forked from Imagelibrary/binutils-gdb
This does endianness-flipping just like CTF dicts, flipping aggressively on open, taking advantage of the archive's mmapped nature to flip all the size words before each archive member as well. The range checking verifies non-overlappingness of archive sections and non-overrunning: it does not verify that archive members don't overlap, because any such overlap would almost certainly fail at open time anyway (due to the prefixed size word if nothing else). This dug up a bug in v1 archives, where the size word included the length of *the size word itself*: we correspondingly reduce that size if v1 archives are encountered (and fail if the result underflows).
2069 lines
59 KiB
C
2069 lines
59 KiB
C
/* CTF archive files.
|
|
Copyright (C) 2019-2025 Free Software Foundation, Inc.
|
|
|
|
This file is part of libctf.
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <ctf-impl.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <elf.h>
|
|
#include "ctf-endian.h"
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <inttypes.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#ifdef HAVE_MMAP
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
/* Note on datatypes: the datatype known outside this file as ctf_archive_t
|
|
is here known as struct ctf_archive_internal, to emphasise its role as a
|
|
wrapper with no on-disk representation.
|
|
|
|
The on-disk structure is struct ctf_archive. */
|
|
|
|
static off_t arc_write_one_ctf (ctf_dict_t * f, int fd, size_t threshold);
|
|
static off_t arc_write_one (int fd, const void *item, size_t size, int align);
|
|
static int ctf_arc_value_write (int fd, const void *, size_t, uint64_t *start_off);
|
|
static int ctf_arc_flip_modents (ctf_archive_modent_t *modent, uint64_t els,
|
|
unsigned char *ents, uint64_t base, size_t arc_len,
|
|
int *errp);
|
|
static int ctf_arc_range_check_hdr (struct ctf_archive_internal *arci, size_t,
|
|
int *errp);
|
|
static int ctf_arc_range_check_modents (ctf_archive_modent_t *modent,
|
|
struct ctf_archive *arc_hdr,
|
|
unsigned char *arc_bytes,
|
|
uint64_t ctf_base, size_t ctf_els,
|
|
size_t arc_len, int fixup_v1, int *errp);
|
|
static ctf_dict_t *ctf_dict_open_by_offset (const struct ctf_archive_internal *,
|
|
const ctf_sect_t *symsect,
|
|
const ctf_sect_t *strsect,
|
|
size_t offset,
|
|
int little_endian_symtab, int *errp);
|
|
static int sort_modent_by_name (const void *one, const void *two, void *n);
|
|
static void ctf_arc_close_internal (struct ctf_archive *arc);
|
|
static void *arc_mmap_header (int fd, size_t headersz);
|
|
static void *arc_mmap_file (int fd, size_t size);
|
|
static int arc_mmap_writeout (int fd, void *header, size_t headersz,
|
|
const char **errmsg);
|
|
static int arc_mmap_unmap (void *header, size_t headersz, const char **errmsg);
|
|
static int ctf_arc_import_parent (const struct ctf_archive_internal *arci,
|
|
ctf_dict_t *fp, int *errp);
|
|
|
|
/* Flag to indicate "symbol not present" in ctf_archive_internal.ctfi_symdicts
|
|
and ctfi_symnamedicts. Never initialized. */
|
|
static ctf_dict_t enosym;
|
|
|
|
/* Prepare to serialize everything. Members of archives have dependencies on
|
|
each other, because the strtabs and type IDs of children depend on the
|
|
parent: so we have to work over the archive as a whole to prepare for final
|
|
serialization.
|
|
|
|
Returns zero on success, or an errno, or an ECTF_* value.
|
|
|
|
Updates the first dict in the archive with the errno value. */
|
|
|
|
static int
|
|
ctf_arc_preserialize (ctf_dict_t **ctf_dicts, ssize_t ctf_dict_cnt,
|
|
size_t threshold)
|
|
{
|
|
uint64_t old_parent_strlen, all_strlens = 0;
|
|
ssize_t i;
|
|
int err;
|
|
|
|
ctf_dprintf ("Preserializing dicts.\n");
|
|
|
|
/* Preserialize everything, doing everything but strtab generation and things
|
|
that depend on that. */
|
|
for (i = 0; i < ctf_dict_cnt; i++)
|
|
if (ctf_preserialize (ctf_dicts[i], threshold != (size_t) -1
|
|
|| ctf_dict_cnt > 1) < 0)
|
|
goto err;
|
|
|
|
ctf_dprintf ("Deduplicating strings.\n");
|
|
|
|
for (i = 0; i < ctf_dict_cnt; i++)
|
|
all_strlens += ctf_dicts[i]->ctf_str[0].cts_len
|
|
+ ctf_dicts[i]->ctf_str_prov_len;
|
|
|
|
/* If linking, deduplicate strings against the children in every dict that has
|
|
any. (String deduplication is not yet implemented for non-linked dicts.) */
|
|
for (i = 0; i < ctf_dict_cnt; i++)
|
|
if (ctf_dicts[i]->ctf_flags & LCTF_LINKING && ctf_dicts[i]->ctf_link_outputs)
|
|
{
|
|
old_parent_strlen = ctf_dicts[i]->ctf_str[0].cts_len
|
|
+ ctf_dicts[i]->ctf_str_prov_len;
|
|
|
|
if (ctf_dedup_strings (ctf_dicts[i]) < 0)
|
|
goto err;
|
|
|
|
ctf_dprintf ("Deduplicated strings in archive member %zi: "
|
|
"original parent strlen: %zu; original lengths: %zu; "
|
|
"final length: %zu.\n", i, (size_t) old_parent_strlen,
|
|
(size_t) all_strlens,
|
|
(size_t) ctf_dicts[i]->ctf_str_prov_len);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
err = ctf_errno (ctf_dicts[i]);
|
|
ctf_err_copy (ctf_dicts[0], ctf_dicts[i]);
|
|
for (i--; i >= 0; i--)
|
|
ctf_depreserialize (ctf_dicts[i]);
|
|
return err;
|
|
}
|
|
|
|
/* Write out a CTF archive to the start of the file referenced by the passed-in
|
|
fd. The entries in CTF_DICTS are referenced by name: the names are passed in
|
|
the names array, which must have CTF_DICTS entries.
|
|
|
|
Returns 0 on success, or an errno, or an ECTF_* value. */
|
|
int
|
|
ctf_arc_write_fd (int fd, ctf_dict_t **ctf_dicts, size_t ctf_dict_cnt,
|
|
const char **names, size_t threshold)
|
|
{
|
|
const char *errmsg;
|
|
struct ctf_archive *archdr;
|
|
size_t i;
|
|
char dummy = 0;
|
|
size_t headersz;
|
|
ssize_t namesz;
|
|
size_t ctf_startoffs; /* Start of the section we are working over. */
|
|
char *nametbl = NULL; /* The name table. */
|
|
int multiple_parents = 0;
|
|
const char *known_parent = NULL;
|
|
int err;
|
|
size_t prop_off = 0;
|
|
ctf_archive_modent_t *modent;
|
|
|
|
/* Prepare by serializing everything. Done first because it allocates a lot
|
|
of space and thus is more likely to fail. */
|
|
if (ctf_dict_cnt > 0 &&
|
|
(err = ctf_arc_preserialize (ctf_dicts, ctf_dict_cnt, threshold)) < 0)
|
|
return err;
|
|
|
|
ctf_dprintf ("Writing CTF archive with %lu files\n",
|
|
(unsigned long) ctf_dict_cnt);
|
|
|
|
/* Figure out the size of the mmap()ed header, including the
|
|
ctf_archive_modent array immediately following the header itself. We
|
|
assume that all of this needs no padding: a likely assumption, given
|
|
that it's all made up of uint64_t's. */
|
|
headersz = sizeof (struct ctf_archive)
|
|
+ (ctf_dict_cnt * sizeof (uint64_t) * 2);
|
|
ctf_dprintf ("headersz is %lu\n", (unsigned long) headersz);
|
|
|
|
/* From now on we work in two pieces: an mmap()ed region from zero up to the
|
|
headersz, and a region updated via write() starting after that, containing
|
|
all the tables. Platforms that do not support mmap() just use write(). */
|
|
ctf_startoffs = headersz;
|
|
if (lseek (fd, ctf_startoffs - 1, SEEK_SET) < 0)
|
|
{
|
|
errmsg = N_("ctf_arc_write(): cannot extend file while writing");
|
|
goto err;
|
|
}
|
|
|
|
if (write (fd, &dummy, 1) < 0)
|
|
{
|
|
errmsg = N_("ctf_arc_write(): cannot extend file while writing");
|
|
goto err;
|
|
}
|
|
|
|
if ((archdr = arc_mmap_header (fd, headersz)) == NULL)
|
|
{
|
|
errmsg = N_("ctf_arc_write(): cannot mmap");
|
|
goto err;
|
|
}
|
|
|
|
/* Fill in everything we can, which is everything other than the name
|
|
table and shared properties table offsets. */
|
|
archdr->ctfa_magic = CTFA_MAGIC;
|
|
archdr->ctfa_ndicts = ctf_dict_cnt;
|
|
archdr->ctfa_ctfs = ctf_startoffs;
|
|
archdr->ctfa_nprops = 0; /* Updated later. */
|
|
archdr->ctfa_propents = 0; /* Updated later. */
|
|
archdr->ctfa_modents = sizeof (struct ctf_archive);
|
|
|
|
/* We could validate that all CTF files have the same data model, but
|
|
since any reasonable construction process will be building things of
|
|
only one bitness anyway, this is pretty pointless, so just use the
|
|
model of the first CTF file for all of them. (It *is* valid to
|
|
create an empty archive: the value of ctfa_model is irrelevant in
|
|
this case, but we must be sure not to dereference uninitialized
|
|
memory.) */
|
|
|
|
if (ctf_dict_cnt > 0)
|
|
archdr->ctfa_model = ctf_getmodel (ctf_dicts[0]);
|
|
|
|
/* Now write out the CTFs: ctf_archive_modent array via the mapping,
|
|
ctfs via write(). The names themselves have not been written yet: we
|
|
track them in a local strtab until the time is right, and sort the
|
|
modents array after construction.
|
|
|
|
We also keep track of the parent of each dict, so we can easily tell if
|
|
all dicts have a consistent parent (or none). (This is usually the
|
|
case, e.g. for all archives resulting from a ctf_link() operation.)
|
|
|
|
The name table is not sorted. */
|
|
|
|
for (i = 0, namesz = 0; i < archdr->ctfa_ndicts; i++)
|
|
namesz += strlen (names[i]) + 1;
|
|
|
|
nametbl = malloc (namesz);
|
|
if (nametbl == NULL)
|
|
{
|
|
errmsg = N_("ctf_arc_write(): error writing named CTF to archive");
|
|
goto err_unmap;
|
|
}
|
|
|
|
for (i = 0, namesz = 0,
|
|
modent = (ctf_archive_modent_t *) ((char *) archdr
|
|
+ sizeof (struct ctf_archive));
|
|
i < archdr->ctfa_ndicts; i++)
|
|
{
|
|
off_t off;
|
|
|
|
strcpy (&nametbl[namesz], names[i]);
|
|
|
|
off = arc_write_one_ctf (ctf_dicts[i], fd, threshold);
|
|
if (off == -1)
|
|
{
|
|
errmsg = N_("ctf_arc_write(): cannot write CTF file to archive");
|
|
goto err_free;
|
|
}
|
|
|
|
modent->name_offset = namesz;
|
|
modent->ctf_offset = off - ctf_startoffs;
|
|
namesz += strlen (names[i]) + 1;
|
|
modent++;
|
|
|
|
if (!multiple_parents)
|
|
{
|
|
if (!known_parent)
|
|
known_parent = ctf_dicts[i]->ctf_parent_name;
|
|
else
|
|
if (ctf_dicts[i]->ctf_parent_name
|
|
&& strcmp (known_parent, ctf_dicts[i]->ctf_parent_name) != 0)
|
|
multiple_parents = 1;
|
|
}
|
|
}
|
|
|
|
ctf_qsort_r ((ctf_archive_modent_t *) ((char *) archdr
|
|
+ sizeof (struct ctf_archive)),
|
|
archdr->ctfa_ndicts,
|
|
sizeof (ctf_archive_modent_t), sort_modent_by_name,
|
|
nametbl);
|
|
|
|
/* Properties. We have only one property so far, defined only if we have
|
|
exactly one parent in common across all dicts. */
|
|
if (!multiple_parents && known_parent)
|
|
{
|
|
char *new_nametbl;
|
|
|
|
archdr->ctfa_nprops++;
|
|
if ((new_nametbl = realloc (nametbl, namesz
|
|
+ strlen ("parent_name") + 1)) == NULL)
|
|
{
|
|
errmsg = N_("ctf_arc_write(): error allocating properties");
|
|
goto err_free;
|
|
}
|
|
nametbl = new_nametbl;
|
|
strcpy (&nametbl[namesz], "parent_name");
|
|
prop_off = namesz;
|
|
namesz += strlen ("parent_name") + 1;
|
|
}
|
|
|
|
/* Now the name table. */
|
|
|
|
if (ctf_arc_value_write (fd, nametbl, namesz, &archdr->ctfa_names) < 0)
|
|
{
|
|
errmsg = N_("ctf_arc_write(): cannot write name table to archive");
|
|
goto err_free;
|
|
}
|
|
free (nametbl);
|
|
|
|
/* Now the properties. There is only one currently: the parent name,
|
|
which means the sorted nature of the name table is trivial. (When
|
|
multiple properties are written out, only the last will be
|
|
aligned.) */
|
|
|
|
if (!multiple_parents && known_parent)
|
|
{
|
|
ctf_archive_modent_t props;
|
|
off_t prop_values;
|
|
uint64_t propents;
|
|
|
|
memset (&props, 0, sizeof (ctf_archive_modent_t));
|
|
|
|
props.name_offset = prop_off;
|
|
props.ctf_offset = 0;
|
|
|
|
if ((prop_values = arc_write_one (fd, known_parent,
|
|
strlen (known_parent) + 1, 1)) < 0
|
|
|| (ctf_arc_value_write (fd, &props, sizeof (ctf_archive_modent_t),
|
|
&propents) < 0))
|
|
{
|
|
/* Something went wrong: just blank out the props and keep going. */
|
|
archdr->ctfa_prop_values = 0;
|
|
archdr->ctfa_propents = 0;
|
|
}
|
|
else
|
|
{
|
|
archdr->ctfa_prop_values = prop_values;
|
|
archdr->ctfa_propents = propents;
|
|
}
|
|
}
|
|
|
|
if (arc_mmap_writeout (fd, archdr, headersz, &errmsg) < 0)
|
|
goto err_unmap;
|
|
if (arc_mmap_unmap (archdr, headersz, &errmsg) < 0)
|
|
goto err;
|
|
return 0;
|
|
|
|
err_free:
|
|
free (nametbl);
|
|
err_unmap:
|
|
arc_mmap_unmap (archdr, headersz, NULL);
|
|
err:
|
|
/* We report errors into the first file in the archive, if any: if this is a
|
|
zero-file archive, put it in the open-errors stream for lack of anywhere
|
|
else for it to go. */
|
|
ctf_err_warn (ctf_dict_cnt > 0 ? ctf_dicts[0] : NULL, 0, errno, "%s",
|
|
gettext (errmsg));
|
|
return errno;
|
|
}
|
|
|
|
/* Write out a CTF archive. The entries in CTF_DICTS are referenced by name:
|
|
the names are passed in the names array, which must have CTF_DICTS entries.
|
|
|
|
If the filename is NULL, create a temporary file and return a pointer to it.
|
|
|
|
Returns 0 on success, or an errno, or an ECTF_* value. */
|
|
int
|
|
ctf_arc_write (const char *file, ctf_dict_t **ctf_dicts, size_t ctf_dict_cnt,
|
|
const char **names, size_t threshold)
|
|
{
|
|
int err;
|
|
int fd;
|
|
|
|
if ((fd = open (file, O_RDWR | O_CREAT | O_TRUNC | O_CLOEXEC, 0666)) < 0)
|
|
{
|
|
ctf_err_warn (ctf_dict_cnt > 0 ? ctf_dicts[0] : NULL, 0, errno,
|
|
_("ctf_arc_write(): cannot create %s"), file);
|
|
return errno;
|
|
}
|
|
|
|
err = ctf_arc_write_fd (fd, ctf_dicts, ctf_dict_cnt, names, threshold);
|
|
if (err)
|
|
goto err_close;
|
|
|
|
if ((err = close (fd)) < 0)
|
|
ctf_err_warn (ctf_dict_cnt > 0 ? ctf_dicts[0] : NULL, 0, errno,
|
|
_("ctf_arc_write(): cannot close after writing to archive"));
|
|
goto err;
|
|
|
|
err_close:
|
|
(void) close (fd);
|
|
err:
|
|
if (err < 0)
|
|
unlink (file);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* Write one CTF dict out. Return the file position of the written file (or
|
|
rather, of the file-size uint64_t that precedes it): negative return is a
|
|
negative errno or ctf_errno value. On error, the file position may no
|
|
longer be at the end of the file, but if it is, it will be at an 8-byte
|
|
aligned offset. Sets errno on error. */
|
|
static off_t
|
|
arc_write_one_ctf (ctf_dict_t *fp, int fd, size_t threshold)
|
|
{
|
|
uint64_t off, ctfsz = 0;
|
|
off_t end_off;
|
|
|
|
/* This zero write turns into the size in a moment... */
|
|
if (ctf_arc_value_write (fd, &ctfsz, sizeof (ctfsz), &off) < 0)
|
|
return -1;
|
|
|
|
if (ctf_write_thresholded (fp, fd, threshold) != 0)
|
|
{
|
|
errno = fp->ctf_errno;
|
|
return -1;
|
|
}
|
|
|
|
if ((end_off = lseek (fd, 0, SEEK_CUR)) < 0)
|
|
return -1;
|
|
ctfsz = end_off - (off + sizeof (ctfsz));
|
|
|
|
if ((lseek (fd, off, SEEK_SET)) < 0)
|
|
return -1;
|
|
|
|
/* ... here. */
|
|
if (ctf_arc_value_write (fd, &ctfsz, sizeof (ctfsz), &off) < 0)
|
|
return -1;
|
|
|
|
/* Align the end byte and move there. */
|
|
|
|
end_off = LCTF_ALIGN_OFFS (end_off, 8);
|
|
if ((lseek (fd, end_off, SEEK_SET)) < 0)
|
|
return -1;
|
|
|
|
return (off_t) off;
|
|
}
|
|
|
|
/* Write one size-prepended thing out. On error, the file position may no
|
|
longer be at the end of the file. Sets errno on error. */
|
|
|
|
static off_t
|
|
arc_write_one (int fd, const void *item, size_t size, int align)
|
|
{
|
|
uint64_t sz64 = (uint64_t) size;
|
|
uint64_t off;
|
|
|
|
if (ctf_arc_value_write (fd, &sz64, sizeof (sz64), &off) < 0)
|
|
return -1;
|
|
|
|
if (ctf_arc_value_write (fd, item, size, NULL) < 0)
|
|
return -1;
|
|
|
|
if (align)
|
|
{
|
|
off_t end_off;
|
|
|
|
if ((end_off = lseek (fd, 0, SEEK_CUR)) < 0)
|
|
return -1;
|
|
|
|
end_off = LCTF_ALIGN_OFFS (end_off, 8);
|
|
if ((lseek (fd, end_off, SEEK_SET)) < 0)
|
|
return -1;
|
|
}
|
|
|
|
return (off_t) off;
|
|
}
|
|
|
|
/* Write out one value in the archive. Sets errno and returns -1 on
|
|
error. */
|
|
|
|
static int
|
|
ctf_arc_value_write (int fd, const void *tbl_, size_t tblsz,
|
|
uint64_t *start_off)
|
|
{
|
|
off_t off;
|
|
const unsigned char *tbl = (const unsigned char *) tbl_;
|
|
|
|
if ((off = lseek (fd, 0, SEEK_CUR)) < 0)
|
|
return -1;
|
|
|
|
if (start_off)
|
|
*start_off = off;
|
|
|
|
while (tblsz > 0)
|
|
{
|
|
ssize_t len;
|
|
|
|
if ((len = write (fd, tbl, tblsz)) < 0)
|
|
{
|
|
*start_off = 0;
|
|
return -1;
|
|
}
|
|
tblsz -= len;
|
|
tbl += len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* qsort() function to sort the array of ctf_archive_modents_t into
|
|
ascending name order. */
|
|
static int
|
|
sort_modent_by_name (const void *one, const void *two, void *n)
|
|
{
|
|
const ctf_archive_modent_t *a = one;
|
|
const ctf_archive_modent_t *b = two;
|
|
char *nametbl = n;
|
|
|
|
return strcmp (&nametbl[a->name_offset], &nametbl[b->name_offset]);
|
|
}
|
|
|
|
/* bsearch_r() function to search for a given name in the sorted array of struct
|
|
ctf_archive_modents. */
|
|
static int
|
|
search_modent_by_name (const void *key, const void *ent, void *arg)
|
|
{
|
|
const char *k = key;
|
|
const ctf_archive_modent_t *v = ent;
|
|
const struct ctf_archive_internal *arci;
|
|
const char *search_nametbl;
|
|
|
|
arci = (const struct ctf_archive_internal *) arg;
|
|
|
|
search_nametbl = (char *) arci->ctfi_archive + arci->ctfi_hdr->ctfa_names;
|
|
return strcmp (k, &search_nametbl[v->name_offset]);
|
|
}
|
|
|
|
/* Byteswap an archive (but not its members) if necessary. After this,
|
|
the entire archive is in native-endian byte order. */
|
|
|
|
static int
|
|
ctf_arc_flip_archive (struct ctf_archive_internal *arci, size_t arc_len,
|
|
int *errp)
|
|
{
|
|
struct ctf_archive *hdr = arci->ctfi_hdr;
|
|
int needs_flipping = 0;
|
|
ctf_archive_modent_t *modent;
|
|
unsigned char *arc_bytes = arci->ctfi_archive;
|
|
unsigned char *ents;
|
|
|
|
if (bswap_64 (hdr->ctfa_magic) == CTFA_MAGIC)
|
|
needs_flipping = 1;
|
|
else if (arci->ctfi_archive_v1
|
|
&& bswap_64 (hdr->ctfa_magic) == CTFA_V1_MAGIC)
|
|
needs_flipping = 1;
|
|
|
|
if (!needs_flipping)
|
|
return 0;
|
|
|
|
/* Headers. Some headers are v2-only. The layout has already been
|
|
adjusted to be v2-compatible. */
|
|
|
|
swap_thing (hdr->ctfa_magic);
|
|
swap_thing (hdr->ctfa_model);
|
|
swap_thing (hdr->ctfa_ndicts);
|
|
swap_thing (hdr->ctfa_names);
|
|
swap_thing (hdr->ctfa_ctfs);
|
|
|
|
if (!arci->ctfi_archive_v1)
|
|
{
|
|
swap_thing (hdr->ctfa_nprops);
|
|
swap_thing (hdr->ctfa_prop_values);
|
|
swap_thing (hdr->ctfa_modents);
|
|
swap_thing (hdr->ctfa_propents);
|
|
}
|
|
|
|
/* Swap the tables and the sizes of things therein.
|
|
|
|
ctfa_modents for v1 is populated by ctf_new_archive_internal, below.
|
|
|
|
We must range-check first to be sure that the modent arrays are not out
|
|
of range. */
|
|
|
|
if (ctf_arc_range_check_hdr (arci, arc_len, errp) < 0)
|
|
return -1; /* errp is set for us. */
|
|
|
|
modent = (ctf_archive_modent_t *) (arc_bytes + arci->ctfi_hdr->ctfa_modents);
|
|
ents = (unsigned char *) (arc_bytes + arci->ctfi_hdr->ctfa_ctfs);
|
|
if (ctf_arc_flip_modents (modent, arci->ctfi_hdr->ctfa_ndicts, ents,
|
|
arci->ctfi_hdr->ctfa_ctfs, arc_len, errp) < 0)
|
|
return -1; /* errp is set for us. */
|
|
|
|
modent = (ctf_archive_modent_t *) (arc_bytes + arci->ctfi_hdr->ctfa_propents);
|
|
ents = (unsigned char *) (arc_bytes + arci->ctfi_hdr->ctfa_prop_values);
|
|
if (ctf_arc_flip_modents (modent, arci->ctfi_hdr->ctfa_nprops, ents,
|
|
arci->ctfi_hdr->ctfa_prop_values, arc_len, errp) < 0)
|
|
return -1; /* errp is set for us. */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Byteswap a modent table with offsets rooted at BASE, including the size
|
|
entries preceding the elements themselves. */
|
|
|
|
static int
|
|
ctf_arc_flip_modents (ctf_archive_modent_t *modent, uint64_t els,
|
|
unsigned char *ents, uint64_t base, size_t arc_len,
|
|
int *errp)
|
|
{
|
|
uint64_t i;
|
|
|
|
for (i = 0; i < els; i++)
|
|
{
|
|
uint64_t *ctf_size;
|
|
|
|
swap_thing (modent[i].name_offset);
|
|
swap_thing (modent[i].ctf_offset);
|
|
|
|
if (base + modent[i].ctf_offset + sizeof (uint64_t) > arc_len)
|
|
{
|
|
ctf_err_warn (NULL, 0, EOVERFLOW,
|
|
"CTF archive overflow in CTF offset for member %" PRIu64
|
|
" of %zi + %zi", i, base, modent[i].ctf_offset);
|
|
ctf_set_open_errno (errp, EOVERFLOW);
|
|
return -1;
|
|
}
|
|
|
|
ctf_size = (uint64_t *) (ents + modent[i].ctf_offset);
|
|
swap_thing (*ctf_size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Range- and overlap-check the archive header. At this stage, only the
|
|
modent and name offsets, and overlaps of the starts of tables, are
|
|
checkable. The rest gets checked further down, in
|
|
ctf_arc_range_check. */
|
|
|
|
static int
|
|
ctf_arc_range_check_hdr (struct ctf_archive_internal *arci, size_t arc_len,
|
|
int *errp)
|
|
{
|
|
const char *err;
|
|
uint64_t ndict_end, nprop_end;
|
|
|
|
ndict_end = arci->ctfi_hdr->ctfa_modents +
|
|
(sizeof (ctf_archive_modent_t) * arci->ctfi_hdr->ctfa_ndicts);
|
|
|
|
if (ndict_end > arc_len)
|
|
{
|
|
ctf_err_warn (NULL, 0, EOVERFLOW, "CTF archive overflow: archive is %zi bytes, but ctfs end at %zi + (%zi * %zi) = %zi",
|
|
arc_len, arci->ctfi_hdr->ctfa_modents,
|
|
sizeof (ctf_archive_modent_t),
|
|
arci->ctfi_hdr->ctfa_ndicts, ndict_end);
|
|
|
|
ctf_set_open_errno (errp, EOVERFLOW);
|
|
return -1;
|
|
}
|
|
|
|
if ((arci->ctfi_hdr->ctfa_modents < arci->ctfi_hdr->ctfa_names
|
|
&& ndict_end > arci->ctfi_hdr->ctfa_names)
|
|
|| (arci->ctfi_hdr->ctfa_modents < arci->ctfi_hdr->ctfa_ctfs
|
|
&& ndict_end > arci->ctfi_hdr->ctfa_ctfs)
|
|
|| (arci->ctfi_hdr->ctfa_modents < arci->ctfi_hdr->ctfa_prop_values
|
|
&& ndict_end > arci->ctfi_hdr->ctfa_prop_values)
|
|
|| (arci->ctfi_hdr->ctfa_modents < arci->ctfi_hdr->ctfa_propents
|
|
&& ndict_end > arci->ctfi_hdr->ctfa_propents)
|
|
|| arci->ctfi_hdr->ctfa_names == arci->ctfi_hdr->ctfa_ctfs
|
|
|| (arci->ctfi_hdr->ctfa_names == arci->ctfi_hdr->ctfa_prop_values
|
|
&& arci->ctfi_hdr->ctfa_prop_values != 0)
|
|
|| arci->ctfi_hdr->ctfa_names == arci->ctfi_hdr->ctfa_modents
|
|
|| (arci->ctfi_hdr->ctfa_names == arci->ctfi_hdr->ctfa_propents
|
|
&& arci->ctfi_hdr->ctfa_propents != 0)
|
|
|| (arci->ctfi_hdr->ctfa_ctfs == arci->ctfi_hdr->ctfa_prop_values
|
|
&& arci->ctfi_hdr->ctfa_prop_values != 0)
|
|
|| arci->ctfi_hdr->ctfa_ctfs == arci->ctfi_hdr->ctfa_modents
|
|
|| (arci->ctfi_hdr->ctfa_ctfs == arci->ctfi_hdr->ctfa_propents
|
|
&& arci->ctfi_hdr->ctfa_propents != 0)
|
|
|| (arci->ctfi_hdr->ctfa_prop_values != 0
|
|
&& arci->ctfi_hdr->ctfa_prop_values == arci->ctfi_hdr->ctfa_modents
|
|
&& arci->ctfi_hdr->ctfa_prop_values == arci->ctfi_hdr->ctfa_propents)
|
|
|| (arci->ctfi_hdr->ctfa_propents != 0
|
|
&& arci->ctfi_hdr->ctfa_modents == arci->ctfi_hdr->ctfa_propents))
|
|
{
|
|
err = "ctf table";
|
|
goto err;
|
|
}
|
|
|
|
nprop_end = arci->ctfi_hdr->ctfa_propents +
|
|
(sizeof (ctf_archive_modent_t) * arci->ctfi_hdr->ctfa_nprops);
|
|
|
|
if (nprop_end > arc_len)
|
|
{
|
|
err = "props table";
|
|
goto err;
|
|
}
|
|
|
|
if (arci->ctfi_hdr->ctfa_names > arc_len)
|
|
{
|
|
err = "name table";
|
|
goto err;
|
|
}
|
|
|
|
if (arci->ctfi_hdr->ctfa_ctfs > arc_len)
|
|
{
|
|
err = "member table";
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
ctf_err_warn (NULL, 0, EOVERFLOW, "CTF archive overflow: overlapping %s in archive",
|
|
err);
|
|
ctf_set_open_errno (errp, EOVERFLOW);
|
|
return -1;
|
|
}
|
|
|
|
/* Range check the archive modent tables. By this stage the tables are all
|
|
in native endianness. */
|
|
|
|
static int
|
|
ctf_arc_range_check (struct ctf_archive_internal *arci, size_t arc_len,
|
|
int *errp)
|
|
{
|
|
unsigned char *arc_bytes = arci->ctfi_archive;
|
|
ctf_archive_modent_t *modents;
|
|
|
|
if (ctf_arc_range_check_hdr (arci, arc_len, errp) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
modents = (ctf_archive_modent_t *) (arc_bytes + arci->ctfi_hdr->ctfa_modents);
|
|
|
|
if (ctf_arc_range_check_modents (modents, arci->ctfi_hdr, arc_bytes,
|
|
arci->ctfi_hdr->ctfa_ctfs,
|
|
arci->ctfi_hdr->ctfa_ndicts, arc_len,
|
|
arci->ctfi_archive_v1, errp) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
modents = (ctf_archive_modent_t *) (arc_bytes + arci->ctfi_hdr->ctfa_propents);
|
|
|
|
if (ctf_arc_range_check_modents (modents, arci->ctfi_hdr, arc_bytes,
|
|
arci->ctfi_hdr->ctfa_prop_values,
|
|
arci->ctfi_hdr->ctfa_nprops, arc_len,
|
|
0, errp) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Find the closest section to BASE that is located after it. If none, the
|
|
archive length is returned. */
|
|
|
|
static uint64_t
|
|
ctf_arc_closest_section (struct ctf_archive *arc_hdr, uint64_t base,
|
|
size_t arc_len)
|
|
{
|
|
uint64_t closest = arc_len;
|
|
|
|
if (arc_hdr->ctfa_names > base
|
|
&& arc_hdr->ctfa_ctfs < closest)
|
|
closest = arc_hdr->ctfa_names;
|
|
|
|
if (arc_hdr->ctfa_ctfs > base
|
|
&& arc_hdr->ctfa_ctfs < closest)
|
|
closest = arc_hdr->ctfa_ctfs;
|
|
|
|
if (arc_hdr->ctfa_prop_values > base
|
|
&& arc_hdr->ctfa_prop_values < closest)
|
|
closest = arc_hdr->ctfa_prop_values;
|
|
|
|
if (arc_hdr->ctfa_modents > base
|
|
&& arc_hdr->ctfa_modents < closest)
|
|
closest = arc_hdr->ctfa_modents;
|
|
|
|
if (arc_hdr->ctfa_propents > base
|
|
&& arc_hdr->ctfa_propents < closest)
|
|
closest = arc_hdr->ctfa_propents;
|
|
|
|
return closest;
|
|
}
|
|
|
|
/* Range-check a single modent array. */
|
|
|
|
static int
|
|
ctf_arc_range_check_modents (ctf_archive_modent_t *modent,
|
|
struct ctf_archive *arc_hdr,
|
|
unsigned char *arc_bytes,
|
|
uint64_t ctf_base, size_t ctf_els, size_t arc_len,
|
|
int fixup_v1, int *errp)
|
|
{
|
|
uint64_t i;
|
|
char *names = (char *) arc_bytes + arc_hdr->ctfa_names;
|
|
uint64_t name_base = arc_hdr->ctfa_names;
|
|
unsigned char *ctfs = (unsigned char *) arc_bytes + ctf_base;
|
|
size_t closest_names_offset, closest_ctfs_offset;
|
|
|
|
/* Figure out the offset of the thing that is closest to, but after the
|
|
end of, the names section, or the end of the file if none. */
|
|
|
|
closest_names_offset = arc_len;
|
|
|
|
closest_names_offset = ctf_arc_closest_section (arc_hdr, name_base, arc_len);
|
|
closest_ctfs_offset = ctf_arc_closest_section (arc_hdr, ctf_base, arc_len);
|
|
|
|
for (i = 0; i < ctf_els; i++)
|
|
{
|
|
uint64_t name_off = modent[i].name_offset + name_base;
|
|
uint64_t ctf_off = modent[i].ctf_offset + ctf_base;
|
|
ssize_t space_left;
|
|
uint64_t *ctf_size;
|
|
|
|
/* We already checked for modent table overflow and overlap, but we
|
|
cannot check for name table overlap except member-by-member. We
|
|
have to check the name offset first to make sure that strlen()ing
|
|
the string is safe, then check that. */
|
|
|
|
if (name_off > closest_names_offset
|
|
|| (ctf_off + sizeof (uint64_t) > closest_ctfs_offset))
|
|
goto err;
|
|
|
|
space_left = closest_names_offset - name_off;
|
|
|
|
if (space_left < 0)
|
|
goto err;
|
|
|
|
if (strnlen (&names[modent[i].name_offset], space_left)
|
|
== (size_t) space_left)
|
|
goto err;
|
|
|
|
/* Checking the CTF offset is simpler: we already checked that the
|
|
actual size didn't overflow, so now we just need to make sure that
|
|
the entire dict (or, depending on the call, property value) fits. */
|
|
|
|
ctf_size = (uint64_t *) (ctfs + modent[i].ctf_offset);
|
|
|
|
/* If this was a v1 archive, the size is actually wrong: it includes
|
|
the size of the size uint64_t itself, so all archive opens opened
|
|
one uint64_t too much. Fix this up, since the values are otherwise
|
|
valid. If the ctf_size is zero in v1, ironically, we know this is
|
|
an underflow! */
|
|
|
|
if (fixup_v1)
|
|
{
|
|
if (*ctf_size < sizeof (uint64_t))
|
|
goto err;
|
|
*ctf_size -= sizeof (uint64_t);
|
|
}
|
|
|
|
if (ctf_off + sizeof (uint64_t) + *ctf_size > closest_ctfs_offset)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
ctf_err_warn (NULL, 0, EOVERFLOW, "CTF archive overflow: modent array element %" PRIu64
|
|
" overflow/overlap", i);
|
|
ctf_set_open_errno (errp, EOVERFLOW);
|
|
return -1;
|
|
}
|
|
|
|
/* Make a new struct ctf_archive_internal wrapper for a ctf_archive or a
|
|
ctf_dict: endian-swap the archive header as necessary, and check all its
|
|
offsets for validity. Close ARC and/or FP on error. Arrange to free or
|
|
unmap the SYMSECT or STRSECT, as needed, on close. */
|
|
|
|
struct ctf_archive_internal *
|
|
ctf_new_archive_internal (int is_archive, int is_v1, int unmap_on_close,
|
|
struct ctf_archive *arc, size_t arc_len,
|
|
ctf_dict_t *fp, const ctf_sect_t *symsect,
|
|
const ctf_sect_t *strsect,
|
|
int *errp)
|
|
{
|
|
struct ctf_archive_internal *arci = NULL;
|
|
|
|
if ((arci = calloc (1, sizeof (struct ctf_archive_internal))) == NULL)
|
|
goto err;
|
|
|
|
ctf_set_open_errno (errp, 0);
|
|
|
|
arci->ctfi_is_archive = is_archive;
|
|
arci->ctfi_archive_v1 = is_v1;
|
|
|
|
if (is_archive)
|
|
{
|
|
arci->ctfi_archive = (unsigned char *) arc;
|
|
if (is_v1)
|
|
arci->ctfi_hdr_len = sizeof (struct ctf_archive_v1);
|
|
else
|
|
arci->ctfi_hdr_len = sizeof (struct ctf_archive);
|
|
|
|
if (arc_len < arci->ctfi_hdr_len)
|
|
{
|
|
errno = EOVERFLOW;
|
|
ctf_err_warn (NULL, 0, EOVERFLOW, "CTF archive underflow: archive is %zi bytes, shorter than the archive header length of %zi bytes\n",
|
|
arc_len, arci->ctfi_hdr_len);
|
|
goto err;
|
|
}
|
|
|
|
if ((arci->ctfi_hdr = malloc (sizeof (struct ctf_archive))) == NULL)
|
|
goto err;
|
|
|
|
/* Upgrade the v1 header if needed. */
|
|
|
|
if (!is_v1)
|
|
memcpy (arci->ctfi_hdr, arc, sizeof (struct ctf_archive));
|
|
else
|
|
{
|
|
struct ctf_archive_v1 *v1hdr = (struct ctf_archive_v1 *) arc;
|
|
|
|
memset (arci->ctfi_hdr, 0, sizeof (struct ctf_archive));
|
|
arci->ctfi_hdr->ctfa_magic = v1hdr->ctfa_magic;
|
|
arci->ctfi_hdr->ctfa_model = v1hdr->ctfa_model;
|
|
arci->ctfi_hdr->ctfa_ndicts = v1hdr->ctfa_ndicts;
|
|
arci->ctfi_hdr->ctfa_names = v1hdr->ctfa_names;
|
|
arci->ctfi_hdr->ctfa_ctfs = v1hdr->ctfa_ctfs;
|
|
arci->ctfi_hdr->ctfa_modents = sizeof (struct ctf_archive_v1);
|
|
}
|
|
|
|
if (ctf_arc_flip_archive (arci, arc_len, errp) < 0)
|
|
goto err_set;
|
|
|
|
if (ctf_arc_range_check (arci, arc_len, errp) < 0)
|
|
goto err_set;
|
|
}
|
|
else
|
|
arci->ctfi_dict = fp;
|
|
if (symsect)
|
|
memcpy (&arci->ctfi_symsect, symsect, sizeof (struct ctf_sect));
|
|
if (strsect)
|
|
memcpy (&arci->ctfi_strsect, strsect, sizeof (struct ctf_sect));
|
|
arci->ctfi_free_symsect = 0;
|
|
arci->ctfi_free_strsect = 0;
|
|
arci->ctfi_unmap_on_close = unmap_on_close;
|
|
arci->ctfi_symsect_little_endian = -1;
|
|
|
|
return arci;
|
|
|
|
err:
|
|
ctf_set_open_errno (errp, errno);
|
|
err_set:
|
|
if (is_archive)
|
|
{
|
|
if (unmap_on_close)
|
|
ctf_arc_close_internal (arc);
|
|
}
|
|
else
|
|
ctf_dict_close (fp);
|
|
if (arci)
|
|
{
|
|
free (arci->ctfi_hdr);
|
|
free (arci);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Set the symbol-table endianness of an archive (defaulting the symtab
|
|
endianness of all ctf_file_t's opened from that archive). */
|
|
void
|
|
ctf_arc_symsect_endianness (struct ctf_archive_internal *arci, int little_endian)
|
|
{
|
|
arci->ctfi_symsect_little_endian = !!little_endian;
|
|
if (!arci->ctfi_is_archive)
|
|
ctf_symsect_endianness (arci->ctfi_dict, arci->ctfi_symsect_little_endian);
|
|
}
|
|
|
|
/* Get the CTF preamble from data in a buffer, which may be either an archive or
|
|
a CTF dict. If multiple dicts are present in an archive, the preamble comes
|
|
from an arbitrary dict. The preamble is a pointer into the ctfsect passed
|
|
in. Returns NULL if called on non-v1 archives. (Backward-compatibility
|
|
only.) */
|
|
|
|
const ctf_preamble_t *
|
|
ctf_arc_bufpreamble_v1 (const ctf_sect_t *ctfsect)
|
|
{
|
|
if (ctfsect->cts_data == NULL
|
|
|| ctfsect->cts_size <= sizeof (uint64_t))
|
|
{
|
|
errno = EOVERFLOW;
|
|
return NULL;
|
|
}
|
|
|
|
if (le64toh ((*(uint64_t *) ctfsect->cts_data)) == CTFA_V1_MAGIC)
|
|
{
|
|
struct ctf_archive_v1 *arc = (struct ctf_archive_v1 *) ctfsect->cts_data;
|
|
return (const ctf_preamble_t *) ((char *) arc + le64toh (arc->ctfa_ctfs)
|
|
+ sizeof (uint64_t));
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Open a CTF archive or dictionary from data in a buffer (which the caller must
|
|
preserve until ctf_arc_close() time). Returns the archive, or NULL and an
|
|
error in *err (if not NULL). */
|
|
ctf_archive_t *
|
|
ctf_arc_bufopen (const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
|
|
const ctf_sect_t *strsect, int *errp)
|
|
{
|
|
struct ctf_archive *arc = NULL;
|
|
int is_archive, is_v1 = 0;
|
|
ctf_dict_t *fp = NULL;
|
|
|
|
if (ctfsect->cts_data != NULL
|
|
&& ctfsect->cts_size > sizeof (uint64_t)
|
|
&& (*(uint64_t *) ctfsect->cts_data == CTFA_MAGIC
|
|
|| bswap_64 ((*(uint64_t *) ctfsect->cts_data)) == CTFA_MAGIC
|
|
|| le64toh ((*(uint64_t *) ctfsect->cts_data)) == CTFA_V1_MAGIC))
|
|
{
|
|
/* The archive is mmappable, so this operation is trivial.
|
|
|
|
This buffer is nonmodifiable, so the trick involving mmapping only
|
|
part of it and storing the length in the magic number is not
|
|
applicable: so record this fact in the archive-wrapper header. (We
|
|
cannot record it in the archive, because the archive may very well
|
|
be a read-only mapping. unmap_on_close is left unset in the
|
|
ctf_new_archive_internal call so that we don't try to unmap it
|
|
ourselves.) */
|
|
|
|
is_archive = 1;
|
|
arc = (struct ctf_archive *) ctfsect->cts_data;
|
|
|
|
if (le64toh ((*(uint64_t *) ctfsect->cts_data)) == CTFA_V1_MAGIC)
|
|
is_v1 = 1;
|
|
}
|
|
else
|
|
{
|
|
is_archive = 0;
|
|
if ((fp = ctf_bufopen (ctfsect, symsect, strsect, errp)) == NULL)
|
|
{
|
|
ctf_err_warn (NULL, 0, *errp, _("ctf_arc_bufopen(): cannot open CTF"));
|
|
return NULL;
|
|
}
|
|
}
|
|
return ctf_new_archive_internal (is_archive, is_v1, 0, arc, ctfsect->cts_size,
|
|
fp, symsect, strsect, errp);
|
|
}
|
|
|
|
/* Open a CTF archive from a given file. Returns the archive (wrapper), or
|
|
NULL and an error in *err (if not NULL). Only archives are supported,
|
|
not dicts (because our only caller already handles those itself). */
|
|
struct ctf_archive_internal *
|
|
ctf_arc_open_internal (const char *filename, int *errp)
|
|
{
|
|
const char *errmsg;
|
|
int fd, is_v1 = 0;
|
|
struct stat s;
|
|
struct ctf_archive *arc; /* (Actually the whole file.) */
|
|
|
|
libctf_init_debug();
|
|
if ((fd = open (filename, O_RDONLY)) < 0)
|
|
{
|
|
errmsg = N_("ctf_arc_open(): cannot open %s");
|
|
goto err;
|
|
}
|
|
if (fstat (fd, &s) < 0)
|
|
{
|
|
errmsg = N_("ctf_arc_open(): cannot stat %s");
|
|
goto err_close;
|
|
}
|
|
|
|
/* This will fail if the file is too big -- e.g. > 4GiB on 32-bit
|
|
platforms -- and thus free us from having to do integer-overflow checks
|
|
elsewhere. */
|
|
if ((arc = arc_mmap_file (fd, s.st_size)) == NULL)
|
|
{
|
|
errmsg = N_("ctf_arc_open(): cannot read in %s");
|
|
goto err_close;
|
|
}
|
|
|
|
if (arc->ctfa_magic != CTFA_MAGIC && bswap_64 (arc->ctfa_magic) != CTFA_MAGIC
|
|
&& le64toh (arc->ctfa_magic) != CTFA_V1_MAGIC)
|
|
{
|
|
errmsg = N_("ctf_arc_open(): %s: invalid magic number");
|
|
errno = ECTF_FMT;
|
|
goto err_unmap;
|
|
}
|
|
|
|
if (le64toh (arc->ctfa_magic) == CTFA_V1_MAGIC)
|
|
is_v1 = 1;
|
|
|
|
/* This horrible hack lets us know how much to unmap when the file is
|
|
closed. (We no longer need the magic number, and the mapping
|
|
is private.) */
|
|
arc->ctfa_magic = s.st_size;
|
|
close (fd);
|
|
|
|
return ctf_new_archive_internal (1, is_v1, 1, arc, s.st_size, NULL,
|
|
NULL, NULL, errp);
|
|
|
|
err_unmap:
|
|
arc_mmap_unmap (arc, s.st_size, NULL);
|
|
err_close:
|
|
close (fd);
|
|
err:
|
|
if (errp)
|
|
*errp = errno;
|
|
ctf_err_warn (NULL, 0, errno, gettext (errmsg), filename);
|
|
return NULL;
|
|
}
|
|
|
|
/* Close an archive. */
|
|
static void
|
|
ctf_arc_close_internal (struct ctf_archive *arc)
|
|
{
|
|
if (arc == NULL)
|
|
return;
|
|
|
|
/* See the comment in ctf_arc_open(). */
|
|
arc_mmap_unmap (arc, arc->ctfa_magic, NULL);
|
|
}
|
|
|
|
/* Public entry point: close an archive (via its wrapper), or CTF dict. */
|
|
void
|
|
ctf_arc_close (struct ctf_archive_internal *arci)
|
|
{
|
|
if (arci == NULL)
|
|
return;
|
|
|
|
if (arci->ctfi_is_archive)
|
|
{
|
|
if (arci->ctfi_unmap_on_close)
|
|
ctf_arc_close_internal ((struct ctf_archive *) arci->ctfi_archive);
|
|
}
|
|
else
|
|
ctf_dict_close (arci->ctfi_dict);
|
|
free (arci->ctfi_hdr);
|
|
free (arci->ctfi_symdicts);
|
|
free (arci->ctfi_symnamedicts);
|
|
ctf_dynhash_destroy (arci->ctfi_dicts);
|
|
if (arci->ctfi_free_symsect)
|
|
free ((void *) arci->ctfi_symsect.cts_data);
|
|
if (arci->ctfi_free_strsect)
|
|
free ((void *) arci->ctfi_strsect.cts_data);
|
|
free (arci->ctfi_data);
|
|
if (arci->ctfi_bfd_close)
|
|
arci->ctfi_bfd_close (arci);
|
|
free (arci);
|
|
}
|
|
|
|
/* Return the ctf_dict_t with the given name, or NULL if none, setting 'err' if
|
|
non-NULL. A name of NULL means to open the default file. */
|
|
static ctf_dict_t *
|
|
ctf_dict_open_internal (const struct ctf_archive_internal *arci,
|
|
const ctf_sect_t *symsect,
|
|
const ctf_sect_t *strsect,
|
|
const char *name, int little_endian_symtab,
|
|
int *errp)
|
|
{
|
|
ctf_archive_modent_t *modent;
|
|
|
|
if (name == NULL)
|
|
name = _CTF_SECTION; /* The default name. */
|
|
|
|
ctf_dprintf ("ctf_dict_open_internal(%s): opening\n", name);
|
|
|
|
modent = (ctf_archive_modent_t *) (arci->ctfi_archive
|
|
+ arci->ctfi_hdr->ctfa_modents);
|
|
|
|
modent = bsearch_r (name, modent, arci->ctfi_hdr->ctfa_ndicts,
|
|
sizeof (ctf_archive_modent_t),
|
|
search_modent_by_name, (void *) arci);
|
|
|
|
/* This is actually a common case and normal operation: no error
|
|
debug output. */
|
|
if (modent == NULL)
|
|
{
|
|
if (errp)
|
|
*errp = ECTF_ARNNAME;
|
|
return NULL;
|
|
}
|
|
|
|
return ctf_dict_open_by_offset (arci, symsect, strsect, modent->ctf_offset,
|
|
little_endian_symtab, errp);
|
|
}
|
|
|
|
/* Return the ctf_dict_t with the given name, or NULL if none, setting 'err' if
|
|
non-NULL. A name of NULL means to open the default file.
|
|
|
|
Use the specified string and symbol table sections.
|
|
|
|
Public entry point. */
|
|
ctf_dict_t *
|
|
ctf_dict_open_sections (const struct ctf_archive_internal *arci,
|
|
const ctf_sect_t *symsect,
|
|
const ctf_sect_t *strsect,
|
|
const char *name,
|
|
int *errp)
|
|
{
|
|
if (errp)
|
|
*errp = 0;
|
|
|
|
if (arci->ctfi_is_archive)
|
|
{
|
|
ctf_dict_t *fp;
|
|
fp = ctf_dict_open_internal (arci, symsect, strsect, name,
|
|
arci->ctfi_symsect_little_endian,
|
|
errp);
|
|
if (fp)
|
|
{
|
|
fp->ctf_archive = (struct ctf_archive_internal *) arci;
|
|
if (ctf_arc_import_parent (arci, fp, errp) < 0)
|
|
{
|
|
ctf_dict_close (fp);
|
|
return NULL;
|
|
}
|
|
}
|
|
return fp;
|
|
}
|
|
|
|
if ((name != NULL) && (strcmp (name, _CTF_SECTION) != 0))
|
|
{
|
|
if (errp)
|
|
*errp = ECTF_ARNNAME;
|
|
return NULL;
|
|
}
|
|
arci->ctfi_dict->ctf_archive = (struct ctf_archive_internal *) arci;
|
|
|
|
/* Bump the refcount so that the user can ctf_dict_close() it. */
|
|
arci->ctfi_dict->ctf_refcnt++;
|
|
return arci->ctfi_dict;
|
|
}
|
|
|
|
/* Return the ctf_dict_t with the given name, or NULL if none, setting 'err' if
|
|
non-NULL. A name of NULL means to open the default file.
|
|
|
|
Public entry point. */
|
|
ctf_dict_t *
|
|
ctf_dict_open (const struct ctf_archive_internal *arci, const char *name, int *errp)
|
|
{
|
|
const ctf_sect_t *symsect = &arci->ctfi_symsect;
|
|
const ctf_sect_t *strsect = &arci->ctfi_strsect;
|
|
|
|
if (symsect->cts_name == NULL)
|
|
symsect = NULL;
|
|
if (strsect->cts_name == NULL)
|
|
strsect = NULL;
|
|
|
|
return ctf_dict_open_sections (arci, symsect, strsect, name, errp);
|
|
}
|
|
|
|
static void
|
|
ctf_cached_dict_close (void *fp)
|
|
{
|
|
ctf_dict_close ((ctf_dict_t *) fp);
|
|
}
|
|
|
|
/* Return the ctf_dict_t with the given name and cache it in the archive's
|
|
ctfi_dicts. If this is the first cached dict, designate it the
|
|
crossdict_cache. */
|
|
static ctf_dict_t *
|
|
ctf_dict_open_cached (struct ctf_archive_internal *arci, const char *name, int *errp)
|
|
{
|
|
ctf_dict_t *fp;
|
|
char *dupname = NULL;
|
|
|
|
/* Just return from the cache if possible. */
|
|
if (arci->ctfi_dicts
|
|
&& ((fp = ctf_dynhash_lookup (arci->ctfi_dicts, name)) != NULL))
|
|
{
|
|
fp->ctf_refcnt++;
|
|
return fp;
|
|
}
|
|
|
|
/* Not yet cached: open it. */
|
|
if ((fp = ctf_dict_open (arci, name, errp)) == NULL)
|
|
goto err;
|
|
|
|
if ((dupname = strdup (name)) == NULL)
|
|
goto oom;
|
|
|
|
if (arci->ctfi_dicts == NULL)
|
|
if ((arci->ctfi_dicts
|
|
= ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
free, ctf_cached_dict_close)) == NULL)
|
|
goto oom;
|
|
|
|
if (ctf_dynhash_insert (arci->ctfi_dicts, dupname, fp) < 0)
|
|
goto oom;
|
|
fp->ctf_refcnt++;
|
|
|
|
if (arci->ctfi_crossdict_cache == NULL)
|
|
arci->ctfi_crossdict_cache = fp;
|
|
|
|
/* If this archive has multiple members, and this is a parent, pretend
|
|
that we have opened at least one child. This forces type and string
|
|
allocations in the parent to use provisional IDs, permitting you to
|
|
import children into it even if you modify the parent before you import
|
|
any. */
|
|
if (arci->ctfi_is_archive && arci->ctfi_hdr->ctfa_ndicts > 1
|
|
&& !(fp->ctf_flags & LCTF_CHILD))
|
|
{
|
|
ctf_dprintf ("archived parent: max children bumped.\n");
|
|
fp->ctf_max_children++;
|
|
}
|
|
|
|
return fp;
|
|
|
|
oom:
|
|
if (errp)
|
|
*errp = ENOMEM;
|
|
err:
|
|
ctf_dict_close (fp);
|
|
free (dupname);
|
|
return NULL;
|
|
}
|
|
|
|
/* Flush any caches the CTF archive may have open. */
|
|
void
|
|
ctf_arc_flush_caches (struct ctf_archive_internal *arci)
|
|
{
|
|
free (arci->ctfi_symdicts);
|
|
ctf_dynhash_destroy (arci->ctfi_symnamedicts);
|
|
ctf_dynhash_destroy (arci->ctfi_dicts);
|
|
arci->ctfi_symdicts = NULL;
|
|
arci->ctfi_symnamedicts = NULL;
|
|
arci->ctfi_dicts = NULL;
|
|
arci->ctfi_crossdict_cache = NULL;
|
|
}
|
|
|
|
/* Return the ctf_dict_t at the given ctfa_ctfs-relative offset, or NULL if
|
|
none, setting 'err' if non-NULL. */
|
|
static ctf_dict_t *
|
|
ctf_dict_open_by_offset (const struct ctf_archive_internal *arci,
|
|
const ctf_sect_t *symsect,
|
|
const ctf_sect_t *strsect, size_t offset,
|
|
int little_endian_symtab,
|
|
int *errp)
|
|
{
|
|
ctf_sect_t ctfsect;
|
|
ctf_dict_t *fp;
|
|
|
|
ctf_dprintf ("ctf_dict_open_by_offset(%lu): opening\n", (unsigned long) offset);
|
|
|
|
memset (&ctfsect, 0, sizeof (ctf_sect_t));
|
|
|
|
offset += arci->ctfi_hdr->ctfa_ctfs;
|
|
|
|
ctfsect.cts_name = _CTF_SECTION;
|
|
ctfsect.cts_size = *((uint64_t *) (arci->ctfi_archive + offset));
|
|
ctfsect.cts_entsize = 1;
|
|
ctfsect.cts_data = (void *) (arci->ctfi_archive + offset + sizeof (uint64_t));
|
|
|
|
fp = ctf_bufopen (&ctfsect, symsect, strsect, errp);
|
|
if (fp)
|
|
{
|
|
ctf_setmodel (fp, arci->ctfi_hdr->ctfa_model);
|
|
if (little_endian_symtab >= 0)
|
|
ctf_symsect_endianness (fp, little_endian_symtab);
|
|
}
|
|
return fp;
|
|
}
|
|
|
|
/* Backward compatibility. */
|
|
ctf_dict_t *
|
|
ctf_arc_open_by_name (const ctf_archive_t *arci, const char *name,
|
|
int *errp)
|
|
{
|
|
return ctf_dict_open (arci, name, errp);
|
|
}
|
|
|
|
ctf_dict_t *
|
|
ctf_arc_open_by_name_sections (const struct ctf_archive_internal *arci,
|
|
const ctf_sect_t *symsect,
|
|
const ctf_sect_t *strsect,
|
|
const char *name,
|
|
int *errp)
|
|
{
|
|
return ctf_dict_open_sections (arci, symsect, strsect, name, errp);
|
|
}
|
|
|
|
/* Get a property value from the shared properties table of an archive,
|
|
given a name, or NULL. */
|
|
|
|
static const char *
|
|
ctf_arc_get_property (const struct ctf_archive_internal *arci, const char *prop)
|
|
{
|
|
ctf_archive_modent_t *modent;
|
|
uint64_t *size;
|
|
|
|
if (!arci->ctfi_archive)
|
|
return NULL;
|
|
|
|
if (arci->ctfi_hdr->ctfa_propents == 0
|
|
|| arci->ctfi_hdr->ctfa_prop_values == 0)
|
|
return NULL;
|
|
|
|
modent = (ctf_archive_modent_t *) (arci->ctfi_archive
|
|
+ arci->ctfi_hdr->ctfa_modents);
|
|
|
|
modent = bsearch_r (prop, modent, arci->ctfi_hdr->ctfa_nprops,
|
|
sizeof (ctf_archive_modent_t),
|
|
search_modent_by_name, (void *) arci);
|
|
|
|
if (modent == NULL)
|
|
return NULL;
|
|
|
|
/* Currently, all property values we use are strings: we can exploit this
|
|
and skip the size, with one special case for no value at all meaning
|
|
the null string. */
|
|
|
|
size = (uint64_t *) (arci->ctfi_archive
|
|
+ arci->ctfi_hdr->ctfa_propents
|
|
+ modent->ctf_offset);
|
|
if (*size == 0)
|
|
return "";
|
|
|
|
return (char *) (arci->ctfi_archive
|
|
+ arci->ctfi_hdr->ctfa_propents
|
|
+ modent->ctf_offset
|
|
+ sizeof (uint64_t));
|
|
}
|
|
|
|
/* Import the parent into a ctf archive, if this is a child, the parent is not
|
|
already set, and a suitable archive member exists. No error is raised if
|
|
this is not possible: this is just a best-effort helper operation to give
|
|
people useful dicts to start with. */
|
|
static int
|
|
ctf_arc_import_parent (const struct ctf_archive_internal *arci, ctf_dict_t *fp,
|
|
int *errp)
|
|
{
|
|
if ((fp->ctf_flags & LCTF_CHILD) && !fp->ctf_parent)
|
|
{
|
|
int err = 0;
|
|
ctf_dict_t *parent;
|
|
const char *parent_name = fp->ctf_parent_name;
|
|
|
|
/* If no parent is set, and this is an archive, check the parent name
|
|
in the properties table. (v1 archives will not have one, but v1
|
|
archives will only ever contain CTF dicts, which will always have
|
|
a parent name set if they need one. This contingency is for BTF,
|
|
which can only appear in v2 archives.)
|
|
|
|
There may not be a parent name set even in this case: in the
|
|
(admittedly pathological) case of archives which contain a mix of
|
|
parents and some BTF children, the parent name will not be set
|
|
because no consistent name exists. In this case,
|
|
ctf_archive_next's callers will simply have to import the parent
|
|
themselves. Such archives cannot be created by ctf_link, so
|
|
callers are only expected to need this in conjunction with
|
|
special-case archive construction tools, and general-purpose
|
|
callers don't need to worry. */
|
|
|
|
if (!parent_name && arci->ctfi_archive)
|
|
parent_name = ctf_arc_get_property (arci, "parent_name");
|
|
|
|
parent = ctf_dict_open_cached ((ctf_archive_t *) arci, parent_name, &err);
|
|
if (errp)
|
|
*errp = err;
|
|
|
|
if (parent)
|
|
{
|
|
if (ctf_import (fp, parent) < 0)
|
|
ctf_err_warn (NULL, 1, ctf_errno (fp),
|
|
"ctf_arc_import_parent: cannot import: %s",
|
|
ctf_errmsg (ctf_errno (fp)));
|
|
ctf_dict_close (parent);
|
|
}
|
|
else if (err != ECTF_ARNNAME)
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Return the number of members in an archive. */
|
|
size_t
|
|
ctf_archive_count (const struct ctf_archive_internal *arci)
|
|
{
|
|
if (!arci->ctfi_is_archive)
|
|
return 1;
|
|
|
|
return arci->ctfi_hdr->ctfa_ndicts;
|
|
}
|
|
|
|
/* Look up a symbol in an archive by name or index (if the name is set, a lookup
|
|
by name is done). Return the dict in the archive that the symbol is found
|
|
in, and (optionally) the ctf_id_t of the symbol in that dict (so you don't
|
|
have to look it up yourself). The dict is cached, so repeated lookups are
|
|
nearly free.
|
|
|
|
As usual, you should ctf_dict_close() the returned dict once you are done
|
|
with it.
|
|
|
|
Returns NULL on error, and an error in errp (if set). */
|
|
|
|
static ctf_dict_t *
|
|
ctf_arc_lookup_sym_or_name (struct ctf_archive_internal *arci, unsigned long symidx,
|
|
const char *symname, ctf_id_t *typep, int *errp)
|
|
{
|
|
ctf_dict_t *fp;
|
|
void *fpkey;
|
|
ctf_id_t type;
|
|
|
|
/* The usual non-archive-transparent-wrapper special case. */
|
|
if (!arci->ctfi_is_archive)
|
|
{
|
|
if (!symname)
|
|
{
|
|
if ((type = ctf_lookup_by_symbol (arci->ctfi_dict, symidx)) == CTF_ERR)
|
|
{
|
|
if (errp)
|
|
*errp = ctf_errno (arci->ctfi_dict);
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((type = ctf_lookup_by_symbol_name (arci->ctfi_dict,
|
|
symname)) == CTF_ERR)
|
|
{
|
|
if (errp)
|
|
*errp = ctf_errno (arci->ctfi_dict);
|
|
return NULL;
|
|
}
|
|
}
|
|
if (typep)
|
|
*typep = type;
|
|
arci->ctfi_dict->ctf_refcnt++;
|
|
return arci->ctfi_dict;
|
|
}
|
|
|
|
if (arci->ctfi_symsect.cts_name == NULL
|
|
|| arci->ctfi_symsect.cts_data == NULL
|
|
|| arci->ctfi_symsect.cts_size == 0
|
|
|| arci->ctfi_symsect.cts_entsize == 0)
|
|
{
|
|
if (errp)
|
|
*errp = ECTF_NOSYMTAB;
|
|
return NULL;
|
|
}
|
|
|
|
/* Make enough space for all possible symbol indexes, if not already done. We
|
|
cache the originating dictionary of all symbols. The dict links are weak,
|
|
to the dictionaries cached in ctfi_dicts: their refcnts are *not* bumped.
|
|
We also cache similar mappings for symbol names: these are ordinary
|
|
dynhashes, with weak links to dicts. */
|
|
|
|
if (!arci->ctfi_symdicts)
|
|
{
|
|
if ((arci->ctfi_symdicts = calloc (arci->ctfi_symsect.cts_size
|
|
/ arci->ctfi_symsect.cts_entsize,
|
|
sizeof (ctf_dict_t *))) == NULL)
|
|
{
|
|
if (errp)
|
|
*errp = ENOMEM;
|
|
return NULL;
|
|
}
|
|
}
|
|
if (!arci->ctfi_symnamedicts)
|
|
{
|
|
if ((arci->ctfi_symnamedicts = ctf_dynhash_create (ctf_hash_string,
|
|
ctf_hash_eq_string,
|
|
free, NULL)) == NULL)
|
|
{
|
|
if (errp)
|
|
*errp = ENOMEM;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Perhaps the dict in which we found a previous lookup is cached. If it's
|
|
supposed to be cached but we don't find it, pretend it was always not
|
|
found: this should never happen, but shouldn't be allowed to cause trouble
|
|
if it does. */
|
|
|
|
if ((symname && ctf_dynhash_lookup_kv (arci->ctfi_symnamedicts,
|
|
symname, NULL, &fpkey))
|
|
|| (!symname && arci->ctfi_symdicts[symidx] != NULL))
|
|
{
|
|
if (symname)
|
|
fp = (ctf_dict_t *) fpkey;
|
|
else
|
|
fp = arci->ctfi_symdicts[symidx];
|
|
|
|
if (fp == &enosym)
|
|
goto no_sym;
|
|
|
|
if (symname)
|
|
{
|
|
if ((type = ctf_lookup_by_symbol_name (fp, symname)) == CTF_ERR)
|
|
goto cache_no_sym;
|
|
}
|
|
else
|
|
{
|
|
if ((type = ctf_lookup_by_symbol (fp, symidx)) == CTF_ERR)
|
|
goto cache_no_sym;
|
|
}
|
|
|
|
if (typep)
|
|
*typep = type;
|
|
fp->ctf_refcnt++;
|
|
return fp;
|
|
}
|
|
|
|
/* Not cached: find it and cache it. We must track open errors ourselves even
|
|
if our caller doesn't, to be able to distinguish no-error end-of-iteration
|
|
from open errors. */
|
|
|
|
int local_err;
|
|
int *local_errp;
|
|
ctf_next_t *i = NULL;
|
|
const char *name;
|
|
|
|
if (errp)
|
|
local_errp = errp;
|
|
else
|
|
local_errp = &local_err;
|
|
|
|
while ((fp = ctf_archive_next (arci, &i, &name, 0, local_errp)) != NULL)
|
|
{
|
|
if (!symname)
|
|
{
|
|
if ((type = ctf_lookup_by_symbol (fp, symidx)) != CTF_ERR)
|
|
arci->ctfi_symdicts[symidx] = fp;
|
|
}
|
|
else
|
|
{
|
|
if ((type = ctf_lookup_by_symbol_name (fp, symname)) != CTF_ERR)
|
|
{
|
|
char *tmp;
|
|
/* No error checking, as above. */
|
|
if ((tmp = strdup (symname)) != NULL)
|
|
ctf_dynhash_insert (arci->ctfi_symnamedicts, tmp, fp);
|
|
}
|
|
}
|
|
|
|
if (type != CTF_ERR)
|
|
{
|
|
if (typep)
|
|
*typep = type;
|
|
ctf_next_destroy (i);
|
|
return fp;
|
|
}
|
|
if (ctf_errno (fp) != ECTF_NOTYPEDAT)
|
|
{
|
|
if (errp)
|
|
*errp = ctf_errno (fp);
|
|
ctf_dict_close (fp);
|
|
ctf_next_destroy (i);
|
|
return NULL; /* errno is set for us. */
|
|
}
|
|
ctf_dict_close (fp);
|
|
}
|
|
if (*local_errp != ECTF_NEXT_END)
|
|
{
|
|
ctf_next_destroy (i);
|
|
return NULL;
|
|
}
|
|
|
|
/* Don't leak end-of-iteration to the caller. */
|
|
*local_errp = 0;
|
|
|
|
cache_no_sym:
|
|
if (!symname)
|
|
arci->ctfi_symdicts[symidx] = &enosym;
|
|
else
|
|
{
|
|
char *tmp;
|
|
|
|
/* No error checking: if caching fails, there is only a slight performance
|
|
impact. */
|
|
if ((tmp = strdup (symname)) != NULL)
|
|
if (ctf_dynhash_insert (arci->ctfi_symnamedicts, tmp, &enosym) < 0)
|
|
free (tmp);
|
|
}
|
|
|
|
no_sym:
|
|
if (errp)
|
|
*errp = ECTF_NOTYPEDAT;
|
|
if (typep)
|
|
*typep = CTF_ERR;
|
|
return NULL;
|
|
}
|
|
|
|
/* The public API for looking up a symbol by index. */
|
|
ctf_dict_t *
|
|
ctf_arc_lookup_symbol (struct ctf_archive_internal *arci, unsigned long symidx,
|
|
ctf_id_t *typep, int *errp)
|
|
{
|
|
return ctf_arc_lookup_sym_or_name (arci, symidx, NULL, typep, errp);
|
|
}
|
|
|
|
/* The public API for looking up a symbol by name. */
|
|
|
|
ctf_dict_t *
|
|
ctf_arc_lookup_symbol_name (struct ctf_archive_internal *arci, const char *symname,
|
|
ctf_id_t *typep, int *errp)
|
|
{
|
|
return ctf_arc_lookup_sym_or_name (arci, 0, symname, typep, errp);
|
|
}
|
|
|
|
/* Return all enumeration constants with a given NAME across all dicts in an
|
|
archive, similar to ctf_lookup_enumerator_next. The DICT is cached, so
|
|
opening costs are paid only once, but (unlike ctf_arc_lookup_symbol*
|
|
above) the results of the iterations are not cached. dict and errp are
|
|
not optional. */
|
|
|
|
ctf_id_t
|
|
ctf_arc_lookup_enumerator_next (struct ctf_archive_internal *arci,
|
|
const char *name, ctf_next_t **it,
|
|
int64_t *enum_value, ctf_dict_t **dict,
|
|
int *errp)
|
|
{
|
|
ctf_next_t *i = *it;
|
|
ctf_id_t type;
|
|
int opened_this_time = 0;
|
|
int err;
|
|
|
|
/* We have two nested iterators in here: ctn_next tracks archives, while
|
|
within it ctn_next_inner tracks enumerators within an archive. We
|
|
keep track of the dict by simply reusing the passed-in arg: if it's
|
|
changed by the caller, the caller will get an ECTF_WRONGFP error,
|
|
so this is quite safe and means we don't have to track the arc and fp
|
|
simultaneously in the ctf_next_t. */
|
|
|
|
if (!i)
|
|
{
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
{
|
|
err = ENOMEM;
|
|
goto err;
|
|
}
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_arc_lookup_enumerator_next;
|
|
i->cu.ctn_arc = arci;
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_arc_lookup_enumerator_next != i->ctn_iter_fun)
|
|
{
|
|
err = ECTF_NEXT_WRONGFUN;
|
|
goto err;
|
|
}
|
|
|
|
if (arci != i->cu.ctn_arc)
|
|
{
|
|
err = ECTF_NEXT_WRONGFP;
|
|
goto err;
|
|
}
|
|
|
|
/* Prevent any earlier end-of-iteration on this dict from confusing the
|
|
test below. */
|
|
if (i->ctn_next != NULL)
|
|
ctf_set_errno (*dict, 0);
|
|
|
|
do
|
|
{
|
|
/* At end of one dict, or not started any iterations yet?
|
|
Traverse to next dict. If we never returned this dict to the
|
|
caller, close it ourselves: the caller will never see it and cannot
|
|
do so. */
|
|
|
|
if (i->ctn_next == NULL || ctf_errno (*dict) == ECTF_NEXT_END)
|
|
{
|
|
if (opened_this_time)
|
|
{
|
|
ctf_dict_close (*dict);
|
|
*dict = NULL;
|
|
opened_this_time = 0;
|
|
}
|
|
|
|
*dict = ctf_archive_next (arci, &i->ctn_next, NULL, 0, &err);
|
|
if (!*dict)
|
|
goto err;
|
|
opened_this_time = 1;
|
|
}
|
|
|
|
type = ctf_lookup_enumerator_next (*dict, name, &i->ctn_next_inner,
|
|
enum_value);
|
|
}
|
|
while (type == CTF_ERR && ctf_errno (*dict) == ECTF_NEXT_END);
|
|
|
|
if (type == CTF_ERR)
|
|
{
|
|
err = ctf_errno (*dict);
|
|
goto err;
|
|
}
|
|
|
|
/* If this dict is being reused from the previous iteration, bump its
|
|
refcnt: the caller is going to close it and has no idea that we didn't
|
|
open it this time round. */
|
|
if (!opened_this_time)
|
|
ctf_ref (*dict);
|
|
|
|
return type;
|
|
|
|
err: /* Also ECTF_NEXT_END. */
|
|
if (opened_this_time)
|
|
{
|
|
ctf_dict_close (*dict);
|
|
*dict = NULL;
|
|
}
|
|
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
if (errp)
|
|
*errp = err;
|
|
return CTF_ERR;
|
|
}
|
|
|
|
/* Raw iteration over all CTF files in an archive: public entry point.
|
|
|
|
Returns -EINVAL if not supported for this sort of archive. */
|
|
int
|
|
ctf_archive_raw_iter (const struct ctf_archive_internal *arci,
|
|
ctf_archive_raw_member_f * func, void *data)
|
|
{
|
|
int rc;
|
|
size_t i;
|
|
ctf_archive_modent_t *modent;
|
|
const char *nametbl;
|
|
|
|
if (!arci->ctfi_is_archive || !arci->ctfi_archive)
|
|
return -EINVAL; /* Not supported. */
|
|
|
|
modent = (ctf_archive_modent_t *) (arci->ctfi_archive
|
|
+ arci->ctfi_hdr->ctfa_modents);
|
|
nametbl = (const char *) arci->ctfi_archive + arci->ctfi_hdr->ctfa_names;
|
|
|
|
for (i = 0; i < arci->ctfi_hdr->ctfa_ndicts; i++)
|
|
{
|
|
const char *name;
|
|
unsigned char *content;
|
|
size_t name_offset, ctf_offset, ctf_size;
|
|
|
|
name_offset = modent[i].name_offset;
|
|
ctf_offset = modent[i].ctf_offset;
|
|
|
|
name = &nametbl[name_offset];
|
|
content = arci->ctfi_archive + arci->ctfi_hdr->ctfa_ctfs + ctf_offset;
|
|
ctf_size = *((uint64_t *) content);
|
|
|
|
if ((rc = func (name, (void *) (content + sizeof (uint64_t)),
|
|
ctf_size, data)) != 0)
|
|
return rc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Iterate over all CTF files in an archive: public entry point. We pass all
|
|
CTF files in turn to the specified callback function. */
|
|
int
|
|
ctf_archive_iter (const struct ctf_archive_internal *arci,
|
|
ctf_archive_member_f *func, void *data)
|
|
{
|
|
ctf_next_t *i = NULL;
|
|
ctf_dict_t *fp;
|
|
const char *name;
|
|
int err = 0;
|
|
|
|
while ((fp = ctf_archive_next (arci, &i, &name, 0, &err)) != NULL)
|
|
{
|
|
int rc;
|
|
|
|
if ((rc = func (fp, name, data)) != 0)
|
|
{
|
|
ctf_dict_close (fp);
|
|
ctf_next_destroy (i);
|
|
return rc;
|
|
}
|
|
ctf_dict_close (fp);
|
|
}
|
|
if (err != ECTF_NEXT_END && err != 0)
|
|
{
|
|
ctf_next_destroy (i);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Iterate over all CTF files in an archive, returning each dict in turn as a
|
|
ctf_dict_t, and NULL on error or end of iteration. It is the caller's
|
|
responsibility to close it. Parent dicts may be skipped.
|
|
|
|
The archive member is cached for rapid return on future calls.
|
|
|
|
We identify parents by name rather than by flag value: for now, with the
|
|
linker only emitting parents named _CTF_SECTION, this works well enough. */
|
|
|
|
ctf_dict_t *
|
|
ctf_archive_next (const struct ctf_archive_internal *arci, ctf_next_t **it,
|
|
const char **name, int skip_parent, int *errp)
|
|
{
|
|
ctf_dict_t *f;
|
|
ctf_next_t *i = *it;
|
|
ctf_archive_modent_t *modent;
|
|
const char *nametbl;
|
|
const char *name_;
|
|
|
|
if (!i)
|
|
{
|
|
if ((i = ctf_next_create()) == NULL)
|
|
{
|
|
if (errp)
|
|
*errp = ENOMEM;
|
|
return NULL;
|
|
}
|
|
i->cu.ctn_arc = arci;
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_archive_next;
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_archive_next != i->ctn_iter_fun)
|
|
{
|
|
if (errp)
|
|
*errp = ECTF_NEXT_WRONGFUN;
|
|
return NULL;
|
|
}
|
|
|
|
if (arci != i->cu.ctn_arc)
|
|
{
|
|
if (errp)
|
|
*errp = ECTF_NEXT_WRONGFP;
|
|
return NULL;
|
|
}
|
|
|
|
/* Iteration is made a bit more complex by the need to handle ctf_dict_t's
|
|
transparently wrapped in a single-member archive. These are parents: if
|
|
skip_parent is on, they are skipped and the iterator terminates
|
|
immediately. */
|
|
|
|
if (!arci->ctfi_is_archive && i->ctn_n == 0)
|
|
{
|
|
i->ctn_n++;
|
|
if (!skip_parent)
|
|
{
|
|
arci->ctfi_dict->ctf_refcnt++;
|
|
if (name)
|
|
*name = _CTF_SECTION;
|
|
return arci->ctfi_dict;
|
|
}
|
|
}
|
|
|
|
/* The loop keeps going when skip_parent is on as long as the member we find
|
|
is the parent (i.e. at most two iterations, but possibly an early return if
|
|
*all* we have is a parent). */
|
|
|
|
do
|
|
{
|
|
if ((!arci->ctfi_is_archive) || (i->ctn_n >= arci->ctfi_hdr->ctfa_ndicts))
|
|
{
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
if (errp)
|
|
*errp = ECTF_NEXT_END;
|
|
return NULL;
|
|
}
|
|
|
|
modent = (ctf_archive_modent_t *) ((char *) arci->ctfi_archive
|
|
+ arci->ctfi_hdr->ctfa_modents);
|
|
nametbl = (const char *) arci->ctfi_archive + arci->ctfi_hdr->ctfa_names;
|
|
name_ = &nametbl[modent[i->ctn_n].name_offset];
|
|
i->ctn_n++;
|
|
}
|
|
while (skip_parent && strcmp (name_, _CTF_SECTION) == 0);
|
|
|
|
if (name)
|
|
*name = name_;
|
|
|
|
f = ctf_dict_open_cached ((ctf_archive_t *) arci, name_, errp);
|
|
return f;
|
|
}
|
|
|
|
#ifdef HAVE_MMAP
|
|
/* Map the header in. Only used on new, empty files. */
|
|
static void *arc_mmap_header (int fd, size_t headersz)
|
|
{
|
|
void *hdr;
|
|
if ((hdr = mmap (NULL, headersz, PROT_READ | PROT_WRITE, MAP_SHARED, fd,
|
|
0)) == MAP_FAILED)
|
|
return NULL;
|
|
return hdr;
|
|
}
|
|
|
|
/* mmap() the whole file, for reading only. (Map it writably, but privately: we
|
|
need to modify the region, but don't need anyone else to see the
|
|
modifications.) */
|
|
static void *arc_mmap_file (int fd, size_t size)
|
|
{
|
|
void *arc;
|
|
if ((arc = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
|
|
fd, 0)) == MAP_FAILED)
|
|
return NULL;
|
|
return arc;
|
|
}
|
|
|
|
/* Persist the header to disk. */
|
|
static int arc_mmap_writeout (int fd _libctf_unused_, void *header,
|
|
size_t headersz, const char **errmsg)
|
|
{
|
|
if (msync (header, headersz, MS_ASYNC) < 0)
|
|
{
|
|
if (errmsg)
|
|
*errmsg = N_("arc_mmap_writeout(): cannot sync after writing "
|
|
"to %s: %s");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Unmap the region. */
|
|
static int arc_mmap_unmap (void *header, size_t headersz, const char **errmsg)
|
|
{
|
|
if (munmap (header, headersz) < 0)
|
|
{
|
|
if (errmsg)
|
|
*errmsg = N_("arc_mmap_munmap(): cannot unmap after writing "
|
|
"to %s: %s");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
/* Map the header in. Only used on new, empty files. */
|
|
static void *arc_mmap_header (int fd _libctf_unused_, size_t headersz)
|
|
{
|
|
void *hdr;
|
|
if ((hdr = malloc (headersz)) == NULL)
|
|
return NULL;
|
|
return hdr;
|
|
}
|
|
|
|
/* Pull in the whole file, for reading only. We assume the current file
|
|
position is at the start of the file. */
|
|
static void *arc_mmap_file (int fd, size_t size)
|
|
{
|
|
char *data;
|
|
|
|
if ((data = malloc (size)) == NULL)
|
|
return NULL;
|
|
|
|
if (ctf_pread (fd, data, size, 0) < 0)
|
|
{
|
|
free (data);
|
|
return NULL;
|
|
}
|
|
return data;
|
|
}
|
|
|
|
/* Persist the header to disk. */
|
|
static int arc_mmap_writeout (int fd, void *header, size_t headersz,
|
|
const char **errmsg)
|
|
{
|
|
ssize_t len;
|
|
char *data = (char *) header;
|
|
ssize_t count = headersz;
|
|
|
|
if ((lseek (fd, 0, SEEK_SET)) < 0)
|
|
{
|
|
if (errmsg)
|
|
*errmsg = N_("arc_mmap_writeout(): cannot seek while writing header to "
|
|
"%s: %s");
|
|
return -1;
|
|
}
|
|
|
|
while (headersz > 0)
|
|
{
|
|
if ((len = write (fd, data, count)) < 0)
|
|
{
|
|
if (errmsg)
|
|
*errmsg = N_("arc_mmap_writeout(): cannot write header to %s: %s");
|
|
return len;
|
|
}
|
|
if (len == EINTR)
|
|
continue;
|
|
|
|
if (len == 0) /* EOF. */
|
|
break;
|
|
|
|
count -= len;
|
|
data += len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Unmap the region. */
|
|
static int arc_mmap_unmap (void *header, size_t headersz _libctf_unused_,
|
|
const char **errmsg _libctf_unused_)
|
|
{
|
|
free (header);
|
|
return 0;
|
|
}
|
|
#endif
|