sme: Core file support for Linux

This patch enables dumping SME state via gdb's gcore command and also
enables gdb to read SME state from a core file generated by the Linux
Kernel.

Regression-tested on aarch64-linux Ubuntu 22.04/20.04.

Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
This commit is contained in:
Luis Machado
2023-02-07 09:50:47 +00:00
parent b93d537fba
commit 69bfb2b6d0
3 changed files with 558 additions and 33 deletions

View File

@@ -57,6 +57,10 @@
#include "elf/common.h"
#include "elf/aarch64.h"
#include "arch/aarch64-insn.h"
/* For std::pow */
#include <cmath>
/* Signal frame handling.
@@ -741,50 +745,55 @@ const struct regset aarch64_linux_fpregset =
#define SVE_HEADER_FLAG_SVE 1
/* Get VQ value from SVE section in the core dump. */
/* Get the vector quotient (VQ) or streaming vector quotient (SVQ) value
from the section named SECTION_NAME.
Return non-zero if successful and 0 otherwise. */
static uint64_t
aarch64_linux_core_read_vq (struct gdbarch *gdbarch, bfd *abfd)
aarch64_linux_core_read_vq (struct gdbarch *gdbarch, bfd *abfd,
const char *section_name)
{
gdb_byte header[SVE_HEADER_SIZE];
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
asection *sve_section = bfd_get_section_by_name (abfd, ".reg-aarch-sve");
gdb_assert (section_name != nullptr);
if (sve_section == nullptr)
asection *section = bfd_get_section_by_name (abfd, section_name);
if (section == nullptr)
{
/* No SVE state. */
return 0;
}
size_t size = bfd_section_size (sve_section);
size_t size = bfd_section_size (section);
/* Check extended state size. */
if (size < SVE_HEADER_SIZE)
{
warning (_("'.reg-aarch-sve' section in core file too small."));
warning (_("'%s' core file section is too small. "
"Expected %s bytes, got %s bytes"), section_name,
pulongest (SVE_HEADER_SIZE), pulongest (size));
return 0;
}
if (!bfd_get_section_contents (abfd, sve_section, header, 0, SVE_HEADER_SIZE))
gdb_byte header[SVE_HEADER_SIZE];
if (!bfd_get_section_contents (abfd, section, header, 0, SVE_HEADER_SIZE))
{
warning (_("Couldn't read sve header from "
"'.reg-aarch-sve' section in core file."));
"'%s' core file section."), section_name);
return 0;
}
uint64_t vl = extract_unsigned_integer (header + SVE_HEADER_VL_OFFSET,
SVE_HEADER_VL_LENGTH, byte_order);
uint64_t vq = sve_vq_from_vl (vl);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
uint64_t vq
= sve_vq_from_vl (extract_unsigned_integer (header + SVE_HEADER_VL_OFFSET,
SVE_HEADER_VL_LENGTH,
byte_order));
if (vq > AARCH64_MAX_SVE_VQ)
if (vq > AARCH64_MAX_SVE_VQ || vq == 0)
{
warning (_("SVE Vector length in core file not supported by this version"
" of GDB. (VQ=%s)"), pulongest (vq));
return 0;
}
else if (vq == 0)
{
warning (_("SVE Vector length in core file is invalid. (VQ=%s"),
warning (_("SVE/SSVE vector length in core file is invalid."
" (max vq=%d) (detected vq=%s)"), AARCH64_MAX_SVE_VQ,
pulongest (vq));
return 0;
}
@@ -792,14 +801,53 @@ aarch64_linux_core_read_vq (struct gdbarch *gdbarch, bfd *abfd)
return vq;
}
/* Get the vector quotient (VQ) value from CORE_BFD's sections.
Return non-zero if successful and 0 otherwise. */
static uint64_t
aarch64_linux_core_read_vq_from_sections (struct gdbarch *gdbarch,
bfd *core_bfd)
{
/* First check if we have a SSVE section. If so, check if it is active. */
asection *section = bfd_get_section_by_name (core_bfd, ".reg-aarch-ssve");
if (section != nullptr)
{
/* We've found a SSVE section, so now fetch its data. */
gdb_byte header[SVE_HEADER_SIZE];
if (bfd_get_section_contents (core_bfd, section, header, 0,
SVE_HEADER_SIZE))
{
/* Check if the SSVE section has SVE contents. */
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
uint16_t flags
= extract_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET,
SVE_HEADER_FLAGS_LENGTH, byte_order);
if (flags & SVE_HEADER_FLAG_SVE)
{
/* The SSVE state is active, so return the vector length from the
the SSVE section. */
return aarch64_linux_core_read_vq (gdbarch, core_bfd,
".reg-aarch-ssve");
}
}
}
/* No valid SSVE section. Return the vq from the SVE section (if any). */
return aarch64_linux_core_read_vq (gdbarch, core_bfd, ".reg-aarch-sve");
}
/* Supply register REGNUM from BUF to REGCACHE, using the register map
in REGSET. If REGNUM is -1, do this for all registers in REGSET.
If BUF is NULL, set the registers to "unavailable" status. */
If BUF is nullptr, set the registers to "unavailable" status. */
static void
aarch64_linux_supply_sve_regset (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *buf, size_t size)
supply_sve_regset (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *buf, size_t size)
{
gdb_byte *header = (gdb_byte *) buf;
struct gdbarch *gdbarch = regcache->arch ();
@@ -851,14 +899,89 @@ aarch64_linux_supply_sve_regset (const struct regset *regset,
}
}
/* Collect an inactive SVE register set state. This is equivalent to a
fpsimd layout.
Collect the data from REGCACHE to BUF, using the register
map in REGSET. */
static void
collect_inactive_sve_regset (const struct regcache *regcache,
void *buf, size_t size, int vg_regnum)
{
gdb_byte *header = (gdb_byte *) buf;
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_assert (buf != nullptr);
gdb_assert (size >= SVE_CORE_DUMMY_SIZE);
/* Zero out everything first. */
memset ((gdb_byte *) buf, 0, SVE_CORE_DUMMY_SIZE);
/* BUF starts with a SVE header prior to the register dump. */
/* Dump the default size of an empty SVE payload. */
uint32_t real_size = SVE_CORE_DUMMY_SIZE;
store_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET,
SVE_HEADER_SIZE_LENGTH, byte_order, real_size);
/* Dump a dummy max size. */
uint32_t max_size = SVE_CORE_DUMMY_MAX_SIZE;
store_unsigned_integer (header + SVE_HEADER_MAX_SIZE_OFFSET,
SVE_HEADER_MAX_SIZE_LENGTH, byte_order, max_size);
/* Dump the vector length. */
ULONGEST vg = 0;
regcache->raw_collect (vg_regnum, &vg);
uint16_t vl = sve_vl_from_vg (vg);
store_unsigned_integer (header + SVE_HEADER_VL_OFFSET, SVE_HEADER_VL_LENGTH,
byte_order, vl);
/* Dump the standard maximum vector length. */
uint16_t max_vl = SVE_CORE_DUMMY_MAX_VL;
store_unsigned_integer (header + SVE_HEADER_MAX_VL_OFFSET,
SVE_HEADER_MAX_VL_LENGTH, byte_order,
max_vl);
/* The rest of the fields are zero. */
uint16_t flags = SVE_CORE_DUMMY_FLAGS;
store_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET,
SVE_HEADER_FLAGS_LENGTH, byte_order,
flags);
uint16_t reserved = SVE_CORE_DUMMY_RESERVED;
store_unsigned_integer (header + SVE_HEADER_RESERVED_OFFSET,
SVE_HEADER_RESERVED_LENGTH, byte_order, reserved);
/* We are done with the header part of it. Now dump the register state
in the FPSIMD format. */
/* Dump the first 128 bits of each of the Z registers. */
header += AARCH64_SVE_CONTEXT_REGS_OFFSET;
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
regcache->raw_collect_part (AARCH64_SVE_Z0_REGNUM + i, 0, V_REGISTER_SIZE,
header + V_REGISTER_SIZE * i);
/* Dump FPSR and FPCR. */
header += 32 * V_REGISTER_SIZE;
regcache->raw_collect (AARCH64_FPSR_REGNUM, header);
regcache->raw_collect (AARCH64_FPCR_REGNUM, header + 4);
/* Dump two reserved empty fields of 4 bytes. */
header += 8;
memset (header, 0, 8);
/* We should have a FPSIMD-formatted register dump now. */
}
/* Collect register REGNUM from REGCACHE to BUF, using the register
map in REGSET. If REGNUM is -1, do this for all registers in
REGSET. */
static void
aarch64_linux_collect_sve_regset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *buf, size_t size)
collect_sve_regset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *buf, size_t size)
{
gdb_byte *header = (gdb_byte *) buf;
struct gdbarch *gdbarch = regcache->arch ();
@@ -873,24 +996,318 @@ aarch64_linux_collect_sve_regset (const struct regset *regset,
store_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET,
SVE_HEADER_SIZE_LENGTH, byte_order, size);
uint32_t max_size = SVE_CORE_DUMMY_MAX_SIZE;
store_unsigned_integer (header + SVE_HEADER_MAX_SIZE_OFFSET,
SVE_HEADER_MAX_SIZE_LENGTH, byte_order, size);
SVE_HEADER_MAX_SIZE_LENGTH, byte_order, max_size);
store_unsigned_integer (header + SVE_HEADER_VL_OFFSET, SVE_HEADER_VL_LENGTH,
byte_order, sve_vl_from_vq (vq));
uint16_t max_vl = SVE_CORE_DUMMY_MAX_VL;
store_unsigned_integer (header + SVE_HEADER_MAX_VL_OFFSET,
SVE_HEADER_MAX_VL_LENGTH, byte_order,
sve_vl_from_vq (vq));
max_vl);
uint16_t flags = SVE_HEADER_FLAG_SVE;
store_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET,
SVE_HEADER_FLAGS_LENGTH, byte_order,
SVE_HEADER_FLAG_SVE);
flags);
uint16_t reserved = SVE_CORE_DUMMY_RESERVED;
store_unsigned_integer (header + SVE_HEADER_RESERVED_OFFSET,
SVE_HEADER_RESERVED_LENGTH, byte_order, 0);
SVE_HEADER_RESERVED_LENGTH, byte_order, reserved);
/* The SVE register dump follows. */
regcache->collect_regset (regset, regnum, (gdb_byte *) buf + SVE_HEADER_SIZE,
size - SVE_HEADER_SIZE);
}
/* Supply register REGNUM from BUF to REGCACHE, using the register map
in REGSET. If REGNUM is -1, do this for all registers in REGSET.
If BUF is NULL, set the registers to "unavailable" status. */
static void
aarch64_linux_supply_sve_regset (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *buf, size_t size)
{
struct gdbarch *gdbarch = regcache->arch ();
aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);
if (tdep->has_sme ())
{
ULONGEST svcr = 0;
regcache->raw_collect (tdep->sme_svcr_regnum, &svcr);
/* Is streaming mode enabled? */
if (svcr & SVCR_SM_BIT)
/* If so, don't load SVE data from the SVE section. The data to be
used is in the SSVE section. */
return;
}
/* If streaming mode is not enabled, load the SVE regcache data from the SVE
section. */
supply_sve_regset (regset, regcache, regnum, buf, size);
}
/* Collect register REGNUM from REGCACHE to BUF, using the register
map in REGSET. If REGNUM is -1, do this for all registers in
REGSET. */
static void
aarch64_linux_collect_sve_regset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *buf, size_t size)
{
struct gdbarch *gdbarch = regcache->arch ();
aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);
bool streaming_mode = false;
if (tdep->has_sme ())
{
ULONGEST svcr = 0;
regcache->raw_collect (tdep->sme_svcr_regnum, &svcr);
/* Is streaming mode enabled? */
if (svcr & SVCR_SM_BIT)
{
/* If so, don't dump SVE regcache data to the SVE section. The SVE
data should be dumped to the SSVE section. Dump an empty SVE
block instead. */
streaming_mode = true;
}
}
/* If streaming mode is not enabled or there is no SME support, dump the
SVE regcache data to the SVE section. */
/* Check if we have an active SVE state (non-zero Z/P/FFR registers).
If so, then we need to dump registers in the SVE format.
Otherwise we should dump the registers in the FPSIMD format. */
if (sve_state_is_empty (regcache) || streaming_mode)
collect_inactive_sve_regset (regcache, buf, size, AARCH64_SVE_VG_REGNUM);
else
collect_sve_regset (regset, regcache, regnum, buf, size);
}
/* Supply register REGNUM from BUF to REGCACHE, using the register map
in REGSET. If REGNUM is -1, do this for all registers in REGSET.
If BUF is NULL, set the registers to "unavailable" status. */
static void
aarch64_linux_supply_ssve_regset (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *buf, size_t size)
{
gdb_byte *header = (gdb_byte *) buf;
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);
uint16_t flags = extract_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET,
SVE_HEADER_FLAGS_LENGTH,
byte_order);
/* Since SVCR's bits are inferred from the data we have in the header of the
SSVE section, we need to initialize it to zero first, so that it doesn't
carry garbage data. */
ULONGEST svcr = 0;
regcache->raw_supply (tdep->sme_svcr_regnum, &svcr);
/* Is streaming mode enabled? */
if (flags & SVE_HEADER_FLAG_SVE)
{
/* Streaming mode is active, so flip the SM bit. */
svcr = SVCR_SM_BIT;
regcache->raw_supply (tdep->sme_svcr_regnum, &svcr);
/* Fetch the SVE data from the SSVE section. */
supply_sve_regset (regset, regcache, regnum, buf, size);
}
}
/* Collect register REGNUM from REGCACHE to BUF, using the register
map in REGSET. If REGNUM is -1, do this for all registers in
REGSET. */
static void
aarch64_linux_collect_ssve_regset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *buf, size_t size)
{
struct gdbarch *gdbarch = regcache->arch ();
aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);
ULONGEST svcr = 0;
regcache->raw_collect (tdep->sme_svcr_regnum, &svcr);
/* Is streaming mode enabled? */
if (svcr & SVCR_SM_BIT)
{
/* If so, dump SVE regcache data to the SSVE section. */
collect_sve_regset (regset, regcache, regnum, buf, size);
}
else
{
/* Otherwise dump an empty SVE block to the SSVE section with the
streaming vector length. */
collect_inactive_sve_regset (regcache, buf, size, tdep->sme_svg_regnum);
}
}
/* Supply register REGNUM from BUF to REGCACHE, using the register map
in REGSET. If REGNUM is -1, do this for all registers in REGSET.
If BUF is NULL, set the registers to "unavailable" status. */
static void
aarch64_linux_supply_za_regset (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *buf, size_t size)
{
gdb_byte *header = (gdb_byte *) buf;
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
/* Handle an empty buffer. */
if (buf == nullptr)
return regcache->supply_regset (regset, regnum, nullptr, size);
if (size < SVE_HEADER_SIZE)
error (_("ZA state header size (%s) invalid. Should be at least %s."),
pulongest (size), pulongest (SVE_HEADER_SIZE));
/* The ZA register note in a core file can have a couple of states:
1 - Just the header without the payload. This means that there is no
ZA data, and we should populate only SVCR and SVG registers on GDB's
side. The ZA data should be marked as unavailable.
2 - The header with an additional data payload. This means there is
actual ZA data, and we should populate ZA, SVCR and SVG. */
aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);
/* Populate SVG. */
ULONGEST svg
= sve_vg_from_vl (extract_unsigned_integer (header + SVE_HEADER_VL_OFFSET,
SVE_HEADER_VL_LENGTH,
byte_order));
regcache->raw_supply (tdep->sme_svg_regnum, &svg);
size_t data_size
= extract_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET,
SVE_HEADER_SIZE_LENGTH, byte_order)
- SVE_HEADER_SIZE;
/* Populate SVCR. */
bool has_za_payload = (data_size > 0);
ULONGEST svcr;
regcache->raw_collect (tdep->sme_svcr_regnum, &svcr);
/* If we have a ZA payload, enable bit 2 of SVCR, otherwise clear it. This
register gets updated by the SVE/SSVE-handling functions as well, as they
report the SM bit 1. */
if (has_za_payload)
svcr |= SVCR_ZA_BIT;
else
svcr &= ~SVCR_ZA_BIT;
/* Update SVCR in the register buffer. */
regcache->raw_supply (tdep->sme_svcr_regnum, &svcr);
/* Populate the register cache with ZA register contents, if we have any. */
buf = has_za_payload ? (gdb_byte *) buf + SVE_HEADER_SIZE : nullptr;
size_t za_bytes = std::pow (sve_vl_from_vg (svg), 2);
/* Update ZA in the register buffer. */
if (has_za_payload)
{
/* Check that the payload size is sane. */
if (size < SVE_HEADER_SIZE + za_bytes)
{
error (_("ZA header + payload size (%s) invalid. Should be at "
"least %s."),
pulongest (size), pulongest (SVE_HEADER_SIZE + za_bytes));
}
regcache->raw_supply (tdep->sme_za_regnum, buf);
}
else
{
gdb_byte za_zeroed[za_bytes];
memset (za_zeroed, 0, za_bytes);
regcache->raw_supply (tdep->sme_za_regnum, za_zeroed);
}
}
/* Collect register REGNUM from REGCACHE to BUF, using the register
map in REGSET. If REGNUM is -1, do this for all registers in
REGSET. */
static void
aarch64_linux_collect_za_regset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *buf, size_t size)
{
gdb_assert (buf != nullptr);
/* Sanity check the dump size. */
gdb_assert (size >= SVE_HEADER_SIZE);
/* The ZA register note in a core file can have a couple of states:
1 - Just the header without the payload. This means that there is no
ZA data, and we should dump just the header.
2 - The header with an additional data payload. This means there is
actual ZA data, and we should dump both the header and the ZA data
payload. */
aarch64_gdbarch_tdep *tdep
= gdbarch_tdep<aarch64_gdbarch_tdep> (regcache->arch ());
/* Determine if we have ZA state from the SVCR register ZA bit. */
ULONGEST svcr;
regcache->raw_collect (tdep->sme_svcr_regnum, &svcr);
/* Check the ZA payload. */
bool has_za_payload = (svcr & SVCR_ZA_BIT) != 0;
size = has_za_payload ? size : SVE_HEADER_SIZE;
/* Write the size and max_size fields. */
gdb_byte *header = (gdb_byte *) buf;
enum bfd_endian byte_order = gdbarch_byte_order (regcache->arch ());
store_unsigned_integer (header + SVE_HEADER_SIZE_OFFSET,
SVE_HEADER_SIZE_LENGTH, byte_order, size);
uint32_t max_size
= SVE_HEADER_SIZE + std::pow (sve_vl_from_vq (tdep->sme_svq), 2);
store_unsigned_integer (header + SVE_HEADER_MAX_SIZE_OFFSET,
SVE_HEADER_MAX_SIZE_LENGTH, byte_order, max_size);
/* Output the other fields of the ZA header (vl, max_vl, flags and
reserved). */
uint64_t svq = tdep->sme_svq;
store_unsigned_integer (header + SVE_HEADER_VL_OFFSET, SVE_HEADER_VL_LENGTH,
byte_order, sve_vl_from_vq (svq));
uint16_t max_vl = SVE_CORE_DUMMY_MAX_VL;
store_unsigned_integer (header + SVE_HEADER_MAX_VL_OFFSET,
SVE_HEADER_MAX_VL_LENGTH, byte_order,
max_vl);
uint16_t flags = SVE_CORE_DUMMY_FLAGS;
store_unsigned_integer (header + SVE_HEADER_FLAGS_OFFSET,
SVE_HEADER_FLAGS_LENGTH, byte_order, flags);
uint16_t reserved = SVE_CORE_DUMMY_RESERVED;
store_unsigned_integer (header + SVE_HEADER_RESERVED_OFFSET,
SVE_HEADER_RESERVED_LENGTH, byte_order, reserved);
buf = has_za_payload ? (gdb_byte *) buf + SVE_HEADER_SIZE : nullptr;
/* Dump the register cache contents for the ZA register to the buffer. */
regcache->collect_regset (regset, regnum, (gdb_byte *) buf,
size - SVE_HEADER_SIZE);
}
/* Implement the "iterate_over_regset_sections" gdbarch method. */
static void
@@ -917,6 +1334,30 @@ aarch64_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
{ 0 }
};
const struct regset aarch64_linux_ssve_regset =
{
sve_regmap,
aarch64_linux_supply_ssve_regset, aarch64_linux_collect_ssve_regset,
REGSET_VARIABLE_SIZE
};
/* If SME is supported in the core file, process the SSVE section first,
and the SVE section last. This is because we need information from
the SSVE set to determine if streaming mode is active. If streaming
mode is active, we need to extract the data from the SSVE section.
Otherwise, if streaming mode is not active, we fetch the data from the
SVE section. */
if (tdep->has_sme ())
{
cb (".reg-aarch-ssve",
SVE_HEADER_SIZE
+ regcache_map_entry_size (aarch64_linux_fpregmap),
SVE_HEADER_SIZE + regcache_map_entry_size (sve_regmap),
&aarch64_linux_ssve_regset, "SSVE registers", cb_data);
}
/* Handle the SVE register set. */
const struct regset aarch64_linux_sve_regset =
{
sve_regmap,
@@ -933,6 +1374,29 @@ aarch64_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
cb (".reg2", AARCH64_LINUX_SIZEOF_FPREGSET, AARCH64_LINUX_SIZEOF_FPREGSET,
&aarch64_linux_fpregset, NULL, cb_data);
if (tdep->has_sme ())
{
/* Setup the register set information for a ZA register set core
dump. */
/* Create this on the fly in order to handle the ZA register size. */
const struct regcache_map_entry za_regmap[] =
{
{ 1, tdep->sme_za_regnum, (int) std::pow (sve_vl_from_vq (tdep->sme_svq), 2) }
};
const struct regset aarch64_linux_za_regset =
{
za_regmap,
aarch64_linux_supply_za_regset, aarch64_linux_collect_za_regset,
REGSET_VARIABLE_SIZE
};
cb (".reg-aarch-za",
SVE_HEADER_SIZE,
SVE_HEADER_SIZE + std::pow (sve_vl_from_vq (tdep->sme_svq), 2),
&aarch64_linux_za_regset, "ZA register", cb_data);
}
if (tdep->has_pauth ())
{
@@ -1011,7 +1475,16 @@ aarch64_linux_core_read_description (struct gdbarch *gdbarch,
CORE_ADDR hwcap2 = linux_get_hwcap2 (auxv, target, gdbarch);
aarch64_features features;
features.vq = aarch64_linux_core_read_vq (gdbarch, abfd);
/* We need to extract the SVE data from the .reg-aarch-sve section or the
.reg-aarch-ssve section depending on which one was active when the core
file was generated.
If the SSVE section contains SVE data, then it is considered active.
Otherwise the SVE section is considered active. This guarantees we will
have the correct target description with the correct SVE vector
length. */
features.vq = aarch64_linux_core_read_vq_from_sections (gdbarch, abfd);
features.pauth = hwcap & AARCH64_HWCAP_PACA;
features.mte = hwcap2 & HWCAP2_MTE;
@@ -1025,6 +1498,9 @@ aarch64_linux_core_read_description (struct gdbarch *gdbarch,
features.tls = size / AARCH64_TLS_REGISTER_SIZE;
}
features.svq
= aarch64_linux_core_read_vq (gdbarch, abfd, ".reg-aarch-za");
return aarch64_read_description (features);
}

View File

@@ -19,3 +19,37 @@
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "arch/aarch64-scalable-linux.h"
#include "arch/aarch64.h"
#include "gdbsupport/byte-vector.h"
#include "gdbsupport/common-regcache.h"
/* See arch/aarch64-scalable-linux.h */
bool
sve_state_is_empty (const struct reg_buffer_common *reg_buf)
{
/* Instead of allocating a buffer with the size of the current vector
length, just use a buffer that is big enough for all cases. */
gdb_byte zero_buffer[256];
/* Zero it out. */
memset (zero_buffer, 0, 256);
/* Are any of the Z registers set (non-zero) after the first 128 bits? */
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
{
if (!reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i, zero_buffer,
V_REGISTER_SIZE))
return false;
}
/* Are any of the P registers set (non-zero)? */
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
{
if (!reg_buf->raw_compare (AARCH64_SVE_P0_REGNUM + i, zero_buffer, 0))
return false;
}
/* Is the FFR register set (non-zero)? */
return reg_buf->raw_compare (AARCH64_SVE_FFR_REGNUM, zero_buffer, 0);
}

View File

@@ -22,6 +22,7 @@
#define ARCH_AARCH64_SCALABLE_LINUX_H
#include "gdbsupport/common-defs.h"
#include "gdbsupport/common-regcache.h"
/* Feature check for Scalable Matrix Extension. */
#ifndef HWCAP2_SME
@@ -35,4 +36,18 @@
/* Mask including all valid SVCR bits. */
#define SVCR_BIT_MASK (SVCR_SM_BIT | SVCR_ZA_BIT)
/* SVE/SSVE-related constants used for an empty SVE/SSVE register set
dumped to a core file. When SME is supported, either the SVE state or
the SSVE state will be empty when it is dumped to a core file. */
#define SVE_CORE_DUMMY_SIZE 0x220
#define SVE_CORE_DUMMY_MAX_SIZE 0x2240
#define SVE_CORE_DUMMY_VL 0x10
#define SVE_CORE_DUMMY_MAX_VL 0x100
#define SVE_CORE_DUMMY_FLAGS 0x0
#define SVE_CORE_DUMMY_RESERVED 0x0
/* Return TRUE if the SVE state in the register cache REGCACHE
is empty (zero). Return FALSE otherwise. */
extern bool sve_state_is_empty (const struct reg_buffer_common *reg_buf);
#endif /* ARCH_AARCH64_SCALABLE_LINUX_H */