Files
binutils-gdb/gdb/testsuite/gdb.arch/insn-reloc.c
Bruno Larsen 9196be90bd gdb/testsuite: change hardcoded assembly in gdb.arch/disp-step-insn-reloc.exp
When testing gdb.arch/disp-step-insn-reloc.exp with clang in an x86_64
machine, the compiled test case would segfault when returning from
the function can_relocate_call, with a suggestion of a broken stack.
The example assembly in the commment was the following:

   f:
     MOV $1, %[ok]
     JMP end
   set_point0:
     CALL f ; tracepoint here.
   end:

And the segmentation fault happening at the final "ret" instruction of
can_relocate_call.  Looking at the disassembled version of the later
half of the important function, we see:

Clang version (f starting at 11a4):
  00000000000011ae <set_point0>:
      11ae:       e8 f1 ff ff ff          callq  11a4 <can_relocate_call+0x14>
      11b3:       89 45 fc                mov    %eax,-0x4(%rbp)
      11b6:       83 7d fc 01             cmpl   $0x1,-0x4(%rbp)
      11ba:       0f 85 0a 00 00 00       jne    11ca <set_point0+0x1c>
      11c0:       e8 5b 00 00 00          callq  1220 <pass>
      11c5:       e9 05 00 00 00          jmpq   11cf <set_point0+0x21>
      11ca:       e8 61 00 00 00          callq  1230 <fail>
      11cf:       48 83 c4 10             add    $0x10,%rsp
      11d3:       5d                      pop    %rbp
      11d4:       c3                      retq
      11d5:       66 66 2e 0f 1f 84 00    data16 nopw %cs:0x0(%rax,%rax,1)
      11dc:       00 00 00 00

gcc version (f starting at 401125):
  000000000040112c <set_point0>:
    40112c:       e8 f4 ff ff ff          callq  401125 <can_relocate_call+0x11>
    401131:       89 45 fc                mov    %eax,-0x4(%rbp)
    401134:       83 7d fc 01             cmpl   $0x1,-0x4(%rbp)
    401138:       75 07                   jne    401141 <set_point0+0x15>
    40113a:       e8 c7 ff ff ff          callq  401106 <pass>
    40113f:       eb 05                   jmp    401146 <set_point0+0x1a>
    401141:       e8 c7 ff ff ff          callq  40110d <fail>
    401146:       90                      nop
    401147:       c9                      leaveq
    401148:       c3                      retq

The epilogue of set_point0 (11cf for clang, 401146 for gcc) is the main
difference: GCC's version uses the leaveq instruction, which resets rsp
based on rbp, while clang adds the same constant to rsp that it
subtracted in the prologue.  Clang fails because the return address that
is added by the "call f" instruction isn't accounted for.

This commit fixes that by adding a return instruction to f, which leaves
the rsp as the compilers would expect.

Approved-By: Andrew Burgess <aburgess@redhat.com>
2023-05-23 10:48:20 +02:00

633 lines
11 KiB
C

/* This testcase is part of GDB, the GNU debugger.
Copyright 2015-2023 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include <stddef.h>
#include <stdint.h>
typedef void (*testcase_ftype)(void);
/* Each function checks the correctness of the instruction being
relocated due to a fast tracepoint. Call function pass if it is
correct, otherwise call function fail. GDB sets a breakpoints on
pass and fail in order to check the correctness. */
static void
pass (void)
{
}
static void
fail (void)
{
}
#if (defined __x86_64__ || defined __i386__)
#ifdef SYMBOL_PREFIX
#define SYMBOL(str) SYMBOL_PREFIX #str
#else
#define SYMBOL(str) #str
#endif
/* Make sure we can relocate a CALL instruction. CALL instructions are
5 bytes long so we can always set a fast tracepoints on them.
JMP set_point0
f:
MOV $1, %[ok]
RET
set_point0:
CALL f ; tracepoint here.
*/
static void
can_relocate_call (void)
{
int ok = 0;
asm (" .global " SYMBOL (set_point0) "\n"
" jmp " SYMBOL (set_point0) "\n"
"0:\n"
" mov $1, %[ok]\n"
" ret\n"
SYMBOL (set_point0) ":\n"
" call 0b\n"
: [ok] "=r" (ok));
if (ok == 1)
pass ();
else
fail ();
}
/* Make sure we can relocate a JMP instruction. We need the JMP
instruction to be 5 bytes long in order to set a fast tracepoint on
it. To do this, we emit the opcode directly.
JMP next ; tracepoint here.
next:
MOV $1, %[ok]
*/
static void
can_relocate_jump (void)
{
int ok = 0;
asm (" .global " SYMBOL (set_point1) "\n"
SYMBOL (set_point1) ":\n"
".byte 0xe9\n" /* jmp */
".byte 0x00\n"
".byte 0x00\n"
".byte 0x00\n"
".byte 0x00\n"
" mov $1, %[ok]\n"
: [ok] "=r" (ok));
if (ok == 1)
pass ();
else
fail ();
}
#elif (defined __aarch64__)
/* Make sure we can relocate a B instruction.
B set_point0
set_ok:
MOV %[ok], #1
B end
set_point0:
B set_ok ; tracepoint here.
MOV %[ok], #0
end
*/
static void
can_relocate_b (void)
{
int ok = 0;
asm (" b set_point0\n"
"0:\n"
" mov %[ok], #1\n"
" b 1f\n"
"set_point0:\n"
" b 0b\n"
" mov %[ok], #0\n"
"1:\n"
: [ok] "=r" (ok));
if (ok == 1)
pass ();
else
fail ();
}
/* Make sure we can relocate a B.cond instruction.
MOV x0, #8
TST x0, #8 ; Clear the Z flag.
B set_point1
set_ok:
MOV %[ok], #1
B end
set_point1:
B.NE set_ok ; tracepoint here.
MOV %[ok], #0
end
*/
static void
can_relocate_bcond_true (void)
{
int ok = 0;
asm (" mov x0, #8\n"
" tst x0, #8\n"
" b set_point1\n"
"0:\n"
" mov %[ok], #1\n"
" b 1f\n"
"set_point1:\n"
" b.ne 0b\n"
" mov %[ok], #0\n"
"1:\n"
: [ok] "=r" (ok)
:
: "0", "cc");
if (ok == 1)
pass ();
else
fail ();
}
/* Make sure we can relocate a CBZ instruction.
MOV x0, #0
B set_point2
set_ok:
MOV %[ok], #1
B end
set_point2:
CBZ x0, set_ok ; tracepoint here.
MOV %[ok], #0
end
*/
static void
can_relocate_cbz (void)
{
int ok = 0;
asm (" mov x0, #0\n"
" b set_point2\n"
"0:\n"
" mov %[ok], #1\n"
" b 1f\n"
"set_point2:\n"
" cbz x0, 0b\n"
" mov %[ok], #0\n"
"1:\n"
: [ok] "=r" (ok)
:
: "0");
if (ok == 1)
pass ();
else
fail ();
}
/* Make sure we can relocate a CBNZ instruction.
MOV x0, #8
B set_point3
set_ok:
MOV %[ok], #1
B end
set_point3:
CBNZ x0, set_ok ; tracepoint here.
MOV %[ok], #0
end
*/
static void
can_relocate_cbnz (void)
{
int ok = 0;
asm (" mov x0, #8\n"
" b set_point3\n"
"0:\n"
" mov %[ok], #1\n"
" b 1f\n"
"set_point3:\n"
" cbnz x0, 0b\n"
" mov %[ok], #0\n"
"1:\n"
: [ok] "=r" (ok)
:
: "0");
if (ok == 1)
pass ();
else
fail ();
}
/* Make sure we can relocate a TBZ instruction.
MOV x0, #8
MVN x0, x0 ; Clear bit 3.
B set_point4
set_ok:
MOV %[ok], #1
B end
set_point4:
TBZ x0, #3, set_ok ; tracepoint here.
MOV %[ok], #0
end
*/
static void
can_relocate_tbz (void)
{
int ok = 0;
asm (" mov x0, #8\n"
" mvn x0, x0\n"
" b set_point4\n"
"0:\n"
" mov %[ok], #1\n"
" b 1f\n"
"set_point4:\n"
" tbz x0, #3, 0b\n"
" mov %[ok], #0\n"
"1:\n"
: [ok] "=r" (ok)
:
: "0");
if (ok == 1)
pass ();
else
fail ();
}
/* Make sure we can relocate a TBNZ instruction.
MOV x0, #8 ; Set bit 3.
B set_point5
set_ok:
MOV %[ok], #1
B end
set_point5:
TBNZ x0, #3, set_ok ; tracepoint here.
MOV %[ok], #0
end
*/
static void
can_relocate_tbnz (void)
{
int ok = 0;
asm (" mov x0, #8\n"
" b set_point5\n"
"0:\n"
" mov %[ok], #1\n"
" b 1f\n"
"set_point5:\n"
" tbnz x0, #3, 0b\n"
" mov %[ok], #0\n"
"1:\n"
: [ok] "=r" (ok)
:
: "0");
if (ok == 1)
pass ();
else
fail ();
}
/* Make sure we can relocate an ADR instruction with a positive offset.
set_point6:
ADR x0, target ; tracepoint here.
BR x0 ; jump to target
MOV %[ok], #0
B end
target:
MOV %[ok], #1
end
*/
static void
can_relocate_adr_forward (void)
{
int ok = 0;
asm ("set_point6:\n"
" adr x0, 0f\n"
" br x0\n"
" mov %[ok], #0\n"
" b 1f\n"
"0:\n"
" mov %[ok], #1\n"
"1:\n"
: [ok] "=r" (ok)
:
: "0");
if (ok == 1)
pass ();
else
fail ();
}
/* Make sure we can relocate an ADR instruction with a negative offset.
B set_point7
target:
MOV %[ok], #1
B end
set_point7:
ADR x0, target ; tracepoint here.
BR x0 ; jump to target
MOV %[ok], #0
end
*/
static void
can_relocate_adr_backward (void)
{
int ok = 0;
asm ("b set_point7\n"
"0:\n"
" mov %[ok], #1\n"
" b 1f\n"
"set_point7:\n"
" adr x0, 0b\n"
" br x0\n"
" mov %[ok], #0\n"
"1:\n"
: [ok] "=r" (ok)
:
: "0");
if (ok == 1)
pass ();
else
fail ();
}
/* Make sure we can relocate an ADRP instruction.
set_point8:
ADRP %[addr], set_point8 ; tracepoint here.
ADR %[pc], set_point8
ADR computes the address of the given label. While ADRP gives us its
page, on a 4K boundary. We can check ADRP executed normally by
making sure the result of ADR and ADRP are equivalent, except for the
12 lowest bits which should be cleared.
*/
static void
can_relocate_adrp (void)
{
uintptr_t page;
uintptr_t pc;
asm ("set_point8:\n"
" adrp %[page], set_point8\n"
" adr %[pc], set_point8\n"
: [page] "=r" (page), [pc] "=r" (pc));
if (page == (pc & ~0xfff))
pass ();
else
fail ();
}
/* Make sure we can relocate an LDR instruction, where the memory to
read is an offset from the current PC.
B set_point9
data:
.word 0x0cabba9e
set_point9:
LDR %[result], data ; tracepoint here.
*/
static void
can_relocate_ldr (void)
{
uint32_t result = 0;
asm ("b set_point9\n"
"0:\n"
" .word 0x0cabba9e\n"
"set_point9:\n"
" ldr %w[result], 0b\n"
: [result] "=r" (result));
if (result == 0x0cabba9e)
pass ();
else
fail ();
}
/* Make sure we can relocate a B.cond instruction and condition is false. */
static void
can_relocate_bcond_false (void)
{
int ok = 0;
asm (" mov x0, #8\n"
" tst x0, #8\n" /* Clear the Z flag. */
"set_point10:\n" /* Set tracepoint here. */
" b.eq 0b\n" /* Condition is false. */
" mov %[ok], #1\n"
" b 1f\n"
"0:\n"
" mov %[ok], #0\n"
"1:\n"
: [ok] "=r" (ok)
:
: "0", "cc");
if (ok == 1)
pass ();
else
fail ();
}
static void
foo (void)
{
}
/* Make sure we can relocate a BL instruction. */
static void
can_relocate_bl (void)
{
asm ("set_point11:\n"
" bl foo\n"
" bl pass\n"
: : : "x30"); /* Test that LR is updated correctly. */
}
/* Make sure we can relocate a BR instruction.
... Set x0 to target
set_point12:
BR x0 ; jump to target (tracepoint here).
fail()
return
target:
pass()
end
*/
static void
can_relocate_br (void)
{
int ok = 0;
asm goto (" adr x0, %l0\n"
"set_point12:\n"
" br x0\n"
:
:
: "x0"
: madejump);
fail ();
return;
madejump:
pass ();
}
/* Make sure we can relocate a BLR instruction.
We use two different functions since the test runner expects one breakpoint
per function and we want to test two different things.
For BLR we want to test that the BLR actually jumps to the relevant
function, *and* that it sets the LR register correctly.
Hence we create one testcase that jumps to `pass` using BLR, and one
testcase that jumps to `pass` if BLR has set the LR correctly.
-- can_relocate_blr_jumps
... Set x0 to pass
set_point13:
BLR x0 ; jump to pass (tracepoint here).
-- can_relocate_blr_sets_lr
... Set x0 to foo
set_point14:
BLR x0 ; jumps somewhere else (tracepoint here).
BL pass ; ensures the LR was set correctly by the BLR.
*/
static void
can_relocate_blr_jumps (void)
{
int ok = 0;
/* Test BLR indeed jumps to the target. */
asm ("set_point13:\n"
" blr %[address]\n"
: : [address] "r" (&pass) : "x30");
}
static void
can_relocate_blr_sets_lr (void)
{
int ok = 0;
/* Test BLR sets the LR correctly. */
asm ("set_point14:\n"
" blr %[address]\n"
" bl pass\n"
: : [address] "r" (&foo) : "x30");
}
#endif
/* Functions testing relocations need to be placed here. GDB will read
n_testcases to know how many fast tracepoints to place. It will look
for symbols in the form of 'set_point\[0-9\]+' so each functions
needs one, starting at 0. */
static testcase_ftype testcases[] = {
#if (defined __x86_64__ || defined __i386__)
can_relocate_call,
can_relocate_jump
#elif (defined __aarch64__)
can_relocate_b,
can_relocate_bcond_true,
can_relocate_cbz,
can_relocate_cbnz,
can_relocate_tbz,
can_relocate_tbnz,
can_relocate_adr_forward,
can_relocate_adr_backward,
can_relocate_adrp,
can_relocate_ldr,
can_relocate_bcond_false,
can_relocate_bl,
can_relocate_br,
can_relocate_blr_jumps,
can_relocate_blr_sets_lr,
#endif
};
static size_t n_testcases = (sizeof (testcases) / sizeof (testcase_ftype));
int
main ()
{
int i = 0;
for (i = 0; i < n_testcases; i++)
testcases[i] ();
return 0;
}