, it
makes sense when considering that the disassembler is used in GDB, and
GDB may connect to a target and perform debugging even without a BFD
being supplied.
This commit makes the csky_get_disassembler function return the
default disassembler configuration when no bfd is supplied, this is
the same default configuration as is used when a BFD is supplied, but
the BFD has no attributes section.
Before the change configuring GDB with --enable-targets=all and
running the tests gdb.base/all-architectures-2.exp results in many
errors, but after this change there are no failures.
opcodes/ChangeLog:
* csky-dis.c (csky_get_disassembler): Don't return NULL when there
is no BFD.
Fix a regression introduced by commit 7188ed02d2 ("Replace
dwarf2_per_cu_data::cu backlink with per-objfile map").
This patch targets both master and gdb-10-branch, since this is a
regression from GDB 9.
Analysis
--------
The DWARF generated by the included test case looks like:
0x0000000b: DW_TAG_compile_unit
DW_AT_language [DW_FORM_sdata] (4)
0x0000000d: DW_TAG_base_type
DW_AT_name [DW_FORM_string] ("int")
DW_AT_byte_size [DW_FORM_data1] (0x04)
DW_AT_encoding [DW_FORM_sdata] (5)
0x00000014: DW_TAG_subprogram
DW_AT_name [DW_FORM_string] ("apply")
0x0000001b: DW_TAG_subprogram
DW_AT_specification [DW_FORM_ref4] (0x00000014 "apply")
DW_AT_low_pc [DW_FORM_addr] (0x0000000000001234)
DW_AT_high_pc [DW_FORM_data8] (0x0000000000000020)
0x00000030: DW_TAG_template_type_parameter
DW_AT_name [DW_FORM_string] ("T")
DW_AT_type [DW_FORM_ref4] (0x0000000d "int")
0x00000037: NULL
0x00000038: NULL
Simply loading the file in GDB makes it crash:
$ ./gdb -nx --data-directory=data-directory testsuite/outputs/gdb.dwarf2/pr26693/pr26693
[1] 15188 abort (core dumped) ./gdb -nx --data-directory=data-directory
The crash happens here, where htab (a dwarf2_cu::die_hash field) is
unexpectedly NULL while generating partial symbols:
#0 0x000055555fa28188 in htab_find_with_hash (htab=0x0, element=0x7fffffffbfa0, hash=27) at /home/simark/src/binutils-gdb/libiberty/hashtab.c:591
#1 0x000055555cb4eb2e in follow_die_offset (sect_off=(unknown: 27), offset_in_dwz=0, ref_cu=0x7fffffffc110) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:22951
#2 0x000055555cb4edfb in follow_die_ref (src_die=0x0, attr=0x7fffffffc130, ref_cu=0x7fffffffc110) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:22968
#3 0x000055555caa48c5 in partial_die_full_name (pdi=0x621000157e70, cu=0x615000023f80) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:8441
#4 0x000055555caa4d79 in add_partial_symbol (pdi=0x621000157e70, cu=0x615000023f80) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:8469
#5 0x000055555caa7d8c in add_partial_subprogram (pdi=0x621000157e70, lowpc=0x7fffffffc5c0, highpc=0x7fffffffc5e0, set_addrmap=1, cu=0x615000023f80) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:8737
#6 0x000055555caa265c in scan_partial_symbols (first_die=0x621000157e00, lowpc=0x7fffffffc5c0, highpc=0x7fffffffc5e0, set_addrmap=1, cu=0x615000023f80) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:8230
#7 0x000055555ca98e3f in process_psymtab_comp_unit_reader (reader=0x7fffffffc6b0, info_ptr=0x60600009650d "\003int", comp_unit_die=0x621000157d10, pretend_language=language_minimal) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:7614
#8 0x000055555ca9aa2c in process_psymtab_comp_unit (this_cu=0x621000155510, per_objfile=0x613000009f80, want_partial_unit=false, pretend_language=language_minimal) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:7712
#9 0x000055555caa051a in dwarf2_build_psymtabs_hard (per_objfile=0x613000009f80) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:8073
The special thing about this DWARF is that the subprogram at 0x1b is a
template specialization described with DW_AT_specification, and has no
DW_AT_name in itself. To compute the name of this subprogram,
partial_die_full_name needs to load the full DIE for this partial DIE.
The name is generated from the templated function name and the actual
tempalate parameter values of the specialization.
To load the full DIE, partial_die_full_name creates a dummy DWARF
attribute of form DW_FORM_ref_addr that points to our subprogram's DIE,
and calls follow_die_ref on it. This eventually causes
load_full_comp_unit to be called for the exact same CU we are currently
making partial symbols for:
#0 load_full_comp_unit (this_cu=0x621000155510, per_objfile=0x613000009f80, skip_partial=false, pretend_language=language_minimal) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:9238
#1 0x000055555cb4e943 in follow_die_offset (sect_off=(unknown: 27), offset_in_dwz=0, ref_cu=0x7fffffffc110) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:22942
#2 0x000055555cb4edfb in follow_die_ref (src_die=0x0, attr=0x7fffffffc130, ref_cu=0x7fffffffc110) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:22968
#3 0x000055555caa48c5 in partial_die_full_name (pdi=0x621000157e70, cu=0x615000023f80) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:8441
#4 0x000055555caa4d79 in add_partial_symbol (pdi=0x621000157e70, cu=0x615000023f80) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:8469
#5 0x000055555caa7d8c in add_partial_subprogram (pdi=0x621000157e70, lowpc=0x7fffffffc5c0, highpc=0x7fffffffc5e0, set_addrmap=1, cu=0x615000023f80) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:8737
#6 0x000055555caa265c in scan_partial_symbols (first_die=0x621000157e00, lowpc=0x7fffffffc5c0, highpc=0x7fffffffc5e0, set_addrmap=1, cu=0x615000023f80) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:8230
#7 0x000055555ca98e3f in process_psymtab_comp_unit_reader (reader=0x7fffffffc6b0, info_ptr=0x60600009650d "\003int", comp_unit_die=0x621000157d10, pretend_language=language_minimal) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:7614
#8 0x000055555ca9aa2c in process_psymtab_comp_unit (this_cu=0x621000155510, per_objfile=0x613000009f80, want_partial_unit=false, pretend_language=language_minimal) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:7712
#9 0x000055555caa051a in dwarf2_build_psymtabs_hard (per_objfile=0x613000009f80) at /home/simark/src/binutils-gdb/gdb/dwarf2/read.c:8073
load_full_comp_unit creates a cutu_reader for the CU. Since a dwarf2_cu
object already exists for the CU, load_full_comp_unit is expected to
find it and pass it to cutu_reader, so that cutu_reader doesn't create
a new dwarf2_cu for the CU.
And this is the difference between before and after the regression.
Before commit 7188ed02d2, the dwarf2_per_cu_data -> dwarf2_cu link was
a simple pointer in dwarf2_per_cu_data. This pointer was set up when
starting the read the partial symbols. So it was already available at
that point where load_full_comp_unit gets called. Post-7188ed02d2a7,
this link is per-objfile, kept in the dwarf2_per_objfile::m_dwarf2_cus
hash map. The entry is only put in the hash map once the partial
symbols have been successfully read, when cutu_reader::keep is called.
Therefore, it is _not_ set at the point load_full_comp_unit is called.
As a consequence, a new dwarf2_cu object gets created and initialized by
load_full_comp_unit (including initializing that dwarf2_cu::die_hash
field). Meanwhile, the dwarf2_cu object created and used by the callers
up the stack does not get initialized for full symbol reading, and the
dwarf2_cu::die_hash field stays unexpectedly NULL.
Solution
--------
Since the caller of load_full_comp_unit knows about the existing
dwarf2_cu object for the CU we are reading (the one load_full_comp_unit
is expected to find), we can simply make it pass it down, instead of
having load_full_comp_unit look up the per-objfile map.
load_full_comp_unit therefore gets a new `existing_cu` parameter. All
other callers get updated to pass `per_objfile->get_cu (per_cu)`, so the
behavior shouldn't change for them, compared to the current HEAD.
A test is added, which is the bare minimum to reproduce the issue.
Notes
-----
The original problem was reproduced by downloading
https://github.com/oneapi-src/oneTBB/releases/download/v2020.3/tbb-2020.3-lin.tgz
and loading libtbb.so in GDB. This code was compiled with the Intel
C/C++ compiler. I was not able to reproduce the issue using GCC, I
think because GCC puts a DW_AT_name in the specialized subprogram, so
there's no need for partial_die_full_name to load the full DIE of the
subprogram, and the faulty code doesn't execute.
gdb/ChangeLog:
PR gdb/26693
* dwarf2/read.c (load_full_comp_unit): Add existing_cu
parameter.
(load_cu): Pass existing CU.
(process_imported_unit_die): Likewise.
(follow_die_offset): Likewise.
gdb/testsuite/ChangeLog:
PR gdb/26693
* gdb.dwarf2/template-specification-full-name.exp: New test.
Change-Id: I57c8042f96c45f15797a3848e4d384181c56bb44
This fixes a regression introduced by the following commit:
fe053b9e85 gdb/jit: pass the jiter objfile as an argument to jit_event_handler
In the refactoring `handle_jit_event` function was changed to pass a matching
objfile pointer to the `jit_event_handler` explicitly, rather using internal
storage:
```
--- a/gdb/breakpoint.c
+++ b/gdb/breakpoint.c
@@ -5448,8 +5448,9 @@ handle_jit_event (void)
frame = get_current_frame ();
gdbarch = get_frame_arch (frame);
+ objfile *jiter = symbol_objfile (get_frame_function (frame));
- jit_event_handler (gdbarch);
+ jit_event_handler (gdbarch, jiter);
```
This was needed to add support for multiple jiters. However it has also
introduced a regression, because `get_frame_function (frame)` here may
return `nullptr`, resulting in a crash.
A more resilient way would be to use an approach mirroring
`jit_breakpoint_re_set` - to find a minimal symbol matching the
breakpoint location and use its object file. We know that this
breakpoint event comes from a breakpoint set by `jit_breakpoint_re_set`,
thus using the reverse approach should be reliable enough.
gdb/Changelog:
2020-10-14 Mihails Strasuns <mihails.strasuns@intel.com>
* breakpoint.c (handle_jit_event): Add an argument, change how
`jit_event_handler` is called.
Debugging with "maintenance set target-async off" on Linux has been
broken since 5b6d1e4fa4 ("Multi-target support").
The issue is easy to reproduce:
$ ./gdb -q --data-directory=data-directory -nx ./test
Reading symbols from ./test...
(gdb) maintenance set target-async off
(gdb) start
Temporary breakpoint 1 at 0x1151: file test.c, line 5.
Starting program: /home/simark/build/binutils-gdb/gdb/test
... and it hangs there.
The difference between pre-5b6d1e4fa4f and 5b6d1e4fa4 is that
fetch_inferior_event now calls target_wait with TARGET_WNOHANG for
non-async-capable targets, whereas it didn't before.
For non-async-capable targets, this is how it's expected to work when
resuming execution:
1. we call resume
2. the infrun async handler is marked in prepare_to_wait, to immediately
wake up the event loop when we get back to it
3. fetch_inferior_event calls the target's wait method without
TARGET_WNOHANG, effectively blocking until the target has something
to report
However, since we call the target's wait method with TARGET_WNOHANG,
this happens:
1. we call resume
2. the infrun async handler is marked in prepare_to_wait, to immediately
wake up the event loop when we get back to it
3. fetch_inferior_event calls the target's wait method with
TARGET_WNOHANG, the target has nothing to report yet
4. we go back to blocking on the event loop
5. SIGCHLD finally arrives, but the event loop is not woken up, because
we are not in async mode. Normally, we should have been stuck in
waitpid the SIGCHLD would have unblocked us.
We end up in this situation because these two necessary conditions are
met:
1. GDB uses the TARGET_WNOHANG option with a target that can't do async.
I don't think this makes sense. I mean, it's technically possible,
the doc for TARGET_WNOHANG is:
/* Return immediately if there's no event already queued. If this
options is not requested, target_wait blocks waiting for an
event. */
TARGET_WNOHANG = 1,
... which isn't in itself necessarily incompatible with synchronous
targets. It could be possible for a target to support non-blocking
polls, while not having a way to asynchronously wake up the event
loop, which is also necessary to support async. But as of today,
we don't expect GDB and sync targets to work this way.
2. The linux-nat target, even in the mode where it emulates a
synchronous target (with "maintenance set target-async off") respects
TARGET_WNOHANG. Other non-async targets, such as windows_nat_target,
simply don't check / support TARGET_WNOHANG, so their wait method is
always blocking.
Fix the first issue by avoiding using TARGET_WNOHANG on non-async
targets, in do_target_wait_1. Add an assert in target_wait to verify it
doesn't happen.
The new test gdb.base/maint-target-async-off.exp is a simple test that
just tries running to main and then to the end of the program, with
"maintenance set target-async off".
gdb/ChangeLog:
PR gdb/26642
* infrun.c (do_target_wait_1): Clear TARGET_WNOHANG if the
target can't do async.
* target.c (target_wait): Assert that we don't pass
TARGET_WNOHANG to a target that can't async.
gdb/testsuite/ChangeLog:
PR gdb/26642
* gdb.base/maint-target-async-off.c: New test.
* gdb.base/maint-target-async-off.exp: New test.
Change-Id: I69ad3a14598863d21338a8c4e78700a58ce7ad86
This commit imports two commits from gnulib's master branch fixing
a build error when building on a version of Windows that's older
than Vista, or when using an mingw's MinGW.
gnulib/ChangeLog:
GDB PR build/26607
* patches/0002-stat-fstat-windows-older-vista: New patch.
* patches/0003-stat-fstat-windows-old-mingw: New patch.
* update-gnulib.sh: Update to use the two new patches above.
* import/m4/fstat.m4: Update after applying patches above.
* import/m4/stat.m4: Ditto.
* import/stat-w32.c: Ditto.
* config.in: Regenerate.
* configure: Regenerate.
With the implemenations in this patch, ARC gdb can handle
coredump related matters. The binutils counter part of
this patch has already been pushed [1].
v2 [2]:
- arc_linux_collect_gregset: Use "reg <= ARC_LAST_REGNUM" instead of
"reg < ARC_LAST_REGNUM" for the condition check of the for-loop.
- arc-linux-tdep.c: Use "ARC_LAST_REGNUM < ARRAY_SIZE (...)" instead of
"ARC_LAST_REGNUM <= ARRAY_SIZE (...)" for the "asserts".
- Use "buf + arc_linux_core_reg_offsets[ARC_ERET_REGNUM]" instead of
"buf + REG_OFF (6)".
- Fix a few typos/indentation.
v3 [3]:
- Use gdb_assert_not_reached(text) instead of gdb_assert (!text).
- Remove unnecessary braces in the for loop.
[1] arc: Add support for ARC HS extra registers in core files
https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=2745674244d6aecddcf636475034bdb9c0a6b4a0
[2] First remarks
https://sourceware.org/pipermail/gdb-patches/2020-September/171912.html
[3] Second remarks
https://sourceware.org/pipermail/gdb-patches/2020-October/172302.html
gdb/ChangeLog:
* arc-linux-tdep.h: New file.
* arc-linux-tdep.c (arc_linux_core_reg_offsets,
arc_linux_supply_gregset, arc_linux_supply_v2_regset,
arc_linux_collect_gregset, arc_linux_collect_v2_regset,
arc_linux_gregset, arc_linux_v2_regset,
arc_linux_iterate_over_regset_sections,
arc_linux_core_read_description): Implement.
(arc_linux_init_osabi): Set iterate_over_regset_sections.
* arc-tdep.h (ARC_OFFSET_NO_REGISTER): Declare.
(arc_gdbarch_features_create): Add.
* arc-tdep.c (arc_gdbarch_features_create): Not static anymore.
I forgot to add the ChangeLog entries for these 2 patches:
b13599da1a gdbserver: Add GNU/Linux support for ARC
e26d3e9b76 arc: Rename "arc_gdbarch_features" struct
This gdbserver implementation supports ARC ABI v3 and v4 (older ARC ABI
versions are not supported by other modern GNU tools or Linux itself).
Gdbserver supports inspection of ARC HS registers R30, R58 and R59 - feature
that has been added to Linux 4.12. Whether gdbserver build will actually
support this feature depends on the version of Linux headers used to build
the server.
v2 [1]:
- Use "this->read_memory ()" instead of "the_target->read_memory ()".
- Remove the unnecessary "arch-arc.o:" target from the "Makefile.in".
- Got rid of "ntohs()" function and added lots of comments about
endianness.
- Clarify why "pc" value is read from and saved to different fields
in user regs struct.
- In function "is_reg_name_available_p()", use a range-based iterator
to loop over the registers.
- Removed mentioning of issue number that was not related to sourceware.
- A few typo's fixed.
[1] Remarks
https://sourceware.org/pipermail/gdb-patches/2020-September/171911.htmlhttps://sourceware.org/pipermail/gdb-patches/2020-September/171919.html
gdbserver/ChangeLog:
* configure.srv: Support ARC architecture.
* Makefile.in: Add linux-arc-low.cc and arch/arc.o.
* linux-arc-low.cc: New file.
"arc_gdbarch_features" is a data structure containing information
about the ARC architecture: ISA version, register size, etc.
This name is misleading, because although it carries the phrase
"gdbarch", it has nothing to do with the type/interface in GDB.
Traditionaly, "gdbarch" structures are only used for that purpose.
To rectify this, this patch changes the name to "arc_arch_features".
gdb/ChangeLog:
* arch/arc.h: Rename "arc_gdbarch_features" to
"arc_arch_features".
* arc-tdep.h: Likewise.
* arc-tdep.c: Likewise.
Prior to commit 56bcdbea2b, the from_tty keyword argument to the
Python function gdb.execute controlled whether the command took input
from the terminal. When from_tty=True, "starti" and similar commands
prompted the user:
(gdb) python gdb.execute("starti", from_tty=True)
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /bin/true
Program stopped.
When from_tty=False, these commands did not prompt the user, and "yes"
was assumed:
(gdb) python gdb.execute("starti", from_tty=False)
Program stopped.
However, after commit 56bcdbea2b, the from_tty keyword argument no
longer had this effect. For example, as of commit 7ade7fba75:
(gdb) python gdb.execute("starti", from_tty=True)
The program being debugged has been started already.
Start it from the beginning? (y or n) [answered Y; input not from terminal]
Starting program: /bin/true
Program stopped.
Note the "[answered Y; input not from terminal]" in the output even
though from_tty=True was requested.
Looking at commit 56bcdbea2b, it seems that the behaviour of the
from_tty argument was changed accidentally. The commit message said:
Let gdb.execute handle multi-line commands
This changes the Python API so that gdb.execute can now handle
multi-line commands, like "commands" or "define".
and there was no mention of changing the effect of the from_tty
argument. It looks as though the code for setting the instream to
nullptr was accidentally moved from execute_user_command() to
execute_control_commands() along with the other scoped restores.
Accordingly, the simplest way to fix this is to partially reverse
commit 56bcdbea2b by moving the code for setting the instream to
nullptr back to execute_user_command() where it was to begin with.
Additionally, add a test case to reduce the risk of similar breakage
in future.
gdb/ChangeLog:
PR python/26586
* cli/cli-script.c (execute_control_commands): don't set
instream to nullptr here as this breaks the from_tty argument
to gdb.execute in Python.
(execute_user_command): set instream to nullptr here instead.
gdb/testsuite/ChangeLog:
PR python/26586
* gdb.python/python.exp: add test cases for the from_tty
argument to gdb.execute.
(cherry picked from commit 8f9929bb97)
When GDB reads commands from the input, its internal buffer is re-used
for each line. This is usually just fine because commands are
executed in order; by the time we read the next line, we are already
done with the current line. However, a problematic case is breakpoint
commands that are input from a script. The header (e.g. commands 1 2)
is overwritten with the next line before the breakpoint numbers are
processed completely.
For example, suppose we have the following script:
break main
break main
commands 1 2
print 100123
end
and source this script:
(gdb) source script.gdb
Breakpoint 1 at 0x1245: file main.cpp, line 27.
Breakpoint 2 at 0x1245: file main.cpp, line 27.
No breakpoint number 123.
Note the "No breakpoint number 123." error message. This happens
because GDB first reads "commands 1 2" into its internal buffer
buffer -> "commands 1 2"
and then starts parsing the breakpoint numbers. After parsing the first
token, the "next token" pointer is as below:
buffer -> "commands 1 2"
next-token -----------^
So, if we continue parsing, we would tokenize "2" correctly. However,
before parsing the next number, GDB reads the commands to attach them
to breakpoint 1. Reading the commands causes the buffer to be
overwritten:
buffer -> " print 100123"
next-token -----------^
So, the next time we parse the breakpoint number, we read "123".
To fix, simply create a copy of the arguments of the header.
gdb/ChangeLog:
2020-09-25 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* breakpoint.c (commands_command_1): Make a copy of the 'arg'
argument.
gdb/testsuite/ChangeLog:
2020-09-25 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* gdb.base/bp-cmds-sourced-script.c: New file.
* gdb.base/bp-cmds-sourced-script.exp: New test.
* gdb.base/bp-cmds-sourced-script.gdb: New file.
PR tui/26638 notes that the C-x o binding can put the focus on the
locator window. However, this is not useful and did not happen
historically. This patch changes the TUI to skip this window when
switching focus.
2020-09-24 Tom Tromey <tromey@adacore.com>
PR tui/26638:
* tui/tui-stack.h (struct tui_locator_window) <can_focus>: New
method.
* tui/tui-data.h (struct tui_win_info) <can_focus>: New method.
* tui/tui-data.c (tui_next_win): Exclude non-focusable windows.
(tui_prev_win): Rewrite.
gdb/testsuite/ChangeLog
2020-09-24 Tom Tromey <tromey@adacore.com>
PR tui/26638:
* gdb.tui/list.exp: Check output of "focus next".
When a WOW64 process triggers a breakpoint exception in 64bit code (which
happens when a 64bit gdb calls DebugBreakProcess for a 32bit target),
gdb ignores the breakpoint (because Wow64GetThreadContext can only report
the pc of 32bit code, and there is not int3 at this location).
But if these 64bit breakpoint exceptions are handled as SIGINT, gdb
doesn't check for int3, and always stops the target.
gdb/ChangeLog:
2020-09-23 Hannes Domani <ssbssa@yahoo.de>
* nat/windows-nat.c (handle_exception): Handle 64bit breakpoints
in WOW64 processes as SIGINT.
* nat/windows-nat.h: Make wow64_process a shared variable.
* windows-nat.c: Remove static wow64_process variable.
gdbserver/ChangeLog:
2020-09-23 Hannes Domani <ssbssa@yahoo.de>
* win32-low.cc: Remove local wow64_process variable.
* win32-low.h: Remove local wow64_process variable.
With -m32 -fcf-protection, GCC generates an `endbr32` instruction at the
function entry:
[hjl@gnu-cfl-2 gdb]$ cat /tmp/x.c
int
main(void)
{
return 0;
}
[hjl@gnu-cfl-2 gdb]$ gcc -g -fcf-protection /tmp/x.c -m32
(gdb) b main
Breakpoint 1 at 0x8049176: file /tmp/x.c, line 3.
(gdb) r
Breakpoint 1, main () at /tmp/x.c:3
3 {
(gdb) disass
Dump of assembler code for function main:
=> 0x08049176 <+0>: endbr32
0x0804917a <+4>: push %ebp
0x0804917b <+5>: mov %esp,%ebp
0x0804917d <+7>: mov $0x0,%eax
0x08049182 <+12>: pop %ebp
0x08049183 <+13>: ret
End of assembler dump.
(gdb)
Update i386_analyze_prologue to skip `endbr32`:
(gdb) b main
Breakpoint 1 at 0x804917d: file /tmp/x.c, line 4.
(gdb) r
Breakpoint 1, main () at /tmp/x.c:4
4 return 0;
(gdb) disass
Dump of assembler code for function main:
0x08049176 <+0>: endbr32
0x0804917a <+4>: push %ebp
0x0804917b <+5>: mov %esp,%ebp
=> 0x0804917d <+7>: mov $0x0,%eax
0x08049182 <+12>: pop %ebp
0x08049183 <+13>: ret
End of assembler dump.
(gdb)
Tested with
$ make check RUNTESTFLAGS="--target_board='unix{-m32,}' i386-prologue-skip-cf-protection.exp"
on Fedora 32/x86-64.
2020-0X-YY Victor Collod <vcollod@nvidia.com>
gdb/ChangeLog:
PR gdb/26635
* i386-tdep.c (i386_skip_endbr): Add a helper function to skip endbr.
(i386_analyze_prologue): Call i386_skip_endbr.
gdb/testsuite/ChangeLog:
PR gdb/26635
* gdb.arch/amd64-prologue-skip-cf-protection.exp: Make the test
compatible with i386, and move it to...
* gdb.arch/i386-prologue-skip-cf-protection.exp: ... here.
* gdb.arch/amd64-prologue-skip-cf-protection.c: Move to...
* gdb.arch/i386-prologue-skip-cf-protection.c: ... here.
"thread find" with multiple inferiors got broken with the multi-target
work:
Thread 1 "gdb" hit Breakpoint 1, internal_error (...) at ../../src/gdbsupport/errors.cc:51
51 {
(top-gdb) bt
#0 internal_error (file=0xffffd4d0 <error: Cannot access memory at address 0xffffd4d0>, line=0, fmt=0x555556330320 "en_US.UTF-8") at ../../src/gdbsupport/errors.cc:51
#1 0x0000555555bca4c7 in target_thread_name (info=0x555556801290) at ../../src/gdb/target.c:2035
#2 0x0000555555beb07a in thread_find_command (arg=0x7fffffffe08e "1", from_tty=0) at ../../src/gdb/thread.c:1959
#3 0x000055555572ec49 in do_const_cfunc (c=0x555556786bc0, args=0x7fffffffe08e "1", from_tty=0) at ../../src/gdb/cli/cli-decode.c:95
#4 0x0000555555732abd in cmd_func (cmd=0x555556786bc0, args=0x7fffffffe08e "1", from_tty=0) at ../../src/gdb/cli/cli-decode.c:2181
#5 0x0000555555bf1245 in execute_command (p=0x7fffffffe08e "1", from_tty=0) at ../../src/gdb/top.c:664
#6 0x00005555559cad10 in catch_command_errors (command=0x555555bf0c31 <execute_command(char const*, int)>, arg=0x7fffffffe082 "thread find 1", from_tty=0) at ../../src/gdb/main.c:457
#7 0x00005555559cc33d in captured_main_1 (context=0x7fffffffdb60) at ../../src/gdb/main.c:1218
#8 0x00005555559cc571 in captured_main (data=0x7fffffffdb60) at ../../src/gdb/main.c:1243
#9 0x00005555559cc5e8 in gdb_main (args=0x7fffffffdb60) at ../../src/gdb/main.c:1268
#10 0x0000555555623816 in main (argc=17, argv=0x7fffffffdc78) at ../../src/gdb/gdb.c:32
The problem is that we're not switching to the inferior/target before
calling target methods, which trips on an assertion put in place
exactly to catch this sort of problem.
gdb/testsuite/ChangeLog:
PR gdb/26631
* gdb.multi/multi-target-thread-find.exp: New file.
gdb/ChangeLog:
PR gdb/26631
* thread.c (thread_find_command): Switch inferior before calling
target methods.
gdb.multi/multi-target.exp sets up a debug environment with multiple
gdbservers, multiple native processes, and multiple cores, which has
proved useful for exercising a number of multi-target scenarios.
But, as we add more tests to gdb.base/multi-target.exp, it is growing
a bit too large (making a bit cumbersome to debug) and too slow to run
(if you have glibc debug info).
This commit thus splits the multi-target.exp into several testcases,
one per use case. The common setup code is moved to a new
multi-target.exp.tcl file that is included by all the resulting
multi-target testcases.
gdb/testsuite/ChangeLog:
* gdb.multi/multi-target-continue.exp: New file, factored out from
multi-target.exp.
* gdb.multi/multi-target-info-inferiors.exp: New file, factored out from
multi-target.exp.
* gdb.multi/multi-target-interrupt.exp: New file, factored out from
multi-target.exp.
* gdb.multi/multi-target-no-resumed.exp: New file, factored out from
multi-target.exp.
* gdb.multi/multi-target-ping-pong-next.exp: New file, factored out from
multi-target.exp.
* gdb.multi/multi-target.exp.tcl: New file, factored out from
multi-target.exp.
* gdb.multi/multi-target.exp: Delete.
PR gdb/26598 notes that, before commit bcfe6157ca ("Use the linkage
name if it exists"), the "skip" command would match the demangled name
of a symbol, but now only matches the linkage name.
This patch fixes this regression. I looked at all calls to
function_name_is_marked_for_skip, and only one used the linkage name.
2020-09-16 Tom Tromey <tromey@adacore.com>
PR gdb/26598:
* infrun.c (fill_in_stop_func): Use find_pc_partial_function_sym.
gdb/testsuite/ChangeLog
2020-09-16 Tom Tromey <tromey@adacore.com>
PR gdb/26598:
* gdb.base/skipcxx.exp: New file.
* gdb.base/skipcxx.cc: New file.
LLVM 8.0 introduced some changes to let the Rust compiler emit DWARF
variant parts. Before this change, the compiler would emit two types
with the same name, and unfortunately gdb happens to pick the wrong
one. So, this patch disables the test when using an older version of
LLVM.
2020-09-15 Tom Tromey <tromey@adacore.com>
PR rust/26197:
* lib/rust-support.exp (rust_llvm_version): New proc.
* gdb.rust/simple.exp: Check rust_llvm_version.
For Cortex-M targets using floating-point, eg the Cortex-M4F, its not possible
to get any call-stack backtrace if setting a breakpoint in ISR.
The exception stack unwinder for Cortex-M does not consider if floating-point
registers was stacked or not, further the Cortex-M has two stack pointers: MSP
(Main Stack Pointer) and PSP (Process Stack Pointer).
This is not handled when GDB tries to backtrace in the exception stack
unwinder.
This patch fixes this, and gives a correct call-stack backtrace from
breakpoints set in a handler or ISR.
gdb/ChangeLog:
* arm-tdep.c (arm_m_exception_cache): Try use correct stack
pointer and stack frame offset when unwinding.
Now that the GDB 10 branch has been created, we can
bump the version number.
gdb/ChangeLog:
GDB 10 branch created (8087c3fa8b):
* version.in: Bump version to 10.0.90.DATE-git.
2020-09-12 19:34:15 -07:00
6309 changed files with 12708 additions and 7380 deletions
/* Copyright (C) 2018-2020 Free Software Foundation, Inc.
/* Copyright (C) 2018-2021 Free Software Foundation, Inc.
ThisfileispartofGDB.
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.