Files
binutils-gdb/libctf/ctf-open.c
Nick Alcock 6a4a485c7b libctf: adapt core dictops for v4 and prefix types
The heart of libctf's reading code is the ctf_dictops_t and the functions it
provides for reading various things no matter what the CTF version in use:
these are called via LCTF_*() macros that translate into calls into the
dictops.

The introduction of prefix types in v4 requires changes here: in particular,
we want the ability to get the type kind of whatever ctf_type_t we are
looking at (the 'unprefixed' kind), as well as the ability to get the type
kind taking prefixes into account: and more generally we want the ability
to both look at a given prefix and look at the type as a whole.  So several
ctf_dictops_t entries are added for this (ctfo_get_prefixed_kind,
ctfo_get_prefixed_vlen).

This means API changes (no callers yet adjusted, it'll happen as we go),
because the existing macros were mostly called with e.g. a ctt_info value
and returned a type kind, while now we need to be called with the actual
ctf_type_t itself, so we can possibly walk beyond it to find the real type
record.  ctfo_get_vbytes needs adjusting for this.

We also add names to most of the ctf_type_t parameters, because suddenly we
can have up to three of them: one relating to the first entry in the type
record (which may be a prefix, usually called 'prefix'), one relating to the
true type record (which may be a suffix, so usually called 'suffix'), and
one possibly relating to some intermediate record if we have multiple
prefixes (usually called 'tp').

There is one horrible special case in here: the vlen of the new
CTF_K_FUNC_LINKAGE kind (equivalent to BTF_KIND_FUNC) is always zero: it
reuses the vlen field to encode the linkage (!).  BTF is rife with ugly
hacks like this.
2025-04-25 18:07:41 +01:00

2238 lines
64 KiB
C

/* Opening CTF files.
Copyright (C) 2019-2025 Free Software Foundation, Inc.
This file is part of libctf.
libctf is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not see
<http://www.gnu.org/licenses/>. */
#include <ctf-impl.h>
#include <stddef.h>
#include <string.h>
#include <sys/types.h>
#include <elf.h>
#include "swap.h"
#include <bfd.h>
#include <zlib.h>
static const ctf_dmodel_t _libctf_models[] = {
{"ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4},
{"LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8},
{NULL, 0, 0, 0, 0, 0, 0}
};
const char _CTF_SECTION[] = ".ctf";
const char _CTF_NULLSTR[] = "";
/* Version-sensitive accessors. */
static uint32_t
get_kind_v1 (uint32_t info)
{
return (CTF_V1_INFO_KIND (info));
}
static uint32_t
get_prefixed_kind_v1 (const ctf_type_t *tp)
{
return (CTF_V1_INFO_KIND (tp->ctt_info));
}
static uint32_t
get_root_v1 (uint32_t info)
{
return !!(CTF_V1_INFO_ISROOT (info));
}
static uint32_t
get_vlen_v1 (uint32_t info)
{
return (CTF_V1_INFO_VLEN (info));
}
static uint32_t
get_prefixed_vlen_v1 (const ctf_type_t *tp)
{
return (CTF_V1_INFO_VLEN (tp->ctt_info));
}
static uint32_t
get_kind_v2 (uint32_t info)
{
return (CTF_V2_INFO_KIND (info));
}
static uint32_t
get_prefixed_kind_v2 (const ctf_type_t *tp)
{
return (CTF_V2_INFO_KIND (tp->ctt_info));
}
static uint32_t
get_root_v2 (uint32_t info)
{
return !!(CTF_V2_INFO_ISROOT (info));
}
static uint32_t
get_vlen_v2 (uint32_t info)
{
return (CTF_V2_INFO_VLEN (info));
}
static uint32_t
get_prefixed_vlen_v2 (const ctf_type_t *tp)
{
return (CTF_V2_INFO_VLEN (tp->ctt_info));
}
static uint32_t
get_kind_v4 (uint32_t info)
{
return (CTF_INFO_KIND (info));
}
static uint32_t
get_prefixed_kind_v4 (const ctf_type_t *tp)
{
/* Resolve away as many prefixes as exist. */
while (LCTF_IS_PREFIXED_INFO (tp->ctt_info))
tp++;
return CTF_INFO_KIND (tp->ctt_info);
}
static uint32_t
get_root_v4 (uint32_t info)
{
return (CTF_INFO_KIND (info) != CTF_K_CONFLICTING);
}
static uint32_t
get_vlen_v4 (uint32_t info)
{
return (CTF_INFO_VLEN (info));
}
static uint32_t
get_prefixed_vlen_v4 (const ctf_type_t *tp)
{
const ctf_type_t *suffix;
/* Resolve away non-BIG prefixes (which have no affect on vlen). */
while (LCTF_IS_PREFIXED_INFO (tp->ctt_info)
&& CTF_INFO_KIND (tp->ctt_info) != CTF_K_BIG)
tp++;
if (!LCTF_IS_PREFIXED_INFO (tp->ctt_info))
return (CTF_INFO_VLEN (tp->ctt_info));
suffix = tp + 1;
/* Special case: CTF_K_FUNC_LINKAGE reuses the vlen field for the linkage: its
vlen is always zero. */
if (CTF_INFO_KIND (suffix->ctt_info) == CTF_K_FUNC_LINKAGE)
return 0;
/* CTF_K_BIG. */
return (CTF_INFO_VLEN (tp->ctt_info) << 16 | CTF_INFO_VLEN (suffix->ctt_info));
}
static inline ssize_t
get_ctt_size_old (const ctf_dict_t *fp _libctf_unused_,
const ctf_type_t *tp _libctf_unused_,
ssize_t *sizep, ssize_t *incrementp, size_t lsize,
size_t csize, size_t ctf_type_size,
size_t ctf_stype_size, size_t ctf_lsize_sent)
{
ssize_t size, increment;
if (csize == ctf_lsize_sent)
{
size = lsize;
increment = ctf_type_size;
}
else
{
size = csize;
increment = ctf_stype_size;
}
if (sizep)
*sizep = size;
if (incrementp)
*incrementp = increment;
return size;
}
static ssize_t
get_ctt_size_v1 (const ctf_dict_t *fp, const ctf_type_t *tp,
ssize_t *sizep, ssize_t *incrementp)
{
ctf_type_v1_t *t1p = (ctf_type_v1_t *) tp;
return (get_ctt_size_old (fp, tp, sizep, incrementp,
CTF_V3_TYPE_LSIZE (t1p), t1p->ctt_size,
sizeof (ctf_type_v1_t), sizeof (ctf_stype_v1_t),
CTF_LSIZE_SENT_V1));
}
/* Return the size that a v1 will be once it is converted to v2. */
ssize_t
get_ctt_size_v2_unconverted (const ctf_dict_t *fp, const ctf_type_t *tp,
ssize_t *sizep, ssize_t *incrementp)
{
ctf_type_v1_t *t1p = (ctf_type_v1_t *) tp;
return (get_ctt_size_old (fp, tp, sizep, incrementp,
CTF_V3_TYPE_LSIZE (t1p), t1p->ctt_size,
sizeof (ctf_type_v2_t), sizeof (ctf_stype_v2_t),
CTF_LSIZE_SENT));
}
static ssize_t
get_ctt_size_v2 (const ctf_dict_t *fp, const ctf_type_t *tp,
ssize_t *sizep, ssize_t *incrementp)
{
ctf_type_v2_t *t2p = (ctf_type_v2_t *) tp;
return (get_ctt_size_old (fp, tp, sizep, incrementp,
CTF_V3_TYPE_LSIZE (t2p), t2p->ctt_size,
sizeof (ctf_type_v2_t), sizeof (ctf_stype_v2_t),
CTF_LSIZE_SENT));
}
static ssize_t
get_ctt_size_v4 (const ctf_dict_t *fp _libctf_unused_, const ctf_type_t *tp,
ssize_t *sizep, ssize_t *incrementp)
{
ssize_t size = 0;
/* Figure out how many prefixes there are, and adjust the size appropriately
if we pass a BIG. */
if (incrementp)
*incrementp = 0;
while (LCTF_IS_PREFIXED_INFO (tp->ctt_info))
{
if (CTF_INFO_KIND (tp->ctt_info) == CTF_K_BIG)
size = ((ssize_t) tp->ctt_size) << 32;
if (incrementp)
*incrementp += sizeof (ctf_type_t);
tp++;
}
if (incrementp)
*incrementp += sizeof (ctf_type_t);
size |= tp->ctt_size;
if (sizep)
*sizep = size;
return size;
}
static ssize_t
get_vbytes_old (ctf_dict_t *fp, unsigned short kind, size_t vlen)
{
switch (kind)
{
case CTF_V3_K_INTEGER:
case CTF_V3_K_FLOAT:
return (sizeof (uint32_t));
case CTF_V3_K_SLICE:
return (sizeof (ctf_slice_t));
case CTF_V3_K_ENUM:
return (sizeof (ctf_enum_t) * vlen);
case CTF_V3_K_FORWARD:
case CTF_V3_K_UNKNOWN:
case CTF_V3_K_POINTER:
case CTF_V3_K_TYPEDEF:
case CTF_V3_K_VOLATILE:
case CTF_V3_K_CONST:
case CTF_V3_K_RESTRICT:
return 0;
default:
ctf_set_errno (fp, ECTF_CORRUPT);
ctf_err_warn (fp, 0, 0, _("detected invalid CTF kind: %x"), kind);
return -1;
}
}
static ssize_t
get_vbytes_v1 (ctf_dict_t *fp, const ctf_type_t *tp, ssize_t size)
{
unsigned short kind = CTF_V1_INFO_KIND (tp->ctt_info);
size_t vlen = CTF_V1_INFO_VLEN (tp->ctt_info);
switch (kind)
{
case CTF_V3_K_ARRAY:
return (sizeof (ctf_array_v1_t));
case CTF_V3_K_FUNCTION:
return (sizeof (unsigned short) * (vlen + (vlen & 1)));
case CTF_V3_K_STRUCT:
case CTF_V3_K_UNION:
if (size < CTF_LSTRUCT_THRESH_V1)
return (sizeof (ctf_member_v1_t) * vlen);
else
return (sizeof (ctf_lmember_v1_t) * vlen);
}
return (get_vbytes_old (fp, kind, vlen));
}
static ssize_t
get_vbytes_v2 (ctf_dict_t *fp, const ctf_type_t *tp, ssize_t size)
{
unsigned short kind = CTF_V2_INFO_KIND (tp->ctt_info);
size_t vlen = CTF_V2_INFO_VLEN (tp->ctt_info);
switch (kind)
{
case CTF_V3_K_ARRAY:
return (sizeof (ctf_array_t));
case CTF_V3_K_FUNCTION:
return (sizeof (uint32_t) * (vlen + (vlen & 1)));
case CTF_V3_K_STRUCT:
case CTF_V3_K_UNION:
if (size < CTF_LSTRUCT_THRESH)
return (sizeof (ctf_member_v2_t) * vlen);
else
return (sizeof (ctf_lmember_v2_t) * vlen);
}
return (get_vbytes_old (fp, kind, vlen));
}
static ssize_t
get_vbytes_v4 (ctf_dict_t *fp, const ctf_type_t *tp,
ssize_t size _libctf_unused_)
{
unsigned short kind = LCTF_KIND (fp, tp);
ssize_t vlen = LCTF_VLEN (fp, tp);
switch (kind)
{
case CTF_K_INTEGER:
case CTF_K_FLOAT:
return (sizeof (uint32_t));
case CTF_K_SLICE:
return (sizeof (ctf_slice_t));
case CTF_K_ENUM:
return (sizeof (ctf_enum_t) * vlen);
case CTF_K_ENUM64:
return (sizeof (ctf_enum64_t) * vlen);
case CTF_K_ARRAY:
return (sizeof (ctf_array_t));
case CTF_K_STRUCT:
case CTF_K_UNION:
return (sizeof (ctf_member_t) * vlen);
case CTF_K_FUNCTION:
return (sizeof (ctf_param_t) * vlen);
case CTF_K_VAR:
return (sizeof (ctf_linkage_t));
case CTF_K_DATASEC:
return (sizeof (ctf_var_secinfo_t) * vlen);
case CTF_K_DECL_TAG:
return (sizeof (ctf_decl_tag_t));
case CTF_K_TYPE_TAG:
case CTF_K_FORWARD:
case CTF_K_UNKNOWN:
case CTF_K_POINTER:
case CTF_K_TYPEDEF:
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
case CTF_K_FUNC_LINKAGE:
case CTF_K_BTF_FLOAT:
return 0;
/* These should have been resolved away by LCTF_KIND.
If this somehow didn't work, fail. */
case CTF_K_BIG:
case CTF_K_CONFLICTING:
ctf_set_errno (fp, ECTF_INTERNAL);
ctf_err_warn (fp, 0, 0, _("internal error: prefixed kind seen in get_vbytes_v4: %x"), kind);
return -1;
default:
ctf_set_errno (fp, ECTF_CORRUPT);
ctf_err_warn (fp, 0, 0, _("detected invalid CTF kind: %x"), kind);
return -1;
}
}
static const ctf_dictops_t ctf_dictops[] = {
{NULL, NULL, NULL, NULL, NULL, NULL, NULL},
/* CTF_VERSION_1 */
{get_kind_v1, get_prefixed_kind_v1, get_root_v1, get_vlen_v1,
get_prefixed_vlen_v1, get_ctt_size_v1, get_vbytes_v1},
/* CTF_VERSION_1_UPGRADED_3 */
{get_kind_v2, get_prefixed_kind_v2, get_root_v2, get_vlen_v2,
get_prefixed_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
/* CTF_VERSION_2 */
{get_kind_v2, get_prefixed_kind_v2, get_root_v2, get_vlen_v2,
get_prefixed_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
/* CTF_VERSION_3, identical to 2: only new type kinds */
{get_kind_v2, get_prefixed_kind_v2, get_root_v2, get_vlen_v2,
get_prefixed_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
/* CTF_VERSION_4, always BTF-compatible. */
{get_kind_v4, get_prefixed_kind_v4, get_root_v4, get_vlen_v4,
get_prefixed_vlen_v4, get_ctt_size_v4, get_vbytes_v4},
};
/* Initialize the symtab translation table as appropriate for its indexing
state. For unindexed symtypetabs, fill each entry with the offset of the CTF
type or function data corresponding to each STT_FUNC or STT_OBJECT entry in
the symbol table. For indexed symtypetabs, do nothing: the needed
initialization for indexed lookups may be quite expensive, so it is done only
as needed, when lookups happen. (In particular, the majority of indexed
symtypetabs come from the compiler, and all the linker does is iteration over
all entries, which doesn't need this initialization.)
The SP symbol table section may be NULL if there is no symtab.
If init_symtab works on one call, it cannot fail on future calls to the same
fp: ctf_symsect_endianness relies on this. */
static int
init_symtab (ctf_dict_t *fp, const ctf_header_t *hp, const ctf_sect_t *sp)
{
const unsigned char *symp;
int skip_func_info = 0;
int i;
uint32_t *xp = fp->ctf_sxlate;
uint32_t *xend = PTR_ADD (xp, fp->ctf_nsyms);
uint32_t objtoff = hp->cth_objtoff;
uint32_t funcoff = hp->cth_funcoff;
/* If the CTF_F_NEWFUNCINFO flag is not set, pretend the func info section
is empty: this compiler is too old to emit a function info section we
understand. */
if (!(hp->cth_flags & CTF_F_NEWFUNCINFO))
skip_func_info = 1;
if (hp->cth_objtidxoff < hp->cth_funcidxoff)
fp->ctf_objtidx_names = (uint32_t *) (fp->ctf_buf + hp->cth_objtidxoff);
if (hp->cth_funcidxoff < hp->cth_varoff && !skip_func_info)
fp->ctf_funcidx_names = (uint32_t *) (fp->ctf_buf + hp->cth_funcidxoff);
/* Don't bother doing the rest if everything is indexed, or if we don't have a
symbol table: we will never use it. */
if ((fp->ctf_objtidx_names && fp->ctf_funcidx_names) || !sp || !sp->cts_data)
return 0;
/* The CTF data object and function type sections are ordered to match the
relative order of the respective symbol types in the symtab, unless there
is an index section, in which case the order is arbitrary and the index
gives the mapping. If no type information is available for a symbol table
entry, a pad is inserted in the CTF section. As a further optimization,
anonymous or undefined symbols are omitted from the CTF data. If an
index is available for function symbols but not object symbols, or vice
versa, we populate the xslate table for the unindexed symbols only. */
for (i = 0, symp = sp->cts_data; xp < xend; xp++, symp += sp->cts_entsize,
i++)
{
ctf_link_sym_t sym;
switch (sp->cts_entsize)
{
case sizeof (Elf64_Sym):
{
const Elf64_Sym *symp64 = (Elf64_Sym *) (uintptr_t) symp;
ctf_elf64_to_link_sym (fp, &sym, symp64, i);
}
break;
case sizeof (Elf32_Sym):
{
const Elf32_Sym *symp32 = (Elf32_Sym *) (uintptr_t) symp;
ctf_elf32_to_link_sym (fp, &sym, symp32, i);
}
break;
default:
return ECTF_SYMTAB;
}
/* This call may be led astray if our idea of the symtab's endianness is
wrong, but when this is fixed by a call to ctf_symsect_endianness,
init_symtab will be called again with the right endianness in
force. */
if (ctf_symtab_skippable (&sym))
{
*xp = -1u;
continue;
}
switch (sym.st_type)
{
case STT_OBJECT:
if (fp->ctf_objtidx_names || objtoff >= hp->cth_funcoff)
{
*xp = -1u;
break;
}
*xp = objtoff;
objtoff += sizeof (uint32_t);
break;
case STT_FUNC:
if (fp->ctf_funcidx_names || funcoff >= hp->cth_objtidxoff
|| skip_func_info)
{
*xp = -1u;
break;
}
*xp = funcoff;
funcoff += sizeof (uint32_t);
break;
default:
*xp = -1u;
break;
}
}
ctf_dprintf ("loaded %lu symtab entries\n", fp->ctf_nsyms);
return 0;
}
/* Reset the CTF base pointer and derive the buf pointer from it, initializing
everything in the ctf_dict that depends on the base or buf pointers.
The original gap between the buf and base pointers, if any -- the original,
unconverted CTF header -- is kept, but its contents are not specified and are
never used. */
static void
ctf_set_base (ctf_dict_t *fp, const ctf_header_t *hp, unsigned char *base)
{
fp->ctf_buf = base + (fp->ctf_buf - fp->ctf_base);
fp->ctf_base = base;
fp->ctf_vars = (ctf_varent_t *) ((const char *) fp->ctf_buf +
hp->cth_varoff);
fp->ctf_nvars = (hp->cth_typeoff - hp->cth_varoff) / sizeof (ctf_varent_t);
fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *) fp->ctf_buf
+ hp->cth_stroff;
fp->ctf_str[CTF_STRTAB_0].cts_len = hp->cth_strlen;
/* If we have a parent dict name and label, store the relocated string
pointers in the CTF dict for easy access later. */
/* Note: before conversion, these will be set to values that will be
immediately invalidated by the conversion process, but the conversion
process will call ctf_set_base() again to fix things up.
These labels are explicitly constrained from being deduplicated (even though
.ctf is usually a duplicated name), because they are the key to identifying
the parent dict (and determining that this dict is a child) in the first
place. */
if (hp->cth_parlabel != 0)
fp->ctf_parlabel = ctf_strptr (fp, hp->cth_parlabel);
if (hp->cth_parname != 0)
fp->ctf_parname = ctf_strptr (fp, hp->cth_parname);
if (hp->cth_cuname != 0)
fp->ctf_cuname = ctf_strptr (fp, hp->cth_cuname);
if (fp->ctf_cuname)
ctf_dprintf ("ctf_set_base: CU name %s\n", fp->ctf_cuname);
if (fp->ctf_parname)
ctf_dprintf ("ctf_set_base: parent name %s (label %s)\n",
fp->ctf_parname,
fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
}
static int
init_static_types_names (ctf_dict_t *fp, ctf_header_t *cth);
/* Populate statically-defined types (those loaded from a saved buffer).
Initialize the type ID translation table with the byte offset of each type,
and initialize the hash tables of each named type. Upgrade the type table to
the latest supported representation in the process, if needed, and if this
recension of libctf supports upgrading.
Returns zero on success and a *positive* ECTF_* or errno value on error.
This is a wrapper to simplify memory allocation on error in the _internal
function that does all the actual work. */
static int
init_static_types (ctf_dict_t *fp, ctf_header_t *cth)
{
const ctf_type_t *tbuf;
const ctf_type_t *tend;
unsigned long pop[CTF_K_MAX + 1] = { 0 };
int pop_enumerators = 0;
const ctf_type_t *tp;
unsigned long typemax = 0;
/* Provisional types always start from the top of the type space and work
down. */
fp->ctf_provtypemax = (uint32_t) -1;
/* We determine whether the dict is a child or a parent based on the value of
cth_parname. */
int child = cth->cth_parname != 0;
if (fp->ctf_version < CTF_VERSION_4)
{
int err;
if ((err = upgrade_types (fp, cth)) != 0)
return err; /* Upgrade failed. */
}
tbuf = (ctf_type_t *) (fp->ctf_buf + cth->cth_typeoff);
tend = (ctf_type_t *) (fp->ctf_buf + cth->cth_stroff);
/* We make two passes through the entire type section, and one third pass
through part of it: but only the first is guaranteed to happen at this
stage. The second and third passes require working string lookup, so in
child dicts can only happen at ctf_import time.
In this first pass, we count the number of each type and type-like
identifier (like enumerators) and the total number of types. */
for (tp = tbuf; tp < tend; typemax++)
{
unsigned short kind = LCTF_INFO_KIND (fp, tp->ctt_info);
unsigned long vlen = LCTF_INFO_VLEN (fp, tp->ctt_info);
ssize_t size, increment, vbytes;
(void) ctf_get_ctt_size (fp, tp, &size, &increment);
vbytes = LCTF_VBYTES (fp, kind, size, vlen);
if (vbytes < 0)
return ECTF_CORRUPT;
/* For forward declarations, ctt_type is the CTF_K_* kind for the tag,
so bump that population count too. */
if (kind == CTF_K_FORWARD)
pop[tp->ctt_type]++;
tp = (ctf_type_t *) ((uintptr_t) tp + increment + vbytes);
pop[kind]++;
if (kind == CTF_K_ENUM)
pop_enumerators += vlen;
}
if (child)
{
ctf_dprintf ("CTF dict %p is a child\n", (void *) fp);
fp->ctf_flags |= LCTF_CHILD;
}
else
ctf_dprintf ("CTF dict %p is a parent\n", (void *) fp);
/* Now that we've counted up the number of each type, we can allocate
the hash tables, type translation table, and pointer table. */
if ((fp->ctf_structs
= ctf_dynhash_create_sized (pop[CTF_K_STRUCT], ctf_hash_string,
ctf_hash_eq_string,
NULL, NULL, NULL)) == NULL)
return ENOMEM;
if ((fp->ctf_unions
= ctf_dynhash_create_sized (pop[CTF_K_UNION], ctf_hash_string,
ctf_hash_eq_string,
NULL, NULL, NULL)) == NULL)
return ENOMEM;
if ((fp->ctf_enums
= ctf_dynhash_create_sized (pop[CTF_K_ENUM], ctf_hash_string,
ctf_hash_eq_string,
NULL, NULL, NULL)) == NULL)
return ENOMEM;
if ((fp->ctf_names
= ctf_dynhash_create_sized (pop[CTF_K_UNKNOWN] +
pop[CTF_K_INTEGER] +
pop[CTF_K_FLOAT] +
pop[CTF_K_FUNCTION] +
pop[CTF_K_TYPEDEF] +
pop_enumerators,
ctf_hash_string,
ctf_hash_eq_string,
NULL, NULL, NULL)) == NULL)
return ENOMEM;
if ((fp->ctf_conflicting_enums
= ctf_dynset_create (htab_hash_string, htab_eq_string, NULL)) == NULL)
return ENOMEM;
/* The ptrtab and txlate can be appropriately sized for precisely this set
of types: the txlate because it is only used to look up static types,
so dynamic types added later will never go through it, and the ptrtab
because later-added types will call grow_ptrtab() automatically, as
needed. */
fp->ctf_txlate = calloc (typemax + 1, sizeof (uint32_t));
fp->ctf_ptrtab = calloc (typemax + 1, sizeof (uint32_t));
fp->ctf_ptrtab_len = typemax + 1;
fp->ctf_stypes = typemax;
fp->ctf_typemax = typemax;
fp->ctf_idmax = typemax;
if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
return ENOMEM; /* Memory allocation failed. */
/* UPTODO: BTF is like v4 here: no string lookups in children, which blocks
almost all operations until after ctf_import. */
if (child && cth->cth_parent_strlen != 0)
{
fp->ctf_flags |= LCTF_NO_STR;
return 0;
}
ctf_dprintf ("%u types initialized (other than names)\n", fp->ctf_typemax);
return init_static_types_names (fp, cth);
}
static int
init_static_types_names_internal (ctf_dict_t *fp, ctf_header_t *cth,
ctf_dynset_t *all_enums);
/* A wrapper to simplify memory allocation. */
static int
init_static_types_names (ctf_dict_t *fp, ctf_header_t *cth)
{
ctf_dynset_t *all_enums;
int err;
if ((all_enums = ctf_dynset_create (htab_hash_pointer, htab_eq_pointer,
NULL)) == NULL)
return ENOMEM;
err = init_static_types_names_internal (fp, cth, all_enums);
ctf_dynset_destroy (all_enums);
return err;
}
/* Initialize the parts of the CTF dict whose initialization depends on name
lookup. This happens at open time except for child dicts, when (for CTFv4+
dicts) it happens at ctf_import time instead, because before then the strtab
is truncated at the start.
As a function largely called at open time, this function does not reliably
set the ctf_errno, but instead *returns* the error code. */
static int
init_static_types_names_internal (ctf_dict_t *fp, ctf_header_t *cth,
ctf_dynset_t *all_enums)
{
const ctf_type_t *tbuf;
const ctf_type_t *tend;
const ctf_type_t *tp;
uint32_t id;
uint32_t *xp;
unsigned long typemax = fp->ctf_typemax;
ctf_next_t *i = NULL;
void *k;
int err;
int child = cth->cth_parname != 0;
int nlstructs = 0, nlunions = 0;
tbuf = (ctf_type_t *) (fp->ctf_buf + cth->cth_typeoff);
tend = (ctf_type_t *) (fp->ctf_buf + cth->cth_stroff);
assert (!(fp->ctf_flags & LCTF_NO_STR));
xp = fp->ctf_txlate;
*xp++ = 0; /* Type id 0 is used as a sentinel value. */
/* In this second pass through the types, we fill in each entry of the type
and pointer tables and add names to the appropriate hashes.
(Not all names are added in this pass, only type names. See below.)
Reset ctf_typemax and bump it as we go, but keep it one higher than normal,
so that the type being read in is considered a valid type and it is at
least barely possible to run simple lookups on it: but higher types are
not, since their names are not yet known. (It is kept at its standard
value before this function is called so that at least some type-related
operations work. */
for (id = 1, fp->ctf_typemax = 1, tp = tbuf; tp < tend; xp++, id++, fp->ctf_typemax++)
{
unsigned short kind = LCTF_INFO_KIND (fp, tp->ctt_info);
unsigned short isroot = LCTF_INFO_ISROOT (fp, tp->ctt_info);
unsigned long vlen = LCTF_INFO_VLEN (fp, tp->ctt_info);
ssize_t size, increment, vbytes;
const char *name;
(void) ctf_get_ctt_size (fp, tp, &size, &increment);
name = ctf_strptr (fp, tp->ctt_name);
/* Cannot fail: shielded by call in loop above. */
vbytes = LCTF_VBYTES (fp, kind, size, vlen);
*xp = (uint32_t) ((uintptr_t) tp - (uintptr_t) fp->ctf_buf);
switch (kind)
{
case CTF_K_UNKNOWN:
case CTF_K_INTEGER:
case CTF_K_FLOAT:
{
ctf_id_t existing;
ctf_encoding_t existing_en;
ctf_encoding_t this_en;
if (!isroot)
break;
/* Names are reused by bitfields, which are differentiated by
their encodings. So check for the type already existing, and
iff the new type is a root-visible non-bitfield, replace the
old one. It's a little hard to figure out whether a type is
a non-bitfield without already knowing that type's native
width, but we can converge on it by replacing an existing
type as long as the new type is zero-offset and has a
bit-width wider than the existing one, since the native type
must necessarily have a bit-width at least as wide as any
bitfield based on it. */
if (((existing = ctf_dynhash_lookup_type (fp->ctf_names, name)) == 0)
|| ctf_type_encoding (fp, existing, &existing_en) != 0
|| (ctf_type_encoding (fp, ctf_index_to_type (fp, id), &this_en) == 0
&& this_en.cte_offset == 0
&& (existing_en.cte_offset != 0
|| existing_en.cte_bits < this_en.cte_bits)))
{
err = ctf_dynhash_insert_type (fp, fp->ctf_names,
ctf_index_to_type (fp, id),
tp->ctt_name);
if (err != 0)
return err * -1;
}
break;
}
/* These kinds have no name, so do not need interning into any
hashtables. */
case CTF_K_ARRAY:
case CTF_K_SLICE:
break;
case CTF_K_FUNCTION:
if (!isroot)
break;
err = ctf_dynhash_insert_type (fp, fp->ctf_names,
ctf_index_to_type (fp, id),
tp->ctt_name);
if (err != 0)
return err * -1;
break;
case CTF_K_STRUCT:
if (size >= CTF_LSTRUCT_THRESH)
nlstructs++;
if (!isroot)
break;
err = ctf_dynhash_insert_type (fp, fp->ctf_structs,
ctf_index_to_type (fp, id),
tp->ctt_name);
if (err != 0)
return err * -1;
break;
case CTF_K_UNION:
if (size >= CTF_LSTRUCT_THRESH)
nlunions++;
if (!isroot)
break;
err = ctf_dynhash_insert_type (fp, fp->ctf_unions,
ctf_index_to_type (fp, id),
tp->ctt_name);
if (err != 0)
return err * -1;
break;
case CTF_K_ENUM:
{
if (!isroot)
break;
err = ctf_dynhash_insert_type (fp, fp->ctf_enums,
ctf_index_to_type (fp, id),
tp->ctt_name);
if (err != 0)
return err * -1;
/* Remember all enums for later rescanning. */
err = ctf_dynset_insert (all_enums, (void *) (ptrdiff_t)
ctf_index_to_type (fp, id));
if (err != 0)
return err * -1;
break;
}
case CTF_K_TYPEDEF:
if (!isroot)
break;
err = ctf_dynhash_insert_type (fp, fp->ctf_names,
ctf_index_to_type (fp, id),
tp->ctt_name);
if (err != 0)
return err * -1;
break;
case CTF_K_FORWARD:
{
ctf_dynhash_t *h = ctf_name_table (fp, tp->ctt_type);
if (!isroot)
break;
/* Only insert forward tags into the given hash if the type or tag
name is not already present. */
if (ctf_dynhash_lookup_type (h, name) == 0)
{
err = ctf_dynhash_insert_type (fp, h, ctf_index_to_type (fp, id),
tp->ctt_name);
if (err != 0)
return err * -1;
}
break;
}
case CTF_K_POINTER:
/* If the type referenced by the pointer is in this CTF dict, then
store the index of the pointer type in fp->ctf_ptrtab[ index of
referenced type ]. */
if (ctf_type_ischild (fp, tp->ctt_type) == child
&& ctf_type_to_index (fp, tp->ctt_type) <= fp->ctf_typemax)
fp->ctf_ptrtab[ctf_type_to_index (fp, tp->ctt_type)] = id;
/*FALLTHRU*/
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
if (!isroot)
break;
err = ctf_dynhash_insert_type (fp, fp->ctf_names,
ctf_index_to_type (fp, id), 0);
if (err != 0)
return err * -1;
break;
default:
ctf_err_warn (fp, 0, ECTF_CORRUPT,
_("init_static_types(): unhandled CTF kind: %x"), kind);
return ECTF_CORRUPT;
}
tp = (ctf_type_t *) ((uintptr_t) tp + increment + vbytes);
}
fp->ctf_typemax--;
assert (fp->ctf_typemax == typemax);
ctf_dprintf ("%u total types processed\n", fp->ctf_typemax);
/* In the third pass, we traverse the enums we spotted earlier and track all
the enumeration constants to aid in future detection of duplicates.
Doing this in a third pass is necessary to avoid the case where an
enum appears with a constant FOO, then later a type named FOO appears,
too late to spot the conflict by checking the enum's constants. */
while ((err = ctf_dynset_next (all_enums, &i, &k)) == 0)
{
ctf_id_t enum_id = (uintptr_t) k;
ctf_next_t *i_constants = NULL;
const char *cte_name;
while ((cte_name = ctf_enum_next (fp, enum_id, &i_constants, NULL)) != NULL)
{
if (ctf_track_enumerator (fp, enum_id, cte_name) < 0)
{
ctf_next_destroy (i_constants);
ctf_next_destroy (i);
return ctf_errno (fp);
}
}
if (ctf_errno (fp) != ECTF_NEXT_END)
{
ctf_next_destroy (i);
return ctf_errno (fp);
}
}
if (err != ECTF_NEXT_END)
return err;
ctf_dprintf ("%zu enum names hashed\n",
ctf_dynhash_elements (fp->ctf_enums));
ctf_dprintf ("%zu conflicting enumerators identified\n",
ctf_dynset_elements (fp->ctf_conflicting_enums));
ctf_dprintf ("%zu struct names hashed (%d long)\n",
ctf_dynhash_elements (fp->ctf_structs), nlstructs);
ctf_dprintf ("%zu union names hashed (%d long)\n",
ctf_dynhash_elements (fp->ctf_unions), nlunions);
ctf_dprintf ("%zu base type names and identifiers hashed\n",
ctf_dynhash_elements (fp->ctf_names));
return 0;
}
/* Endianness-flipping routines.
We flip everything, mindlessly, even 1-byte entities, so that future
expansions do not require changes to this code. */
/* Flip the endianness of the CTF header. */
void
ctf_flip_header (ctf_header_t *cth)
{
swap_thing (cth->cth_preamble.ctp_magic);
swap_thing (cth->cth_preamble.ctp_version);
swap_thing (cth->cth_preamble.ctp_flags);
swap_thing (cth->cth_parlabel);
swap_thing (cth->cth_parname);
swap_thing (cth->cth_cuname);
swap_thing (cth->cth_parent_strlen);
swap_thing (cth->cth_objtoff);
swap_thing (cth->cth_funcoff);
swap_thing (cth->cth_objtidxoff);
swap_thing (cth->cth_funcidxoff);
swap_thing (cth->cth_varoff);
swap_thing (cth->cth_typeoff);
swap_thing (cth->cth_stroff);
swap_thing (cth->cth_strlen);
}
/* Flip the endianness of the label section, an array of ctf_lblent_t. */
static void
flip_lbls (void *start, size_t len)
{
ctf_lblent_t *lbl = start;
ssize_t i;
for (i = len / sizeof (struct ctf_lblent); i > 0; lbl++, i--)
{
swap_thing (lbl->ctl_label);
swap_thing (lbl->ctl_type);
}
}
/* Flip the endianness of the data-object or function sections or their indexes,
all arrays of uint32_t. */
static void
flip_objts (void *start, size_t len)
{
uint32_t *obj = start;
ssize_t i;
for (i = len / sizeof (uint32_t); i > 0; obj++, i--)
swap_thing (*obj);
}
/* Flip the endianness of the variable section, an array of ctf_varent_t. */
static void
flip_vars (void *start, size_t len)
{
ctf_varent_t *var = start;
ssize_t i;
for (i = len / sizeof (struct ctf_varent); i > 0; var++, i--)
{
swap_thing (var->ctv_name);
swap_thing (var->ctv_type);
}
}
/* Flip the endianness of the type section, a tagged array of ctf_type or
ctf_stype followed by variable data. */
static int
flip_types (ctf_dict_t *fp, void *start, size_t len, int to_foreign)
{
ctf_type_t *t = start;
while ((uintptr_t) t < ((uintptr_t) start) + len)
{
uint32_t kind;
size_t size;
uint32_t vlen;
size_t vbytes;
if (to_foreign)
{
kind = CTF_V2_INFO_KIND (t->ctt_info);
size = t->ctt_size;
vlen = CTF_V2_INFO_VLEN (t->ctt_info);
vbytes = get_vbytes_v2 (fp, kind, size, vlen);
}
swap_thing (t->ctt_name);
swap_thing (t->ctt_info);
swap_thing (t->ctt_size);
if (!to_foreign)
{
kind = CTF_V2_INFO_KIND (t->ctt_info);
size = t->ctt_size;
vlen = CTF_V2_INFO_VLEN (t->ctt_info);
vbytes = get_vbytes_v2 (fp, kind, size, vlen);
}
if (_libctf_unlikely_ (size == CTF_LSIZE_SENT))
{
if (to_foreign)
size = CTF_TYPE_LSIZE (t);
swap_thing (t->ctt_lsizehi);
swap_thing (t->ctt_lsizelo);
if (!to_foreign)
size = CTF_TYPE_LSIZE (t);
t = (ctf_type_t *) ((uintptr_t) t + sizeof (ctf_type_t));
}
else
t = (ctf_type_t *) ((uintptr_t) t + sizeof (ctf_stype_t));
switch (kind)
{
case CTF_K_FORWARD:
case CTF_K_UNKNOWN:
case CTF_K_POINTER:
case CTF_K_TYPEDEF:
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
/* These types have no vlen data to swap. */
assert (vbytes == 0);
break;
case CTF_K_INTEGER:
case CTF_K_FLOAT:
{
/* These types have a single uint32_t. */
uint32_t *item = (uint32_t *) t;
swap_thing (*item);
break;
}
case CTF_K_FUNCTION:
{
/* This type has a bunch of uint32_ts. */
uint32_t *item = (uint32_t *) t;
ssize_t i;
for (i = vlen; i > 0; item++, i--)
swap_thing (*item);
break;
}
case CTF_K_ARRAY:
{
/* This has a single ctf_array_t. */
ctf_array_t *a = (ctf_array_t *) t;
assert (vbytes == sizeof (ctf_array_t));
swap_thing (a->cta_contents);
swap_thing (a->cta_index);
swap_thing (a->cta_nelems);
break;
}
case CTF_K_SLICE:
{
/* This has a single ctf_slice_t. */
ctf_slice_t *s = (ctf_slice_t *) t;
assert (vbytes == sizeof (ctf_slice_t));
swap_thing (s->cts_type);
swap_thing (s->cts_offset);
swap_thing (s->cts_bits);
break;
}
case CTF_K_STRUCT:
case CTF_K_UNION:
{
/* This has an array of ctf_member or ctf_lmember, depending on
size. We could consider it to be a simple array of uint32_t,
but for safety's sake in case these structures ever acquire
non-uint32_t members, do it member by member. */
if (_libctf_unlikely_ (size >= CTF_LSTRUCT_THRESH))
{
ctf_lmember_t *lm = (ctf_lmember_t *) t;
ssize_t i;
for (i = vlen; i > 0; i--, lm++)
{
swap_thing (lm->ctlm_name);
swap_thing (lm->ctlm_offsethi);
swap_thing (lm->ctlm_type);
swap_thing (lm->ctlm_offsetlo);
}
}
else
{
ctf_member_t *m = (ctf_member_t *) t;
ssize_t i;
for (i = vlen; i > 0; i--, m++)
{
swap_thing (m->ctm_name);
swap_thing (m->ctm_offset);
swap_thing (m->ctm_type);
}
}
break;
}
case CTF_K_ENUM:
{
/* This has an array of ctf_enum_t. */
ctf_enum_t *item = (ctf_enum_t *) t;
ssize_t i;
for (i = vlen; i > 0; item++, i--)
{
swap_thing (item->cte_name);
swap_thing (item->cte_value);
}
break;
}
default:
ctf_err_warn (fp, 0, ECTF_CORRUPT,
_("unhandled CTF kind in endianness conversion: %x"),
kind);
return ECTF_CORRUPT;
}
t = (ctf_type_t *) ((uintptr_t) t + vbytes);
}
return 0;
}
/* Flip the endianness of BUF, given the offsets in the (native-endianness) CTH.
If TO_FOREIGN is set, flip to foreign-endianness; if not, flip away.
All of this stuff happens before the header is fully initialized, so the
LCTF_*() macros cannot be used yet. Since we do not try to endian-convert v1
data, this is no real loss. */
int
ctf_flip (ctf_dict_t *fp, ctf_header_t *cth, unsigned char *buf,
int to_foreign)
{
ctf_dprintf("flipping endianness\n");
flip_lbls (buf + cth->cth_lbloff, cth->cth_objtoff - cth->cth_lbloff);
flip_objts (buf + cth->cth_objtoff, cth->cth_funcoff - cth->cth_objtoff);
flip_objts (buf + cth->cth_funcoff, cth->cth_objtidxoff - cth->cth_funcoff);
flip_objts (buf + cth->cth_objtidxoff, cth->cth_funcidxoff - cth->cth_objtidxoff);
flip_objts (buf + cth->cth_funcidxoff, cth->cth_varoff - cth->cth_funcidxoff);
flip_vars (buf + cth->cth_varoff, cth->cth_typeoff - cth->cth_varoff);
return flip_types (fp, buf + cth->cth_typeoff,
cth->cth_stroff - cth->cth_typeoff, to_foreign);
}
/* Set up the ctl hashes in a ctf_dict_t. Called by both writable and
non-writable dictionary initialization. */
void ctf_set_ctl_hashes (ctf_dict_t *fp)
{
/* Initialize the ctf_lookup_by_name top-level dictionary. We keep an
array of type name prefixes and the corresponding ctf_hash to use. */
fp->ctf_lookups[0].ctl_prefix = "struct";
fp->ctf_lookups[0].ctl_len = strlen (fp->ctf_lookups[0].ctl_prefix);
fp->ctf_lookups[0].ctl_hash = fp->ctf_structs;
fp->ctf_lookups[1].ctl_prefix = "union";
fp->ctf_lookups[1].ctl_len = strlen (fp->ctf_lookups[1].ctl_prefix);
fp->ctf_lookups[1].ctl_hash = fp->ctf_unions;
fp->ctf_lookups[2].ctl_prefix = "enum";
fp->ctf_lookups[2].ctl_len = strlen (fp->ctf_lookups[2].ctl_prefix);
fp->ctf_lookups[2].ctl_hash = fp->ctf_enums;
fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
fp->ctf_lookups[3].ctl_len = strlen (fp->ctf_lookups[3].ctl_prefix);
fp->ctf_lookups[3].ctl_hash = fp->ctf_names;
fp->ctf_lookups[4].ctl_prefix = NULL;
fp->ctf_lookups[4].ctl_len = 0;
fp->ctf_lookups[4].ctl_hash = NULL;
}
/* Open a CTF file, mocking up a suitable ctf_sect. */
ctf_dict_t *ctf_simple_open (const char *ctfsect, size_t ctfsect_size,
const char *symsect, size_t symsect_size,
size_t symsect_entsize,
const char *strsect, size_t strsect_size,
int *errp)
{
ctf_sect_t skeleton;
ctf_sect_t ctf_sect, sym_sect, str_sect;
ctf_sect_t *ctfsectp = NULL;
ctf_sect_t *symsectp = NULL;
ctf_sect_t *strsectp = NULL;
skeleton.cts_name = _CTF_SECTION;
skeleton.cts_entsize = 1;
if (ctfsect)
{
memcpy (&ctf_sect, &skeleton, sizeof (struct ctf_sect));
ctf_sect.cts_data = ctfsect;
ctf_sect.cts_size = ctfsect_size;
ctfsectp = &ctf_sect;
}
if (symsect)
{
memcpy (&sym_sect, &skeleton, sizeof (struct ctf_sect));
sym_sect.cts_data = symsect;
sym_sect.cts_size = symsect_size;
sym_sect.cts_entsize = symsect_entsize;
symsectp = &sym_sect;
}
if (strsect)
{
memcpy (&str_sect, &skeleton, sizeof (struct ctf_sect));
str_sect.cts_data = strsect;
str_sect.cts_size = strsect_size;
strsectp = &str_sect;
}
return ctf_bufopen (ctfsectp, symsectp, strsectp, errp);
}
/* Decode the specified CTF buffer and optional symbol table, and create a new
CTF dict representing the symbolic debugging information. This code can
be used directly by the debugger, or it can be used as the engine for
ctf_fdopen() or ctf_open(), below. */
ctf_dict_t *
ctf_bufopen (const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
const ctf_sect_t *strsect, int *errp)
{
const ctf_preamble_t *pp;
size_t hdrsz;
ctf_header_t *hp;
ctf_dict_t *fp;
int foreign_endian = 0;
int err;
libctf_init_debug();
if ((ctfsect == NULL) || ((symsect != NULL) && (strsect == NULL)))
return (ctf_set_open_errno (errp, EINVAL));
if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
symsect->cts_entsize != sizeof (Elf64_Sym))
return (ctf_set_open_errno (errp, ECTF_SYMTAB));
if (symsect != NULL && symsect->cts_data == NULL)
return (ctf_set_open_errno (errp, ECTF_SYMBAD));
if (strsect != NULL && strsect->cts_data == NULL)
return (ctf_set_open_errno (errp, ECTF_STRBAD));
if (ctfsect->cts_data == NULL
|| ctfsect->cts_size < sizeof (ctf_preamble_t))
return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
pp = (const ctf_preamble_t *) ctfsect->cts_data;
ctf_dprintf ("ctf_bufopen: magic=0x%x version=%u\n",
pp->ctp_magic, pp->ctp_version);
/* Validate each part of the CTF header.
First, we validate the preamble (common to all versions). At that point,
we know the endianness and specific header version, and can validate the
version-specific parts including section offsets and alignments. */
if (_libctf_unlikely_ (pp->ctp_magic != CTF_MAGIC))
{
if (pp->ctp_magic == bswap_16 (CTF_MAGIC))
foreign_endian = 1;
else
return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
}
if (_libctf_unlikely_ ((pp->ctp_version < CTF_VERSION_1)
|| (pp->ctp_version > CTF_VERSION_4)))
return (ctf_set_open_errno (errp, ECTF_CTFVERS));
if ((symsect != NULL) && (pp->ctp_version < CTF_VERSION_2))
{
/* The symtab can contain function entries which contain embedded ctf
info. We do not support dynamically upgrading such entries (none
should exist in any case, since dwarf2ctf does not create them). */
ctf_err_warn (NULL, 0, ECTF_NOTSUP, _("ctf_bufopen: CTF version %d "
"symsect not supported"),
pp->ctp_version);
return (ctf_set_open_errno (errp, ECTF_NOTSUP));
}
switch (pp->ctp_version)
{
case CTF_VERSION_1:
case CTF_VERSION_2:
hdrsz = sizeof (ctf_header_v2_t);
break;
case CTF_VERSION_1_UPGRADED_3:
case CTF_VERSION_3:
hdrsz = sizeof (ctf_header_v3_t);
break;
case CTF_VERSION_4:
hdrsz = sizeof (ctf_header_t);
break;
default:
ctf_err_warn (NULL, ECTF_INTERNAL, 0, "ctf_bufopen: CTF version %d "
"not handled in header-length switch", pp->ctp_version);
return (ctf_set_open_errno (errp, ECTF_INTERNAL));
}
if (_libctf_unlikely_ (pp->ctp_flags > CTF_F_MAX))
{
ctf_err_warn (NULL, 0, ECTF_FLAGS, _("ctf_bufopen: invalid header "
"flags: %x"),
(unsigned int) pp->ctp_flags);
return (ctf_set_open_errno (errp, ECTF_FLAGS));
}
/* UPTODO: v4 flags: none valid, new header field likely needed. */
if (ctfsect->cts_size < hdrsz)
return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
if ((fp = malloc (sizeof (ctf_dict_t))) == NULL)
return (ctf_set_open_errno (errp, ENOMEM));
memset (fp, 0, sizeof (ctf_dict_t));
if ((fp->ctf_header = malloc (sizeof (struct ctf_header))) == NULL)
{
free (fp);
return (ctf_set_open_errno (errp, ENOMEM));
}
hp = fp->ctf_header;
memcpy (hp, ctfsect->cts_data, hdrsz);
if (pp->ctp_version < CTF_VERSION_3)
upgrade_header_v2 (hp);
else if (pp->ctp_version < CTF_VERSION_4)
upgrade_header_v3 (hp);
/* UPTODO: header "upgrade" from BTF -> CTFv4. */
if (foreign_endian)
ctf_flip_header (hp);
fp->ctf_openflags = hp->cth_flags;
fp->ctf_size = hp->cth_stroff + hp->cth_strlen;
ctf_dprintf ("ctf_bufopen: uncompressed size=%lu\n",
(unsigned long) fp->ctf_size);
if (hp->cth_lbloff > fp->ctf_size || hp->cth_objtoff > fp->ctf_size
|| hp->cth_funcoff > fp->ctf_size || hp->cth_objtidxoff > fp->ctf_size
|| hp->cth_funcidxoff > fp->ctf_size || hp->cth_typeoff > fp->ctf_size
|| hp->cth_stroff > fp->ctf_size)
{
ctf_err_warn (NULL, 0, ECTF_CORRUPT, _("header offset exceeds CTF size"));
return (ctf_set_open_errno (errp, ECTF_CORRUPT));
}
if (hp->cth_lbloff > hp->cth_objtoff
|| hp->cth_objtoff > hp->cth_funcoff
|| hp->cth_funcoff > hp->cth_typeoff
|| hp->cth_funcoff > hp->cth_objtidxoff
|| hp->cth_objtidxoff > hp->cth_funcidxoff
|| hp->cth_funcidxoff > hp->cth_varoff
|| hp->cth_varoff > hp->cth_typeoff || hp->cth_typeoff > hp->cth_stroff)
{
ctf_err_warn (NULL, 0, ECTF_CORRUPT, _("overlapping CTF sections"));
return (ctf_set_open_errno (errp, ECTF_CORRUPT));
}
if ((hp->cth_lbloff & 3) || (hp->cth_objtoff & 2)
|| (hp->cth_funcoff & 2) || (hp->cth_objtidxoff & 2)
|| (hp->cth_funcidxoff & 2) || (hp->cth_varoff & 3)
|| (hp->cth_typeoff & 3))
{
ctf_err_warn (NULL, 0, ECTF_CORRUPT,
_("CTF sections not properly aligned"));
return (ctf_set_open_errno (errp, ECTF_CORRUPT));
}
/* This invariant may be lifted in v5, but for now it is true. */
if ((hp->cth_funcidxoff - hp->cth_objtidxoff != 0) &&
(hp->cth_funcidxoff - hp->cth_objtidxoff
!= hp->cth_funcoff - hp->cth_objtoff))
{
ctf_err_warn (NULL, 0, ECTF_CORRUPT,
_("Object index section is neither empty nor the "
"same length as the object section: %u versus %u "
"bytes"), hp->cth_funcoff - hp->cth_objtoff,
hp->cth_funcidxoff - hp->cth_objtidxoff);
return (ctf_set_open_errno (errp, ECTF_CORRUPT));
}
if ((hp->cth_varoff - hp->cth_funcidxoff != 0) &&
(hp->cth_varoff - hp->cth_funcidxoff
!= hp->cth_objtidxoff - hp->cth_funcoff) &&
(hp->cth_flags & CTF_F_NEWFUNCINFO))
{
ctf_err_warn (NULL, 0, ECTF_CORRUPT,
_("Function index section is neither empty nor the "
"same length as the function section: %u versus %u "
"bytes"), hp->cth_objtidxoff - hp->cth_funcoff,
hp->cth_varoff - hp->cth_funcidxoff);
return (ctf_set_open_errno (errp, ECTF_CORRUPT));
}
if ((hp->cth_parname != 0 && hp->cth_parname < hp->cth_parent_strlen)
|| (hp->cth_cuname != 0 && hp->cth_cuname < hp->cth_parent_strlen))
{
ctf_err_warn (NULL, 0, ECTF_CORRUPT,
_("Parent dict or CU name string offsets "
"(at %x and %x, respectively) are themselves "
"within the parent (upper bound: %x), thus "
"unreachable.\n"), hp->cth_parname, hp->cth_cuname,
hp->cth_parent_strlen);
return (ctf_set_open_errno (errp, ECTF_CORRUPT));
}
/* Once everything is determined to be valid, attempt to decompress the CTF
data buffer if it is compressed, or copy it into new storage if it is not
compressed but needs endian-flipping. Otherwise we just put the data
section's buffer pointer into ctf_buf, below. */
/* Note: if this is a v1 buffer, it will be reallocated and expanded by
init_static_types(). */
/* UPTODO: may need to try unconditionally for BTF, and get flags from
somewhere else. */
if (hp->cth_flags & CTF_F_COMPRESS)
{
size_t srclen;
uLongf dstlen;
const void *src;
int rc = Z_OK;
/* We are allocating this ourselves, so we can drop the ctf header
copy in favour of ctf->ctf_header. */
if ((fp->ctf_base = malloc (fp->ctf_size)) == NULL)
{
err = ECTF_ZALLOC;
goto bad;
}
fp->ctf_dynbase = fp->ctf_base;
hp->cth_flags &= ~CTF_F_COMPRESS;
src = (unsigned char *) ctfsect->cts_data + hdrsz;
srclen = ctfsect->cts_size - hdrsz;
dstlen = fp->ctf_size;
fp->ctf_buf = fp->ctf_base;
if ((rc = uncompress (fp->ctf_base, &dstlen, src, srclen)) != Z_OK)
{
ctf_err_warn (NULL, 0, ECTF_DECOMPRESS, _("zlib inflate err: %s"),
zError (rc));
err = ECTF_DECOMPRESS;
goto bad;
}
if ((size_t) dstlen != fp->ctf_size)
{
ctf_err_warn (NULL, 0, ECTF_CORRUPT,
_("zlib inflate short: got %lu of %lu bytes"),
(unsigned long) dstlen, (unsigned long) fp->ctf_size);
err = ECTF_CORRUPT;
goto bad;
}
}
else
{
if (_libctf_unlikely_ (ctfsect->cts_size < hdrsz + fp->ctf_size))
{
ctf_err_warn (NULL, 0, ECTF_CORRUPT,
_("%lu byte long CTF dictionary overruns %lu byte long CTF section"),
(unsigned long) ctfsect->cts_size,
(unsigned long) (hdrsz + fp->ctf_size));
err = ECTF_CORRUPT;
goto bad;
}
if (foreign_endian)
{
if ((fp->ctf_base = malloc (fp->ctf_size)) == NULL)
{
err = ECTF_ZALLOC;
goto bad;
}
fp->ctf_dynbase = fp->ctf_base;
memcpy (fp->ctf_base, ((unsigned char *) ctfsect->cts_data) + hdrsz,
fp->ctf_size);
fp->ctf_buf = fp->ctf_base;
}
else
{
/* We are just using the section passed in -- but its header may
be an old version. Point ctf_buf past the old header, and
never touch it again. */
fp->ctf_base = (unsigned char *) ctfsect->cts_data;
fp->ctf_dynbase = NULL;
fp->ctf_buf = fp->ctf_base + hdrsz;
}
}
/* Once we have uncompressed and validated the CTF data buffer, we can
proceed with initializing the ctf_dict_t we allocated above.
Nothing that depends on buf or base should be set directly in this function
before the init_static_types() call, because it may be reallocated during
transparent upgrade if this recension of libctf is so configured: see
ctf_set_base(). */
ctf_set_version (fp, hp, hp->cth_version);
/* Temporary assignment, just enough to be able to initialize the atoms table.
This does not guarantee that we can look up strings: in v4, child dicts
cannot reliably look up strings until after ctf_import. */
fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *) fp->ctf_buf
+ hp->cth_stroff;
fp->ctf_str[CTF_STRTAB_0].cts_len = hp->cth_strlen;
if (ctf_str_create_atoms (fp) < 0)
{
err = ENOMEM;
goto bad;
}
memcpy (&fp->ctf_data, ctfsect, sizeof (ctf_sect_t));
if (symsect != NULL)
{
memcpy (&fp->ctf_ext_symtab, symsect, sizeof (ctf_sect_t));
memcpy (&fp->ctf_ext_strtab, strsect, sizeof (ctf_sect_t));
}
if (fp->ctf_data.cts_name != NULL)
if ((fp->ctf_data.cts_name = strdup (fp->ctf_data.cts_name)) == NULL)
{
err = ENOMEM;
goto bad;
}
if (fp->ctf_ext_symtab.cts_name != NULL)
if ((fp->ctf_ext_symtab.cts_name = strdup (fp->ctf_ext_symtab.cts_name)) == NULL)
{
err = ENOMEM;
goto bad;
}
if (fp->ctf_ext_strtab.cts_name != NULL)
if ((fp->ctf_ext_strtab.cts_name = strdup (fp->ctf_ext_strtab.cts_name)) == NULL)
{
err = ENOMEM;
goto bad;
}
if (fp->ctf_data.cts_name == NULL)
fp->ctf_data.cts_name = _CTF_NULLSTR;
if (fp->ctf_ext_symtab.cts_name == NULL)
fp->ctf_ext_symtab.cts_name = _CTF_NULLSTR;
if (fp->ctf_ext_strtab.cts_name == NULL)
fp->ctf_ext_strtab.cts_name = _CTF_NULLSTR;
if (strsect != NULL)
{
fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
}
/* Dynamic state, for dynamic addition to this dict after loading. */
fp->ctf_dthash = ctf_dynhash_create (ctf_hash_integer, ctf_hash_eq_integer,
NULL, NULL);
fp->ctf_dvhash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
NULL, NULL);
fp->ctf_snapshots = 1;
fp->ctf_objthash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
free, NULL);
fp->ctf_funchash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
free, NULL);
if (!fp->ctf_dthash || !fp->ctf_dvhash || !fp->ctf_snapshots ||
!fp->ctf_objthash || !fp->ctf_funchash)
{
err = ENOMEM;
goto bad;
}
if (foreign_endian &&
(err = ctf_flip (fp, hp, fp->ctf_buf, 0)) != 0)
{
/* We can be certain that ctf_flip() will have endian-flipped everything
other than the types table when we return. In particular the header
is fine, so set it, to allow freeing to use the usual code path. */
ctf_set_base (fp, hp, fp->ctf_base);
goto bad;
}
ctf_set_base (fp, hp, fp->ctf_base);
if ((err = init_static_types (fp, hp)) != 0)
goto bad;
/* Allocate and initialize the symtab translation table, pointed to by
ctf_sxlate, and the corresponding index sections. This table may be too
large for the actual size of the object and function info sections: if so,
ctf_nsyms will be adjusted and the excess will never be used. It's
possible to do indexed symbol lookups even without a symbol table, so check
even in that case. Initially, we assume the symtab is native-endian: if it
isn't, the caller will inform us later by calling ctf_symsect_endianness. */
#ifdef WORDS_BIGENDIAN
fp->ctf_symsect_little_endian = 0;
#else
fp->ctf_symsect_little_endian = 1;
#endif
if (symsect != NULL)
{
fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
fp->ctf_sxlate = malloc (fp->ctf_nsyms * sizeof (uint32_t));
if (fp->ctf_sxlate == NULL)
{
err = ENOMEM;
goto bad;
}
}
if ((err = init_symtab (fp, hp, symsect)) != 0)
goto bad;
ctf_set_ctl_hashes (fp);
if (symsect != NULL)
{
if (symsect->cts_entsize == sizeof (Elf64_Sym))
(void) ctf_setmodel (fp, CTF_MODEL_LP64);
else
(void) ctf_setmodel (fp, CTF_MODEL_ILP32);
}
else
(void) ctf_setmodel (fp, CTF_MODEL_NATIVE);
fp->ctf_refcnt = 1;
return fp;
bad:
ctf_set_open_errno (errp, err);
ctf_err_warn_to_open (fp);
/* Without this, the refcnt is zero on entry and ctf_dict_close() won't
actually do anything on the grounds that this is a recursive call via
another dict being closed. */
fp->ctf_refcnt = 1;
ctf_dict_close (fp);
return NULL;
}
/* Bump the refcount on the specified CTF dict, to allow export of ctf_dict_t's
from iterators that open and close the ctf_dict_t around the loop. (This
does not extend their lifetime beyond that of the ctf_archive_t in which they
are contained.) */
void
ctf_ref (ctf_dict_t *fp)
{
fp->ctf_refcnt++;
}
/* Close the specified CTF dict and free associated data structures. Note that
ctf_dict_close() is a reference counted operation: if the specified file is
the parent of other active dict, its reference count will be greater than one
and it will be freed later when no active children exist. */
void
ctf_dict_close (ctf_dict_t *fp)
{
ctf_dtdef_t *dtd, *ntd;
ctf_dvdef_t *dvd, *nvd;
ctf_in_flight_dynsym_t *did, *nid;
ctf_err_warning_t *err, *nerr;
if (fp == NULL)
return; /* Allow ctf_dict_close(NULL) to simplify caller code. */
ctf_dprintf ("ctf_dict_close(%p) refcnt=%u\n", (void *) fp, fp->ctf_refcnt);
if (fp->ctf_refcnt > 1)
{
fp->ctf_refcnt--;
return;
}
/* It is possible to recurse back in here, notably if dicts in the
ctf_link_inputs or ctf_link_outputs cite this dict as a parent without
using ctf_import_unref. Do nothing in that case. */
if (fp->ctf_refcnt == 0)
return;
fp->ctf_refcnt--;
free (fp->ctf_dyncuname);
free (fp->ctf_dynparname);
if (fp->ctf_parent && !fp->ctf_parent_unreffed)
ctf_dict_close (fp->ctf_parent);
for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd)
{
ntd = ctf_list_next (dtd);
ctf_dtd_delete (fp, dtd);
}
ctf_dynhash_destroy (fp->ctf_dthash);
ctf_dynset_destroy (fp->ctf_conflicting_enums);
ctf_dynhash_destroy (fp->ctf_structs);
ctf_dynhash_destroy (fp->ctf_unions);
ctf_dynhash_destroy (fp->ctf_enums);
ctf_dynhash_destroy (fp->ctf_names);
for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
{
nvd = ctf_list_next (dvd);
ctf_dvd_delete (fp, dvd);
}
ctf_dynhash_destroy (fp->ctf_dvhash);
ctf_dynhash_destroy (fp->ctf_symhash_func);
ctf_dynhash_destroy (fp->ctf_symhash_objt);
free (fp->ctf_funcidx_sxlate);
free (fp->ctf_objtidx_sxlate);
ctf_dynhash_destroy (fp->ctf_objthash);
ctf_dynhash_destroy (fp->ctf_funchash);
free (fp->ctf_dynsymidx);
ctf_dynhash_destroy (fp->ctf_dynsyms);
for (did = ctf_list_next (&fp->ctf_in_flight_dynsyms); did != NULL; did = nid)
{
nid = ctf_list_next (did);
ctf_list_delete (&fp->ctf_in_flight_dynsyms, did);
free (did);
}
/* The lifetime rules here are delicate. We must destroy the outputs before
the atoms (since in a link the outputs contain references to the parent's
atoms), but we must destroy the inputs after that (since many type strings
ultimately come from the inputs). In addition, if there are
ctf_link_outputs, the parent dict's atoms table may have refs that refer to
the outputs: so purge the refs first. */
if (fp->ctf_link_outputs && ctf_dynhash_elements (fp->ctf_link_outputs) > 0)
ctf_str_purge_refs (fp);
ctf_dynhash_destroy (fp->ctf_link_outputs);
ctf_dynhash_destroy (fp->ctf_link_out_cu_mapping);
ctf_str_free_atoms (fp);
free (fp->ctf_tmp_typeslice);
if (fp->ctf_data.cts_name != _CTF_NULLSTR)
free ((char *) fp->ctf_data.cts_name);
if (fp->ctf_ext_symtab.cts_name != _CTF_NULLSTR)
free ((char *) fp->ctf_ext_symtab.cts_name);
if (fp->ctf_ext_strtab.cts_name != _CTF_NULLSTR)
free ((char *) fp->ctf_ext_strtab.cts_name);
else if (fp->ctf_data_mmapped)
ctf_munmap (fp->ctf_data_mmapped, fp->ctf_data_mmapped_len);
free (fp->ctf_dynbase);
ctf_dynhash_destroy (fp->ctf_link_inputs);
ctf_dynhash_destroy (fp->ctf_link_type_mapping);
ctf_dynhash_destroy (fp->ctf_link_in_cu_mapping);
ctf_dynhash_destroy (fp->ctf_add_processing);
ctf_dedup_fini (fp, NULL, 0);
ctf_dynset_destroy (fp->ctf_dedup_atoms_alloc);
for (err = ctf_list_next (&fp->ctf_errs_warnings); err != NULL; err = nerr)
{
nerr = ctf_list_next (err);
ctf_list_delete (&fp->ctf_errs_warnings, err);
free (err->cew_text);
free (err);
}
free (fp->ctf_sxlate);
free (fp->ctf_txlate);
free (fp->ctf_ptrtab);
free (fp->ctf_pptrtab);
free (fp->ctf_serializing_buf);
free (fp->ctf_header);
free (fp);
}
/* Backward compatibility. */
void
ctf_file_close (ctf_file_t *fp)
{
ctf_dict_close (fp);
}
/* The converse of ctf_open(). ctf_open() disguises whatever it opens as an
archive, so closing one is just like closing an archive. */
void
ctf_close (ctf_archive_t *arc)
{
ctf_arc_close (arc);
}
/* Get the CTF archive from which this ctf_dict_t is derived. */
ctf_archive_t *
ctf_get_arc (const ctf_dict_t *fp)
{
return fp->ctf_archive;
}
/* Return the ctfsect out of the core ctf_impl. Useful for freeing the
ctfsect's data * after ctf_dict_close(), which is why we return the actual
structure, not a pointer to it, since that is likely to become a pointer to
freed data before the return value is used under the expected use case of
ctf_getsect()/ ctf_dict_close()/free(). */
ctf_sect_t
ctf_getdatasect (const ctf_dict_t *fp)
{
return fp->ctf_data;
}
ctf_sect_t
ctf_getsymsect (const ctf_dict_t *fp)
{
return fp->ctf_ext_symtab;
}
ctf_sect_t
ctf_getstrsect (const ctf_dict_t *fp)
{
return fp->ctf_ext_strtab;
}
/* Set the endianness of the symbol table attached to FP. */
void
ctf_symsect_endianness (ctf_dict_t *fp, int little_endian)
{
int old_endianness = fp->ctf_symsect_little_endian;
fp->ctf_symsect_little_endian = !!little_endian;
/* If we already have a symtab translation table, we need to repopulate it if
our idea of the endianness has changed. */
if (old_endianness != fp->ctf_symsect_little_endian
&& fp->ctf_sxlate != NULL && fp->ctf_ext_symtab.cts_data != NULL)
assert (init_symtab (fp, fp->ctf_header, &fp->ctf_ext_symtab) == 0);
}
/* Return the CTF handle for the parent CTF dict, if one exists. Otherwise
return NULL to indicate this dict has no imported parent. */
ctf_dict_t *
ctf_parent_dict (ctf_dict_t *fp)
{
return fp->ctf_parent;
}
/* Backward compatibility. */
ctf_dict_t *
ctf_parent_file (ctf_dict_t *fp)
{
return ctf_parent_dict (fp);
}
/* Return the name of the parent CTF dict, if one exists, or NULL otherwise. */
const char *
ctf_parent_name (ctf_dict_t *fp)
{
return fp->ctf_parname;
}
/* Set the parent name. It is an error to call this routine without calling
ctf_import() at some point. */
int
ctf_parent_name_set (ctf_dict_t *fp, const char *name)
{
if (fp->ctf_dynparname != NULL)
free (fp->ctf_dynparname);
if ((fp->ctf_dynparname = strdup (name)) == NULL)
return (ctf_set_errno (fp, ENOMEM));
fp->ctf_parname = fp->ctf_dynparname;
return 0;
}
/* Return the name of the compilation unit this CTF file applies to. Usually
non-NULL only for non-parent dicts. */
const char *
ctf_cuname (ctf_dict_t *fp)
{
return fp->ctf_cuname;
}
/* Set the compilation unit name. */
int
ctf_cuname_set (ctf_dict_t *fp, const char *name)
{
if (fp->ctf_dyncuname != NULL)
free (fp->ctf_dyncuname);
if ((fp->ctf_dyncuname = strdup (name)) == NULL)
return (ctf_set_errno (fp, ENOMEM));
fp->ctf_cuname = fp->ctf_dyncuname;
return 0;
}
static int
ctf_import_internal (ctf_dict_t *fp, ctf_dict_t *pfp, int unreffed)
{
int err;
int no_strings = fp->ctf_flags & LCTF_NO_STR;
int old_flags = fp->ctf_flags;
ctf_dict_t *old_parent = fp->ctf_parent;
const char *old_parname = fp->ctf_parname;
int old_unreffed = fp->ctf_parent_unreffed;
if (pfp == NULL || pfp == fp->ctf_parent)
return 0;
if (fp == NULL || fp == pfp || pfp->ctf_refcnt == 0)
return (ctf_set_errno (fp, EINVAL));
if (pfp->ctf_dmodel != fp->ctf_dmodel)
return (ctf_set_errno (fp, ECTF_DMODEL));
if (fp->ctf_parent && fp->ctf_header->cth_parent_strlen != 0)
return (ctf_set_errno (fp, ECTF_HASPARENT));
if (fp->ctf_header->cth_parent_strlen != 0 &&
pfp->ctf_header->cth_strlen != fp->ctf_header->cth_parent_strlen)
{
ctf_err_warn (fp, 0, ECTF_WRONGPARENT,
_("ctf_import: incorrect parent dict: %u bytes of strings expected, %u found"),
fp->ctf_header->cth_parent_strlen, pfp->ctf_header->cth_strlen);
return (ctf_set_errno (fp, ECTF_WRONGPARENT));
}
/* If the child dict expects the parent to have types, make sure it has that
number of types. (Provisional types excepted: they go at the top of the
type ID space, and will not overlap any child types.) */
if (pfp->ctf_idmax != fp->ctf_header->cth_parent_typemax)
{
if (fp->ctf_header->cth_parent_typemax != 0)
{
ctf_err_warn (fp, 0, ECTF_WRONGPARENT,
_("ctf_import: incorrect parent dict: %u types expected, %u found"),
fp->ctf_header->cth_parent_typemax, pfp->ctf_idmax);
return (ctf_set_errno (fp, ECTF_WRONGPARENT));
}
else if (fp->ctf_header->cth_parent_typemax == 0)
{
/* If we are importing into a parent dict, the child dict had better
be empty. Set its starting type ID, which need not be zero: the
parent can already have types. */
if (fp->ctf_typemax != 0)
{
ctf_err_warn (fp, 0, EINVAL,
_("ctf_import: dict already has %u types, cannot turn into a new child"),
fp->ctf_typemax);
return (ctf_set_errno (fp, EINVAL));
}
fp->ctf_header->cth_parent_typemax = pfp->ctf_typemax;
}
}
/* We might in time be able to lift this restriction, but it is unlikely to be
something anyone would want to do, so let's not bother for now. */
if (ctf_dynhash_elements (fp->ctf_prov_strtab) != 0)
{
ctf_err_warn (fp, 0, EINVAL,
_("ctf_import: child dict already has %zi bytes of strings, cannot import"),
ctf_dynhash_elements (fp->ctf_prov_strtab));
return (ctf_set_errno (fp, EINVAL));
}
fp->ctf_parent = NULL;
free (fp->ctf_pptrtab);
fp->ctf_pptrtab = NULL;
fp->ctf_pptrtab_len = 0;
fp->ctf_pptrtab_typemax = 0;
if (fp->ctf_parname == NULL)
if ((err = ctf_parent_name_set (fp, "PARENT")) < 0)
return err; /* errno is set for us. */
if (!unreffed)
pfp->ctf_refcnt++;
fp->ctf_parent_unreffed = unreffed;
fp->ctf_parent = pfp;
/* If this is a dict that hasn't previously allowed string lookups,
we can allow them now, and finish initialization. */
fp->ctf_flags |= LCTF_CHILD;
fp->ctf_flags &= ~LCTF_NO_STR;
if (no_strings && (err = init_static_types_names (fp, fp->ctf_header)) < 0)
{
/* Undo everything other than cache flushing. */
fp->ctf_flags = old_flags;
fp->ctf_parent_unreffed = old_unreffed;
fp->ctf_parent = old_parent;
fp->ctf_parname = old_parname;
if (fp->ctf_parent_unreffed)
old_parent->ctf_refcnt++;
return (ctf_set_errno (fp, err)); /* errno is set for us. */
}
/* Failure can now no longer happen, so we can close the old parent (which may
deallocate it and is not easily reversible). */
if (old_parent && !old_unreffed)
ctf_dict_close (old_parent);
fp->ctf_parent->ctf_max_children++;
return 0;
}
/* Import the types from the specified parent dict by storing a pointer to it in
ctf_parent and incrementing its reference count. You can only call this
function once on serialized dicts: the parent cannot be replaced once set.
(You can call it on unserialized dicts as often as you like.)
The pptrtab is wiped, and will be refreshed by the next ctf_lookup_by_name
call.
You can call this with a parent of NULL as many times as you like (but
it doesn't do much). */
int
ctf_import (ctf_dict_t *fp, ctf_dict_t *pfp)
{
return ctf_import_internal (fp, pfp, 0);
}
/* Like ctf_import, but does not increment the refcount on the imported parent
or close it at any point: as a result it can go away at any time and the
caller must do all freeing itself. Used internally to avoid refcount
loops. */
int
ctf_import_unref (ctf_dict_t *fp, ctf_dict_t *pfp)
{
return ctf_import_internal (fp, pfp, 1);
}
/* Set the data model constant for the CTF dict. */
int
ctf_setmodel (ctf_dict_t *fp, int model)
{
const ctf_dmodel_t *dp;
for (dp = _libctf_models; dp->ctd_name != NULL; dp++)
{
if (dp->ctd_code == model)
{
fp->ctf_dmodel = dp;
return 0;
}
}
return (ctf_set_errno (fp, EINVAL));
}
/* Return the data model constant for the CTF dict. */
int
ctf_getmodel (ctf_dict_t *fp)
{
return fp->ctf_dmodel->ctd_code;
}
/* The caller can hang an arbitrary pointer off each ctf_dict_t using this
function. */
void
ctf_setspecific (ctf_dict_t *fp, void *data)
{
fp->ctf_specific = data;
}
/* Retrieve the arbitrary pointer again. */
void *
ctf_getspecific (ctf_dict_t *fp)
{
return fp->ctf_specific;
}