mirror of
https://github.com/bminor/binutils-gdb.git
synced 2025-12-25 16:57:52 +00:00
binutils-2_44-branch
74 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
a2cc13fad6 |
gdbserver: boolify and defaultize the 'fetch' parameter of get_thread_regcache
Boolify the 'fetch' parameter of the get_thread_regcache function. All of the current uses pass true for this parameter. Therefore, define its default value as true and remove the argument from the uses. We still keep the parameter, though, to give downstream targets the option to obtain a regcache without having to fetch the whole contents. Our (Intel) downstream target is an example. Approved-By: Simon Marchi <simon.marchi@efficios.com> |
||
|
|
2903d61808 |
gdbserver: by-pass regcache to access tdesc only
The `get_thread_regcache` function has a `fetch` option to skip fetching the registers from the target. It seems this option is set to false only at uses where we just need to access the tdesc through the regcache of the current thread, as in struct regcache *regcache = get_thread_regcache (current_thread, 0); ... regcache->tdesc ... Since the tdesc of a regcache is set from the process of the thread that owns the regcache, we can simplify the code to access the tdesc via the process, as in ... current_process ()->tdesc ... This is intended to be a refactoring with no behavioral change. Tested only for the linux-x86-low target. Approved-By: Simon Marchi <simon.marchi@efficios.com> |
||
|
|
038590b067 |
gdbserver: remove 'struct' in 'struct thread_info' declarations
Remove the 'struct' keyword in occurrences of 'struct thread_info'. This is a code clean-up. Tested by rebuilding. Approved-By: Simon Marchi <simon.marchi@efficios.com> |
||
|
|
ffa5bea793 |
gdbserver: remove macro get_lwp_thread
I was thinking of changing this macro to a function, but I don't think it adds much value over just accessing the field directly. Change-Id: I5dc63e9db0773549c5b55a1279212e2d1213f50c Approved-By: Tom Tromey <tom@tromey.com> |
||
|
|
5929ef8975 |
gdbserver: remove lwpid_of(thread)
This function doesn't seem so useful. Use `thread_info:🆔:lwp` directly. Change-Id: Ib4a86eeeee6c1342bc1c092f083589ce28009be1 Reviewed-By: Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> |
||
|
|
fc14343205 |
gdb, gdbserver, python, testsuite: Remove MPX.
GDB deprecated the commands "show/set mpx bound" in GDB 15.1, as Intel listed Intel(R) Memory Protection Extensions (MPX) as removed in 2019. MPX is also deprecated in gcc (since v9.1), the linux kernel (since v5.6) and glibc (since v2.35). Let's now remove MPX support in GDB completely. This includes the removal of: - MPX functionality including register support - deprecated mpx commands - i386 and amd64 implementation of the hooks report_signal_info and get_siginfo_type - tests - and pretty printer. We keep MPX register numbers to not break compatibility with old gdbservers. Approved-By: Felix Willgerodt <felix.willgerodt@intel.com> |
||
|
|
646d754d14 |
gdb/gdbserver: share x86/linux tdesc caching
This commit builds on the previous series of commits to share the
target description caching code between GDB and gdbserver for
x86/Linux targets.
The objective of this commit is to move the four functions (2 each of)
i386_linux_read_description and amd64_linux_read_description into the
gdb/arch/ directory and combine them so we have just a single copy of
each. Then GDB, gdbserver, and the in-process-agent (IPA) will link
against these shared functions.
One curiosity with this patch is the function
x86_linux_post_init_tdesc. On the gdbserver side the two functions
amd64_linux_read_description and i386_linux_read_description have some
functionality that is not present on the GDB side, there is some
additional configuration that is performed as each target description
is created, to setup the expedited registers.
To support this I've added the function x86_linux_post_init_tdesc.
This function is called from the two *_linux_read_description
functions, but is implemented separately for GDB and gdbserver.
An alternative approach that avoids adding x86_linux_post_init_tdesc
would be to have x86_linux_tdesc_for_tid return a non-const target
description, then in x86_target::low_arch_setup we could inspect the
target description to figure out if it is 64-bit or not, and modify
the target description as needed. In the end I think that adding the
x86_linux_post_init_tdesc function is the simpler solution.
The contents of gdbserver/linux-x86-low.cc have moved to
gdb/arch/x86-linux-tdesc-features.c, and gdbserver/linux-x86-tdesc.h
has moved to gdb/arch/x86-linux-tdesc-features.h, this change leads to
some updates in the #includes in the gdbserver/ directory.
This commit also changes how target descriptions are cached.
Previously both GDB and gdbserver used static C-style arrays to act as
the tdesc cache. This was fine, except for two problems. Either the
C-style arrays would need to be placed in x86-linux-tdesc-features.c,
which would allow us to use the x86_linux_*_tdesc_count_1() functions
to size the arrays for us, or we'd need to hard code the array sizes
using separate #defines, which we'd then have to keep in sync with the
rest of the code in x86-linux-tdesc-features.c.
Given both of these problems I decided a better solution would be to
just switch to using a std::unordered_map to act as the cache. This
will resize automatically, and we can use the xcr0 value as the key.
At first inspection, using xcr0 might seem to be a problem; after all
the {i386,amd64}_create_target_description functions take more than
just the xcr0 value. However, this patch is only for x86/Linux
targets, and for x86/Linux all of the other flags passed to the tdesc
creation functions have constant values and so are irrelevant when we
consider tdesc caching.
For testing I've done the following:
- Built on x86-64 GNU/Linux for all targets, and just for the native
target,
- Build on i386 GNU/Linux for all targets, and just for the native
target,
- Build on a 64-bit, non-x86 GNU/Linux for all targets, just for the
native target, and for targets x86_64-*-linux and i386-*-linux.
Approved-By: Felix Willgerodt <felix.willgerodt@intel.com>
|
||
|
|
cc59d02b90 |
gdbserver: update target description creation for x86/linux
This commit is part of a series which aims to share more of the target
description creation between GDB and gdbserver for x86/Linux.
After some refactoring earlier in this series the shared
x86_linux_tdesc_for_tid function was added into nat/x86-linux-tdesc.c.
However, this function still relies on amd64_linux_read_description
and i386_linux_read_description which are implemented separately for
both gdbserver and GDB. Given that at their core, all these functions
do is:
1. take an xcr0 value as input,
2. mask out some feature bits,
3. look for a cached pre-generated target description and return it
if found,
4. if no cached target description is found then call either
amd64_create_target_description or
i386_create_target_description to create a new target
description, which is then added to the cache. Return the newly
created target description.
The inner functions amd64_create_target_description and
i386_create_target_description are already shared between GDB and
gdbserver (in the gdb/arch/ directory), so the only thing that
the *_read_description functions really do is add the caching layer,
and it feels like this really could be shared.
However, we have a small problem.
Despite using the same {amd64,i386}_create_target_description
functions in both GDB and gdbserver to create the target descriptions,
on the gdbserver side we cache target descriptions based on a reduced
set of xcr0 feature bits.
What this means is that, in theory, different xcr0 values can map to
the same cache entry, which could result in the wrong target
description being used.
However, I'm not sure if this can actually happen in reality. Within
gdbserver we already split the target description cache based on i386,
amd64, and x32. I suspect within a given gdbserver session we'll only
see at most one target description for each of these.
The cache conflicting problem is caused by xcr0_to_tdesc_idx, which
maps an xcr0 value to a enum x86_linux_tdesc value, and there are only
7 usable values in enum x86_linux_tdesc.
In contrast, on the GDB side there are 64, 32, and 16 cache slots for
i386, amd64, and x32 respectively.
On the GDB side it is much more important to cache things correctly as
a single GDB session might connect to multiple different remote
targets, each of which might have slightly different x86
architectures.
And so, if we want to merge the target description caching between GDB
and gdbserver, then we need to first update gdbserver so that it
caches in the same way as GDB, that is, it needs to adopt a mechanism
that allows for the same number of cache slots of each of i386, amd64,
and x32. In this way, when the caching is shared, GDB's behaviour
will not change.
Unfortunately it's a little more complex than that due to the in
process agent (IPA).
When the IPA is in use, gdbserver sends a target description index to
the IPA, and the IPA uses this to find the correct target description
to use, the IPA having first generated every possible target
description.
Interestingly, there is certainly a bug here which results from only
having 7 values in enum x86_linux_tdesc. As multiple possible target
descriptions in gdbserver map to the same enum x86_linux_tdesc value,
then, when the enum x86_linux_tdesc value is sent to the IPA there is
no way for gdbserver to know that the IPA will select the correct
target description. This bug will get fixed by this commit.
** START OF AN ASIDE **
Back in the day I suspect this approach of sending a target
description index made perfect sense. However since this commit:
commit
|
||
|
|
bf616be991 |
gdb/gdbserver: share some code relating to target description creation
This commit is part of a series to share more of the x86 target
description creation code between GDB and gdbserver.
Unlike previous commits which were mostly refactoring, this commit is
the first that makes a real change, though that change should mostly
be for gdbserver; I've largely adopted the "GDB" way of doing things
for gdbserver, and this fixes a real gdbserver bug.
On a x86-64 Linux target, running the test:
gdb.server/connect-with-no-symbol-file.exp
results in two core files being created. Both of these core files are
from the inferior process, created after gdbserver has detached.
In this test a gdbserver process is started and then, after gdbserver
has started, but before GDB attaches, we either delete the inferior
executable, or change its permissions so it can't be read. Only after
doing this do we attempt to connect with GDB.
As GDB connects to gdbserver, gdbserver attempts to figure out the
target description so that it can send the description to GDB, this
involves a call to x86_linux_read_description.
In x86_linux_read_description one of the first things we do is try to
figure out if the process is 32-bit or 64-bit. To do this we look up
the executable via the thread-id, and then attempt to read the
architecture size from the executable. This isn't going to work if
the executable has been deleted, or is no longer readable.
And so, as we can't read the executable, we default to an i386 target
and use an i386 target description.
A consequence of using an i386 target description is that addresses
are assumed to be 32-bits. Here's an example session that shows the
problems this causes. This is run on an x86-64 machine, and the test
binary (xx.x) is a standard 64-bit x86-64 binary:
shell_1$ gdbserver --once localhost :54321 /tmp/xx.x
shell_2$ gdb -q
(gdb) set sysroot
(gdb) shell chmod 000 /tmp/xx.x
(gdb) target remote :54321
Remote debugging using :54321
warning: /tmp/xx.x: Permission denied.
0xf7fd3110 in ?? ()
(gdb) show architecture
The target architecture is set to "auto" (currently "i386").
(gdb) p/x $pc
$1 = 0xf7fd3110
(gdb) info proc mappings
process 2412639
Mapped address spaces:
Start Addr End Addr Size Offset Perms objfile
0x400000 0x401000 0x1000 0x0 r--p /tmp/xx.x
0x401000 0x402000 0x1000 0x1000 r-xp /tmp/xx.x
0x402000 0x403000 0x1000 0x2000 r--p /tmp/xx.x
0x403000 0x405000 0x2000 0x2000 rw-p /tmp/xx.x
0xf7fcb000 0xf7fcf000 0x4000 0x0 r--p [vvar]
0xf7fcf000 0xf7fd1000 0x2000 0x0 r-xp [vdso]
0xf7fd1000 0xf7fd3000 0x2000 0x0 r--p /usr/lib64/ld-2.30.so
0xf7fd3000 0xf7ff3000 0x20000 0x2000 r-xp /usr/lib64/ld-2.30.so
0xf7ff3000 0xf7ffb000 0x8000 0x22000 r--p /usr/lib64/ld-2.30.so
0xf7ffc000 0xf7ffe000 0x2000 0x2a000 rw-p /usr/lib64/ld-2.30.so
0xf7ffe000 0xf7fff000 0x1000 0x0 rw-p
0xfffda000 0xfffff000 0x25000 0x0 rw-p [stack]
0xff600000 0xff601000 0x1000 0x0 r-xp [vsyscall]
(gdb) info inferiors
Num Description Connection Executable
* 1 process 2412639 1 (remote :54321)
(gdb) shell cat /proc/2412639/maps
00400000-00401000 r--p 00000000 fd:03 45907133 /tmp/xx.x
00401000-00402000 r-xp 00001000 fd:03 45907133 /tmp/xx.x
00402000-00403000 r--p 00002000 fd:03 45907133 /tmp/xx.x
00403000-00405000 rw-p 00002000 fd:03 45907133 /tmp/xx.x
7ffff7fcb000-7ffff7fcf000 r--p 00000000 00:00 0 [vvar]
7ffff7fcf000-7ffff7fd1000 r-xp 00000000 00:00 0 [vdso]
7ffff7fd1000-7ffff7fd3000 r--p 00000000 fd:00 143904 /usr/lib64/ld-2.30.so
7ffff7fd3000-7ffff7ff3000 r-xp 00002000 fd:00 143904 /usr/lib64/ld-2.30.so
7ffff7ff3000-7ffff7ffb000 r--p 00022000 fd:00 143904 /usr/lib64/ld-2.30.so
7ffff7ffc000-7ffff7ffe000 rw-p 0002a000 fd:00 143904 /usr/lib64/ld-2.30.so
7ffff7ffe000-7ffff7fff000 rw-p 00000000 00:00 0
7ffffffda000-7ffffffff000 rw-p 00000000 00:00 0 [stack]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]
(gdb)
Notice the difference between the mappings reported via GDB and those
reported directly from the kernel via /proc/PID/maps, the addresses of
every mapping is clamped to 32-bits for GDB, while the kernel reports
real 64-bit addresses.
Notice also that the $pc value is a 32-bit value. It appears to be
within one of the mappings reported by GDB, but is outside any of the
mappings reported from the kernel.
And this is where the problem arises. When gdbserver detaches from
the inferior we pass the inferior the address from which it should
resume. Due to the 32/64 bit confusion we tell the inferior to resume
from the 32-bit $pc value, which is not within any valid mapping, and
so, as soon as the inferior resumes, it segfaults.
If we look at how GDB (not gdbserver) figures out its target
description then we see an interesting difference. GDB doesn't try to
read the executable. Instead GDB uses ptrace to query the thread's
state, and uses this to figure out the if the thread is 32 or 64 bit.
If we update gdbserver to do it the "GDB" way then the above problem
is resolved, gdbserver now sees the process as 64-bit, and when we
detach from the inferior we give it the correct 64-bit address, and
the inferior no longer segfaults.
Now, I could just update the gdbserver code, but better, I think, to
share one copy of the code between GDB and gdbserver in gdb/nat/.
That is what this commit does.
The cores of x86_linux_read_description from gdbserver and
x86_linux_nat_target::read_description from GDB are moved into a new
file gdb/nat/x86-linux-tdesc.c and combined into a single function
x86_linux_tdesc_for_tid which is called from each location.
This new function does things mostly the GDB way, some changes are
needed to allow for the sharing; we now take some pointers for where
the shared code can cache the xcr0 and xsave layout values.
Another thing to note about this commit is how the functions
i386_linux_read_description and amd64_linux_read_description are
handled. For now I've left these function as implemented separately
in GDB and gdbserver. I've moved the declarations of these functions
into gdb/arch/{i386,amd64}-linux-tdesc.h, but the implementations are
left where they are.
A later commit in this series will make these functions shared too,
but doing this is not trivial, so I've left that for a separate
commit. Merging the declarations as I've done here ensures that
everyone implements the function to the same API, and once these
functions are shared (in a later commit) we'll want a shared
declaration anyway.
Reviewed-By: Felix Willgerodt <felix.willgerodt@intel.com>
Acked-By: John Baldwin <jhb@FreeBSD.org>
|
||
|
|
18d4886c00 |
gdb/x86: move have_ptrace_getfpxregs global into gdb/nat directory
The have_ptrace_getfpxregs global tracks whether GDB or gdbserver is running on a kernel that supports the GETFPXREGS ptrace request. Currently this global is declared twice (once in GDB and once in gdbserver), I think it makes sense to move this global into the nat/ directory, and have a single declaration and definition. While moving this variable I have converted it to a tribool, as that was what it really was, if even used the same numbering as the tribool enum (-1, 0, 1). Where have_ptrace_getfpxregs was used I have updated in the obvious way. However, while making this change I noticed what I think is a bug in x86_linux_nat_target::read_description and x86_linux_read_description, both of these functions can be called multiple times, but in both cases we only end up calling i386_linux_read_description the first time through in the event that PTRACE_GETFPXREGS is not supported. This is because initially have_ptrace_getfpxregs will be TRIBOOL_UNKNOWN, but after the ptrace call fails we set have_ptrace_getfpxregs to TRIBOOL_FALSE. The next time we attempt to read the target description we'll skip the ptrace call, and so skip the call to i386_linux_read_description. I've not tried to address this preexisting bug in this commit, this is purely a refactor, there should be no user visible changes after this commit. In later commits I'll merge the gdbserver and GDB code together into the nat/ directory, and after that I'll try to address this bug. Reviewed-By: Felix Willgerodt <felix.willgerodt@intel.com> |
||
|
|
3d5394c501 |
gdbserver/x86: move no-xml code earlier in x86_linux_read_description
This commit is part of a series that aims to share more of the x86 target description reading/generation code between GDB and gdbserver. There are a huge number of similarities between the code in gdbserver's x86_linux_read_description function and GDB's x86_linux_nat_target::read_description function, and it is this similarity that I plan, in a later commit, to share between GDB and gdbserver. However, one thing that is different in x86_linux_read_description is the code inside the '!use_xml' block. This is the code that handles the case where gdbserver is not allowed to send an XML target description back to GDB. In this case gdbserver uses some predefined, fixed, target descriptions. First, it's worth noting that I suspect this code is not tested any more. I couldn't find anything in the testsuite that tries to disable XML target description support. And the idea of having a single "fixed" target description really doesn't work well when we think about all the various x86 extensions that exist. Part of me would like to rip out the no-xml support in gdbserver (at least for x86), and if a GDB connects that doesn't support XML target descriptions, gdbserver can just give an error and drop the connection. GDB has supported XML target descriptions for 16 years now, I think it would be reasonable for our shipped gdbserver to drop support for the old way of doing things. Anyway.... this commit doesn't do that. What I did notice was that, over time, the '!use_xml' block appears to have "drifted" within the x86_linux_read_description function; it's now not the first check we do. Instead we make some ptrace calls and return a target description generated based on the result of these ptrace calls. Surely it only makes sense to generate variable target descriptions if we can send these back to GDB? So in this commit I propose to move the '!use_xml' block earlier in the x86_linux_read_description function. The benefit of this is that this leaves the later half of x86_linux_read_description much more similar to the GDB function x86_linux_nat_target::read_description and sets us up for potentially sharing code between GDB and gdbserver in a later commit. Approved-By: John Baldwin <jhb@FreeBSD.org> Approved-By: Felix Willgerodt <felix.willgerodt@intel.com> |
||
|
|
8a29222b85 |
gdb/gdbserver: share I386_LINUX_XSAVE_XCR0_OFFSET definition
Share the definition of I386_LINUX_XSAVE_XCR0_OFFSET between GDB and gdbserver. This commit moves the definition into gdbsupport/x86-xstate.h, which allows the #define to be shared. There should be no user visible changes after this commit. Approved-By: Felix Willgerodt <felix.willgerodt@intel.com> |
||
|
|
0c58b372e0 |
gdbserver: convert have_ptrace_getregset to a tribool
Convert the have_ptrace_getregset global within gdbserver to a tribool. This brings the flag into alignment with the corresponding flag in GDB. The gdbserver have_ptrace_getregset variable is already used as a tribool, it just doesn't have the tribool type. In a future commit I plan to share more code between GDB and gdbserver, and having this variable be the same type in both code bases will make the sharing much easier. There should be no user visible changes after this commit. Approved-By: John Baldwin <jhb@FreeBSD.org> Reviewed-By: Felix Willgerodt <felix.willgerodt@intel.com> |
||
|
|
18d2988e5d |
gdb, gdbserver, gdbsupport: remove includes of early headers
Now that defs.h, server.h and common-defs.h are included via the `-include` option, it is no longer necessary for source files to include them. Remove all the inclusions of these files I could find. Update the generation scripts where relevant. Change-Id: Ia026cff269c1b7ae7386dd3619bc9bb6a5332837 Approved-By: Pedro Alves <pedro@palves.net> |
||
|
|
56f703d39d |
Revert "gdbserver: convert have_ptrace_getregset to a tribool"
This reverts commit
|
||
|
|
59b198a616 |
Revert "gdbserver/x86: move no-xml code earlier in x86_linux_read_description"
This reverts commit
|
||
|
|
f06daade43 |
Revert "gdb/gdbserver: share I386_LINUX_XSAVE_XCR0_OFFSET definition"
This reverts commit
|
||
|
|
49a7660fb5 |
Revert "gdb/gdbserver: share some code relating to target description creation"
This reverts commit
|
||
|
|
cba2791ca6 |
Revert "gdbserver: update target description creation for x86/linux"
This reverts commit
|
||
|
|
69324a74e3 |
Revert "gdb/gdbserver: share x86/linux tdesc caching"
This reverts commit
|
||
|
|
198ff6ff81 |
gdb/gdbserver: share x86/linux tdesc caching
This commit builds on the previous series of commits to share the target description caching code between GDB and gdbserver for x86/Linux targets. The objective of this commit is to move the four functions (2 each of) i386_linux_read_description and amd64_linux_read_description into gdb/nat/x86-linux-tdesc.c and combine them so we have just a single copy of each. Then both GDB and gdbserver will link against these shared functions. It is worth reading the description of the previous commit to see why this merging is not as simple as it seems: on the gdbserver side we actually have two users of these functions, gdbserver itself, and the in process agent (IPA). However, the previous commit streamlined the gdbserver code, and so now it is simple to move the two functions along with all their support functions from the gdbserver directory into the gdb/nat/ directory, and then GDB is fine to call these functions. One small curiosity with this patch is the function x86_linux_post_init_tdesc. On the gdbserver side the two functions amd64_linux_read_description and i386_linux_read_description have some functionality that is not present on the GDB side, that is some additional configuration that is performed as each target description is created to setup the expedited registers. To support this I've added the function x86_linux_post_init_tdesc. This function is called from the two *_linux_read_description functions, but is implemented separately for GDB and gdbserver. This does mean adding back some non-shared code when this whole series has been about sharing code, but now the only non-shared bit is the single line that is actually different between GDB and gdbserver, all the rest, which is identical, is now shared. I did need to add a new rule to the gdbserver Makefile, this is to allow the nat/x86-linux-tdesc.c file to be compiled for the IPA. Approved-By: John Baldwin <jhb@FreeBSD.org> |
||
|
|
61bb321605 |
gdbserver: update target description creation for x86/linux
This commit is part of a series which aims to share more of the target
description creation between GDB and gdbserver for x86/Linux.
After some refactoring, the previous commit actually started to share
some code, we added the shared x86_linux_tdesc_for_tid function into
nat/x86-linux-tdesc.c. However, this function still relies on
amd64_linux_read_description and i386_linux_read_description which are
implemented separately for both gdbserver and GDB. Given that at
their core, all these functions to is:
1. take an xcr0 value as input,
2. mask out some feature bits,
3. look for a cached pre-generated target description and return it
if found,
4. if no cached target description is found then call either
amd64_create_target_description or
i386_create_target_description to create a new target
description, which is then added to the cache. Return the newly
created target description.
The inner functions amd64_create_target_description and
i386_create_target_description are already shared between GDB and
gdbserver (in the gdb/arch/ directory), so the only thing that
the *_read_description functions really do is add the caching layer,
and it feels like this really could be shared.
However, we have a small problem.
On the GDB side we create target descriptions using a different set of
cpu features than on the gdbserver side! This means that for the
exact same target, we might get a different target description when
using native GDB vs using gdbserver. This surely feels like a
mistake, I would expect to get the same target description on each.
The table below shows the number of possible different target
descriptions that we can create on the GDB side vs on the gdbserver
side for each target type:
| GDB | gdbserver
------|-----|----------
i386 | 64 | 7
amd64 | 32 | 7
x32 | 16 | 7
So in theory, all I want to do is move the GDB version
of *_read_description into the nat/ directory and have gdbserver use
that, then both GDB and gdbserver would be able to create any of the
possible target descriptions.
Unfortunately it's a little more complex than that due to the in
process agent (IPA).
When the IPA is in use, gdbserver sends a target description index to
the IPA, and the IPA uses this to find the correct target description
to use.
** START OF AN ASIDE **
Back in the day I suspect this approach made perfect sense. However
since this commit:
commit
|
||
|
|
cd9b374ffe |
gdb/gdbserver: share some code relating to target description creation
This commit is part of a series to share more of the x86 target
description creation code between GDB and gdbserver.
Unlike previous commits which were mostly refactoring, this commit is
the first that makes a real change, though that change should mostly
be for gdbserver; I've largely adopted the "GDB" way of doing things
for gdbserver, and this fixes a real gdbserver bug.
On a x86-64 Linux target, running the test:
gdb.server/connect-with-no-symbol-file.exp
results in two core files being created. Both of these core files are
from the inferior process, created after gdbserver has detached.
In this test a gdbserver process is started and then, after gdbserver
has started, but before GDB attaches, we either delete the inferior
executable, or change its permissions so it can't be read. Only after
doing this do we attempt to connect with GDB.
As GDB connects to gdbserver, gdbserver attempts to figure out the
target description so that it can send the description to GDB, this
involves a call to x86_linux_read_description.
In x86_linux_read_description one of the first things we do is try to
figure out if the process is 32-bit or 64-bit. To do this we look up
the executable via the thread-id, and then attempt to read the
architecture size from the executable. This isn't going to work if
the executable has been deleted, or is no longer readable.
And so, as we can't read the executable, we default to an i386 target
and use an i386 target description.
A consequence of using an i386 target description is that addresses
are assumed to be 32-bits. Here's an example session that shows the
problems this causes. This is run on an x86-64 machine, and the test
binary (xx.x) is a standard 64-bit x86-64 binary:
shell_1$ gdbserver --once localhost :54321 /tmp/xx.x
shell_2$ gdb -q
(gdb) set sysroot
(gdb) shell chmod 000 /tmp/xx.x
(gdb) target remote :54321
Remote debugging using :54321
warning: /tmp/xx.x: Permission denied.
0xf7fd3110 in ?? ()
(gdb) show architecture
The target architecture is set to "auto" (currently "i386").
(gdb) p/x $pc
$1 = 0xf7fd3110
(gdb) info proc mappings
process 2412639
Mapped address spaces:
Start Addr End Addr Size Offset Perms objfile
0x400000 0x401000 0x1000 0x0 r--p /tmp/xx.x
0x401000 0x402000 0x1000 0x1000 r-xp /tmp/xx.x
0x402000 0x403000 0x1000 0x2000 r--p /tmp/xx.x
0x403000 0x405000 0x2000 0x2000 rw-p /tmp/xx.x
0xf7fcb000 0xf7fcf000 0x4000 0x0 r--p [vvar]
0xf7fcf000 0xf7fd1000 0x2000 0x0 r-xp [vdso]
0xf7fd1000 0xf7fd3000 0x2000 0x0 r--p /usr/lib64/ld-2.30.so
0xf7fd3000 0xf7ff3000 0x20000 0x2000 r-xp /usr/lib64/ld-2.30.so
0xf7ff3000 0xf7ffb000 0x8000 0x22000 r--p /usr/lib64/ld-2.30.so
0xf7ffc000 0xf7ffe000 0x2000 0x2a000 rw-p /usr/lib64/ld-2.30.so
0xf7ffe000 0xf7fff000 0x1000 0x0 rw-p
0xfffda000 0xfffff000 0x25000 0x0 rw-p [stack]
0xff600000 0xff601000 0x1000 0x0 r-xp [vsyscall]
(gdb) info inferiors
Num Description Connection Executable
* 1 process 2412639 1 (remote :54321)
(gdb) shell cat /proc/2412639/maps
00400000-00401000 r--p 00000000 fd:03 45907133 /tmp/xx.x
00401000-00402000 r-xp 00001000 fd:03 45907133 /tmp/xx.x
00402000-00403000 r--p 00002000 fd:03 45907133 /tmp/xx.x
00403000-00405000 rw-p 00002000 fd:03 45907133 /tmp/xx.x
7ffff7fcb000-7ffff7fcf000 r--p 00000000 00:00 0 [vvar]
7ffff7fcf000-7ffff7fd1000 r-xp 00000000 00:00 0 [vdso]
7ffff7fd1000-7ffff7fd3000 r--p 00000000 fd:00 143904 /usr/lib64/ld-2.30.so
7ffff7fd3000-7ffff7ff3000 r-xp 00002000 fd:00 143904 /usr/lib64/ld-2.30.so
7ffff7ff3000-7ffff7ffb000 r--p 00022000 fd:00 143904 /usr/lib64/ld-2.30.so
7ffff7ffc000-7ffff7ffe000 rw-p 0002a000 fd:00 143904 /usr/lib64/ld-2.30.so
7ffff7ffe000-7ffff7fff000 rw-p 00000000 00:00 0
7ffffffda000-7ffffffff000 rw-p 00000000 00:00 0 [stack]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]
(gdb)
Notice the difference between the mappings reported via GDB and those
reported directly from the kernel via /proc/PID/maps, the addresses of
every mapping is clamped to 32-bits for GDB, while the kernel reports
real 64-bit addresses.
Notice also that the $pc value is a 32-bit value. It appears to be
within one of the mappings reported by GDB, but is outside any of the
mappings reported from the kernel.
And this is where the problem arises. When gdbserver detaches from
the inferior we pass the inferior the address from which it should
resume. Due to the 32/64 bit confusion we tell the inferior to resume
from the 32-bit $pc value, which is not within any valid mapping, and
so, as soon as the inferior resumes, it segfaults.
If we look at how GDB (not gdbserver) figures out its target
description then we see an interesting difference. GDB doesn't try to
read the executable. Instead GDB uses ptrace to query the thread's
state, and uses this to figure out the if the thread is 32 or 64 bit.
If we update gdbserver to do it the "GDB" way then the above problem
is resolved, gdbserver now sees the process as 64-bit, and when we
detach from the inferior we give it the correct 64-bit address, and
the inferior no longer segfaults.
Now, I could just update the gdbserver code, but better, I think, to
share one copy of the code between GDB and gdbserver in gdb/nat/.
That is what this commit does.
The cores of x86_linux_read_description from gdbserver and
x86_linux_nat_target::read_description from GDB are moved into a new
file gdb/nat/x86-linux-tdesc.c and combined into a single function
x86_linux_tdesc_for_tid which is called from each location.
This new function does things the GDB way, the only changes are to
allow for the sharing; we now have a callback function to call the
first time that the xcr0 state is read, this allows for GDB and
gdbserver to perform their own initialisation as needed, and
additionally, the new function takes a pointer for where to cache the
xcr0 value, this isn't needed for this commit, but will be useful in a
later commit where gdbserver will want to read this cached xcr0
value.
Another thing to note about this commit is how the functions
i386_linux_read_description and amd64_linux_read_description are
handled. For now I've left these function as implemented separately
in GDB and gdbserver. I've moved the declarations of these functions
into gdb/nat/x86-linux-tdesc.h, but the implementations are left as
separate.
A later commit in this series will make these functions shared too,
but doing this is not trivial, so I've left that for a separate
commit. Merging the declarations as I've done here ensures that
everyone implements the function to the same API, and once these
functions are shared (in a later commit) we'll want a shared
declaration anyway.
Approved-By: John Baldwin <jhb@FreeBSD.org>
|
||
|
|
7816b81e9b |
gdb/gdbserver: share I386_LINUX_XSAVE_XCR0_OFFSET definition
Share the definition of I386_LINUX_XSAVE_XCR0_OFFSET between GDB and gdbserver. This commit is part of a series that aims to share more of the x86 target description creation code between GDB and gdbserver. The I386_LINUX_XSAVE_XCR0_OFFSET #define is used as part of the target description creation, and I noticed that this constant is defined separately for GDB and gdbserver. This commit moves the definition into gdb/nat/x86-linux.h, which allows the #define to be shared. There should be no user visible changes after this commit. Approved-By: John Baldwin <jhb@FreeBSD.org> |
||
|
|
0a7bb97ad2 |
gdbserver/x86: move no-xml code earlier in x86_linux_read_description
This commit is part of a series that aims to share more of the x86 target description reading/generation code between GDB and gdbserver. There are a huge number of similarities between the code in gdbserver's x86_linux_read_description function and GDB's x86_linux_nat_target::read_description function, and it is this similarity that I plan, in a later commit, to share between GDB and gdbserver. However, one thing that is different in x86_linux_read_description is the code inside the '!use_xml' block. This is the code that handles the case where gdbserver is not allowed to send an XML target description back to GDB. In this case gdbserver uses some predefined, fixed, target descriptions. First, it's worth noting that I suspect this code is not tested any more. I couldn't find anything in the testsuite that tries to disable XML target description support. And the idea of having a single "fixed" target description really doesn't work well when we think about all the various x86 extensions that exist. Part of me would like to rip out the no-xml support in gdbserver (at least for x86), and if a GDB connects that doesn't support XML target descriptions, gdbserver can just give an error and drop the connection. GDB has supported XML target descriptions for 16 years now, I think it would be reasonable for our shipped gdbserver to drop support for the old way of doing things. Anyway.... this commit doesn't do that. What I did notice was that, over time, the '!use_xml' block appears to have "drifted" within the x86_linux_read_description function; it's now not the first check we do. Instead we make some ptrace calls and return a target description generated based on the result of these ptrace calls. Surely it only makes sense to generate variable target descriptions if we can send these back to GDB? So in this commit I propose to move the '!use_xml' block earlier in the x86_linux_read_description function. The benefit of this is that this leaves the later half of x86_linux_read_description much more similar to the GDB function x86_linux_nat_target::read_description and sets us up for potentially sharing code between GDB and gdbserver in a later commit. Approved-By: John Baldwin <jhb@FreeBSD.org> |
||
|
|
5920765d75 |
gdbserver: convert have_ptrace_getregset to a tribool
Convert the have_ptrace_getregset global within gdbserver to a tribool. This brings the flag into alignment with the corresponding flag in GDB. The gdbserver have_ptrace_getregset variable is already used as a tribool, it just doesn't have the tribool type. In a future commit I plan to share more code between GDB and gdbserver, and having this variable be the same type in both code bases will make the sharing much easier. There should be no user visible changes after this commit. Approved-By: John Baldwin <jhb@FreeBSD.org> |
||
|
|
4bb20a6244 |
gdbserver: Clear X86_XSTATE_MPX bits in xcr0 on x32
Since MPX isn't available for x32, we should clear X86_XSTATE_MPX bits on x32. PR server/31511 * linux-x86-low.cc (x86_linux_read_description): Clear X86_XSTATE_MPX bits in xcr0 on x32. Reviewed-by: Felix Willgerodt <felix.willgerodt@intel.com> |
||
|
|
1d506c26d9 |
Update copyright year range in header of all files managed by GDB
This commit is the result of the following actions:
- Running gdb/copyright.py to update all of the copyright headers to
include 2024,
- Manually updating a few files the copyright.py script told me to
update, these files had copyright headers embedded within the
file,
- Regenerating gdbsupport/Makefile.in to refresh it's copyright
date,
- Using grep to find other files that still mentioned 2023. If
these files were updated last year from 2022 to 2023 then I've
updated them this year to 2024.
I'm sure I've probably missed some dates. Feel free to fix them up as
you spot them.
|
||
|
|
03e6fe7e0a |
gdbserver: Add a function to set the XSAVE mask and size.
Make x86_xcr0 private to i387-fp.cc and use i387_set_xsave_mask to set the value instead. Add a static global instance of x86_xsave_layout and initialize it in the new function as well to be used in a future commit to parse XSAVE extended state regions. Update the Linux port to use this function rather than setting x86_xcr0 directly. In the case that XML is not supported, don't bother setting x86_xcr0 to the default value but just omit the call to i387_set_xsave_mask as i387-fp.cc defaults to the SSE case used for non-XML. In addition, use x86_xsave_length to determine the size of the XSAVE register set via CPUID. Approved-By: Simon Marchi <simon.marchi@efficios.com> |
||
|
|
213516ef31 |
Update copyright year range in header of all files managed by GDB
This commit is the result of running the gdb/copyright.py script, which automated the update of the copyright year range for all source files managed by the GDB project to be updated to include year 2023. |
||
|
|
5e219e0f46 |
gdbserver/linux-x86: move lwp declaration out of __x86_64__ region
Commit
|
||
|
|
4855cbdc3d |
gdbserver/linux-x86: make is_64bit_tdesc accept thread as a parameter
ps_get_thread_area receives as a parameter the lwpid it must work on. It then calls is_64bit_tdesc, which uses the current_thread as the thread to work on. However, it is not said that both are the same. This became a problem when working in a following patch that makes find_one_thread switch to a process but to no thread (current_thread == nullptr). When libthread_db needed to get the thread area, is_64bit_tdesc would try to get the regcache of a nullptr thread. Fix that by making is_64bit_tdesc accept the thread to work on as a parameter. Find the right thread from the context, when possible (when we know the lwpid to work on). Otherwise, pass "current_thread", to retain the existing behavior. Reviewed-By: Andrew Burgess <aburgess@redhat.com> Change-Id: I44394d6be92392fa28de71982fd04517ce8a3007 |
||
|
|
c058728c31 |
gdbserver: introduce threads_debug_printf, THREADS_SCOPED_DEBUG_ENTER_EXIT
Add the threads_debug_printf and THREADS_SCOPED_DEBUG_ENTER_EXIT, which use the logging infrastructure from gdbsupport/common-debug.h. Replace all debug_print uses that are predicated by debug_threads with threads_dethreads_debug_printf. Replace uses of the debug_enter and debug_exit macros with THREADS_SCOPED_DEBUG_ENTER_EXIT, which serves essentially the same purpose, but allows showing what comes between the enter and the exit in an indented form. Note that "threads" debug is currently used for a bit of everything in GDBserver, not only threads related stuff. It should ideally be cleaned up and separated logically as is done in GDB, but that's out of the scope of this patch. Change-Id: I2d4546464462cb4c16f7f1168c5cec5a89f2289a |
||
|
|
4a94e36819 |
Automatic Copyright Year update after running gdb/copyright.py
This commit brings all the changes made by running gdb/copyright.py as per GDB's Start of New Year Procedure. For the avoidance of doubt, all changes in this commits were performed by the script. |
||
|
|
24583e45ef |
gdbserver: replace direct assignments to current_thread
Replace the direct assignments to current_thread with switch_to_thread. Use scoped_restore_current_thread when appropriate. There is one instance remaining in linux-low.cc's wait_for_sigstop. This will be handled in a separate patch. Regression-tested on X86-64 Linux using the native-gdbserver and native-extended-gdbserver board files. |
||
|
|
6bd434d6ca |
gdb: make some variables static
I'm trying to enable clang's -Wmissing-variable-declarations warning. This patch fixes all the obvious spots where we can simply add "static" (at least, found when building on x86-64 Linux). gdb/ChangeLog: * aarch64-linux-tdep.c (aarch64_linux_record_tdep): Make static. * aarch64-tdep.c (tdesc_aarch64_list, aarch64_prologue_unwind, aarch64_stub_unwind, aarch64_normal_base, ): Make static. * arm-linux-tdep.c (arm_prologue_unwind): Make static. * arm-tdep.c (struct frame_unwind): Make static. * auto-load.c (auto_load_safe_path_vec): Make static. * csky-tdep.c (csky_stub_unwind): Make static. * gdbarch.c (gdbarch_data_registry): Make static. * gnu-v2-abi.c (gnu_v2_abi_ops): Make static. * i386-netbsd-tdep.c (i386nbsd_mc_reg_offset): Make static. * i386-tdep.c (i386_frame_setup_skip_insns, i386_tramp_chain_in_reg_insns, i386_tramp_chain_on_stack_insns): Make static. * infrun.c (observer_mode): Make static. * linux-nat.c (sigchld_action): Make static. * linux-thread-db.c (thread_db_list): Make static. * maint-test-options.c (maintenance_test_options_list): * mep-tdep.c (mep_csr_registers): Make static. * mi/mi-cmds.c (struct mi_cmd_stats): Remove struct type name. (stats): Make static. * nat/linux-osdata.c (struct osdata_type): Make static. * ppc-netbsd-tdep.c (ppcnbsd_reg_offsets): Make static. * progspace.c (last_program_space_num): Make static. * python/py-param.c (struct parm_constant): Remove struct type name. (parm_constants): Make static. * python/py-record-btrace.c (btpy_list_methods): Make static. * python/py-record.c (recpy_gap_type): Make static. * record.c (record_goto_cmdlist): Make static. * regcache.c (regcache_descr_handle): Make static. * registry.h (DEFINE_REGISTRY): Make definition static. * symmisc.c (std_in, std_out, std_err): Make static. * top.c (previous_saved_command_line): Make static. * tracepoint.c (trace_user, trace_notes, trace_stop_notes): Make static. * unittests/command-def-selftests.c (nr_duplicates, nr_invalid_prefixcmd, lists): Make static. * unittests/observable-selftests.c (test_notification): Make static. * unittests/optional/assignment/1.cc (counter): Make static. * unittests/optional/assignment/2.cc (counter): Make static. * unittests/optional/assignment/3.cc (counter): Make static. * unittests/optional/assignment/4.cc (counter): Make static. * unittests/optional/assignment/5.cc (counter): Make static. * unittests/optional/assignment/6.cc (counter): Make static. gdbserver/ChangeLog: * ax.cc (bytecode_address_table): Make static. * debug.cc (debug_file): Make static. * linux-low.cc (stopping_threads): Make static. (step_over_bkpt): Make static. * linux-x86-low.cc (amd64_emit_ops, i386_emit_ops): Make static. * tracepoint.cc (stop_tracing_bkpt, flush_trace_buffer_bkpt, alloced_trace_state_variables, trace_buffer_ctrl, tracing_start_time, tracing_stop_time, tracing_user_name, tracing_notes, tracing_stop_note): Make static. Change-Id: Ic1d8034723b7802502bda23770893be2338ab020 |
||
|
|
037e8112b9 |
[gdb/server] Don't overwrite fs/gs_base with -m32
Consider a minimal test-case test.c:
...
int main (void) { return 0; }
...
compiled with -m32:
...
$ gcc test.c -m32
...
When running the exec using gdbserver on openSUSE Factory (currently running a
linux kernel version 5.10.5):
...
$ gdbserver localhost:12345 a.out
...
to which we connect in a gdb session, we run into a segfault in the inferior:
...
$ gdb -batch -q -ex "target remote localhost:12345" -ex continue
Program received signal SIGSEGV, Segmentation fault.
0xf7dd8bd2 in init_cacheinfo () at ../sysdeps/x86/cacheinfo.c:761
...
The segfault is caused by gdbserver overwriting $gs_base with 0 using
PTRACE_SETREGS. After it is overwritten, the next use of $gs in the inferior
will trigger the segfault.
Before linux kernel version 5.9, the value used by PTRACE_SETREGS for $gs_base
was ignored, but starting version 5.9, the linux kernel has support for
intel architecture extension FSGSBASE, which allows users to modify $gs_base,
and consequently PTRACE_SETREGS can no longer ignore the $gs_base value.
The overwrite of $gs_base with 0 is done by a memset in x86_fill_gregset,
which was added in commit
|
||
|
|
3666a04883 |
Update copyright year range in all GDB files
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
|
||
|
|
dda83cd783 |
gdb, gdbserver, gdbsupport: fix leading space vs tabs issues
Many spots incorrectly use only spaces for indentation (for example, there are a lot of spots in ada-lang.c). I've always found it awkward when I needed to edit one of these spots: do I keep the original wrong indentation, or do I fix it? What if the lines around it are also wrong, do I fix them too? I probably don't want to fix them in the same patch, to avoid adding noise to my patch. So I propose to fix as much as possible once and for all (hopefully). One typical counter argument for this is that it makes code archeology more difficult, because git-blame will show this commit as the last change for these lines. My counter counter argument is: when git-blaming, you often need to do "blame the file at the parent commit" anyway, to go past some other refactor that touched the line you are interested in, but is not the change you are looking for. So you already need a somewhat efficient way to do this. Using some interactive tool, rather than plain git-blame, makes this trivial. For example, I use "tig blame <file>", where going back past the commit that changed the currently selected line is one keystroke. It looks like Magit in Emacs does it too (though I've never used it). Web viewers of Github and Gitlab do it too. My point is that it won't really make archeology more difficult. The other typical counter argument is that it will cause conflicts with existing patches. That's true... but it's a one time cost, and those are not conflicts that are difficult to resolve. I have also tried "git rebase --ignore-whitespace", it seems to work well. Although that will re-introduce the faulty indentation, so one needs to take care of fixing the indentation in the patch after that (which is easy). gdb/ChangeLog: * aarch64-linux-tdep.c: Fix indentation. * aarch64-ravenscar-thread.c: Fix indentation. * aarch64-tdep.c: Fix indentation. * aarch64-tdep.h: Fix indentation. * ada-lang.c: Fix indentation. * ada-lang.h: Fix indentation. * ada-tasks.c: Fix indentation. * ada-typeprint.c: Fix indentation. * ada-valprint.c: Fix indentation. * ada-varobj.c: Fix indentation. * addrmap.c: Fix indentation. * addrmap.h: Fix indentation. * agent.c: Fix indentation. * aix-thread.c: Fix indentation. * alpha-bsd-nat.c: Fix indentation. * alpha-linux-tdep.c: Fix indentation. * alpha-mdebug-tdep.c: Fix indentation. * alpha-nbsd-tdep.c: Fix indentation. * alpha-obsd-tdep.c: Fix indentation. * alpha-tdep.c: Fix indentation. * amd64-bsd-nat.c: Fix indentation. * amd64-darwin-tdep.c: Fix indentation. * amd64-linux-nat.c: Fix indentation. * amd64-linux-tdep.c: Fix indentation. * amd64-nat.c: Fix indentation. * amd64-obsd-tdep.c: Fix indentation. * amd64-tdep.c: Fix indentation. * amd64-windows-tdep.c: Fix indentation. * annotate.c: Fix indentation. * arc-tdep.c: Fix indentation. * arch-utils.c: Fix indentation. * arch/arm-get-next-pcs.c: Fix indentation. * arch/arm.c: Fix indentation. * arm-linux-nat.c: Fix indentation. * arm-linux-tdep.c: Fix indentation. * arm-nbsd-tdep.c: Fix indentation. * arm-pikeos-tdep.c: Fix indentation. * arm-tdep.c: Fix indentation. * arm-tdep.h: Fix indentation. * arm-wince-tdep.c: Fix indentation. * auto-load.c: Fix indentation. * auxv.c: Fix indentation. * avr-tdep.c: Fix indentation. * ax-gdb.c: Fix indentation. * ax-general.c: Fix indentation. * bfin-linux-tdep.c: Fix indentation. * block.c: Fix indentation. * block.h: Fix indentation. * blockframe.c: Fix indentation. * bpf-tdep.c: Fix indentation. * break-catch-sig.c: Fix indentation. * break-catch-syscall.c: Fix indentation. * break-catch-throw.c: Fix indentation. * breakpoint.c: Fix indentation. * breakpoint.h: Fix indentation. * bsd-uthread.c: Fix indentation. * btrace.c: Fix indentation. * build-id.c: Fix indentation. * buildsym-legacy.h: Fix indentation. * buildsym.c: Fix indentation. * c-typeprint.c: Fix indentation. * c-valprint.c: Fix indentation. * c-varobj.c: Fix indentation. * charset.c: Fix indentation. * cli/cli-cmds.c: Fix indentation. * cli/cli-decode.c: Fix indentation. * cli/cli-decode.h: Fix indentation. * cli/cli-script.c: Fix indentation. * cli/cli-setshow.c: Fix indentation. * coff-pe-read.c: Fix indentation. * coffread.c: Fix indentation. * compile/compile-cplus-types.c: Fix indentation. * compile/compile-object-load.c: Fix indentation. * compile/compile-object-run.c: Fix indentation. * completer.c: Fix indentation. * corefile.c: Fix indentation. * corelow.c: Fix indentation. * cp-abi.h: Fix indentation. * cp-namespace.c: Fix indentation. * cp-support.c: Fix indentation. * cp-valprint.c: Fix indentation. * cris-linux-tdep.c: Fix indentation. * cris-tdep.c: Fix indentation. * darwin-nat-info.c: Fix indentation. * darwin-nat.c: Fix indentation. * darwin-nat.h: Fix indentation. * dbxread.c: Fix indentation. * dcache.c: Fix indentation. * disasm.c: Fix indentation. * dtrace-probe.c: Fix indentation. * dwarf2/abbrev.c: Fix indentation. * dwarf2/attribute.c: Fix indentation. * dwarf2/expr.c: Fix indentation. * dwarf2/frame.c: Fix indentation. * dwarf2/index-cache.c: Fix indentation. * dwarf2/index-write.c: Fix indentation. * dwarf2/line-header.c: Fix indentation. * dwarf2/loc.c: Fix indentation. * dwarf2/macro.c: Fix indentation. * dwarf2/read.c: Fix indentation. * dwarf2/read.h: Fix indentation. * elfread.c: Fix indentation. * eval.c: Fix indentation. * event-top.c: Fix indentation. * exec.c: Fix indentation. * exec.h: Fix indentation. * expprint.c: Fix indentation. * f-lang.c: Fix indentation. * f-typeprint.c: Fix indentation. * f-valprint.c: Fix indentation. * fbsd-nat.c: Fix indentation. * fbsd-tdep.c: Fix indentation. * findvar.c: Fix indentation. * fork-child.c: Fix indentation. * frame-unwind.c: Fix indentation. * frame-unwind.h: Fix indentation. * frame.c: Fix indentation. * frv-linux-tdep.c: Fix indentation. * frv-tdep.c: Fix indentation. * frv-tdep.h: Fix indentation. * ft32-tdep.c: Fix indentation. * gcore.c: Fix indentation. * gdb_bfd.c: Fix indentation. * gdbarch.sh: Fix indentation. * gdbarch.c: Re-generate * gdbarch.h: Re-generate. * gdbcore.h: Fix indentation. * gdbthread.h: Fix indentation. * gdbtypes.c: Fix indentation. * gdbtypes.h: Fix indentation. * glibc-tdep.c: Fix indentation. * gnu-nat.c: Fix indentation. * gnu-nat.h: Fix indentation. * gnu-v2-abi.c: Fix indentation. * gnu-v3-abi.c: Fix indentation. * go32-nat.c: Fix indentation. * guile/guile-internal.h: Fix indentation. * guile/scm-cmd.c: Fix indentation. * guile/scm-frame.c: Fix indentation. * guile/scm-iterator.c: Fix indentation. * guile/scm-math.c: Fix indentation. * guile/scm-ports.c: Fix indentation. * guile/scm-pretty-print.c: Fix indentation. * guile/scm-value.c: Fix indentation. * h8300-tdep.c: Fix indentation. * hppa-linux-nat.c: Fix indentation. * hppa-linux-tdep.c: Fix indentation. * hppa-nbsd-nat.c: Fix indentation. * hppa-nbsd-tdep.c: Fix indentation. * hppa-obsd-nat.c: Fix indentation. * hppa-tdep.c: Fix indentation. * hppa-tdep.h: Fix indentation. * i386-bsd-nat.c: Fix indentation. * i386-darwin-nat.c: Fix indentation. * i386-darwin-tdep.c: Fix indentation. * i386-dicos-tdep.c: Fix indentation. * i386-gnu-nat.c: Fix indentation. * i386-linux-nat.c: Fix indentation. * i386-linux-tdep.c: Fix indentation. * i386-nto-tdep.c: Fix indentation. * i386-obsd-tdep.c: Fix indentation. * i386-sol2-nat.c: Fix indentation. * i386-tdep.c: Fix indentation. * i386-tdep.h: Fix indentation. * i386-windows-tdep.c: Fix indentation. * i387-tdep.c: Fix indentation. * i387-tdep.h: Fix indentation. * ia64-libunwind-tdep.c: Fix indentation. * ia64-libunwind-tdep.h: Fix indentation. * ia64-linux-nat.c: Fix indentation. * ia64-linux-tdep.c: Fix indentation. * ia64-tdep.c: Fix indentation. * ia64-tdep.h: Fix indentation. * ia64-vms-tdep.c: Fix indentation. * infcall.c: Fix indentation. * infcmd.c: Fix indentation. * inferior.c: Fix indentation. * infrun.c: Fix indentation. * iq2000-tdep.c: Fix indentation. * language.c: Fix indentation. * linespec.c: Fix indentation. * linux-fork.c: Fix indentation. * linux-nat.c: Fix indentation. * linux-tdep.c: Fix indentation. * linux-thread-db.c: Fix indentation. * lm32-tdep.c: Fix indentation. * m2-lang.c: Fix indentation. * m2-typeprint.c: Fix indentation. * m2-valprint.c: Fix indentation. * m32c-tdep.c: Fix indentation. * m32r-linux-tdep.c: Fix indentation. * m32r-tdep.c: Fix indentation. * m68hc11-tdep.c: Fix indentation. * m68k-bsd-nat.c: Fix indentation. * m68k-linux-nat.c: Fix indentation. * m68k-linux-tdep.c: Fix indentation. * m68k-tdep.c: Fix indentation. * machoread.c: Fix indentation. * macrocmd.c: Fix indentation. * macroexp.c: Fix indentation. * macroscope.c: Fix indentation. * macrotab.c: Fix indentation. * macrotab.h: Fix indentation. * main.c: Fix indentation. * mdebugread.c: Fix indentation. * mep-tdep.c: Fix indentation. * mi/mi-cmd-catch.c: Fix indentation. * mi/mi-cmd-disas.c: Fix indentation. * mi/mi-cmd-env.c: Fix indentation. * mi/mi-cmd-stack.c: Fix indentation. * mi/mi-cmd-var.c: Fix indentation. * mi/mi-cmds.c: Fix indentation. * mi/mi-main.c: Fix indentation. * mi/mi-parse.c: Fix indentation. * microblaze-tdep.c: Fix indentation. * minidebug.c: Fix indentation. * minsyms.c: Fix indentation. * mips-linux-nat.c: Fix indentation. * mips-linux-tdep.c: Fix indentation. * mips-nbsd-tdep.c: Fix indentation. * mips-tdep.c: Fix indentation. * mn10300-linux-tdep.c: Fix indentation. * mn10300-tdep.c: Fix indentation. * moxie-tdep.c: Fix indentation. * msp430-tdep.c: Fix indentation. * namespace.h: Fix indentation. * nat/fork-inferior.c: Fix indentation. * nat/gdb_ptrace.h: Fix indentation. * nat/linux-namespaces.c: Fix indentation. * nat/linux-osdata.c: Fix indentation. * nat/netbsd-nat.c: Fix indentation. * nat/x86-dregs.c: Fix indentation. * nbsd-nat.c: Fix indentation. * nbsd-tdep.c: Fix indentation. * nios2-linux-tdep.c: Fix indentation. * nios2-tdep.c: Fix indentation. * nto-procfs.c: Fix indentation. * nto-tdep.c: Fix indentation. * objfiles.c: Fix indentation. * objfiles.h: Fix indentation. * opencl-lang.c: Fix indentation. * or1k-tdep.c: Fix indentation. * osabi.c: Fix indentation. * osabi.h: Fix indentation. * osdata.c: Fix indentation. * p-lang.c: Fix indentation. * p-typeprint.c: Fix indentation. * p-valprint.c: Fix indentation. * parse.c: Fix indentation. * ppc-linux-nat.c: Fix indentation. * ppc-linux-tdep.c: Fix indentation. * ppc-nbsd-nat.c: Fix indentation. * ppc-nbsd-tdep.c: Fix indentation. * ppc-obsd-nat.c: Fix indentation. * ppc-ravenscar-thread.c: Fix indentation. * ppc-sysv-tdep.c: Fix indentation. * ppc64-tdep.c: Fix indentation. * printcmd.c: Fix indentation. * proc-api.c: Fix indentation. * producer.c: Fix indentation. * producer.h: Fix indentation. * prologue-value.c: Fix indentation. * prologue-value.h: Fix indentation. * psymtab.c: Fix indentation. * python/py-arch.c: Fix indentation. * python/py-bpevent.c: Fix indentation. * python/py-event.c: Fix indentation. * python/py-event.h: Fix indentation. * python/py-finishbreakpoint.c: Fix indentation. * python/py-frame.c: Fix indentation. * python/py-framefilter.c: Fix indentation. * python/py-inferior.c: Fix indentation. * python/py-infthread.c: Fix indentation. * python/py-objfile.c: Fix indentation. * python/py-prettyprint.c: Fix indentation. * python/py-registers.c: Fix indentation. * python/py-signalevent.c: Fix indentation. * python/py-stopevent.c: Fix indentation. * python/py-stopevent.h: Fix indentation. * python/py-threadevent.c: Fix indentation. * python/py-tui.c: Fix indentation. * python/py-unwind.c: Fix indentation. * python/py-value.c: Fix indentation. * python/py-xmethods.c: Fix indentation. * python/python-internal.h: Fix indentation. * python/python.c: Fix indentation. * ravenscar-thread.c: Fix indentation. * record-btrace.c: Fix indentation. * record-full.c: Fix indentation. * record.c: Fix indentation. * reggroups.c: Fix indentation. * regset.h: Fix indentation. * remote-fileio.c: Fix indentation. * remote.c: Fix indentation. * reverse.c: Fix indentation. * riscv-linux-tdep.c: Fix indentation. * riscv-ravenscar-thread.c: Fix indentation. * riscv-tdep.c: Fix indentation. * rl78-tdep.c: Fix indentation. * rs6000-aix-tdep.c: Fix indentation. * rs6000-lynx178-tdep.c: Fix indentation. * rs6000-nat.c: Fix indentation. * rs6000-tdep.c: Fix indentation. * rust-lang.c: Fix indentation. * rx-tdep.c: Fix indentation. * s12z-tdep.c: Fix indentation. * s390-linux-tdep.c: Fix indentation. * score-tdep.c: Fix indentation. * ser-base.c: Fix indentation. * ser-mingw.c: Fix indentation. * ser-uds.c: Fix indentation. * ser-unix.c: Fix indentation. * serial.c: Fix indentation. * sh-linux-tdep.c: Fix indentation. * sh-nbsd-tdep.c: Fix indentation. * sh-tdep.c: Fix indentation. * skip.c: Fix indentation. * sol-thread.c: Fix indentation. * solib-aix.c: Fix indentation. * solib-darwin.c: Fix indentation. * solib-frv.c: Fix indentation. * solib-svr4.c: Fix indentation. * solib.c: Fix indentation. * source.c: Fix indentation. * sparc-linux-tdep.c: Fix indentation. * sparc-nbsd-tdep.c: Fix indentation. * sparc-obsd-tdep.c: Fix indentation. * sparc-ravenscar-thread.c: Fix indentation. * sparc-tdep.c: Fix indentation. * sparc64-linux-tdep.c: Fix indentation. * sparc64-nbsd-tdep.c: Fix indentation. * sparc64-obsd-tdep.c: Fix indentation. * sparc64-tdep.c: Fix indentation. * stabsread.c: Fix indentation. * stack.c: Fix indentation. * stap-probe.c: Fix indentation. * stubs/ia64vms-stub.c: Fix indentation. * stubs/m32r-stub.c: Fix indentation. * stubs/m68k-stub.c: Fix indentation. * stubs/sh-stub.c: Fix indentation. * stubs/sparc-stub.c: Fix indentation. * symfile-mem.c: Fix indentation. * symfile.c: Fix indentation. * symfile.h: Fix indentation. * symmisc.c: Fix indentation. * symtab.c: Fix indentation. * symtab.h: Fix indentation. * target-float.c: Fix indentation. * target.c: Fix indentation. * target.h: Fix indentation. * tic6x-tdep.c: Fix indentation. * tilegx-linux-tdep.c: Fix indentation. * tilegx-tdep.c: Fix indentation. * top.c: Fix indentation. * tracefile-tfile.c: Fix indentation. * tracepoint.c: Fix indentation. * tui/tui-disasm.c: Fix indentation. * tui/tui-io.c: Fix indentation. * tui/tui-regs.c: Fix indentation. * tui/tui-stack.c: Fix indentation. * tui/tui-win.c: Fix indentation. * tui/tui-winsource.c: Fix indentation. * tui/tui.c: Fix indentation. * typeprint.c: Fix indentation. * ui-out.h: Fix indentation. * unittests/copy_bitwise-selftests.c: Fix indentation. * unittests/memory-map-selftests.c: Fix indentation. * utils.c: Fix indentation. * v850-tdep.c: Fix indentation. * valarith.c: Fix indentation. * valops.c: Fix indentation. * valprint.c: Fix indentation. * valprint.h: Fix indentation. * value.c: Fix indentation. * value.h: Fix indentation. * varobj.c: Fix indentation. * vax-tdep.c: Fix indentation. * windows-nat.c: Fix indentation. * windows-tdep.c: Fix indentation. * xcoffread.c: Fix indentation. * xml-syscall.c: Fix indentation. * xml-tdesc.c: Fix indentation. * xstormy16-tdep.c: Fix indentation. * xtensa-config.c: Fix indentation. * xtensa-linux-nat.c: Fix indentation. * xtensa-linux-tdep.c: Fix indentation. * xtensa-tdep.c: Fix indentation. gdbserver/ChangeLog: * ax.cc: Fix indentation. * dll.cc: Fix indentation. * inferiors.h: Fix indentation. * linux-low.cc: Fix indentation. * linux-nios2-low.cc: Fix indentation. * linux-ppc-ipa.cc: Fix indentation. * linux-ppc-low.cc: Fix indentation. * linux-x86-low.cc: Fix indentation. * linux-xtensa-low.cc: Fix indentation. * regcache.cc: Fix indentation. * server.cc: Fix indentation. * tracepoint.cc: Fix indentation. gdbsupport/ChangeLog: * common-exceptions.h: Fix indentation. * event-loop.cc: Fix indentation. * fileio.cc: Fix indentation. * filestuff.cc: Fix indentation. * gdb-dlfcn.cc: Fix indentation. * gdb_string_view.h: Fix indentation. * job-control.cc: Fix indentation. * signals.cc: Fix indentation. Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695 |
||
|
|
51a948fdf0 |
gdb: Have allocate_target_description return a unique_ptr
Update allocate_target_description to return a target_desc_up, a specialisation of unique_ptr. This commit does not attempt to make use of the unique_ptr in the best possible way, in almost all cases we immediately release the pointer from within the unique_ptr and then continue as before. There are a few places where it was easy to handle the unique_ptr, and in these cases I've done that. Everything under gdb/features/* is auto-regenerated. There should be no user visible changes after this commit. gdb/ChangeLog: * arch/aarch32.c (aarch32_create_target_description): Release unique_ptr returned from allocate_target_description. * arch/aarch64.c (aarch64_create_target_description): Likewise. * arch/amd64.c (amd64_create_target_description): Likewise. * arch/arc.c (arc_create_target_description): Likewise. * arch/arm.c (arm_create_target_description): Likewise. * arch/i386.c (i386_create_target_description): Likewise. * arch/riscv.c (riscv_create_target_description): Update return type. Handle allocate_target_description returning a unique_ptr. (riscv_lookup_target_description): Update to handle unique_ptr. * arch/tic6x.c (tic6x_create_target_description): Release unique_ptr returned from allocate_target_description. * features/microblaze-with-stack-protect.c: Regenerate. * features/microblaze.c: Regenerate. * features/mips-dsp-linux.c: Regenerate. * features/mips-linux.c: Regenerate. * features/mips64-dsp-linux.c: Regenerate. * features/mips64-linux.c: Regenerate. * features/nds32.c: Regenerate. * features/nios2.c: Regenerate. * features/or1k.c: Regenerate. * features/rs6000/powerpc-32.c: Regenerate. * features/rs6000/powerpc-32l.c: Regenerate. * features/rs6000/powerpc-403.c: Regenerate. * features/rs6000/powerpc-403gc.c: Regenerate. * features/rs6000/powerpc-405.c: Regenerate. * features/rs6000/powerpc-505.c: Regenerate. * features/rs6000/powerpc-601.c: Regenerate. * features/rs6000/powerpc-602.c: Regenerate. * features/rs6000/powerpc-603.c: Regenerate. * features/rs6000/powerpc-604.c: Regenerate. * features/rs6000/powerpc-64.c: Regenerate. * features/rs6000/powerpc-64l.c: Regenerate. * features/rs6000/powerpc-7400.c: Regenerate. * features/rs6000/powerpc-750.c: Regenerate. * features/rs6000/powerpc-860.c: Regenerate. * features/rs6000/powerpc-altivec32.c: Regenerate. * features/rs6000/powerpc-altivec32l.c: Regenerate. * features/rs6000/powerpc-altivec64.c: Regenerate. * features/rs6000/powerpc-altivec64l.c: Regenerate. * features/rs6000/powerpc-e500.c: Regenerate. * features/rs6000/powerpc-e500l.c: Regenerate. * features/rs6000/powerpc-isa205-32l.c: Regenerate. * features/rs6000/powerpc-isa205-64l.c: Regenerate. * features/rs6000/powerpc-isa205-altivec32l.c: Regenerate. * features/rs6000/powerpc-isa205-altivec64l.c: Regenerate. * features/rs6000/powerpc-isa205-ppr-dscr-vsx32l.c: Regenerate. * features/rs6000/powerpc-isa205-ppr-dscr-vsx64l.c: Regenerate. * features/rs6000/powerpc-isa205-vsx32l.c: Regenerate. * features/rs6000/powerpc-isa205-vsx64l.c: Regenerate. * features/rs6000/powerpc-isa207-htm-vsx32l.c: Regenerate. * features/rs6000/powerpc-isa207-htm-vsx64l.c: Regenerate. * features/rs6000/powerpc-isa207-vsx32l.c: Regenerate. * features/rs6000/powerpc-isa207-vsx64l.c: Regenerate. * features/rs6000/powerpc-vsx32.c: Regenerate. * features/rs6000/powerpc-vsx32l.c: Regenerate. * features/rs6000/powerpc-vsx64.c: Regenerate. * features/rs6000/powerpc-vsx64l.c: Regenerate. * features/rs6000/rs6000.c: Regenerate. * features/rx.c: Regenerate. * features/s390-gs-linux64.c: Regenerate. * features/s390-linux32.c: Regenerate. * features/s390-linux32v1.c: Regenerate. * features/s390-linux32v2.c: Regenerate. * features/s390-linux64.c: Regenerate. * features/s390-linux64v1.c: Regenerate. * features/s390-linux64v2.c: Regenerate. * features/s390-te-linux64.c: Regenerate. * features/s390-tevx-linux64.c: Regenerate. * features/s390-vx-linux64.c: Regenerate. * features/s390x-gs-linux64.c: Regenerate. * features/s390x-linux64.c: Regenerate. * features/s390x-linux64v1.c: Regenerate. * features/s390x-linux64v2.c: Regenerate. * features/s390x-te-linux64.c: Regenerate. * features/s390x-tevx-linux64.c: Regenerate. * features/s390x-vx-linux64.c: Regenerate. * mips-tdep.c (_initialize_mips_tdep): Release unique_ptr returned from allocate_target_description. * target-descriptions.c (allocate_target_description): Update return type. (print_c_tdesc::visit_pre): Release unique_ptr returned from allocate_target_description. gdbserver/ChangeLog: * linux-low.cc (linux_process_target::handle_extended_wait): Release the unique_ptr returned from allocate_target_description. * linux-riscv-low.cc (riscv_target::low_arch_setup): Likewise. * linux-x86-low.cc (tdesc_amd64_linux_no_xml): Change type. (tdesc_i386_linux_no_xml): Change type. (x86_linux_read_description): Borrow pointer from unique_ptr object. (x86_target::get_ipa_tdesc_idx): Likewise. (initialize_low_arch): Likewise. * tdesc.cc (allocate_target_description): Update return type. gdbsupport/ChangeLog: * tdesc.h (allocate_target_description): Update return type. |
||
|
|
db92ac4568 |
Use arrays rather than pointers for global string constants
My understanding is that it's mildly better to use a static const array, as opposed to a "const char *", for a global string constant, when possible. This makes sense to me because the pointer requires a load from an address, whereas the array is just the address. So, I searched for these in gdb and gdbserver. This patch fixes the ones I found. gdb/ChangeLog 2020-09-15 Tom Tromey <tromey@adacore.com> * unittests/memory-map-selftests.c (valid_mem_map): Now array. * ui-style.c (ansi_regex_text): Now array. * rust-exp.y (number_regex_text): Now array. * linespec.c (linespec_quote_characters): Now array. * jit.c (jit_break_name, jit_descriptor_name, reader_init_fn_sym): Now arrays. gdbserver/ChangeLog 2020-09-15 Tom Tromey <tromey@adacore.com> * linux-x86-low.cc (xmltarget_i386_linux_no_xml) (xmltarget_amd64_linux_no_xml): Now arrays. |
||
|
|
b315b67d7a |
gdbserver: fix memory leak when handling qsupported packet
When building gdbserver with AddressSanitizer, I get this annoying
little leak when gdbserver exits:
==307817==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 14 byte(s) in 1 object(s) allocated from:
#0 0x7f7fd4256459 in __interceptor_malloc /build/gcc/src/gcc/libsanitizer/asan/asan_malloc_linux.cpp:145
#1 0x563bef981b80 in xmalloc /home/simark/src/binutils-gdb/gdbserver/../gdb/alloc.c:60
#2 0x563befb53301 in xstrdup /home/simark/src/binutils-gdb/libiberty/xstrdup.c:34
#3 0x563bef9d742b in handle_query /home/simark/src/binutils-gdb/gdbserver/server.cc:2286
#4 0x563bef9ed0b7 in process_serial_event /home/simark/src/binutils-gdb/gdbserver/server.cc:4061
#5 0x563bef9f1d9e in handle_serial_event(int, void*) /home/simark/src/binutils-gdb/gdbserver/server.cc:4402
#6 0x563befb0ec65 in handle_file_event /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:548
#7 0x563befb0f49f in gdb_wait_for_event /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:673
#8 0x563befb0d4a1 in gdb_do_one_event() /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:215
#9 0x563bef9e721a in start_event_loop /home/simark/src/binutils-gdb/gdbserver/server.cc:3484
#10 0x563bef9eb90a in captured_main /home/simark/src/binutils-gdb/gdbserver/server.cc:3875
#11 0x563bef9ec2c7 in main /home/simark/src/binutils-gdb/gdbserver/server.cc:3961
#12 0x7f7fd3330001 in __libc_start_main (/usr/lib/libc.so.6+0x27001)
SUMMARY: AddressSanitizer: 14 byte(s) leaked in 1 allocation(s).
This is due to the handling of unknown qsupported features in
handle_query. The `qsupported` vector is built, containing all the
feature names received from GDB. As we iterate on them, when we
encounter unknown ones, we move them at the beginning of the vector, in
preparation of passing this vector of unknown features down to the
target (which may know about them).
When moving these unknown features to other slots in the vector, we
overwrite other pointers without freeing them, which therefore leak.
An easy fix would be to add a `free` when doing the move. However, I
think this is a good opportunity to sprinkle a bit of automatic memory
management in this code.
So, use a vector of std::string which owns all the entries. And use a
separate vector (that doesn't own the entries) for the unknown ones,
which is then passed to target_process_qsupported.
Given that the `c_str` method of std::string returns a `const char *`,
it follows that process_stratum_target::process_qsupported must accept a
`const char **` instead of a `char **`. And while at it, change the
pointer + size paramters to use an array_view instead.
gdbserver/ChangeLog:
* server.cc (handle_query): Use std::vector of
std::string for `qsupported` vector. Use separate
vector for unknowns.
* target.h (class process_stratum_target) <process_qsupported>:
Change parameters to array_view of const char *.
(target_process_qsupported): Remove `count` parameter.
* target.cc (process_stratum_target::process_qsupported): Change
parameters to array_view of const char *.
* linux-x86-low.cc (class x86_target) <process_qsupported>:
Likewise.
Change-Id: I97f133825faa6d7abbf83a58504eb0ba77462812
|
||
|
|
1eb3991427 |
gdb, gdbserver: remove configure check for fs_base/gs_base in user_regs_struct
I recently stumbled on this code mentioning Linux kernel 2.6.25, and
thought it could be time for some spring cleaning (newer GDBs probably
don't need to supports 12-year old kernels). I then found that the
"legacy" case is probably broken anyway, which gives an even better
motivation for its removal.
In short, this patch removes the configure checks that check if
user_regs_struct contains the fs_base/gs_base fields and adjusts all
uses of the HAVE_STRUCT_USER_REGS_STRUCT_{FS,GS}_BASE macros. The
longer explanation/rationale follows.
Apparently, Linux kernels since 2.6.25 (that's from 2008) have been
reliably providing fs_base and gs_base as part of user_regs_struct.
Commit df5d438e33d7 in the Linux kernel [1] seems related. This means
that we can get these values by reading registers with PTRACE_GETREGS.
Previously, these values were obtained using a separate
PTRACE_ARCH_PRCTL ptrace call.
First, I'm not even sure the configure check was really right in the
first place.
The user_regs_struct used by GDB comes from
/usr/include/x86_64-linux-gnu/sys/user.h (or equivalent on other
distros) and is provided by glibc. glibc has had the fs_base/gs_base
fields in there for a very long time, at least since this commit from
2001 [2]. The Linux kernel also has its version of user_regs_struct,
which I think was exported to user-space at some point. It included the
fs_base/gs_base fields since at least this 2002 commit [3]. In any
case, my conclusion is that the fields were there long before the
aforementioned Linux kernel commit. The kernel commit didn't add these
fields, it only made sure that they have reliable values when obtained
with PTRACE_GETREGS.
So, checking for the presence of the fs_base/gs_base fields in struct
user_regs_struct doesn't sound like a good way of knowing if we can
reliably get the fs_base/gs_base values from PTRACE_GETREGS. My guess
is that if we were using that strategy on a < 2.6.25 kernel, things
would not work correctly:
- configure would find that the user_regs_struct has the fs_base/gs_base
fields (which are probided by glibc anyway)
- we would be reading the fs_base/gs_base values using PTRACE_GETREGS,
for which the kernel would provide unreliable values
Second, I have tried to see how things worked by forcing GDB to not use
fs_base/gs_base from PTRACE_GETREGS (forcing it to use the "legacy"
code, by configuring with
ac_cv_member_struct_user_regs_struct_gs_base=no ac_cv_member_struct_user_regs_struct_fs_base=no
Doing so breaks writing registers back to the inferior. For example,
calling an inferior functions gives an internal error:
(gdb) p malloc(10)
/home/smarchi/src/binutils-gdb/gdb/i387-tdep.c:1408: internal-error: invalid i387 regnum 152
The relevant last frames where this error happens are:
#8 0x0000563123d262fc in internal_error (file=0x563123e93fd8 "/home/smarchi/src/binutils-gdb/gdb/i387-tdep.c", line=1408, fmt=0x563123e94482 "invalid i387 regnum %d") at /home/smarchi/src/binutils-gdb/gdbsupport/errors.cc:55
#9 0x0000563123047d0d in i387_collect_xsave (regcache=0x5631269453f0, regnum=152, xsave=0x7ffd38402a20, gcore=0) at /home/smarchi/src/binutils-gdb/gdb/i387-tdep.c:1408
#10 0x0000563122c69e8a in amd64_collect_xsave (regcache=0x5631269453f0, regnum=152, xsave=0x7ffd38402a20, gcore=0) at /home/smarchi/src/binutils-gdb/gdb/amd64-tdep.c:3448
#11 0x0000563122c5e94c in amd64_linux_nat_target::store_registers (this=0x56312515fd10 <the_amd64_linux_nat_target>, regcache=0x5631269453f0, regnum=152) at /home/smarchi/src/binutils-gdb/gdb/amd64-linux-nat.c:335
#12 0x00005631234c8c80 in target_store_registers (regcache=0x5631269453f0, regno=152) at /home/smarchi/src/binutils-gdb/gdb/target.c:3485
#13 0x00005631232e8df7 in regcache::raw_write (this=0x5631269453f0, regnum=152, buf=0x56312759e468 "@\225\372\367\377\177") at /home/smarchi/src/binutils-gdb/gdb/regcache.c:765
#14 0x00005631232e8f0c in regcache::cooked_write (this=0x5631269453f0, regnum=152, buf=0x56312759e468 "@\225\372\367\377\177") at /home/smarchi/src/binutils-gdb/gdb/regcache.c:778
#15 0x00005631232e75ec in regcache::restore (this=0x5631269453f0, src=0x5631275eb130) at /home/smarchi/src/binutils-gdb/gdb/regcache.c:283
#16 0x0000563123083fc4 in infcall_suspend_state::restore (this=0x5631273ed930, gdbarch=0x56312718cf20, tp=0x5631270bca90, regcache=0x5631269453f0) at /home/smarchi/src/binutils-gdb/gdb/infrun.c:9103
#17 0x0000563123081eed in restore_infcall_suspend_state (inf_state=0x5631273ed930) at /home/smarchi/src/binutils-gdb/gdb/infrun.c:9151
The problem seems to be that amd64_linux_nat_target::store_registers
calls amd64_native_gregset_supplies_p to know whether gregset provides
fs_base. When !HAVE_STRUCT_USER_REGS_STRUCT_FS_BASE,
amd64_native_gregset_supplies_p returns false. store_registers
therefore assumes that it must be an "xstate" register. This is of
course wrong, and that leads to the failed assertion when
i387_collect_xsave doesn't recognize the register.
amd64_linux_nat_target::store_registers could probably be fixed to
handle this case, but I don't think it's worth it, given that it would
only be to support very old kernels.
[1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=df5d438e33d7fc914ba9b6e0d6b019a8966c5fcc
[2] https://sourceware.org/git/?p=glibc.git;a=commit;h=c9cf6ddeebb7bb
[3] https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git/commit/?id=88e4bc32686ebd0b1111a94f93eba2d334241f68
gdb/ChangeLog:
* configure.ac: Remove check for fs_base/gs_base in
user_regs_struct.
* configure: Re-generate.
* config.in: Re-generate.
* amd64-nat.c (amd64_native_gregset_reg_offset): Adjust.
* amd64-linux-nat.c (amd64_linux_nat_target::fetch_registers,
amd64_linux_nat_target::store_registers, ps_get_thread_area, ): Adjust.
gdbserver/ChangeLog:
* configure.ac: Remove check for fs_base/gs_base in
user_regs_struct.
* configure: Re-generate.
* config.in: Re-generate.
* linux-x86-low.cc (x86_64_regmap, x86_fill_gregset,
x86_store_gregset): Adjust.
|
||
|
|
0dd7b52ede |
gdbserver/linux-low: delete 'linux_target_ops' and 'the_low_target'
All the linux target ops have been moved into linux_process_target as methods. The 'linux_target_ops' struct and its instantiations are now obsolete. Delete them. gdbserver/ChangeLog: 2020-04-02 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> * linux-low.h (struct linux_target_ops): Remove. (the_low_target): Remove. * linux-x86-low.cc (the_low_target): Remove. * linux-aarch64-low.cc (the_low_target): Ditto. * linux-arm-low.cc (the_low_target): Ditto. * linux-bfin-low.cc (the_low_target): Ditto. * linux-cris-low.cc (the_low_target): Ditto. * linux-crisv32-low.cc (the_low_target): Ditto. * linux-ia64-low.cc (the_low_target): Ditto. * linux-m32r-low.cc (the_low_target): Ditto. * linux-m68k-low.cc (the_low_target): Ditto. * linux-mips-low.cc (the_low_target): Ditto. * linux-nios2-low.cc (the_low_target): Ditto. * linux-ppc-low.cc (the_low_target): Ditto. * linux-riscv-low.cc (the_low_target): Ditto. * linux-s390-low.cc (the_low_target): Ditto. * linux-sh-low.cc (the_low_target): Ditto. * linux-sparc-low.cc (the_low_target): Ditto. * linux-tic6x-low.cc (the_low_target): Ditto. * linux-tile-low.cc (the_low_target): Ditto. * linux-xtensa-low.cc (the_low_target): Ditto. |
||
|
|
fc5ecdb630 |
gdbserver/linux-low: turn 'get_ipa_tdesc_idx' into a method
gdbserver/ChangeLog: 2020-04-02 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> Remove the 'get_ipa_tdesc_idx' linux target op and let a concrete linux target define the op by overriding the declaration in process_stratum_target. * linux-low.h (struct linux_target_ops): Remove the op. (class linux_process_target) <get_ipa_tdesc_idx>: Remove. * linux-low.cc (linux_process_target::get_ipa_tdesc_idx): Remove. * linux-x86-low.cc (class x86_target) <get_ipa_tdesc_idx>: Declare. (x86_get_ipa_tdesc_idx): Turn into... (x86_target::get_ipa_tdesc_idx): ...this. (the_low_target): Remove the op field. * linux-ppc-low.cc (class ppc_target) <get_ipa_tdesc_idx>: Declare. (ppc_get_ipa_tdesc_idx): Turn into... (ppc_target::get_ipa_tdesc_idx): ...this. (the_low_target): Remove the op field. * linux-s390-low.cc (class s390_target) <get_ipa_tdesc_idx>: Declare. (s390_get_ipa_tdesc_idx): Turn into... (s390_target::get_ipa_tdesc_idx): ...this. (the_low_target): Remove the op field. |
||
|
|
9eedd27d42 |
gdbserver/linux-low: turn 'get_syscall_trapinfo' into a method
gdbserver/ChangeLog: 2020-04-02 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> Turn the 'get_syscall_trapinfo' linux target op into a method of process_stratum_target. * linux-low.h (struct linux_target_ops): Remove the op. (class linux_process_target) <get_syscall_trapinfo> <gdb_catch_this_syscall> <low_supports_catch_syscall> <low_get_syscall_trapinfo>: Declare. * linux-low.cc (get_syscall_trapinfo): Turn into... (linux_process_target::get_syscall_trapinfo): ...this. (linux_process_target::low_get_syscall_trapinfo): Define. (gdb_catch_this_syscall_p): Turn into... (linux_process_target::gdb_catch_this_syscall): ...this. (linux_process_target::low_supports_catch_syscall): Define. Update the callers below. (linux_process_target::wait_1) (linux_process_target::supports_catch_syscall) * linux-x86-low.cc (class x86_target) <low_supports_catch_syscall> <low_get_syscall_trapinfo>: Declare. (x86_target::low_supports_catch_syscall): Define. (x86_get_syscall_trapinfo): Turn into... (x86_target::low_get_syscall_trapinfo): ...this. (the_low_target): Remove the op field. * linux-aarch64-low.cc (class aarch64_target) <low_supports_catch_syscall> <low_get_syscall_trapinfo>: Declare. (aarch64_target::low_supports_catch_syscall): Define. (aarch64_get_syscall_trapinfo): Turn into... (aarch64_target::low_get_syscall_trapinfo): ...this. (the_low_target): Remove the op field. * linux-arm-low.cc (class arm_target) <low_supports_catch_syscall> <low_get_syscall_trapinfo>: Declare. (arm_target::low_supports_catch_syscall): Define. (arm_get_syscall_trapinfo): Turn into... (arm_target::low_get_syscall_trapinfo): ...this. (the_low_target): Remove the op field. * linux-ppc-low.cc (the_low_target): Remove the op field. * linux-s390-low.cc (the_low_target): Remove the op field. |
||
|
|
b31cdfa69f |
gdbserver/linux-low: turn 'supports_hardware_single_step' into a method
All the linux low targets except arm define the 'supports_hardware_single_step' op to return true. Hence, we override the method to return true in linux_process_target, and remove the definitions in all the linux low targets but arm. gdbserver/ChangeLog: 2020-04-02 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> Remove the 'supports_hardware_single_step' linux target op and override the process_stratum_target's op definition in linux_process_target to return true. * linux-low.h (struct linux_target_ops): Remove the op. (class linux_process_target) <finish_step_over> <maybe_hw_step>: Declare. * linux-low.cc (can_hardware_single_step): Remove. (maybe_hw_step): Turn into... (linux_process_target::maybe_hw_step): ...this. (finish_step_over): Turn into... (linux_process_target::finish_step_over): ...this. (linux_process_target::supports_hardware_single_step): Update to return true. Update the callers below. (linux_process_target::single_step) (linux_process_target::resume_one_lwp_throw) * linux-arm-low.cc (class arm_target) <supports_hardware_single_step>: Declare. (arm_supports_hardware_single_step): Turn into... (arm_target::supports_hardware_single_step): ...this. (the_low_target): Remove the op field. * linux-x86-low.cc (x86_supports_hardware_single_step): Remove. (the_low_target): Remove the op field. * linux-aarch64-low.cc (aarch64_supports_hardware_single_step): Remove. (the_low_target): Remove the op field. * linux-bfin-low.cc (bfin_supports_hardware_single_step): Remove. (the_low_target): Remove the op field. * linux-crisv32-low.cc (cris_supports_hardware_single_step): Remove. (the_low_target): Remove the op field. * linux-m32r-low.cc (m32r_supports_hardware_single_step): Remove. (the_low_target): Remove the op field. * linux-m68k-low.cc (m68k_supports_hardware_single_step): Remove. (the_low_target): Remove the op field. * linux-ppc-low.cc (ppc_supports_hardware_single_step): Remove. (the_low_target): Remove the op field. * linux-s390-low.cc (s390_supports_hardware_single_step): Remove. (the_low_target): Remove the op field. * linux-sh-low.cc (sh_supports_hardware_single_step): Remove. (the_low_target): Remove the op field. * linux-tic6x-low.cc (tic6x_supports_hardware_single_step): Remove. (the_low_target): Remove the op field. * linux-tile-low.cc (tile_supports_hardware_single_step): Remove. (the_low_target): Remove the op field. * linux-xtensa-low.cc (xtensa_supports_hardware_single_step): Remove. (the_low_target): Remove the op field. |
||
|
|
9cfd871551 |
gdbserver/linux-low: turn 'supports_range_stepping' into a method
gdbserver/ChangeLog: 2020-04-02 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> Turn the 'supports_range_stepping' linux target op into a method of linux_process_target. * linux-low.h (struct linux_target_ops): Remove the op. (class linux_process_target) <low_supports_range_stepping>: Declare. * linux-low.cc (linux_process_target::low_supports_range_stepping): Define. (linux_process_target::supports_range_stepping): Update the call site. * linux-x86-low.cc (class x86_target) <low_supports_range_stepping>: Declare. (x86_supports_range_stepping): Turn into... (x86_target::low_supports_range_stepping): ...this. (the_low_target): Remove the op field. * linux-aarch64-low.cc (class aarch64_target) <low_supports_range_stepping>: Declare. (aarch64_supports_range_stepping): Turn into... (aarch64_target::low_supports_range_stepping): ...this. (the_low_target): Remove the op field. * linux-arm-low.cc (the_low_target): Remove the op field. * linux-bfin-low.cc (the_low_target): Ditto. * linux-crisv32-low.cc (the_low_target): Ditto. * linux-m32r-low.cc (the_low_target): Ditto. * linux-m68k-low.cc (the_low_target): Ditto. * linux-ppc-low.cc (the_low_target): Ditto. * linux-s390-low.cc (the_low_target): Ditto. * linux-sh-low.cc (the_low_target): Ditto. * linux-tic6x-low.cc (the_low_target): Ditto. * linux-tile-low.cc (the_low_target): Ditto. * linux-xtensa-low.cc (the_low_target): Ditto. |
||
|
|
ab64c99982 |
gdbserver/linux-low: turn 'emit_ops' into a method
gdbserver/ChangeLog: 2020-04-02 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> Remove the 'emit_ops' linux target ops and let the concrete linux target define the op by overriding the declaration of process_stratum_target. * linux-low.h (struct linux_target_ops): Remove the op. (class linux_process_target) <emit_ops>: Remove. * linux-low.cc (linux_process_target::emit_ops): Remove. * linux-x86-low.cc (class x86_target) <emit_ops>: Declare. (x86_emit_ops): Turn into... (x86_target::emit_ops): ...this. (the_low_target): Remove the op field. * linux-aarch64-low.cc (class aarch64_target) <emit_ops>: Declare. (aarch64_emit_ops): Turn into... (aarch64_target::emit_ops): ...this. (the_low_target): Remove the op field. * linux-ppc-low.cc (class ppc_target) <emit_ops>: Declare. (ppc_emit_ops): Turn into... (ppc_target::emit_ops): ...this. (the_low_target): Remove the op field. * linux-s390-low.cc (class s390_target) <emit_ops>: Declare. (s390_emit_ops): Turn into... (s390_target::emit_ops): ...this. (the_low_target): Remove the op field. * linux-arm-low.cc (the_low_target): Remove the op field. * linux-bfin-low.cc (the_low_target): Ditto. * linux-crisv32-low.cc (the_low_target): Ditto. * linux-m32r-low.cc (the_low_target): Ditto. * linux-m68k-low.cc (the_low_target): Ditto. * linux-sh-low.cc (the_low_target): Ditto. * linux-tic6x-low.cc (the_low_target): Ditto. * linux-tile-low.cc (the_low_target): Ditto. * linux-xtensa-low.cc (the_low_target): Ditto. |
||
|
|
809a0c354b |
gdbserver/linux-low: turn fast tracepoint ops into methods
gdbserver/ChangeLog: 2020-04-02 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> Remove the 'install_fast_tracepoint_jump_pad' and 'get_min_fast_tracepoint_insn_len' linux target ops to let the concrete linux target define the ops by overriding the declarations of process_stratum_target. * linux-low.h (struct linux_target_ops): Remove the ops. (class linux_process_target) <supports_fast_tracepoints> <install_fast_tracepoint_jump_pad> <get_min_fast_tracepoint_insn_len>: Remove. * linux-low.cc (linux_process_target::supports_fast_tracepoints) (linux_process_target::install_fast_tracepoint_jump_pad) (linux_process_target::get_min_fast_tracepoint_insn_len): Remove. * linux-x86-low.cc (class x86_target) <supports_fast_tracepoints> <install_fast_tracepoint_jump_pad> <get_min_fast_tracepoint_insn_len>: Declare. (x86_target::supports_fast_tracepoints): Define. (x86_install_fast_tracepoint_jump_pad): Turn into... (x86_target::install_fast_tracepoint_jump_pad): ...this. (x86_get_min_fast_tracepoint_insn_len): Turn into... (x86_target::get_min_fast_tracepoint_insn_len): ...this. (the_low_target): Remove the op fields. * linux-aarch64-low.cc (class aarch64_target) <supports_fast_tracepoints> <install_fast_tracepoint_jump_pad> <get_min_fast_tracepoint_insn_len>: Declare. (aarch64_target::supports_fast_tracepoints): Define. (aarch64_install_fast_tracepoint_jump_pad): Turn into... (aarch64_target::install_fast_tracepoint_jump_pad): ...this. (aarch64_get_min_fast_tracepoint_insn_len): Turn into... (aarch64_target::get_min_fast_tracepoint_insn_len): ...this. (the_low_target): Remove the op fields. * linux-ppc-low.cc (class ppc_target) <supports_fast_tracepoints> <install_fast_tracepoint_jump_pad> <get_min_fast_tracepoint_insn_len>: Declare. (ppc_target::supports_fast_tracepoints): Define. (ppc_install_fast_tracepoint_jump_pad): Turn into... (ppc_target::install_fast_tracepoint_jump_pad): ...this. (ppc_get_min_fast_tracepoint_insn_len): Turn into... (ppc_target::get_min_fast_tracepoint_insn_len): ...this. (the_low_target): Remove the op fields. * linux-s390-low.cc (class s390_target) <supports_fast_tracepoints> <install_fast_tracepoint_jump_pad> <get_min_fast_tracepoint_insn_len>: Declare. (s390_target::supports_fast_tracepoints): Define. (s390_install_fast_tracepoint_jump_pad): Turn into... (s390_target::install_fast_tracepoint_jump_pad): ...this. (s390_get_min_fast_tracepoint_insn_len): Turn into... (s390_target::get_min_fast_tracepoint_insn_len): ...this. (the_low_target): Remove the op fields. * linux-arm-low.cc (the_low_target): Remove the op fields. * linux-bfin-low.cc (the_low_target): Ditto. * linux-crisv32-low.cc (the_low_target): Ditto. * linux-m32r-low.cc (the_low_target): Ditto. * linux-m68k-low.cc (the_low_target): Ditto. * linux-sh-low.cc (the_low_target): Ditto. * linux-tic6x-low.cc (the_low_target): Ditto. * linux-tile-low.cc (the_low_target): Ditto. * linux-xtensa-low.cc (the_low_target): Ditto. |