forked from Imagelibrary/binutils-gdb
PR gas/30117
Once a symbol had its expression evaluated, the "segment" of the symbol
may be reg_section if a register is merely involved in the expression,
not just when the expression references a "plain" register. Therefore
the first of the assertions put in place by 4d1bb7955a was too strict.
Convert it to an if() to deal with situations like this one found by
fuzzing:
x=s
s=%eax+0
y=s
or $6,x
In non-debug builds this also avoids potentially silently generating bad
code.
14747 lines
401 KiB
C
14747 lines
401 KiB
C
/* tc-i386.c -- Assemble code for the Intel 80386
|
||
Copyright (C) 1989-2023 Free Software Foundation, Inc.
|
||
|
||
This file is part of GAS, the GNU Assembler.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
/* Intel 80386 machine specific gas.
|
||
Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
|
||
x86_64 support by Jan Hubicka (jh@suse.cz)
|
||
VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
|
||
Bugs & suggestions are completely welcome. This is free software.
|
||
Please help us make it better. */
|
||
|
||
#include "as.h"
|
||
#include "safe-ctype.h"
|
||
#include "subsegs.h"
|
||
#include "dwarf2dbg.h"
|
||
#include "dw2gencfi.h"
|
||
#include "gen-sframe.h"
|
||
#include "sframe.h"
|
||
#include "elf/x86-64.h"
|
||
#include "opcodes/i386-init.h"
|
||
#include "opcodes/i386-mnem.h"
|
||
#include <limits.h>
|
||
|
||
#ifndef INFER_ADDR_PREFIX
|
||
#define INFER_ADDR_PREFIX 1
|
||
#endif
|
||
|
||
#ifndef DEFAULT_ARCH
|
||
#define DEFAULT_ARCH "i386"
|
||
#endif
|
||
|
||
#ifndef INLINE
|
||
#if __GNUC__ >= 2
|
||
#define INLINE __inline__
|
||
#else
|
||
#define INLINE
|
||
#endif
|
||
#endif
|
||
|
||
/* Prefixes will be emitted in the order defined below.
|
||
WAIT_PREFIX must be the first prefix since FWAIT is really is an
|
||
instruction, and so must come before any prefixes.
|
||
The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
|
||
REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
|
||
#define WAIT_PREFIX 0
|
||
#define SEG_PREFIX 1
|
||
#define ADDR_PREFIX 2
|
||
#define DATA_PREFIX 3
|
||
#define REP_PREFIX 4
|
||
#define HLE_PREFIX REP_PREFIX
|
||
#define BND_PREFIX REP_PREFIX
|
||
#define LOCK_PREFIX 5
|
||
#define REX_PREFIX 6 /* must come last. */
|
||
#define MAX_PREFIXES 7 /* max prefixes per opcode */
|
||
|
||
/* we define the syntax here (modulo base,index,scale syntax) */
|
||
#define REGISTER_PREFIX '%'
|
||
#define IMMEDIATE_PREFIX '$'
|
||
#define ABSOLUTE_PREFIX '*'
|
||
|
||
/* these are the instruction mnemonic suffixes in AT&T syntax or
|
||
memory operand size in Intel syntax. */
|
||
#define WORD_MNEM_SUFFIX 'w'
|
||
#define BYTE_MNEM_SUFFIX 'b'
|
||
#define SHORT_MNEM_SUFFIX 's'
|
||
#define LONG_MNEM_SUFFIX 'l'
|
||
#define QWORD_MNEM_SUFFIX 'q'
|
||
|
||
#define END_OF_INSN '\0'
|
||
|
||
#define OPERAND_TYPE_NONE { .bitfield = { .class = ClassNone } }
|
||
|
||
/* This matches the C -> StaticRounding alias in the opcode table. */
|
||
#define commutative staticrounding
|
||
|
||
/*
|
||
'templates' is for grouping together 'template' structures for opcodes
|
||
of the same name. This is only used for storing the insns in the grand
|
||
ole hash table of insns.
|
||
The templates themselves start at START and range up to (but not including)
|
||
END.
|
||
*/
|
||
typedef struct
|
||
{
|
||
const insn_template *start;
|
||
const insn_template *end;
|
||
}
|
||
templates;
|
||
|
||
/* 386 operand encoding bytes: see 386 book for details of this. */
|
||
typedef struct
|
||
{
|
||
unsigned int regmem; /* codes register or memory operand */
|
||
unsigned int reg; /* codes register operand (or extended opcode) */
|
||
unsigned int mode; /* how to interpret regmem & reg */
|
||
}
|
||
modrm_byte;
|
||
|
||
/* x86-64 extension prefix. */
|
||
typedef int rex_byte;
|
||
|
||
/* 386 opcode byte to code indirect addressing. */
|
||
typedef struct
|
||
{
|
||
unsigned base;
|
||
unsigned index;
|
||
unsigned scale;
|
||
}
|
||
sib_byte;
|
||
|
||
/* x86 arch names, types and features */
|
||
typedef struct
|
||
{
|
||
const char *name; /* arch name */
|
||
unsigned int len:8; /* arch string length */
|
||
bool skip:1; /* show_arch should skip this. */
|
||
enum processor_type type; /* arch type */
|
||
i386_cpu_flags enable; /* cpu feature enable flags */
|
||
i386_cpu_flags disable; /* cpu feature disable flags */
|
||
}
|
||
arch_entry;
|
||
|
||
static void update_code_flag (int, int);
|
||
static void set_code_flag (int);
|
||
static void set_16bit_gcc_code_flag (int);
|
||
static void set_intel_syntax (int);
|
||
static void set_intel_mnemonic (int);
|
||
static void set_allow_index_reg (int);
|
||
static void set_check (int);
|
||
static void set_cpu_arch (int);
|
||
#ifdef TE_PE
|
||
static void pe_directive_secrel (int);
|
||
static void pe_directive_secidx (int);
|
||
#endif
|
||
static void signed_cons (int);
|
||
static char *output_invalid (int c);
|
||
static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
|
||
const char *);
|
||
static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
|
||
const char *);
|
||
static int i386_att_operand (char *);
|
||
static int i386_intel_operand (char *, int);
|
||
static int i386_intel_simplify (expressionS *);
|
||
static int i386_intel_parse_name (const char *, expressionS *);
|
||
static const reg_entry *parse_register (char *, char **);
|
||
static const char *parse_insn (const char *, char *);
|
||
static char *parse_operands (char *, const char *);
|
||
static void swap_operands (void);
|
||
static void swap_2_operands (unsigned int, unsigned int);
|
||
static enum flag_code i386_addressing_mode (void);
|
||
static void optimize_imm (void);
|
||
static void optimize_disp (void);
|
||
static const insn_template *match_template (char);
|
||
static int check_string (void);
|
||
static int process_suffix (void);
|
||
static int check_byte_reg (void);
|
||
static int check_long_reg (void);
|
||
static int check_qword_reg (void);
|
||
static int check_word_reg (void);
|
||
static int finalize_imm (void);
|
||
static int process_operands (void);
|
||
static const reg_entry *build_modrm_byte (void);
|
||
static void output_insn (void);
|
||
static void output_imm (fragS *, offsetT);
|
||
static void output_disp (fragS *, offsetT);
|
||
#ifndef I386COFF
|
||
static void s_bss (int);
|
||
#endif
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
static void handle_large_common (int small ATTRIBUTE_UNUSED);
|
||
|
||
/* GNU_PROPERTY_X86_ISA_1_USED. */
|
||
static unsigned int x86_isa_1_used;
|
||
/* GNU_PROPERTY_X86_FEATURE_2_USED. */
|
||
static unsigned int x86_feature_2_used;
|
||
/* Generate x86 used ISA and feature properties. */
|
||
static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
|
||
#endif
|
||
|
||
static const char *default_arch = DEFAULT_ARCH;
|
||
|
||
/* parse_register() returns this when a register alias cannot be used. */
|
||
static const reg_entry bad_reg = { "<bad>", OPERAND_TYPE_NONE, 0, 0,
|
||
{ Dw2Inval, Dw2Inval } };
|
||
|
||
static const reg_entry *reg_eax;
|
||
static const reg_entry *reg_ds;
|
||
static const reg_entry *reg_es;
|
||
static const reg_entry *reg_ss;
|
||
static const reg_entry *reg_st0;
|
||
static const reg_entry *reg_k0;
|
||
|
||
/* VEX prefix. */
|
||
typedef struct
|
||
{
|
||
/* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
|
||
unsigned char bytes[4];
|
||
unsigned int length;
|
||
/* Destination or source register specifier. */
|
||
const reg_entry *register_specifier;
|
||
} vex_prefix;
|
||
|
||
/* 'md_assemble ()' gathers together information and puts it into a
|
||
i386_insn. */
|
||
|
||
union i386_op
|
||
{
|
||
expressionS *disps;
|
||
expressionS *imms;
|
||
const reg_entry *regs;
|
||
};
|
||
|
||
enum i386_error
|
||
{
|
||
no_error, /* Must be first. */
|
||
operand_size_mismatch,
|
||
operand_type_mismatch,
|
||
register_type_mismatch,
|
||
number_of_operands_mismatch,
|
||
invalid_instruction_suffix,
|
||
bad_imm4,
|
||
unsupported_with_intel_mnemonic,
|
||
unsupported_syntax,
|
||
unsupported,
|
||
unsupported_on_arch,
|
||
unsupported_64bit,
|
||
invalid_sib_address,
|
||
invalid_vsib_address,
|
||
invalid_vector_register_set,
|
||
invalid_tmm_register_set,
|
||
invalid_dest_and_src_register_set,
|
||
unsupported_vector_index_register,
|
||
unsupported_broadcast,
|
||
broadcast_needed,
|
||
unsupported_masking,
|
||
mask_not_on_destination,
|
||
no_default_mask,
|
||
unsupported_rc_sae,
|
||
invalid_register_operand,
|
||
};
|
||
|
||
struct _i386_insn
|
||
{
|
||
/* TM holds the template for the insn were currently assembling. */
|
||
insn_template tm;
|
||
|
||
/* SUFFIX holds the instruction size suffix for byte, word, dword
|
||
or qword, if given. */
|
||
char suffix;
|
||
|
||
/* OPCODE_LENGTH holds the number of base opcode bytes. */
|
||
unsigned char opcode_length;
|
||
|
||
/* OPERANDS gives the number of given operands. */
|
||
unsigned int operands;
|
||
|
||
/* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
|
||
of given register, displacement, memory operands and immediate
|
||
operands. */
|
||
unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
|
||
|
||
/* TYPES [i] is the type (see above #defines) which tells us how to
|
||
use OP[i] for the corresponding operand. */
|
||
i386_operand_type types[MAX_OPERANDS];
|
||
|
||
/* Displacement expression, immediate expression, or register for each
|
||
operand. */
|
||
union i386_op op[MAX_OPERANDS];
|
||
|
||
/* Flags for operands. */
|
||
unsigned int flags[MAX_OPERANDS];
|
||
#define Operand_PCrel 1
|
||
#define Operand_Mem 2
|
||
|
||
/* Relocation type for operand */
|
||
enum bfd_reloc_code_real reloc[MAX_OPERANDS];
|
||
|
||
/* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
|
||
the base index byte below. */
|
||
const reg_entry *base_reg;
|
||
const reg_entry *index_reg;
|
||
unsigned int log2_scale_factor;
|
||
|
||
/* SEG gives the seg_entries of this insn. They are zero unless
|
||
explicit segment overrides are given. */
|
||
const reg_entry *seg[2];
|
||
|
||
/* PREFIX holds all the given prefix opcodes (usually null).
|
||
PREFIXES is the number of prefix opcodes. */
|
||
unsigned int prefixes;
|
||
unsigned char prefix[MAX_PREFIXES];
|
||
|
||
/* Register is in low 3 bits of opcode. */
|
||
bool short_form;
|
||
|
||
/* The operand to a branch insn indicates an absolute branch. */
|
||
bool jumpabsolute;
|
||
|
||
/* The operand to a branch insn indicates a far branch. */
|
||
bool far_branch;
|
||
|
||
/* There is a memory operand of (%dx) which should be only used
|
||
with input/output instructions. */
|
||
bool input_output_operand;
|
||
|
||
/* Extended states. */
|
||
enum
|
||
{
|
||
/* Use MMX state. */
|
||
xstate_mmx = 1 << 0,
|
||
/* Use XMM state. */
|
||
xstate_xmm = 1 << 1,
|
||
/* Use YMM state. */
|
||
xstate_ymm = 1 << 2 | xstate_xmm,
|
||
/* Use ZMM state. */
|
||
xstate_zmm = 1 << 3 | xstate_ymm,
|
||
/* Use TMM state. */
|
||
xstate_tmm = 1 << 4,
|
||
/* Use MASK state. */
|
||
xstate_mask = 1 << 5
|
||
} xstate;
|
||
|
||
/* Has GOTPC or TLS relocation. */
|
||
bool has_gotpc_tls_reloc;
|
||
|
||
/* RM and SIB are the modrm byte and the sib byte where the
|
||
addressing modes of this insn are encoded. */
|
||
modrm_byte rm;
|
||
rex_byte rex;
|
||
rex_byte vrex;
|
||
sib_byte sib;
|
||
vex_prefix vex;
|
||
|
||
/* Masking attributes.
|
||
|
||
The struct describes masking, applied to OPERAND in the instruction.
|
||
REG is a pointer to the corresponding mask register. ZEROING tells
|
||
whether merging or zeroing mask is used. */
|
||
struct Mask_Operation
|
||
{
|
||
const reg_entry *reg;
|
||
unsigned int zeroing;
|
||
/* The operand where this operation is associated. */
|
||
unsigned int operand;
|
||
} mask;
|
||
|
||
/* Rounding control and SAE attributes. */
|
||
struct RC_Operation
|
||
{
|
||
enum rc_type
|
||
{
|
||
rc_none = -1,
|
||
rne,
|
||
rd,
|
||
ru,
|
||
rz,
|
||
saeonly
|
||
} type;
|
||
/* In Intel syntax the operand modifier form is supposed to be used, but
|
||
we continue to accept the immediate forms as well. */
|
||
bool modifier;
|
||
} rounding;
|
||
|
||
/* Broadcasting attributes.
|
||
|
||
The struct describes broadcasting, applied to OPERAND. TYPE is
|
||
expresses the broadcast factor. */
|
||
struct Broadcast_Operation
|
||
{
|
||
/* Type of broadcast: {1to2}, {1to4}, {1to8}, {1to16} or {1to32}. */
|
||
unsigned int type;
|
||
|
||
/* Index of broadcasted operand. */
|
||
unsigned int operand;
|
||
|
||
/* Number of bytes to broadcast. */
|
||
unsigned int bytes;
|
||
} broadcast;
|
||
|
||
/* Compressed disp8*N attribute. */
|
||
unsigned int memshift;
|
||
|
||
/* Prefer load or store in encoding. */
|
||
enum
|
||
{
|
||
dir_encoding_default = 0,
|
||
dir_encoding_load,
|
||
dir_encoding_store,
|
||
dir_encoding_swap
|
||
} dir_encoding;
|
||
|
||
/* Prefer 8bit, 16bit, 32bit displacement in encoding. */
|
||
enum
|
||
{
|
||
disp_encoding_default = 0,
|
||
disp_encoding_8bit,
|
||
disp_encoding_16bit,
|
||
disp_encoding_32bit
|
||
} disp_encoding;
|
||
|
||
/* Prefer the REX byte in encoding. */
|
||
bool rex_encoding;
|
||
|
||
/* Disable instruction size optimization. */
|
||
bool no_optimize;
|
||
|
||
/* How to encode vector instructions. */
|
||
enum
|
||
{
|
||
vex_encoding_default = 0,
|
||
vex_encoding_vex,
|
||
vex_encoding_vex3,
|
||
vex_encoding_evex,
|
||
vex_encoding_error
|
||
} vec_encoding;
|
||
|
||
/* REP prefix. */
|
||
const char *rep_prefix;
|
||
|
||
/* HLE prefix. */
|
||
const char *hle_prefix;
|
||
|
||
/* Have BND prefix. */
|
||
const char *bnd_prefix;
|
||
|
||
/* Have NOTRACK prefix. */
|
||
const char *notrack_prefix;
|
||
|
||
/* Error message. */
|
||
enum i386_error error;
|
||
};
|
||
|
||
typedef struct _i386_insn i386_insn;
|
||
|
||
/* Link RC type with corresponding string, that'll be looked for in
|
||
asm. */
|
||
struct RC_name
|
||
{
|
||
enum rc_type type;
|
||
const char *name;
|
||
unsigned int len;
|
||
};
|
||
|
||
static const struct RC_name RC_NamesTable[] =
|
||
{
|
||
{ rne, STRING_COMMA_LEN ("rn-sae") },
|
||
{ rd, STRING_COMMA_LEN ("rd-sae") },
|
||
{ ru, STRING_COMMA_LEN ("ru-sae") },
|
||
{ rz, STRING_COMMA_LEN ("rz-sae") },
|
||
{ saeonly, STRING_COMMA_LEN ("sae") },
|
||
};
|
||
|
||
/* To be indexed by segment register number. */
|
||
static const unsigned char i386_seg_prefixes[] = {
|
||
ES_PREFIX_OPCODE,
|
||
CS_PREFIX_OPCODE,
|
||
SS_PREFIX_OPCODE,
|
||
DS_PREFIX_OPCODE,
|
||
FS_PREFIX_OPCODE,
|
||
GS_PREFIX_OPCODE
|
||
};
|
||
|
||
/* List of chars besides those in app.c:symbol_chars that can start an
|
||
operand. Used to prevent the scrubber eating vital white-space. */
|
||
const char extra_symbol_chars[] = "*%-([{}"
|
||
#ifdef LEX_AT
|
||
"@"
|
||
#endif
|
||
#ifdef LEX_QM
|
||
"?"
|
||
#endif
|
||
;
|
||
|
||
#if ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
|
||
&& !defined (TE_GNU) \
|
||
&& !defined (TE_LINUX) \
|
||
&& !defined (TE_Haiku) \
|
||
&& !defined (TE_FreeBSD) \
|
||
&& !defined (TE_DragonFly) \
|
||
&& !defined (TE_NetBSD))
|
||
/* This array holds the chars that always start a comment. If the
|
||
pre-processor is disabled, these aren't very useful. The option
|
||
--divide will remove '/' from this list. */
|
||
const char *i386_comment_chars = "#/";
|
||
#define SVR4_COMMENT_CHARS 1
|
||
#define PREFIX_SEPARATOR '\\'
|
||
|
||
#else
|
||
const char *i386_comment_chars = "#";
|
||
#define PREFIX_SEPARATOR '/'
|
||
#endif
|
||
|
||
/* This array holds the chars that only start a comment at the beginning of
|
||
a line. If the line seems to have the form '# 123 filename'
|
||
.line and .file directives will appear in the pre-processed output.
|
||
Note that input_file.c hand checks for '#' at the beginning of the
|
||
first line of the input file. This is because the compiler outputs
|
||
#NO_APP at the beginning of its output.
|
||
Also note that comments started like this one will always work if
|
||
'/' isn't otherwise defined. */
|
||
const char line_comment_chars[] = "#/";
|
||
|
||
const char line_separator_chars[] = ";";
|
||
|
||
/* Chars that can be used to separate mant from exp in floating point
|
||
nums. */
|
||
const char EXP_CHARS[] = "eE";
|
||
|
||
/* Chars that mean this number is a floating point constant
|
||
As in 0f12.456
|
||
or 0d1.2345e12. */
|
||
const char FLT_CHARS[] = "fFdDxXhHbB";
|
||
|
||
/* Tables for lexical analysis. */
|
||
static char mnemonic_chars[256];
|
||
static char register_chars[256];
|
||
static char operand_chars[256];
|
||
static char identifier_chars[256];
|
||
|
||
/* Lexical macros. */
|
||
#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
|
||
#define is_operand_char(x) (operand_chars[(unsigned char) x])
|
||
#define is_register_char(x) (register_chars[(unsigned char) x])
|
||
#define is_space_char(x) ((x) == ' ')
|
||
#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
|
||
|
||
/* All non-digit non-letter characters that may occur in an operand. */
|
||
static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
|
||
|
||
/* md_assemble() always leaves the strings it's passed unaltered. To
|
||
effect this we maintain a stack of saved characters that we've smashed
|
||
with '\0's (indicating end of strings for various sub-fields of the
|
||
assembler instruction). */
|
||
static char save_stack[32];
|
||
static char *save_stack_p;
|
||
#define END_STRING_AND_SAVE(s) \
|
||
do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
|
||
#define RESTORE_END_STRING(s) \
|
||
do { *(s) = *--save_stack_p; } while (0)
|
||
|
||
/* The instruction we're assembling. */
|
||
static i386_insn i;
|
||
|
||
/* Possible templates for current insn. */
|
||
static const templates *current_templates;
|
||
|
||
/* Per instruction expressionS buffers: max displacements & immediates. */
|
||
static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
|
||
static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
|
||
|
||
/* Current operand we are working on. */
|
||
static int this_operand = -1;
|
||
|
||
/* We support four different modes. FLAG_CODE variable is used to distinguish
|
||
these. */
|
||
|
||
enum flag_code {
|
||
CODE_32BIT,
|
||
CODE_16BIT,
|
||
CODE_64BIT };
|
||
|
||
static enum flag_code flag_code;
|
||
static unsigned int object_64bit;
|
||
static unsigned int disallow_64bit_reloc;
|
||
static int use_rela_relocations = 0;
|
||
/* __tls_get_addr/___tls_get_addr symbol for TLS. */
|
||
static const char *tls_get_addr;
|
||
|
||
#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
|
||
|| defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
|
||
|| defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
|
||
|
||
/* The ELF ABI to use. */
|
||
enum x86_elf_abi
|
||
{
|
||
I386_ABI,
|
||
X86_64_ABI,
|
||
X86_64_X32_ABI
|
||
};
|
||
|
||
static enum x86_elf_abi x86_elf_abi = I386_ABI;
|
||
#endif
|
||
|
||
#if defined (TE_PE) || defined (TE_PEP)
|
||
/* Use big object file format. */
|
||
static int use_big_obj = 0;
|
||
#endif
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
/* 1 if generating code for a shared library. */
|
||
static int shared = 0;
|
||
|
||
unsigned int x86_sframe_cfa_sp_reg;
|
||
/* The other CFA base register for SFrame stack trace info. */
|
||
unsigned int x86_sframe_cfa_fp_reg;
|
||
unsigned int x86_sframe_cfa_ra_reg;
|
||
|
||
#endif
|
||
|
||
/* 1 for intel syntax,
|
||
0 if att syntax. */
|
||
static int intel_syntax = 0;
|
||
|
||
static enum x86_64_isa
|
||
{
|
||
amd64 = 1, /* AMD64 ISA. */
|
||
intel64 /* Intel64 ISA. */
|
||
} isa64;
|
||
|
||
/* 1 for intel mnemonic,
|
||
0 if att mnemonic. */
|
||
static int intel_mnemonic = !SYSV386_COMPAT;
|
||
|
||
/* 1 if pseudo registers are permitted. */
|
||
static int allow_pseudo_reg = 0;
|
||
|
||
/* 1 if register prefix % not required. */
|
||
static int allow_naked_reg = 0;
|
||
|
||
/* 1 if the assembler should add BND prefix for all control-transferring
|
||
instructions supporting it, even if this prefix wasn't specified
|
||
explicitly. */
|
||
static int add_bnd_prefix = 0;
|
||
|
||
/* 1 if pseudo index register, eiz/riz, is allowed . */
|
||
static int allow_index_reg = 0;
|
||
|
||
/* 1 if the assembler should ignore LOCK prefix, even if it was
|
||
specified explicitly. */
|
||
static int omit_lock_prefix = 0;
|
||
|
||
/* 1 if the assembler should encode lfence, mfence, and sfence as
|
||
"lock addl $0, (%{re}sp)". */
|
||
static int avoid_fence = 0;
|
||
|
||
/* 1 if lfence should be inserted after every load. */
|
||
static int lfence_after_load = 0;
|
||
|
||
/* Non-zero if lfence should be inserted before indirect branch. */
|
||
static enum lfence_before_indirect_branch_kind
|
||
{
|
||
lfence_branch_none = 0,
|
||
lfence_branch_register,
|
||
lfence_branch_memory,
|
||
lfence_branch_all
|
||
}
|
||
lfence_before_indirect_branch;
|
||
|
||
/* Non-zero if lfence should be inserted before ret. */
|
||
static enum lfence_before_ret_kind
|
||
{
|
||
lfence_before_ret_none = 0,
|
||
lfence_before_ret_not,
|
||
lfence_before_ret_or,
|
||
lfence_before_ret_shl
|
||
}
|
||
lfence_before_ret;
|
||
|
||
/* Types of previous instruction is .byte or prefix. */
|
||
static struct
|
||
{
|
||
segT seg;
|
||
const char *file;
|
||
const char *name;
|
||
unsigned int line;
|
||
enum last_insn_kind
|
||
{
|
||
last_insn_other = 0,
|
||
last_insn_directive,
|
||
last_insn_prefix
|
||
} kind;
|
||
} last_insn;
|
||
|
||
/* 1 if the assembler should generate relax relocations. */
|
||
|
||
static int generate_relax_relocations
|
||
= DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
|
||
|
||
static enum check_kind
|
||
{
|
||
check_none = 0,
|
||
check_warning,
|
||
check_error
|
||
}
|
||
sse_check, operand_check = check_warning;
|
||
|
||
/* Non-zero if branches should be aligned within power of 2 boundary. */
|
||
static int align_branch_power = 0;
|
||
|
||
/* Types of branches to align. */
|
||
enum align_branch_kind
|
||
{
|
||
align_branch_none = 0,
|
||
align_branch_jcc = 1,
|
||
align_branch_fused = 2,
|
||
align_branch_jmp = 3,
|
||
align_branch_call = 4,
|
||
align_branch_indirect = 5,
|
||
align_branch_ret = 6
|
||
};
|
||
|
||
/* Type bits of branches to align. */
|
||
enum align_branch_bit
|
||
{
|
||
align_branch_jcc_bit = 1 << align_branch_jcc,
|
||
align_branch_fused_bit = 1 << align_branch_fused,
|
||
align_branch_jmp_bit = 1 << align_branch_jmp,
|
||
align_branch_call_bit = 1 << align_branch_call,
|
||
align_branch_indirect_bit = 1 << align_branch_indirect,
|
||
align_branch_ret_bit = 1 << align_branch_ret
|
||
};
|
||
|
||
static unsigned int align_branch = (align_branch_jcc_bit
|
||
| align_branch_fused_bit
|
||
| align_branch_jmp_bit);
|
||
|
||
/* Types of condition jump used by macro-fusion. */
|
||
enum mf_jcc_kind
|
||
{
|
||
mf_jcc_jo = 0, /* base opcode 0x70 */
|
||
mf_jcc_jc, /* base opcode 0x72 */
|
||
mf_jcc_je, /* base opcode 0x74 */
|
||
mf_jcc_jna, /* base opcode 0x76 */
|
||
mf_jcc_js, /* base opcode 0x78 */
|
||
mf_jcc_jp, /* base opcode 0x7a */
|
||
mf_jcc_jl, /* base opcode 0x7c */
|
||
mf_jcc_jle, /* base opcode 0x7e */
|
||
};
|
||
|
||
/* Types of compare flag-modifying insntructions used by macro-fusion. */
|
||
enum mf_cmp_kind
|
||
{
|
||
mf_cmp_test_and, /* test/cmp */
|
||
mf_cmp_alu_cmp, /* add/sub/cmp */
|
||
mf_cmp_incdec /* inc/dec */
|
||
};
|
||
|
||
/* The maximum padding size for fused jcc. CMP like instruction can
|
||
be 9 bytes and jcc can be 6 bytes. Leave room just in case for
|
||
prefixes. */
|
||
#define MAX_FUSED_JCC_PADDING_SIZE 20
|
||
|
||
/* The maximum number of prefixes added for an instruction. */
|
||
static unsigned int align_branch_prefix_size = 5;
|
||
|
||
/* Optimization:
|
||
1. Clear the REX_W bit with register operand if possible.
|
||
2. Above plus use 128bit vector instruction to clear the full vector
|
||
register.
|
||
*/
|
||
static int optimize = 0;
|
||
|
||
/* Optimization:
|
||
1. Clear the REX_W bit with register operand if possible.
|
||
2. Above plus use 128bit vector instruction to clear the full vector
|
||
register.
|
||
3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
|
||
"testb $imm7,%r8".
|
||
*/
|
||
static int optimize_for_space = 0;
|
||
|
||
/* Register prefix used for error message. */
|
||
static const char *register_prefix = "%";
|
||
|
||
/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
|
||
leave, push, and pop instructions so that gcc has the same stack
|
||
frame as in 32 bit mode. */
|
||
static char stackop_size = '\0';
|
||
|
||
/* Non-zero to optimize code alignment. */
|
||
int optimize_align_code = 1;
|
||
|
||
/* Non-zero to quieten some warnings. */
|
||
static int quiet_warnings = 0;
|
||
|
||
/* Guard to avoid repeated warnings about non-16-bit code on 16-bit CPUs. */
|
||
static bool pre_386_16bit_warned;
|
||
|
||
/* CPU name. */
|
||
static const char *cpu_arch_name = NULL;
|
||
static char *cpu_sub_arch_name = NULL;
|
||
|
||
/* CPU feature flags. */
|
||
static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
|
||
|
||
/* If we have selected a cpu we are generating instructions for. */
|
||
static int cpu_arch_tune_set = 0;
|
||
|
||
/* Cpu we are generating instructions for. */
|
||
enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
|
||
|
||
/* CPU feature flags of cpu we are generating instructions for. */
|
||
static i386_cpu_flags cpu_arch_tune_flags;
|
||
|
||
/* CPU instruction set architecture used. */
|
||
enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
|
||
|
||
/* CPU feature flags of instruction set architecture used. */
|
||
i386_cpu_flags cpu_arch_isa_flags;
|
||
|
||
/* If set, conditional jumps are not automatically promoted to handle
|
||
larger than a byte offset. */
|
||
static bool no_cond_jump_promotion = false;
|
||
|
||
/* Encode SSE instructions with VEX prefix. */
|
||
static unsigned int sse2avx;
|
||
|
||
/* Encode aligned vector move as unaligned vector move. */
|
||
static unsigned int use_unaligned_vector_move;
|
||
|
||
/* Encode scalar AVX instructions with specific vector length. */
|
||
static enum
|
||
{
|
||
vex128 = 0,
|
||
vex256
|
||
} avxscalar;
|
||
|
||
/* Encode VEX WIG instructions with specific vex.w. */
|
||
static enum
|
||
{
|
||
vexw0 = 0,
|
||
vexw1
|
||
} vexwig;
|
||
|
||
/* Encode scalar EVEX LIG instructions with specific vector length. */
|
||
static enum
|
||
{
|
||
evexl128 = 0,
|
||
evexl256,
|
||
evexl512
|
||
} evexlig;
|
||
|
||
/* Encode EVEX WIG instructions with specific evex.w. */
|
||
static enum
|
||
{
|
||
evexw0 = 0,
|
||
evexw1
|
||
} evexwig;
|
||
|
||
/* Value to encode in EVEX RC bits, for SAE-only instructions. */
|
||
static enum rc_type evexrcig = rne;
|
||
|
||
/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
|
||
static symbolS *GOT_symbol;
|
||
|
||
/* The dwarf2 return column, adjusted for 32 or 64 bit. */
|
||
unsigned int x86_dwarf2_return_column;
|
||
|
||
/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
|
||
int x86_cie_data_alignment;
|
||
|
||
/* Interface to relax_segment.
|
||
There are 3 major relax states for 386 jump insns because the
|
||
different types of jumps add different sizes to frags when we're
|
||
figuring out what sort of jump to choose to reach a given label.
|
||
|
||
BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
|
||
branches which are handled by md_estimate_size_before_relax() and
|
||
i386_generic_table_relax_frag(). */
|
||
|
||
/* Types. */
|
||
#define UNCOND_JUMP 0
|
||
#define COND_JUMP 1
|
||
#define COND_JUMP86 2
|
||
#define BRANCH_PADDING 3
|
||
#define BRANCH_PREFIX 4
|
||
#define FUSED_JCC_PADDING 5
|
||
|
||
/* Sizes. */
|
||
#define CODE16 1
|
||
#define SMALL 0
|
||
#define SMALL16 (SMALL | CODE16)
|
||
#define BIG 2
|
||
#define BIG16 (BIG | CODE16)
|
||
|
||
#ifndef INLINE
|
||
#ifdef __GNUC__
|
||
#define INLINE __inline__
|
||
#else
|
||
#define INLINE
|
||
#endif
|
||
#endif
|
||
|
||
#define ENCODE_RELAX_STATE(type, size) \
|
||
((relax_substateT) (((type) << 2) | (size)))
|
||
#define TYPE_FROM_RELAX_STATE(s) \
|
||
((s) >> 2)
|
||
#define DISP_SIZE_FROM_RELAX_STATE(s) \
|
||
((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
|
||
|
||
/* This table is used by relax_frag to promote short jumps to long
|
||
ones where necessary. SMALL (short) jumps may be promoted to BIG
|
||
(32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
|
||
don't allow a short jump in a 32 bit code segment to be promoted to
|
||
a 16 bit offset jump because it's slower (requires data size
|
||
prefix), and doesn't work, unless the destination is in the bottom
|
||
64k of the code segment (The top 16 bits of eip are zeroed). */
|
||
|
||
const relax_typeS md_relax_table[] =
|
||
{
|
||
/* The fields are:
|
||
1) most positive reach of this state,
|
||
2) most negative reach of this state,
|
||
3) how many bytes this mode will have in the variable part of the frag
|
||
4) which index into the table to try if we can't fit into this one. */
|
||
|
||
/* UNCOND_JUMP states. */
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
|
||
/* dword jmp adds 4 bytes to frag:
|
||
0 extra opcode bytes, 4 displacement bytes. */
|
||
{0, 0, 4, 0},
|
||
/* word jmp adds 2 byte2 to frag:
|
||
0 extra opcode bytes, 2 displacement bytes. */
|
||
{0, 0, 2, 0},
|
||
|
||
/* COND_JUMP states. */
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
|
||
/* dword conditionals adds 5 bytes to frag:
|
||
1 extra opcode byte, 4 displacement bytes. */
|
||
{0, 0, 5, 0},
|
||
/* word conditionals add 3 bytes to frag:
|
||
1 extra opcode byte, 2 displacement bytes. */
|
||
{0, 0, 3, 0},
|
||
|
||
/* COND_JUMP86 states. */
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
|
||
{127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
|
||
/* dword conditionals adds 5 bytes to frag:
|
||
1 extra opcode byte, 4 displacement bytes. */
|
||
{0, 0, 5, 0},
|
||
/* word conditionals add 4 bytes to frag:
|
||
1 displacement byte and a 3 byte long branch insn. */
|
||
{0, 0, 4, 0}
|
||
};
|
||
|
||
#define ARCH(n, t, f, s) \
|
||
{ STRING_COMMA_LEN (#n), s, PROCESSOR_ ## t, CPU_ ## f ## _FLAGS, \
|
||
CPU_NONE_FLAGS }
|
||
#define SUBARCH(n, e, d, s) \
|
||
{ STRING_COMMA_LEN (#n), s, PROCESSOR_NONE, CPU_ ## e ## _FLAGS, \
|
||
CPU_ ## d ## _FLAGS }
|
||
|
||
static const arch_entry cpu_arch[] =
|
||
{
|
||
/* Do not replace the first two entries - i386_target_format() and
|
||
set_cpu_arch() rely on them being there in this order. */
|
||
ARCH (generic32, GENERIC32, GENERIC32, false),
|
||
ARCH (generic64, GENERIC64, GENERIC64, false),
|
||
ARCH (i8086, UNKNOWN, NONE, false),
|
||
ARCH (i186, UNKNOWN, 186, false),
|
||
ARCH (i286, UNKNOWN, 286, false),
|
||
ARCH (i386, I386, 386, false),
|
||
ARCH (i486, I486, 486, false),
|
||
ARCH (i586, PENTIUM, 586, false),
|
||
ARCH (i686, PENTIUMPRO, 686, false),
|
||
ARCH (pentium, PENTIUM, 586, false),
|
||
ARCH (pentiumpro, PENTIUMPRO, PENTIUMPRO, false),
|
||
ARCH (pentiumii, PENTIUMPRO, P2, false),
|
||
ARCH (pentiumiii, PENTIUMPRO, P3, false),
|
||
ARCH (pentium4, PENTIUM4, P4, false),
|
||
ARCH (prescott, NOCONA, CORE, false),
|
||
ARCH (nocona, NOCONA, NOCONA, false),
|
||
ARCH (yonah, CORE, CORE, true),
|
||
ARCH (core, CORE, CORE, false),
|
||
ARCH (merom, CORE2, CORE2, true),
|
||
ARCH (core2, CORE2, CORE2, false),
|
||
ARCH (corei7, COREI7, COREI7, false),
|
||
ARCH (iamcu, IAMCU, IAMCU, false),
|
||
ARCH (k6, K6, K6, false),
|
||
ARCH (k6_2, K6, K6_2, false),
|
||
ARCH (athlon, ATHLON, ATHLON, false),
|
||
ARCH (sledgehammer, K8, K8, true),
|
||
ARCH (opteron, K8, K8, false),
|
||
ARCH (k8, K8, K8, false),
|
||
ARCH (amdfam10, AMDFAM10, AMDFAM10, false),
|
||
ARCH (bdver1, BD, BDVER1, false),
|
||
ARCH (bdver2, BD, BDVER2, false),
|
||
ARCH (bdver3, BD, BDVER3, false),
|
||
ARCH (bdver4, BD, BDVER4, false),
|
||
ARCH (znver1, ZNVER, ZNVER1, false),
|
||
ARCH (znver2, ZNVER, ZNVER2, false),
|
||
ARCH (znver3, ZNVER, ZNVER3, false),
|
||
ARCH (znver4, ZNVER, ZNVER4, false),
|
||
ARCH (btver1, BT, BTVER1, false),
|
||
ARCH (btver2, BT, BTVER2, false),
|
||
|
||
SUBARCH (8087, 8087, ANY_8087, false),
|
||
SUBARCH (87, NONE, ANY_8087, false), /* Disable only! */
|
||
SUBARCH (287, 287, ANY_287, false),
|
||
SUBARCH (387, 387, ANY_387, false),
|
||
SUBARCH (687, 687, ANY_687, false),
|
||
SUBARCH (cmov, CMOV, CMOV, false),
|
||
SUBARCH (fxsr, FXSR, ANY_FXSR, false),
|
||
SUBARCH (mmx, MMX, ANY_MMX, false),
|
||
SUBARCH (sse, SSE, ANY_SSE, false),
|
||
SUBARCH (sse2, SSE2, ANY_SSE2, false),
|
||
SUBARCH (sse3, SSE3, ANY_SSE3, false),
|
||
SUBARCH (sse4a, SSE4A, ANY_SSE4A, false),
|
||
SUBARCH (ssse3, SSSE3, ANY_SSSE3, false),
|
||
SUBARCH (sse4.1, SSE4_1, ANY_SSE4_1, false),
|
||
SUBARCH (sse4.2, SSE4_2, ANY_SSE4_2, false),
|
||
SUBARCH (sse4, SSE4_2, ANY_SSE4_1, false),
|
||
SUBARCH (avx, AVX, ANY_AVX, false),
|
||
SUBARCH (avx2, AVX2, ANY_AVX2, false),
|
||
SUBARCH (avx512f, AVX512F, ANY_AVX512F, false),
|
||
SUBARCH (avx512cd, AVX512CD, ANY_AVX512CD, false),
|
||
SUBARCH (avx512er, AVX512ER, ANY_AVX512ER, false),
|
||
SUBARCH (avx512pf, AVX512PF, ANY_AVX512PF, false),
|
||
SUBARCH (avx512dq, AVX512DQ, ANY_AVX512DQ, false),
|
||
SUBARCH (avx512bw, AVX512BW, ANY_AVX512BW, false),
|
||
SUBARCH (avx512vl, AVX512VL, ANY_AVX512VL, false),
|
||
SUBARCH (vmx, VMX, ANY_VMX, false),
|
||
SUBARCH (vmfunc, VMFUNC, ANY_VMFUNC, false),
|
||
SUBARCH (smx, SMX, SMX, false),
|
||
SUBARCH (xsave, XSAVE, ANY_XSAVE, false),
|
||
SUBARCH (xsaveopt, XSAVEOPT, ANY_XSAVEOPT, false),
|
||
SUBARCH (xsavec, XSAVEC, ANY_XSAVEC, false),
|
||
SUBARCH (xsaves, XSAVES, ANY_XSAVES, false),
|
||
SUBARCH (aes, AES, ANY_AES, false),
|
||
SUBARCH (pclmul, PCLMUL, ANY_PCLMUL, false),
|
||
SUBARCH (clmul, PCLMUL, ANY_PCLMUL, true),
|
||
SUBARCH (fsgsbase, FSGSBASE, FSGSBASE, false),
|
||
SUBARCH (rdrnd, RDRND, RDRND, false),
|
||
SUBARCH (f16c, F16C, ANY_F16C, false),
|
||
SUBARCH (bmi2, BMI2, BMI2, false),
|
||
SUBARCH (fma, FMA, ANY_FMA, false),
|
||
SUBARCH (fma4, FMA4, ANY_FMA4, false),
|
||
SUBARCH (xop, XOP, ANY_XOP, false),
|
||
SUBARCH (lwp, LWP, ANY_LWP, false),
|
||
SUBARCH (movbe, MOVBE, MOVBE, false),
|
||
SUBARCH (cx16, CX16, CX16, false),
|
||
SUBARCH (ept, EPT, ANY_EPT, false),
|
||
SUBARCH (lzcnt, LZCNT, LZCNT, false),
|
||
SUBARCH (popcnt, POPCNT, POPCNT, false),
|
||
SUBARCH (hle, HLE, HLE, false),
|
||
SUBARCH (rtm, RTM, ANY_RTM, false),
|
||
SUBARCH (tsx, TSX, TSX, false),
|
||
SUBARCH (invpcid, INVPCID, INVPCID, false),
|
||
SUBARCH (clflush, CLFLUSH, CLFLUSH, false),
|
||
SUBARCH (nop, NOP, NOP, false),
|
||
SUBARCH (syscall, SYSCALL, SYSCALL, false),
|
||
SUBARCH (rdtscp, RDTSCP, RDTSCP, false),
|
||
SUBARCH (3dnow, 3DNOW, ANY_3DNOW, false),
|
||
SUBARCH (3dnowa, 3DNOWA, ANY_3DNOWA, false),
|
||
SUBARCH (padlock, PADLOCK, PADLOCK, false),
|
||
SUBARCH (pacifica, SVME, ANY_SVME, true),
|
||
SUBARCH (svme, SVME, ANY_SVME, false),
|
||
SUBARCH (abm, ABM, ABM, false),
|
||
SUBARCH (bmi, BMI, BMI, false),
|
||
SUBARCH (tbm, TBM, TBM, false),
|
||
SUBARCH (adx, ADX, ADX, false),
|
||
SUBARCH (rdseed, RDSEED, RDSEED, false),
|
||
SUBARCH (prfchw, PRFCHW, PRFCHW, false),
|
||
SUBARCH (smap, SMAP, SMAP, false),
|
||
SUBARCH (mpx, MPX, ANY_MPX, false),
|
||
SUBARCH (sha, SHA, ANY_SHA, false),
|
||
SUBARCH (clflushopt, CLFLUSHOPT, CLFLUSHOPT, false),
|
||
SUBARCH (prefetchwt1, PREFETCHWT1, PREFETCHWT1, false),
|
||
SUBARCH (se1, SE1, SE1, false),
|
||
SUBARCH (clwb, CLWB, CLWB, false),
|
||
SUBARCH (avx512ifma, AVX512IFMA, ANY_AVX512IFMA, false),
|
||
SUBARCH (avx512vbmi, AVX512VBMI, ANY_AVX512VBMI, false),
|
||
SUBARCH (avx512_4fmaps, AVX512_4FMAPS, ANY_AVX512_4FMAPS, false),
|
||
SUBARCH (avx512_4vnniw, AVX512_4VNNIW, ANY_AVX512_4VNNIW, false),
|
||
SUBARCH (avx512_vpopcntdq, AVX512_VPOPCNTDQ, ANY_AVX512_VPOPCNTDQ, false),
|
||
SUBARCH (avx512_vbmi2, AVX512_VBMI2, ANY_AVX512_VBMI2, false),
|
||
SUBARCH (avx512_vnni, AVX512_VNNI, ANY_AVX512_VNNI, false),
|
||
SUBARCH (avx512_bitalg, AVX512_BITALG, ANY_AVX512_BITALG, false),
|
||
SUBARCH (avx_vnni, AVX_VNNI, ANY_AVX_VNNI, false),
|
||
SUBARCH (clzero, CLZERO, CLZERO, false),
|
||
SUBARCH (mwaitx, MWAITX, MWAITX, false),
|
||
SUBARCH (ospke, OSPKE, ANY_OSPKE, false),
|
||
SUBARCH (rdpid, RDPID, RDPID, false),
|
||
SUBARCH (ptwrite, PTWRITE, PTWRITE, false),
|
||
SUBARCH (ibt, IBT, IBT, false),
|
||
SUBARCH (shstk, SHSTK, SHSTK, false),
|
||
SUBARCH (gfni, GFNI, ANY_GFNI, false),
|
||
SUBARCH (vaes, VAES, ANY_VAES, false),
|
||
SUBARCH (vpclmulqdq, VPCLMULQDQ, ANY_VPCLMULQDQ, false),
|
||
SUBARCH (wbnoinvd, WBNOINVD, WBNOINVD, false),
|
||
SUBARCH (pconfig, PCONFIG, PCONFIG, false),
|
||
SUBARCH (waitpkg, WAITPKG, WAITPKG, false),
|
||
SUBARCH (cldemote, CLDEMOTE, CLDEMOTE, false),
|
||
SUBARCH (amx_int8, AMX_INT8, ANY_AMX_INT8, false),
|
||
SUBARCH (amx_bf16, AMX_BF16, ANY_AMX_BF16, false),
|
||
SUBARCH (amx_fp16, AMX_FP16, ANY_AMX_FP16, false),
|
||
SUBARCH (amx_tile, AMX_TILE, ANY_AMX_TILE, false),
|
||
SUBARCH (movdiri, MOVDIRI, MOVDIRI, false),
|
||
SUBARCH (movdir64b, MOVDIR64B, MOVDIR64B, false),
|
||
SUBARCH (avx512_bf16, AVX512_BF16, ANY_AVX512_BF16, false),
|
||
SUBARCH (avx512_vp2intersect, AVX512_VP2INTERSECT,
|
||
ANY_AVX512_VP2INTERSECT, false),
|
||
SUBARCH (tdx, TDX, TDX, false),
|
||
SUBARCH (enqcmd, ENQCMD, ENQCMD, false),
|
||
SUBARCH (serialize, SERIALIZE, SERIALIZE, false),
|
||
SUBARCH (rdpru, RDPRU, RDPRU, false),
|
||
SUBARCH (mcommit, MCOMMIT, MCOMMIT, false),
|
||
SUBARCH (sev_es, SEV_ES, ANY_SEV_ES, false),
|
||
SUBARCH (tsxldtrk, TSXLDTRK, ANY_TSXLDTRK, false),
|
||
SUBARCH (kl, KL, ANY_KL, false),
|
||
SUBARCH (widekl, WIDEKL, ANY_WIDEKL, false),
|
||
SUBARCH (uintr, UINTR, UINTR, false),
|
||
SUBARCH (hreset, HRESET, HRESET, false),
|
||
SUBARCH (avx512_fp16, AVX512_FP16, ANY_AVX512_FP16, false),
|
||
SUBARCH (prefetchi, PREFETCHI, PREFETCHI, false),
|
||
SUBARCH (avx_ifma, AVX_IFMA, ANY_AVX_IFMA, false),
|
||
SUBARCH (avx_vnni_int8, AVX_VNNI_INT8, ANY_AVX_VNNI_INT8, false),
|
||
SUBARCH (cmpccxadd, CMPCCXADD, CMPCCXADD, false),
|
||
SUBARCH (wrmsrns, WRMSRNS, WRMSRNS, false),
|
||
SUBARCH (msrlist, MSRLIST, MSRLIST, false),
|
||
SUBARCH (avx_ne_convert, AVX_NE_CONVERT, ANY_AVX_NE_CONVERT, false),
|
||
SUBARCH (rao_int, RAO_INT, RAO_INT, false),
|
||
SUBARCH (rmpquery, RMPQUERY, ANY_RMPQUERY, false),
|
||
};
|
||
|
||
#undef SUBARCH
|
||
#undef ARCH
|
||
|
||
#ifdef I386COFF
|
||
/* Like s_lcomm_internal in gas/read.c but the alignment string
|
||
is allowed to be optional. */
|
||
|
||
static symbolS *
|
||
pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
|
||
{
|
||
addressT align = 0;
|
||
|
||
SKIP_WHITESPACE ();
|
||
|
||
if (needs_align
|
||
&& *input_line_pointer == ',')
|
||
{
|
||
align = parse_align (needs_align - 1);
|
||
|
||
if (align == (addressT) -1)
|
||
return NULL;
|
||
}
|
||
else
|
||
{
|
||
if (size >= 8)
|
||
align = 3;
|
||
else if (size >= 4)
|
||
align = 2;
|
||
else if (size >= 2)
|
||
align = 1;
|
||
else
|
||
align = 0;
|
||
}
|
||
|
||
bss_alloc (symbolP, size, align);
|
||
return symbolP;
|
||
}
|
||
|
||
static void
|
||
pe_lcomm (int needs_align)
|
||
{
|
||
s_comm_internal (needs_align * 2, pe_lcomm_internal);
|
||
}
|
||
#endif
|
||
|
||
const pseudo_typeS md_pseudo_table[] =
|
||
{
|
||
#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
|
||
{"align", s_align_bytes, 0},
|
||
#else
|
||
{"align", s_align_ptwo, 0},
|
||
#endif
|
||
{"arch", set_cpu_arch, 0},
|
||
#ifndef I386COFF
|
||
{"bss", s_bss, 0},
|
||
#else
|
||
{"lcomm", pe_lcomm, 1},
|
||
#endif
|
||
{"ffloat", float_cons, 'f'},
|
||
{"dfloat", float_cons, 'd'},
|
||
{"tfloat", float_cons, 'x'},
|
||
{"hfloat", float_cons, 'h'},
|
||
{"bfloat16", float_cons, 'b'},
|
||
{"value", cons, 2},
|
||
{"slong", signed_cons, 4},
|
||
{"noopt", s_ignore, 0},
|
||
{"optim", s_ignore, 0},
|
||
{"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
|
||
{"code16", set_code_flag, CODE_16BIT},
|
||
{"code32", set_code_flag, CODE_32BIT},
|
||
#ifdef BFD64
|
||
{"code64", set_code_flag, CODE_64BIT},
|
||
#endif
|
||
{"intel_syntax", set_intel_syntax, 1},
|
||
{"att_syntax", set_intel_syntax, 0},
|
||
{"intel_mnemonic", set_intel_mnemonic, 1},
|
||
{"att_mnemonic", set_intel_mnemonic, 0},
|
||
{"allow_index_reg", set_allow_index_reg, 1},
|
||
{"disallow_index_reg", set_allow_index_reg, 0},
|
||
{"sse_check", set_check, 0},
|
||
{"operand_check", set_check, 1},
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
{"largecomm", handle_large_common, 0},
|
||
#else
|
||
{"file", dwarf2_directive_file, 0},
|
||
{"loc", dwarf2_directive_loc, 0},
|
||
{"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
|
||
#endif
|
||
#ifdef TE_PE
|
||
{"secrel32", pe_directive_secrel, 0},
|
||
{"secidx", pe_directive_secidx, 0},
|
||
#endif
|
||
{0, 0, 0}
|
||
};
|
||
|
||
/* For interface with expression (). */
|
||
extern char *input_line_pointer;
|
||
|
||
/* Hash table for instruction mnemonic lookup. */
|
||
static htab_t op_hash;
|
||
|
||
/* Hash table for register lookup. */
|
||
static htab_t reg_hash;
|
||
|
||
/* Various efficient no-op patterns for aligning code labels.
|
||
Note: Don't try to assemble the instructions in the comments.
|
||
0L and 0w are not legal. */
|
||
static const unsigned char f32_1[] =
|
||
{0x90}; /* nop */
|
||
static const unsigned char f32_2[] =
|
||
{0x66,0x90}; /* xchg %ax,%ax */
|
||
static const unsigned char f32_3[] =
|
||
{0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
|
||
static const unsigned char f32_4[] =
|
||
{0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
|
||
static const unsigned char f32_6[] =
|
||
{0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
|
||
static const unsigned char f32_7[] =
|
||
{0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
|
||
static const unsigned char f16_3[] =
|
||
{0x8d,0x74,0x00}; /* lea 0(%si),%si */
|
||
static const unsigned char f16_4[] =
|
||
{0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
|
||
static const unsigned char jump_disp8[] =
|
||
{0xeb}; /* jmp disp8 */
|
||
static const unsigned char jump32_disp32[] =
|
||
{0xe9}; /* jmp disp32 */
|
||
static const unsigned char jump16_disp32[] =
|
||
{0x66,0xe9}; /* jmp disp32 */
|
||
/* 32-bit NOPs patterns. */
|
||
static const unsigned char *const f32_patt[] = {
|
||
f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
|
||
};
|
||
/* 16-bit NOPs patterns. */
|
||
static const unsigned char *const f16_patt[] = {
|
||
f32_1, f32_2, f16_3, f16_4
|
||
};
|
||
/* nopl (%[re]ax) */
|
||
static const unsigned char alt_3[] =
|
||
{0x0f,0x1f,0x00};
|
||
/* nopl 0(%[re]ax) */
|
||
static const unsigned char alt_4[] =
|
||
{0x0f,0x1f,0x40,0x00};
|
||
/* nopl 0(%[re]ax,%[re]ax,1) */
|
||
static const unsigned char alt_5[] =
|
||
{0x0f,0x1f,0x44,0x00,0x00};
|
||
/* nopw 0(%[re]ax,%[re]ax,1) */
|
||
static const unsigned char alt_6[] =
|
||
{0x66,0x0f,0x1f,0x44,0x00,0x00};
|
||
/* nopl 0L(%[re]ax) */
|
||
static const unsigned char alt_7[] =
|
||
{0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
|
||
/* nopl 0L(%[re]ax,%[re]ax,1) */
|
||
static const unsigned char alt_8[] =
|
||
{0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
|
||
/* nopw 0L(%[re]ax,%[re]ax,1) */
|
||
static const unsigned char alt_9[] =
|
||
{0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
|
||
/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
|
||
static const unsigned char alt_10[] =
|
||
{0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
|
||
/* data16 nopw %cs:0L(%eax,%eax,1) */
|
||
static const unsigned char alt_11[] =
|
||
{0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
|
||
/* 32-bit and 64-bit NOPs patterns. */
|
||
static const unsigned char *const alt_patt[] = {
|
||
f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
|
||
alt_9, alt_10, alt_11
|
||
};
|
||
|
||
/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
|
||
size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
|
||
|
||
static void
|
||
i386_output_nops (char *where, const unsigned char *const *patt,
|
||
int count, int max_single_nop_size)
|
||
|
||
{
|
||
/* Place the longer NOP first. */
|
||
int last;
|
||
int offset;
|
||
const unsigned char *nops;
|
||
|
||
if (max_single_nop_size < 1)
|
||
{
|
||
as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
|
||
max_single_nop_size);
|
||
return;
|
||
}
|
||
|
||
nops = patt[max_single_nop_size - 1];
|
||
|
||
/* Use the smaller one if the requsted one isn't available. */
|
||
if (nops == NULL)
|
||
{
|
||
max_single_nop_size--;
|
||
nops = patt[max_single_nop_size - 1];
|
||
}
|
||
|
||
last = count % max_single_nop_size;
|
||
|
||
count -= last;
|
||
for (offset = 0; offset < count; offset += max_single_nop_size)
|
||
memcpy (where + offset, nops, max_single_nop_size);
|
||
|
||
if (last)
|
||
{
|
||
nops = patt[last - 1];
|
||
if (nops == NULL)
|
||
{
|
||
/* Use the smaller one plus one-byte NOP if the needed one
|
||
isn't available. */
|
||
last--;
|
||
nops = patt[last - 1];
|
||
memcpy (where + offset, nops, last);
|
||
where[offset + last] = *patt[0];
|
||
}
|
||
else
|
||
memcpy (where + offset, nops, last);
|
||
}
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_imm7 (offsetT num)
|
||
{
|
||
return (num & 0x7f) == num;
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_imm31 (offsetT num)
|
||
{
|
||
return (num & 0x7fffffff) == num;
|
||
}
|
||
|
||
/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
|
||
single NOP instruction LIMIT. */
|
||
|
||
void
|
||
i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
|
||
{
|
||
const unsigned char *const *patt = NULL;
|
||
int max_single_nop_size;
|
||
/* Maximum number of NOPs before switching to jump over NOPs. */
|
||
int max_number_of_nops;
|
||
|
||
switch (fragP->fr_type)
|
||
{
|
||
case rs_fill_nop:
|
||
case rs_align_code:
|
||
break;
|
||
case rs_machine_dependent:
|
||
/* Allow NOP padding for jumps and calls. */
|
||
if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
|
||
|| TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
|
||
break;
|
||
/* Fall through. */
|
||
default:
|
||
return;
|
||
}
|
||
|
||
/* We need to decide which NOP sequence to use for 32bit and
|
||
64bit. When -mtune= is used:
|
||
|
||
1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
|
||
PROCESSOR_GENERIC32, f32_patt will be used.
|
||
2. For the rest, alt_patt will be used.
|
||
|
||
When -mtune= isn't used, alt_patt will be used if
|
||
cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
|
||
be used.
|
||
|
||
When -march= or .arch is used, we can't use anything beyond
|
||
cpu_arch_isa_flags. */
|
||
|
||
if (flag_code == CODE_16BIT)
|
||
{
|
||
patt = f16_patt;
|
||
max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
|
||
/* Limit number of NOPs to 2 in 16-bit mode. */
|
||
max_number_of_nops = 2;
|
||
}
|
||
else
|
||
{
|
||
if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
|
||
{
|
||
/* PROCESSOR_UNKNOWN means that all ISAs may be used. */
|
||
switch (cpu_arch_tune)
|
||
{
|
||
case PROCESSOR_UNKNOWN:
|
||
/* We use cpu_arch_isa_flags to check if we SHOULD
|
||
optimize with nops. */
|
||
if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
|
||
patt = alt_patt;
|
||
else
|
||
patt = f32_patt;
|
||
break;
|
||
case PROCESSOR_PENTIUM4:
|
||
case PROCESSOR_NOCONA:
|
||
case PROCESSOR_CORE:
|
||
case PROCESSOR_CORE2:
|
||
case PROCESSOR_COREI7:
|
||
case PROCESSOR_GENERIC64:
|
||
case PROCESSOR_K6:
|
||
case PROCESSOR_ATHLON:
|
||
case PROCESSOR_K8:
|
||
case PROCESSOR_AMDFAM10:
|
||
case PROCESSOR_BD:
|
||
case PROCESSOR_ZNVER:
|
||
case PROCESSOR_BT:
|
||
patt = alt_patt;
|
||
break;
|
||
case PROCESSOR_I386:
|
||
case PROCESSOR_I486:
|
||
case PROCESSOR_PENTIUM:
|
||
case PROCESSOR_PENTIUMPRO:
|
||
case PROCESSOR_IAMCU:
|
||
case PROCESSOR_GENERIC32:
|
||
patt = f32_patt;
|
||
break;
|
||
case PROCESSOR_NONE:
|
||
abort ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
switch (fragP->tc_frag_data.tune)
|
||
{
|
||
case PROCESSOR_UNKNOWN:
|
||
/* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
|
||
PROCESSOR_UNKNOWN. */
|
||
abort ();
|
||
break;
|
||
|
||
case PROCESSOR_I386:
|
||
case PROCESSOR_I486:
|
||
case PROCESSOR_PENTIUM:
|
||
case PROCESSOR_IAMCU:
|
||
case PROCESSOR_K6:
|
||
case PROCESSOR_ATHLON:
|
||
case PROCESSOR_K8:
|
||
case PROCESSOR_AMDFAM10:
|
||
case PROCESSOR_BD:
|
||
case PROCESSOR_ZNVER:
|
||
case PROCESSOR_BT:
|
||
case PROCESSOR_GENERIC32:
|
||
/* We use cpu_arch_isa_flags to check if we CAN optimize
|
||
with nops. */
|
||
if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
|
||
patt = alt_patt;
|
||
else
|
||
patt = f32_patt;
|
||
break;
|
||
case PROCESSOR_PENTIUMPRO:
|
||
case PROCESSOR_PENTIUM4:
|
||
case PROCESSOR_NOCONA:
|
||
case PROCESSOR_CORE:
|
||
case PROCESSOR_CORE2:
|
||
case PROCESSOR_COREI7:
|
||
if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
|
||
patt = alt_patt;
|
||
else
|
||
patt = f32_patt;
|
||
break;
|
||
case PROCESSOR_GENERIC64:
|
||
patt = alt_patt;
|
||
break;
|
||
case PROCESSOR_NONE:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
if (patt == f32_patt)
|
||
{
|
||
max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
|
||
/* Limit number of NOPs to 2 for older processors. */
|
||
max_number_of_nops = 2;
|
||
}
|
||
else
|
||
{
|
||
max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
|
||
/* Limit number of NOPs to 7 for newer processors. */
|
||
max_number_of_nops = 7;
|
||
}
|
||
}
|
||
|
||
if (limit == 0)
|
||
limit = max_single_nop_size;
|
||
|
||
if (fragP->fr_type == rs_fill_nop)
|
||
{
|
||
/* Output NOPs for .nop directive. */
|
||
if (limit > max_single_nop_size)
|
||
{
|
||
as_bad_where (fragP->fr_file, fragP->fr_line,
|
||
_("invalid single nop size: %d "
|
||
"(expect within [0, %d])"),
|
||
limit, max_single_nop_size);
|
||
return;
|
||
}
|
||
}
|
||
else if (fragP->fr_type != rs_machine_dependent)
|
||
fragP->fr_var = count;
|
||
|
||
if ((count / max_single_nop_size) > max_number_of_nops)
|
||
{
|
||
/* Generate jump over NOPs. */
|
||
offsetT disp = count - 2;
|
||
if (fits_in_imm7 (disp))
|
||
{
|
||
/* Use "jmp disp8" if possible. */
|
||
count = disp;
|
||
where[0] = jump_disp8[0];
|
||
where[1] = count;
|
||
where += 2;
|
||
}
|
||
else
|
||
{
|
||
unsigned int size_of_jump;
|
||
|
||
if (flag_code == CODE_16BIT)
|
||
{
|
||
where[0] = jump16_disp32[0];
|
||
where[1] = jump16_disp32[1];
|
||
size_of_jump = 2;
|
||
}
|
||
else
|
||
{
|
||
where[0] = jump32_disp32[0];
|
||
size_of_jump = 1;
|
||
}
|
||
|
||
count -= size_of_jump + 4;
|
||
if (!fits_in_imm31 (count))
|
||
{
|
||
as_bad_where (fragP->fr_file, fragP->fr_line,
|
||
_("jump over nop padding out of range"));
|
||
return;
|
||
}
|
||
|
||
md_number_to_chars (where + size_of_jump, count, 4);
|
||
where += size_of_jump + 4;
|
||
}
|
||
}
|
||
|
||
/* Generate multiple NOPs. */
|
||
i386_output_nops (where, patt, count, limit);
|
||
}
|
||
|
||
static INLINE int
|
||
operand_type_all_zero (const union i386_operand_type *x)
|
||
{
|
||
switch (ARRAY_SIZE(x->array))
|
||
{
|
||
case 3:
|
||
if (x->array[2])
|
||
return 0;
|
||
/* Fall through. */
|
||
case 2:
|
||
if (x->array[1])
|
||
return 0;
|
||
/* Fall through. */
|
||
case 1:
|
||
return !x->array[0];
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
static INLINE void
|
||
operand_type_set (union i386_operand_type *x, unsigned int v)
|
||
{
|
||
switch (ARRAY_SIZE(x->array))
|
||
{
|
||
case 3:
|
||
x->array[2] = v;
|
||
/* Fall through. */
|
||
case 2:
|
||
x->array[1] = v;
|
||
/* Fall through. */
|
||
case 1:
|
||
x->array[0] = v;
|
||
/* Fall through. */
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
x->bitfield.class = ClassNone;
|
||
x->bitfield.instance = InstanceNone;
|
||
}
|
||
|
||
static INLINE int
|
||
operand_type_equal (const union i386_operand_type *x,
|
||
const union i386_operand_type *y)
|
||
{
|
||
switch (ARRAY_SIZE(x->array))
|
||
{
|
||
case 3:
|
||
if (x->array[2] != y->array[2])
|
||
return 0;
|
||
/* Fall through. */
|
||
case 2:
|
||
if (x->array[1] != y->array[1])
|
||
return 0;
|
||
/* Fall through. */
|
||
case 1:
|
||
return x->array[0] == y->array[0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
static INLINE int
|
||
cpu_flags_all_zero (const union i386_cpu_flags *x)
|
||
{
|
||
switch (ARRAY_SIZE(x->array))
|
||
{
|
||
case 5:
|
||
if (x->array[4])
|
||
return 0;
|
||
/* Fall through. */
|
||
case 4:
|
||
if (x->array[3])
|
||
return 0;
|
||
/* Fall through. */
|
||
case 3:
|
||
if (x->array[2])
|
||
return 0;
|
||
/* Fall through. */
|
||
case 2:
|
||
if (x->array[1])
|
||
return 0;
|
||
/* Fall through. */
|
||
case 1:
|
||
return !x->array[0];
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
static INLINE int
|
||
cpu_flags_equal (const union i386_cpu_flags *x,
|
||
const union i386_cpu_flags *y)
|
||
{
|
||
switch (ARRAY_SIZE(x->array))
|
||
{
|
||
case 5:
|
||
if (x->array[4] != y->array[4])
|
||
return 0;
|
||
/* Fall through. */
|
||
case 4:
|
||
if (x->array[3] != y->array[3])
|
||
return 0;
|
||
/* Fall through. */
|
||
case 3:
|
||
if (x->array[2] != y->array[2])
|
||
return 0;
|
||
/* Fall through. */
|
||
case 2:
|
||
if (x->array[1] != y->array[1])
|
||
return 0;
|
||
/* Fall through. */
|
||
case 1:
|
||
return x->array[0] == y->array[0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
static INLINE int
|
||
cpu_flags_check_cpu64 (i386_cpu_flags f)
|
||
{
|
||
return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
|
||
|| (flag_code != CODE_64BIT && f.bitfield.cpu64));
|
||
}
|
||
|
||
static INLINE i386_cpu_flags
|
||
cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
|
||
{
|
||
switch (ARRAY_SIZE (x.array))
|
||
{
|
||
case 5:
|
||
x.array [4] &= y.array [4];
|
||
/* Fall through. */
|
||
case 4:
|
||
x.array [3] &= y.array [3];
|
||
/* Fall through. */
|
||
case 3:
|
||
x.array [2] &= y.array [2];
|
||
/* Fall through. */
|
||
case 2:
|
||
x.array [1] &= y.array [1];
|
||
/* Fall through. */
|
||
case 1:
|
||
x.array [0] &= y.array [0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
return x;
|
||
}
|
||
|
||
static INLINE i386_cpu_flags
|
||
cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
|
||
{
|
||
switch (ARRAY_SIZE (x.array))
|
||
{
|
||
case 5:
|
||
x.array [4] |= y.array [4];
|
||
/* Fall through. */
|
||
case 4:
|
||
x.array [3] |= y.array [3];
|
||
/* Fall through. */
|
||
case 3:
|
||
x.array [2] |= y.array [2];
|
||
/* Fall through. */
|
||
case 2:
|
||
x.array [1] |= y.array [1];
|
||
/* Fall through. */
|
||
case 1:
|
||
x.array [0] |= y.array [0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
return x;
|
||
}
|
||
|
||
static INLINE i386_cpu_flags
|
||
cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
|
||
{
|
||
switch (ARRAY_SIZE (x.array))
|
||
{
|
||
case 5:
|
||
x.array [4] &= ~y.array [4];
|
||
/* Fall through. */
|
||
case 4:
|
||
x.array [3] &= ~y.array [3];
|
||
/* Fall through. */
|
||
case 3:
|
||
x.array [2] &= ~y.array [2];
|
||
/* Fall through. */
|
||
case 2:
|
||
x.array [1] &= ~y.array [1];
|
||
/* Fall through. */
|
||
case 1:
|
||
x.array [0] &= ~y.array [0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
return x;
|
||
}
|
||
|
||
static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
|
||
|
||
#define CPU_FLAGS_ARCH_MATCH 0x1
|
||
#define CPU_FLAGS_64BIT_MATCH 0x2
|
||
|
||
#define CPU_FLAGS_PERFECT_MATCH \
|
||
(CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
|
||
|
||
/* Return CPU flags match bits. */
|
||
|
||
static int
|
||
cpu_flags_match (const insn_template *t)
|
||
{
|
||
i386_cpu_flags x = t->cpu_flags;
|
||
int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
|
||
|
||
x.bitfield.cpu64 = 0;
|
||
x.bitfield.cpuno64 = 0;
|
||
|
||
if (cpu_flags_all_zero (&x))
|
||
{
|
||
/* This instruction is available on all archs. */
|
||
match |= CPU_FLAGS_ARCH_MATCH;
|
||
}
|
||
else
|
||
{
|
||
/* This instruction is available only on some archs. */
|
||
i386_cpu_flags cpu = cpu_arch_flags;
|
||
|
||
/* AVX512VL is no standalone feature - match it and then strip it. */
|
||
if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
|
||
return match;
|
||
x.bitfield.cpuavx512vl = 0;
|
||
|
||
/* AVX and AVX2 present at the same time express an operand size
|
||
dependency - strip AVX2 for the purposes here. The operand size
|
||
dependent check occurs in check_vecOperands(). */
|
||
if (x.bitfield.cpuavx && x.bitfield.cpuavx2)
|
||
x.bitfield.cpuavx2 = 0;
|
||
|
||
cpu = cpu_flags_and (x, cpu);
|
||
if (!cpu_flags_all_zero (&cpu))
|
||
{
|
||
if (x.bitfield.cpuavx)
|
||
{
|
||
/* We need to check a few extra flags with AVX. */
|
||
if (cpu.bitfield.cpuavx
|
||
&& (!t->opcode_modifier.sse2avx
|
||
|| (sse2avx && !i.prefix[DATA_PREFIX]))
|
||
&& (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
|
||
&& (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
|
||
&& (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
|
||
match |= CPU_FLAGS_ARCH_MATCH;
|
||
}
|
||
else if (x.bitfield.cpuavx512f)
|
||
{
|
||
/* We need to check a few extra flags with AVX512F. */
|
||
if (cpu.bitfield.cpuavx512f
|
||
&& (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
|
||
&& (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
|
||
&& (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
|
||
match |= CPU_FLAGS_ARCH_MATCH;
|
||
}
|
||
else
|
||
match |= CPU_FLAGS_ARCH_MATCH;
|
||
}
|
||
}
|
||
return match;
|
||
}
|
||
|
||
static INLINE i386_operand_type
|
||
operand_type_and (i386_operand_type x, i386_operand_type y)
|
||
{
|
||
if (x.bitfield.class != y.bitfield.class)
|
||
x.bitfield.class = ClassNone;
|
||
if (x.bitfield.instance != y.bitfield.instance)
|
||
x.bitfield.instance = InstanceNone;
|
||
|
||
switch (ARRAY_SIZE (x.array))
|
||
{
|
||
case 3:
|
||
x.array [2] &= y.array [2];
|
||
/* Fall through. */
|
||
case 2:
|
||
x.array [1] &= y.array [1];
|
||
/* Fall through. */
|
||
case 1:
|
||
x.array [0] &= y.array [0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
return x;
|
||
}
|
||
|
||
static INLINE i386_operand_type
|
||
operand_type_and_not (i386_operand_type x, i386_operand_type y)
|
||
{
|
||
gas_assert (y.bitfield.class == ClassNone);
|
||
gas_assert (y.bitfield.instance == InstanceNone);
|
||
|
||
switch (ARRAY_SIZE (x.array))
|
||
{
|
||
case 3:
|
||
x.array [2] &= ~y.array [2];
|
||
/* Fall through. */
|
||
case 2:
|
||
x.array [1] &= ~y.array [1];
|
||
/* Fall through. */
|
||
case 1:
|
||
x.array [0] &= ~y.array [0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
return x;
|
||
}
|
||
|
||
static INLINE i386_operand_type
|
||
operand_type_or (i386_operand_type x, i386_operand_type y)
|
||
{
|
||
gas_assert (x.bitfield.class == ClassNone ||
|
||
y.bitfield.class == ClassNone ||
|
||
x.bitfield.class == y.bitfield.class);
|
||
gas_assert (x.bitfield.instance == InstanceNone ||
|
||
y.bitfield.instance == InstanceNone ||
|
||
x.bitfield.instance == y.bitfield.instance);
|
||
|
||
switch (ARRAY_SIZE (x.array))
|
||
{
|
||
case 3:
|
||
x.array [2] |= y.array [2];
|
||
/* Fall through. */
|
||
case 2:
|
||
x.array [1] |= y.array [1];
|
||
/* Fall through. */
|
||
case 1:
|
||
x.array [0] |= y.array [0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
return x;
|
||
}
|
||
|
||
static INLINE i386_operand_type
|
||
operand_type_xor (i386_operand_type x, i386_operand_type y)
|
||
{
|
||
gas_assert (y.bitfield.class == ClassNone);
|
||
gas_assert (y.bitfield.instance == InstanceNone);
|
||
|
||
switch (ARRAY_SIZE (x.array))
|
||
{
|
||
case 3:
|
||
x.array [2] ^= y.array [2];
|
||
/* Fall through. */
|
||
case 2:
|
||
x.array [1] ^= y.array [1];
|
||
/* Fall through. */
|
||
case 1:
|
||
x.array [0] ^= y.array [0];
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
return x;
|
||
}
|
||
|
||
static const i386_operand_type anydisp = {
|
||
.bitfield = { .disp8 = 1, .disp16 = 1, .disp32 = 1, .disp64 = 1 }
|
||
};
|
||
|
||
enum operand_type
|
||
{
|
||
reg,
|
||
imm,
|
||
disp,
|
||
anymem
|
||
};
|
||
|
||
static INLINE int
|
||
operand_type_check (i386_operand_type t, enum operand_type c)
|
||
{
|
||
switch (c)
|
||
{
|
||
case reg:
|
||
return t.bitfield.class == Reg;
|
||
|
||
case imm:
|
||
return (t.bitfield.imm8
|
||
|| t.bitfield.imm8s
|
||
|| t.bitfield.imm16
|
||
|| t.bitfield.imm32
|
||
|| t.bitfield.imm32s
|
||
|| t.bitfield.imm64);
|
||
|
||
case disp:
|
||
return (t.bitfield.disp8
|
||
|| t.bitfield.disp16
|
||
|| t.bitfield.disp32
|
||
|| t.bitfield.disp64);
|
||
|
||
case anymem:
|
||
return (t.bitfield.disp8
|
||
|| t.bitfield.disp16
|
||
|| t.bitfield.disp32
|
||
|| t.bitfield.disp64
|
||
|| t.bitfield.baseindex);
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
|
||
between operand GIVEN and opeand WANTED for instruction template T. */
|
||
|
||
static INLINE int
|
||
match_operand_size (const insn_template *t, unsigned int wanted,
|
||
unsigned int given)
|
||
{
|
||
return !((i.types[given].bitfield.byte
|
||
&& !t->operand_types[wanted].bitfield.byte)
|
||
|| (i.types[given].bitfield.word
|
||
&& !t->operand_types[wanted].bitfield.word)
|
||
|| (i.types[given].bitfield.dword
|
||
&& !t->operand_types[wanted].bitfield.dword)
|
||
|| (i.types[given].bitfield.qword
|
||
&& (!t->operand_types[wanted].bitfield.qword
|
||
/* Don't allow 64-bit (memory) operands outside of 64-bit
|
||
mode, when they're used where a 64-bit GPR could also
|
||
be used. Checking is needed for Intel Syntax only. */
|
||
|| (intel_syntax
|
||
&& flag_code != CODE_64BIT
|
||
&& (t->operand_types[wanted].bitfield.class == Reg
|
||
|| t->operand_types[wanted].bitfield.class == Accum
|
||
|| t->opcode_modifier.isstring))))
|
||
|| (i.types[given].bitfield.tbyte
|
||
&& !t->operand_types[wanted].bitfield.tbyte));
|
||
}
|
||
|
||
/* Return 1 if there is no conflict in SIMD register between operand
|
||
GIVEN and opeand WANTED for instruction template T. */
|
||
|
||
static INLINE int
|
||
match_simd_size (const insn_template *t, unsigned int wanted,
|
||
unsigned int given)
|
||
{
|
||
return !((i.types[given].bitfield.xmmword
|
||
&& !t->operand_types[wanted].bitfield.xmmword)
|
||
|| (i.types[given].bitfield.ymmword
|
||
&& !t->operand_types[wanted].bitfield.ymmword)
|
||
|| (i.types[given].bitfield.zmmword
|
||
&& !t->operand_types[wanted].bitfield.zmmword)
|
||
|| (i.types[given].bitfield.tmmword
|
||
&& !t->operand_types[wanted].bitfield.tmmword));
|
||
}
|
||
|
||
/* Return 1 if there is no conflict in any size between operand GIVEN
|
||
and opeand WANTED for instruction template T. */
|
||
|
||
static INLINE int
|
||
match_mem_size (const insn_template *t, unsigned int wanted,
|
||
unsigned int given)
|
||
{
|
||
return (match_operand_size (t, wanted, given)
|
||
&& !((i.types[given].bitfield.unspecified
|
||
&& !i.broadcast.type
|
||
&& !i.broadcast.bytes
|
||
&& !t->operand_types[wanted].bitfield.unspecified)
|
||
|| (i.types[given].bitfield.fword
|
||
&& !t->operand_types[wanted].bitfield.fword)
|
||
/* For scalar opcode templates to allow register and memory
|
||
operands at the same time, some special casing is needed
|
||
here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
|
||
down-conversion vpmov*. */
|
||
|| ((t->operand_types[wanted].bitfield.class == RegSIMD
|
||
&& t->operand_types[wanted].bitfield.byte
|
||
+ t->operand_types[wanted].bitfield.word
|
||
+ t->operand_types[wanted].bitfield.dword
|
||
+ t->operand_types[wanted].bitfield.qword
|
||
> !!t->opcode_modifier.broadcast)
|
||
? (i.types[given].bitfield.xmmword
|
||
|| i.types[given].bitfield.ymmword
|
||
|| i.types[given].bitfield.zmmword)
|
||
: !match_simd_size(t, wanted, given))));
|
||
}
|
||
|
||
/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
|
||
operands for instruction template T, and it has MATCH_REVERSE set if there
|
||
is no size conflict on any operands for the template with operands reversed
|
||
(and the template allows for reversing in the first place). */
|
||
|
||
#define MATCH_STRAIGHT 1
|
||
#define MATCH_REVERSE 2
|
||
|
||
static INLINE unsigned int
|
||
operand_size_match (const insn_template *t)
|
||
{
|
||
unsigned int j, match = MATCH_STRAIGHT;
|
||
|
||
/* Don't check non-absolute jump instructions. */
|
||
if (t->opcode_modifier.jump
|
||
&& t->opcode_modifier.jump != JUMP_ABSOLUTE)
|
||
return match;
|
||
|
||
/* Check memory and accumulator operand size. */
|
||
for (j = 0; j < i.operands; j++)
|
||
{
|
||
if (i.types[j].bitfield.class != Reg
|
||
&& i.types[j].bitfield.class != RegSIMD
|
||
&& t->opcode_modifier.operandconstraint == ANY_SIZE)
|
||
continue;
|
||
|
||
if (t->operand_types[j].bitfield.class == Reg
|
||
&& !match_operand_size (t, j, j))
|
||
{
|
||
match = 0;
|
||
break;
|
||
}
|
||
|
||
if (t->operand_types[j].bitfield.class == RegSIMD
|
||
&& !match_simd_size (t, j, j))
|
||
{
|
||
match = 0;
|
||
break;
|
||
}
|
||
|
||
if (t->operand_types[j].bitfield.instance == Accum
|
||
&& (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
|
||
{
|
||
match = 0;
|
||
break;
|
||
}
|
||
|
||
if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
|
||
{
|
||
match = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!t->opcode_modifier.d)
|
||
return match;
|
||
|
||
/* Check reverse. */
|
||
gas_assert (i.operands >= 2);
|
||
|
||
for (j = 0; j < i.operands; j++)
|
||
{
|
||
unsigned int given = i.operands - j - 1;
|
||
|
||
/* For FMA4 and XOP insns VEX.W controls just the first two
|
||
register operands. */
|
||
if (t->cpu_flags.bitfield.cpufma4 || t->cpu_flags.bitfield.cpuxop)
|
||
given = j < 2 ? 1 - j : j;
|
||
|
||
if (t->operand_types[j].bitfield.class == Reg
|
||
&& !match_operand_size (t, j, given))
|
||
return match;
|
||
|
||
if (t->operand_types[j].bitfield.class == RegSIMD
|
||
&& !match_simd_size (t, j, given))
|
||
return match;
|
||
|
||
if (t->operand_types[j].bitfield.instance == Accum
|
||
&& (!match_operand_size (t, j, given)
|
||
|| !match_simd_size (t, j, given)))
|
||
return match;
|
||
|
||
if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
|
||
return match;
|
||
}
|
||
|
||
return match | MATCH_REVERSE;
|
||
}
|
||
|
||
static INLINE int
|
||
operand_type_match (i386_operand_type overlap,
|
||
i386_operand_type given)
|
||
{
|
||
i386_operand_type temp = overlap;
|
||
|
||
temp.bitfield.unspecified = 0;
|
||
temp.bitfield.byte = 0;
|
||
temp.bitfield.word = 0;
|
||
temp.bitfield.dword = 0;
|
||
temp.bitfield.fword = 0;
|
||
temp.bitfield.qword = 0;
|
||
temp.bitfield.tbyte = 0;
|
||
temp.bitfield.xmmword = 0;
|
||
temp.bitfield.ymmword = 0;
|
||
temp.bitfield.zmmword = 0;
|
||
temp.bitfield.tmmword = 0;
|
||
if (operand_type_all_zero (&temp))
|
||
goto mismatch;
|
||
|
||
if (given.bitfield.baseindex == overlap.bitfield.baseindex)
|
||
return 1;
|
||
|
||
mismatch:
|
||
i.error = operand_type_mismatch;
|
||
return 0;
|
||
}
|
||
|
||
/* If given types g0 and g1 are registers they must be of the same type
|
||
unless the expected operand type register overlap is null.
|
||
Intel syntax sized memory operands are also checked here. */
|
||
|
||
static INLINE int
|
||
operand_type_register_match (i386_operand_type g0,
|
||
i386_operand_type t0,
|
||
i386_operand_type g1,
|
||
i386_operand_type t1)
|
||
{
|
||
if (g0.bitfield.class != Reg
|
||
&& g0.bitfield.class != RegSIMD
|
||
&& (g0.bitfield.unspecified
|
||
|| !operand_type_check (g0, anymem)))
|
||
return 1;
|
||
|
||
if (g1.bitfield.class != Reg
|
||
&& g1.bitfield.class != RegSIMD
|
||
&& (g1.bitfield.unspecified
|
||
|| !operand_type_check (g1, anymem)))
|
||
return 1;
|
||
|
||
if (g0.bitfield.byte == g1.bitfield.byte
|
||
&& g0.bitfield.word == g1.bitfield.word
|
||
&& g0.bitfield.dword == g1.bitfield.dword
|
||
&& g0.bitfield.qword == g1.bitfield.qword
|
||
&& g0.bitfield.xmmword == g1.bitfield.xmmword
|
||
&& g0.bitfield.ymmword == g1.bitfield.ymmword
|
||
&& g0.bitfield.zmmword == g1.bitfield.zmmword)
|
||
return 1;
|
||
|
||
/* If expectations overlap in no more than a single size, all is fine. */
|
||
g0 = operand_type_and (t0, t1);
|
||
if (g0.bitfield.byte
|
||
+ g0.bitfield.word
|
||
+ g0.bitfield.dword
|
||
+ g0.bitfield.qword
|
||
+ g0.bitfield.xmmword
|
||
+ g0.bitfield.ymmword
|
||
+ g0.bitfield.zmmword <= 1)
|
||
return 1;
|
||
|
||
i.error = register_type_mismatch;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static INLINE unsigned int
|
||
register_number (const reg_entry *r)
|
||
{
|
||
unsigned int nr = r->reg_num;
|
||
|
||
if (r->reg_flags & RegRex)
|
||
nr += 8;
|
||
|
||
if (r->reg_flags & RegVRex)
|
||
nr += 16;
|
||
|
||
return nr;
|
||
}
|
||
|
||
static INLINE unsigned int
|
||
mode_from_disp_size (i386_operand_type t)
|
||
{
|
||
if (t.bitfield.disp8)
|
||
return 1;
|
||
else if (t.bitfield.disp16
|
||
|| t.bitfield.disp32)
|
||
return 2;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_signed_byte (addressT num)
|
||
{
|
||
return num + 0x80 <= 0xff;
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_unsigned_byte (addressT num)
|
||
{
|
||
return num <= 0xff;
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_unsigned_word (addressT num)
|
||
{
|
||
return num <= 0xffff;
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_signed_word (addressT num)
|
||
{
|
||
return num + 0x8000 <= 0xffff;
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifndef BFD64
|
||
return 1;
|
||
#else
|
||
return num + 0x80000000 <= 0xffffffff;
|
||
#endif
|
||
} /* fits_in_signed_long() */
|
||
|
||
static INLINE int
|
||
fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifndef BFD64
|
||
return 1;
|
||
#else
|
||
return num <= 0xffffffff;
|
||
#endif
|
||
} /* fits_in_unsigned_long() */
|
||
|
||
static INLINE valueT extend_to_32bit_address (addressT num)
|
||
{
|
||
#ifdef BFD64
|
||
if (fits_in_unsigned_long(num))
|
||
return (num ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
|
||
|
||
if (!fits_in_signed_long (num))
|
||
return num & 0xffffffff;
|
||
#endif
|
||
|
||
return num;
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_disp8 (offsetT num)
|
||
{
|
||
int shift = i.memshift;
|
||
unsigned int mask;
|
||
|
||
if (shift == -1)
|
||
abort ();
|
||
|
||
mask = (1 << shift) - 1;
|
||
|
||
/* Return 0 if NUM isn't properly aligned. */
|
||
if ((num & mask))
|
||
return 0;
|
||
|
||
/* Check if NUM will fit in 8bit after shift. */
|
||
return fits_in_signed_byte (num >> shift);
|
||
}
|
||
|
||
static INLINE int
|
||
fits_in_imm4 (offsetT num)
|
||
{
|
||
return (num & 0xf) == num;
|
||
}
|
||
|
||
static i386_operand_type
|
||
smallest_imm_type (offsetT num)
|
||
{
|
||
i386_operand_type t;
|
||
|
||
operand_type_set (&t, 0);
|
||
t.bitfield.imm64 = 1;
|
||
|
||
if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
|
||
{
|
||
/* This code is disabled on the 486 because all the Imm1 forms
|
||
in the opcode table are slower on the i486. They're the
|
||
versions with the implicitly specified single-position
|
||
displacement, which has another syntax if you really want to
|
||
use that form. */
|
||
t.bitfield.imm1 = 1;
|
||
t.bitfield.imm8 = 1;
|
||
t.bitfield.imm8s = 1;
|
||
t.bitfield.imm16 = 1;
|
||
t.bitfield.imm32 = 1;
|
||
t.bitfield.imm32s = 1;
|
||
}
|
||
else if (fits_in_signed_byte (num))
|
||
{
|
||
t.bitfield.imm8 = 1;
|
||
t.bitfield.imm8s = 1;
|
||
t.bitfield.imm16 = 1;
|
||
t.bitfield.imm32 = 1;
|
||
t.bitfield.imm32s = 1;
|
||
}
|
||
else if (fits_in_unsigned_byte (num))
|
||
{
|
||
t.bitfield.imm8 = 1;
|
||
t.bitfield.imm16 = 1;
|
||
t.bitfield.imm32 = 1;
|
||
t.bitfield.imm32s = 1;
|
||
}
|
||
else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
|
||
{
|
||
t.bitfield.imm16 = 1;
|
||
t.bitfield.imm32 = 1;
|
||
t.bitfield.imm32s = 1;
|
||
}
|
||
else if (fits_in_signed_long (num))
|
||
{
|
||
t.bitfield.imm32 = 1;
|
||
t.bitfield.imm32s = 1;
|
||
}
|
||
else if (fits_in_unsigned_long (num))
|
||
t.bitfield.imm32 = 1;
|
||
|
||
return t;
|
||
}
|
||
|
||
static offsetT
|
||
offset_in_range (offsetT val, int size)
|
||
{
|
||
addressT mask;
|
||
|
||
switch (size)
|
||
{
|
||
case 1: mask = ((addressT) 1 << 8) - 1; break;
|
||
case 2: mask = ((addressT) 1 << 16) - 1; break;
|
||
#ifdef BFD64
|
||
case 4: mask = ((addressT) 1 << 32) - 1; break;
|
||
#endif
|
||
case sizeof (val): return val;
|
||
default: abort ();
|
||
}
|
||
|
||
if ((val & ~mask) != 0 && (-val & ~mask) != 0)
|
||
as_warn (_("0x%" PRIx64 " shortened to 0x%" PRIx64),
|
||
(uint64_t) val, (uint64_t) (val & mask));
|
||
|
||
return val & mask;
|
||
}
|
||
|
||
static INLINE const char *insn_name (const insn_template *t)
|
||
{
|
||
return &i386_mnemonics[t->mnem_off];
|
||
}
|
||
|
||
enum PREFIX_GROUP
|
||
{
|
||
PREFIX_EXIST = 0,
|
||
PREFIX_LOCK,
|
||
PREFIX_REP,
|
||
PREFIX_DS,
|
||
PREFIX_OTHER
|
||
};
|
||
|
||
/* Returns
|
||
a. PREFIX_EXIST if attempting to add a prefix where one from the
|
||
same class already exists.
|
||
b. PREFIX_LOCK if lock prefix is added.
|
||
c. PREFIX_REP if rep/repne prefix is added.
|
||
d. PREFIX_DS if ds prefix is added.
|
||
e. PREFIX_OTHER if other prefix is added.
|
||
*/
|
||
|
||
static enum PREFIX_GROUP
|
||
add_prefix (unsigned int prefix)
|
||
{
|
||
enum PREFIX_GROUP ret = PREFIX_OTHER;
|
||
unsigned int q;
|
||
|
||
if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
|
||
&& flag_code == CODE_64BIT)
|
||
{
|
||
if ((i.prefix[REX_PREFIX] & prefix & REX_W)
|
||
|| (i.prefix[REX_PREFIX] & prefix & REX_R)
|
||
|| (i.prefix[REX_PREFIX] & prefix & REX_X)
|
||
|| (i.prefix[REX_PREFIX] & prefix & REX_B))
|
||
ret = PREFIX_EXIST;
|
||
q = REX_PREFIX;
|
||
}
|
||
else
|
||
{
|
||
switch (prefix)
|
||
{
|
||
default:
|
||
abort ();
|
||
|
||
case DS_PREFIX_OPCODE:
|
||
ret = PREFIX_DS;
|
||
/* Fall through. */
|
||
case CS_PREFIX_OPCODE:
|
||
case ES_PREFIX_OPCODE:
|
||
case FS_PREFIX_OPCODE:
|
||
case GS_PREFIX_OPCODE:
|
||
case SS_PREFIX_OPCODE:
|
||
q = SEG_PREFIX;
|
||
break;
|
||
|
||
case REPNE_PREFIX_OPCODE:
|
||
case REPE_PREFIX_OPCODE:
|
||
q = REP_PREFIX;
|
||
ret = PREFIX_REP;
|
||
break;
|
||
|
||
case LOCK_PREFIX_OPCODE:
|
||
q = LOCK_PREFIX;
|
||
ret = PREFIX_LOCK;
|
||
break;
|
||
|
||
case FWAIT_OPCODE:
|
||
q = WAIT_PREFIX;
|
||
break;
|
||
|
||
case ADDR_PREFIX_OPCODE:
|
||
q = ADDR_PREFIX;
|
||
break;
|
||
|
||
case DATA_PREFIX_OPCODE:
|
||
q = DATA_PREFIX;
|
||
break;
|
||
}
|
||
if (i.prefix[q] != 0)
|
||
ret = PREFIX_EXIST;
|
||
}
|
||
|
||
if (ret)
|
||
{
|
||
if (!i.prefix[q])
|
||
++i.prefixes;
|
||
i.prefix[q] |= prefix;
|
||
}
|
||
else
|
||
as_bad (_("same type of prefix used twice"));
|
||
|
||
return ret;
|
||
}
|
||
|
||
static void
|
||
update_code_flag (int value, int check)
|
||
{
|
||
PRINTF_LIKE ((*as_error));
|
||
|
||
flag_code = (enum flag_code) value;
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
cpu_arch_flags.bitfield.cpu64 = 1;
|
||
cpu_arch_flags.bitfield.cpuno64 = 0;
|
||
}
|
||
else
|
||
{
|
||
cpu_arch_flags.bitfield.cpu64 = 0;
|
||
cpu_arch_flags.bitfield.cpuno64 = 1;
|
||
}
|
||
if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
|
||
{
|
||
if (check)
|
||
as_error = as_fatal;
|
||
else
|
||
as_error = as_bad;
|
||
(*as_error) (_("64bit mode not supported on `%s'."),
|
||
cpu_arch_name ? cpu_arch_name : default_arch);
|
||
}
|
||
if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
|
||
{
|
||
if (check)
|
||
as_error = as_fatal;
|
||
else
|
||
as_error = as_bad;
|
||
(*as_error) (_("32bit mode not supported on `%s'."),
|
||
cpu_arch_name ? cpu_arch_name : default_arch);
|
||
}
|
||
stackop_size = '\0';
|
||
}
|
||
|
||
static void
|
||
set_code_flag (int value)
|
||
{
|
||
update_code_flag (value, 0);
|
||
}
|
||
|
||
static void
|
||
set_16bit_gcc_code_flag (int new_code_flag)
|
||
{
|
||
flag_code = (enum flag_code) new_code_flag;
|
||
if (flag_code != CODE_16BIT)
|
||
abort ();
|
||
cpu_arch_flags.bitfield.cpu64 = 0;
|
||
cpu_arch_flags.bitfield.cpuno64 = 1;
|
||
stackop_size = LONG_MNEM_SUFFIX;
|
||
}
|
||
|
||
static void
|
||
set_intel_syntax (int syntax_flag)
|
||
{
|
||
/* Find out if register prefixing is specified. */
|
||
int ask_naked_reg = 0;
|
||
|
||
SKIP_WHITESPACE ();
|
||
if (!is_end_of_line[(unsigned char) *input_line_pointer])
|
||
{
|
||
char *string;
|
||
int e = get_symbol_name (&string);
|
||
|
||
if (strcmp (string, "prefix") == 0)
|
||
ask_naked_reg = 1;
|
||
else if (strcmp (string, "noprefix") == 0)
|
||
ask_naked_reg = -1;
|
||
else
|
||
as_bad (_("bad argument to syntax directive."));
|
||
(void) restore_line_pointer (e);
|
||
}
|
||
demand_empty_rest_of_line ();
|
||
|
||
intel_syntax = syntax_flag;
|
||
|
||
if (ask_naked_reg == 0)
|
||
allow_naked_reg = (intel_syntax
|
||
&& (bfd_get_symbol_leading_char (stdoutput) != '\0'));
|
||
else
|
||
allow_naked_reg = (ask_naked_reg < 0);
|
||
|
||
expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
|
||
|
||
identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
|
||
identifier_chars['$'] = intel_syntax ? '$' : 0;
|
||
register_prefix = allow_naked_reg ? "" : "%";
|
||
}
|
||
|
||
static void
|
||
set_intel_mnemonic (int mnemonic_flag)
|
||
{
|
||
intel_mnemonic = mnemonic_flag;
|
||
}
|
||
|
||
static void
|
||
set_allow_index_reg (int flag)
|
||
{
|
||
allow_index_reg = flag;
|
||
}
|
||
|
||
static void
|
||
set_check (int what)
|
||
{
|
||
enum check_kind *kind;
|
||
const char *str;
|
||
|
||
if (what)
|
||
{
|
||
kind = &operand_check;
|
||
str = "operand";
|
||
}
|
||
else
|
||
{
|
||
kind = &sse_check;
|
||
str = "sse";
|
||
}
|
||
|
||
SKIP_WHITESPACE ();
|
||
|
||
if (!is_end_of_line[(unsigned char) *input_line_pointer])
|
||
{
|
||
char *string;
|
||
int e = get_symbol_name (&string);
|
||
|
||
if (strcmp (string, "none") == 0)
|
||
*kind = check_none;
|
||
else if (strcmp (string, "warning") == 0)
|
||
*kind = check_warning;
|
||
else if (strcmp (string, "error") == 0)
|
||
*kind = check_error;
|
||
else
|
||
as_bad (_("bad argument to %s_check directive."), str);
|
||
(void) restore_line_pointer (e);
|
||
}
|
||
else
|
||
as_bad (_("missing argument for %s_check directive"), str);
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
static void
|
||
check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
|
||
i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
|
||
{
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
static const char *arch;
|
||
|
||
/* Intel MCU is only supported on ELF. */
|
||
if (!IS_ELF)
|
||
return;
|
||
|
||
if (!arch)
|
||
{
|
||
/* Use cpu_arch_name if it is set in md_parse_option. Otherwise
|
||
use default_arch. */
|
||
arch = cpu_arch_name;
|
||
if (!arch)
|
||
arch = default_arch;
|
||
}
|
||
|
||
/* If we are targeting Intel MCU, we must enable it. */
|
||
if ((get_elf_backend_data (stdoutput)->elf_machine_code == EM_IAMCU)
|
||
== new_flag.bitfield.cpuiamcu)
|
||
return;
|
||
|
||
as_bad (_("`%s' is not supported on `%s'"), name, arch);
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
extend_cpu_sub_arch_name (const char *name)
|
||
{
|
||
if (cpu_sub_arch_name)
|
||
cpu_sub_arch_name = reconcat (cpu_sub_arch_name, cpu_sub_arch_name,
|
||
".", name, (const char *) NULL);
|
||
else
|
||
cpu_sub_arch_name = concat (".", name, (const char *) NULL);
|
||
}
|
||
|
||
static void
|
||
set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
|
||
{
|
||
typedef struct arch_stack_entry
|
||
{
|
||
const struct arch_stack_entry *prev;
|
||
const char *name;
|
||
char *sub_name;
|
||
i386_cpu_flags flags;
|
||
i386_cpu_flags isa_flags;
|
||
enum processor_type isa;
|
||
enum flag_code flag_code;
|
||
char stackop_size;
|
||
bool no_cond_jump_promotion;
|
||
} arch_stack_entry;
|
||
static const arch_stack_entry *arch_stack_top;
|
||
|
||
SKIP_WHITESPACE ();
|
||
|
||
if (!is_end_of_line[(unsigned char) *input_line_pointer])
|
||
{
|
||
char *s;
|
||
int e = get_symbol_name (&s);
|
||
const char *string = s;
|
||
unsigned int j = 0;
|
||
i386_cpu_flags flags;
|
||
|
||
if (strcmp (string, "default") == 0)
|
||
{
|
||
if (strcmp (default_arch, "iamcu") == 0)
|
||
string = default_arch;
|
||
else
|
||
{
|
||
static const i386_cpu_flags cpu_unknown_flags = CPU_UNKNOWN_FLAGS;
|
||
|
||
cpu_arch_name = NULL;
|
||
free (cpu_sub_arch_name);
|
||
cpu_sub_arch_name = NULL;
|
||
cpu_arch_flags = cpu_unknown_flags;
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
cpu_arch_flags.bitfield.cpu64 = 1;
|
||
cpu_arch_flags.bitfield.cpuno64 = 0;
|
||
}
|
||
else
|
||
{
|
||
cpu_arch_flags.bitfield.cpu64 = 0;
|
||
cpu_arch_flags.bitfield.cpuno64 = 1;
|
||
}
|
||
cpu_arch_isa = PROCESSOR_UNKNOWN;
|
||
cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].enable;
|
||
if (!cpu_arch_tune_set)
|
||
{
|
||
cpu_arch_tune = cpu_arch_isa;
|
||
cpu_arch_tune_flags = cpu_arch_isa_flags;
|
||
}
|
||
|
||
j = ARRAY_SIZE (cpu_arch) + 1;
|
||
}
|
||
}
|
||
else if (strcmp (string, "push") == 0)
|
||
{
|
||
arch_stack_entry *top = XNEW (arch_stack_entry);
|
||
|
||
top->name = cpu_arch_name;
|
||
if (cpu_sub_arch_name)
|
||
top->sub_name = xstrdup (cpu_sub_arch_name);
|
||
else
|
||
top->sub_name = NULL;
|
||
top->flags = cpu_arch_flags;
|
||
top->isa = cpu_arch_isa;
|
||
top->isa_flags = cpu_arch_isa_flags;
|
||
top->flag_code = flag_code;
|
||
top->stackop_size = stackop_size;
|
||
top->no_cond_jump_promotion = no_cond_jump_promotion;
|
||
|
||
top->prev = arch_stack_top;
|
||
arch_stack_top = top;
|
||
|
||
(void) restore_line_pointer (e);
|
||
demand_empty_rest_of_line ();
|
||
return;
|
||
}
|
||
else if (strcmp (string, "pop") == 0)
|
||
{
|
||
const arch_stack_entry *top = arch_stack_top;
|
||
|
||
if (!top)
|
||
as_bad (_(".arch stack is empty"));
|
||
else if (top->flag_code != flag_code
|
||
|| top->stackop_size != stackop_size)
|
||
{
|
||
static const unsigned int bits[] = {
|
||
[CODE_16BIT] = 16,
|
||
[CODE_32BIT] = 32,
|
||
[CODE_64BIT] = 64,
|
||
};
|
||
|
||
as_bad (_("this `.arch pop' requires `.code%u%s' to be in effect"),
|
||
bits[top->flag_code],
|
||
top->stackop_size == LONG_MNEM_SUFFIX ? "gcc" : "");
|
||
}
|
||
else
|
||
{
|
||
arch_stack_top = top->prev;
|
||
|
||
cpu_arch_name = top->name;
|
||
free (cpu_sub_arch_name);
|
||
cpu_sub_arch_name = top->sub_name;
|
||
cpu_arch_flags = top->flags;
|
||
cpu_arch_isa = top->isa;
|
||
cpu_arch_isa_flags = top->isa_flags;
|
||
no_cond_jump_promotion = top->no_cond_jump_promotion;
|
||
|
||
XDELETE (top);
|
||
}
|
||
|
||
(void) restore_line_pointer (e);
|
||
demand_empty_rest_of_line ();
|
||
return;
|
||
}
|
||
|
||
for (; j < ARRAY_SIZE (cpu_arch); j++)
|
||
{
|
||
if (strcmp (string + (*string == '.'), cpu_arch[j].name) == 0
|
||
&& (*string == '.') == (cpu_arch[j].type == PROCESSOR_NONE))
|
||
{
|
||
if (*string != '.')
|
||
{
|
||
check_cpu_arch_compatible (string, cpu_arch[j].enable);
|
||
|
||
cpu_arch_name = cpu_arch[j].name;
|
||
free (cpu_sub_arch_name);
|
||
cpu_sub_arch_name = NULL;
|
||
cpu_arch_flags = cpu_arch[j].enable;
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
cpu_arch_flags.bitfield.cpu64 = 1;
|
||
cpu_arch_flags.bitfield.cpuno64 = 0;
|
||
}
|
||
else
|
||
{
|
||
cpu_arch_flags.bitfield.cpu64 = 0;
|
||
cpu_arch_flags.bitfield.cpuno64 = 1;
|
||
}
|
||
cpu_arch_isa = cpu_arch[j].type;
|
||
cpu_arch_isa_flags = cpu_arch[j].enable;
|
||
if (!cpu_arch_tune_set)
|
||
{
|
||
cpu_arch_tune = cpu_arch_isa;
|
||
cpu_arch_tune_flags = cpu_arch_isa_flags;
|
||
}
|
||
pre_386_16bit_warned = false;
|
||
break;
|
||
}
|
||
|
||
if (cpu_flags_all_zero (&cpu_arch[j].enable))
|
||
continue;
|
||
|
||
flags = cpu_flags_or (cpu_arch_flags,
|
||
cpu_arch[j].enable);
|
||
|
||
if (!cpu_flags_equal (&flags, &cpu_arch_flags))
|
||
{
|
||
extend_cpu_sub_arch_name (string + 1);
|
||
cpu_arch_flags = flags;
|
||
cpu_arch_isa_flags = flags;
|
||
}
|
||
else
|
||
cpu_arch_isa_flags
|
||
= cpu_flags_or (cpu_arch_isa_flags,
|
||
cpu_arch[j].enable);
|
||
(void) restore_line_pointer (e);
|
||
demand_empty_rest_of_line ();
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (startswith (string, ".no") && j >= ARRAY_SIZE (cpu_arch))
|
||
{
|
||
/* Disable an ISA extension. */
|
||
for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
|
||
if (cpu_arch[j].type == PROCESSOR_NONE
|
||
&& strcmp (string + 3, cpu_arch[j].name) == 0)
|
||
{
|
||
flags = cpu_flags_and_not (cpu_arch_flags,
|
||
cpu_arch[j].disable);
|
||
if (!cpu_flags_equal (&flags, &cpu_arch_flags))
|
||
{
|
||
extend_cpu_sub_arch_name (string + 1);
|
||
cpu_arch_flags = flags;
|
||
cpu_arch_isa_flags = flags;
|
||
}
|
||
(void) restore_line_pointer (e);
|
||
demand_empty_rest_of_line ();
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (j == ARRAY_SIZE (cpu_arch))
|
||
as_bad (_("no such architecture: `%s'"), string);
|
||
|
||
*input_line_pointer = e;
|
||
}
|
||
else
|
||
as_bad (_("missing cpu architecture"));
|
||
|
||
no_cond_jump_promotion = 0;
|
||
if (*input_line_pointer == ','
|
||
&& !is_end_of_line[(unsigned char) input_line_pointer[1]])
|
||
{
|
||
char *string;
|
||
char e;
|
||
|
||
++input_line_pointer;
|
||
e = get_symbol_name (&string);
|
||
|
||
if (strcmp (string, "nojumps") == 0)
|
||
no_cond_jump_promotion = 1;
|
||
else if (strcmp (string, "jumps") == 0)
|
||
;
|
||
else
|
||
as_bad (_("no such architecture modifier: `%s'"), string);
|
||
|
||
(void) restore_line_pointer (e);
|
||
}
|
||
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
enum bfd_architecture
|
||
i386_arch (void)
|
||
{
|
||
if (cpu_arch_isa == PROCESSOR_IAMCU)
|
||
{
|
||
if (OUTPUT_FLAVOR != bfd_target_elf_flavour
|
||
|| flag_code == CODE_64BIT)
|
||
as_fatal (_("Intel MCU is 32bit ELF only"));
|
||
return bfd_arch_iamcu;
|
||
}
|
||
else
|
||
return bfd_arch_i386;
|
||
}
|
||
|
||
unsigned long
|
||
i386_mach (void)
|
||
{
|
||
if (startswith (default_arch, "x86_64"))
|
||
{
|
||
if (default_arch[6] == '\0')
|
||
return bfd_mach_x86_64;
|
||
else
|
||
return bfd_mach_x64_32;
|
||
}
|
||
else if (!strcmp (default_arch, "i386")
|
||
|| !strcmp (default_arch, "iamcu"))
|
||
{
|
||
if (cpu_arch_isa == PROCESSOR_IAMCU)
|
||
{
|
||
if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
|
||
as_fatal (_("Intel MCU is 32bit ELF only"));
|
||
return bfd_mach_i386_iamcu;
|
||
}
|
||
else
|
||
return bfd_mach_i386_i386;
|
||
}
|
||
else
|
||
as_fatal (_("unknown architecture"));
|
||
}
|
||
|
||
#include "opcodes/i386-tbl.h"
|
||
|
||
void
|
||
md_begin (void)
|
||
{
|
||
/* Support pseudo prefixes like {disp32}. */
|
||
lex_type ['{'] = LEX_BEGIN_NAME;
|
||
|
||
/* Initialize op_hash hash table. */
|
||
op_hash = str_htab_create ();
|
||
|
||
{
|
||
const insn_template *const *sets = i386_op_sets;
|
||
const insn_template *const *end = sets + ARRAY_SIZE (i386_op_sets) - 1;
|
||
|
||
/* Type checks to compensate for the conversion through void * which
|
||
occurs during hash table insertion / lookup. */
|
||
(void) sizeof (sets == ¤t_templates->start);
|
||
(void) sizeof (end == ¤t_templates->end);
|
||
for (; sets < end; ++sets)
|
||
if (str_hash_insert (op_hash, insn_name (*sets), sets, 0))
|
||
as_fatal (_("duplicate %s"), insn_name (*sets));
|
||
}
|
||
|
||
/* Initialize reg_hash hash table. */
|
||
reg_hash = str_htab_create ();
|
||
{
|
||
const reg_entry *regtab;
|
||
unsigned int regtab_size = i386_regtab_size;
|
||
|
||
for (regtab = i386_regtab; regtab_size--; regtab++)
|
||
{
|
||
switch (regtab->reg_type.bitfield.class)
|
||
{
|
||
case Reg:
|
||
if (regtab->reg_type.bitfield.dword)
|
||
{
|
||
if (regtab->reg_type.bitfield.instance == Accum)
|
||
reg_eax = regtab;
|
||
}
|
||
else if (regtab->reg_type.bitfield.tbyte)
|
||
{
|
||
/* There's no point inserting st(<N>) in the hash table, as
|
||
parentheses aren't included in register_chars[] anyway. */
|
||
if (regtab->reg_type.bitfield.instance != Accum)
|
||
continue;
|
||
reg_st0 = regtab;
|
||
}
|
||
break;
|
||
|
||
case SReg:
|
||
switch (regtab->reg_num)
|
||
{
|
||
case 0: reg_es = regtab; break;
|
||
case 2: reg_ss = regtab; break;
|
||
case 3: reg_ds = regtab; break;
|
||
}
|
||
break;
|
||
|
||
case RegMask:
|
||
if (!regtab->reg_num)
|
||
reg_k0 = regtab;
|
||
break;
|
||
}
|
||
|
||
if (str_hash_insert (reg_hash, regtab->reg_name, regtab, 0) != NULL)
|
||
as_fatal (_("duplicate %s"), regtab->reg_name);
|
||
}
|
||
}
|
||
|
||
/* Fill in lexical tables: mnemonic_chars, operand_chars. */
|
||
{
|
||
int c;
|
||
char *p;
|
||
|
||
for (c = 0; c < 256; c++)
|
||
{
|
||
if (ISDIGIT (c) || ISLOWER (c))
|
||
{
|
||
mnemonic_chars[c] = c;
|
||
register_chars[c] = c;
|
||
operand_chars[c] = c;
|
||
}
|
||
else if (ISUPPER (c))
|
||
{
|
||
mnemonic_chars[c] = TOLOWER (c);
|
||
register_chars[c] = mnemonic_chars[c];
|
||
operand_chars[c] = c;
|
||
}
|
||
else if (c == '{' || c == '}')
|
||
{
|
||
mnemonic_chars[c] = c;
|
||
operand_chars[c] = c;
|
||
}
|
||
#ifdef SVR4_COMMENT_CHARS
|
||
else if (c == '\\' && strchr (i386_comment_chars, '/'))
|
||
operand_chars[c] = c;
|
||
#endif
|
||
|
||
if (ISALPHA (c) || ISDIGIT (c))
|
||
identifier_chars[c] = c;
|
||
else if (c >= 128)
|
||
{
|
||
identifier_chars[c] = c;
|
||
operand_chars[c] = c;
|
||
}
|
||
}
|
||
|
||
#ifdef LEX_AT
|
||
identifier_chars['@'] = '@';
|
||
#endif
|
||
#ifdef LEX_QM
|
||
identifier_chars['?'] = '?';
|
||
operand_chars['?'] = '?';
|
||
#endif
|
||
mnemonic_chars['_'] = '_';
|
||
mnemonic_chars['-'] = '-';
|
||
mnemonic_chars['.'] = '.';
|
||
identifier_chars['_'] = '_';
|
||
identifier_chars['.'] = '.';
|
||
|
||
for (p = operand_special_chars; *p != '\0'; p++)
|
||
operand_chars[(unsigned char) *p] = *p;
|
||
}
|
||
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
#if defined (OBJ_COFF) && defined (TE_PE)
|
||
x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
|
||
? 32 : 16);
|
||
#else
|
||
x86_dwarf2_return_column = 16;
|
||
#endif
|
||
x86_cie_data_alignment = -8;
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
x86_sframe_cfa_sp_reg = 7;
|
||
x86_sframe_cfa_fp_reg = 6;
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
x86_dwarf2_return_column = 8;
|
||
x86_cie_data_alignment = -4;
|
||
}
|
||
|
||
/* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
|
||
can be turned into BRANCH_PREFIX frag. */
|
||
if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
|
||
abort ();
|
||
}
|
||
|
||
void
|
||
i386_print_statistics (FILE *file)
|
||
{
|
||
htab_print_statistics (file, "i386 opcode", op_hash);
|
||
htab_print_statistics (file, "i386 register", reg_hash);
|
||
}
|
||
|
||
void
|
||
i386_md_end (void)
|
||
{
|
||
htab_delete (op_hash);
|
||
htab_delete (reg_hash);
|
||
}
|
||
|
||
#ifdef DEBUG386
|
||
|
||
/* Debugging routines for md_assemble. */
|
||
static void pte (insn_template *);
|
||
static void pt (i386_operand_type);
|
||
static void pe (expressionS *);
|
||
static void ps (symbolS *);
|
||
|
||
static void
|
||
pi (const char *line, i386_insn *x)
|
||
{
|
||
unsigned int j;
|
||
|
||
fprintf (stdout, "%s: template ", line);
|
||
pte (&x->tm);
|
||
fprintf (stdout, " address: base %s index %s scale %x\n",
|
||
x->base_reg ? x->base_reg->reg_name : "none",
|
||
x->index_reg ? x->index_reg->reg_name : "none",
|
||
x->log2_scale_factor);
|
||
fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
|
||
x->rm.mode, x->rm.reg, x->rm.regmem);
|
||
fprintf (stdout, " sib: base %x index %x scale %x\n",
|
||
x->sib.base, x->sib.index, x->sib.scale);
|
||
fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
|
||
(x->rex & REX_W) != 0,
|
||
(x->rex & REX_R) != 0,
|
||
(x->rex & REX_X) != 0,
|
||
(x->rex & REX_B) != 0);
|
||
for (j = 0; j < x->operands; j++)
|
||
{
|
||
fprintf (stdout, " #%d: ", j + 1);
|
||
pt (x->types[j]);
|
||
fprintf (stdout, "\n");
|
||
if (x->types[j].bitfield.class == Reg
|
||
|| x->types[j].bitfield.class == RegMMX
|
||
|| x->types[j].bitfield.class == RegSIMD
|
||
|| x->types[j].bitfield.class == RegMask
|
||
|| x->types[j].bitfield.class == SReg
|
||
|| x->types[j].bitfield.class == RegCR
|
||
|| x->types[j].bitfield.class == RegDR
|
||
|| x->types[j].bitfield.class == RegTR
|
||
|| x->types[j].bitfield.class == RegBND)
|
||
fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
|
||
if (operand_type_check (x->types[j], imm))
|
||
pe (x->op[j].imms);
|
||
if (operand_type_check (x->types[j], disp))
|
||
pe (x->op[j].disps);
|
||
}
|
||
}
|
||
|
||
static void
|
||
pte (insn_template *t)
|
||
{
|
||
static const unsigned char opc_pfx[] = { 0, 0x66, 0xf3, 0xf2 };
|
||
static const char *const opc_spc[] = {
|
||
NULL, "0f", "0f38", "0f3a", NULL, "evexmap5", "evexmap6", NULL,
|
||
"XOP08", "XOP09", "XOP0A",
|
||
};
|
||
unsigned int j;
|
||
|
||
fprintf (stdout, " %d operands ", t->operands);
|
||
if (opc_pfx[t->opcode_modifier.opcodeprefix])
|
||
fprintf (stdout, "pfx %x ", opc_pfx[t->opcode_modifier.opcodeprefix]);
|
||
if (opc_spc[t->opcode_space])
|
||
fprintf (stdout, "space %s ", opc_spc[t->opcode_space]);
|
||
fprintf (stdout, "opcode %x ", t->base_opcode);
|
||
if (t->extension_opcode != None)
|
||
fprintf (stdout, "ext %x ", t->extension_opcode);
|
||
if (t->opcode_modifier.d)
|
||
fprintf (stdout, "D");
|
||
if (t->opcode_modifier.w)
|
||
fprintf (stdout, "W");
|
||
fprintf (stdout, "\n");
|
||
for (j = 0; j < t->operands; j++)
|
||
{
|
||
fprintf (stdout, " #%d type ", j + 1);
|
||
pt (t->operand_types[j]);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
}
|
||
|
||
static void
|
||
pe (expressionS *e)
|
||
{
|
||
fprintf (stdout, " operation %d\n", e->X_op);
|
||
fprintf (stdout, " add_number %" PRId64 " (%" PRIx64 ")\n",
|
||
(int64_t) e->X_add_number, (uint64_t) (valueT) e->X_add_number);
|
||
if (e->X_add_symbol)
|
||
{
|
||
fprintf (stdout, " add_symbol ");
|
||
ps (e->X_add_symbol);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
if (e->X_op_symbol)
|
||
{
|
||
fprintf (stdout, " op_symbol ");
|
||
ps (e->X_op_symbol);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
}
|
||
|
||
static void
|
||
ps (symbolS *s)
|
||
{
|
||
fprintf (stdout, "%s type %s%s",
|
||
S_GET_NAME (s),
|
||
S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
|
||
segment_name (S_GET_SEGMENT (s)));
|
||
}
|
||
|
||
static struct type_name
|
||
{
|
||
i386_operand_type mask;
|
||
const char *name;
|
||
}
|
||
const type_names[] =
|
||
{
|
||
{ { .bitfield = { .class = Reg, .byte = 1 } }, "r8" },
|
||
{ { .bitfield = { .class = Reg, .word = 1 } }, "r16" },
|
||
{ { .bitfield = { .class = Reg, .dword = 1 } }, "r32" },
|
||
{ { .bitfield = { .class = Reg, .qword = 1 } }, "r64" },
|
||
{ { .bitfield = { .instance = Accum, .byte = 1 } }, "acc8" },
|
||
{ { .bitfield = { .instance = Accum, .word = 1 } }, "acc16" },
|
||
{ { .bitfield = { .instance = Accum, .dword = 1 } }, "acc32" },
|
||
{ { .bitfield = { .instance = Accum, .qword = 1 } }, "acc64" },
|
||
{ { .bitfield = { .imm8 = 1 } }, "i8" },
|
||
{ { .bitfield = { .imm8s = 1 } }, "i8s" },
|
||
{ { .bitfield = { .imm16 = 1 } }, "i16" },
|
||
{ { .bitfield = { .imm32 = 1 } }, "i32" },
|
||
{ { .bitfield = { .imm32s = 1 } }, "i32s" },
|
||
{ { .bitfield = { .imm64 = 1 } }, "i64" },
|
||
{ { .bitfield = { .imm1 = 1 } }, "i1" },
|
||
{ { .bitfield = { .baseindex = 1 } }, "BaseIndex" },
|
||
{ { .bitfield = { .disp8 = 1 } }, "d8" },
|
||
{ { .bitfield = { .disp16 = 1 } }, "d16" },
|
||
{ { .bitfield = { .disp32 = 1 } }, "d32" },
|
||
{ { .bitfield = { .disp64 = 1 } }, "d64" },
|
||
{ { .bitfield = { .instance = RegD, .word = 1 } }, "InOutPortReg" },
|
||
{ { .bitfield = { .instance = RegC, .byte = 1 } }, "ShiftCount" },
|
||
{ { .bitfield = { .class = RegCR } }, "control reg" },
|
||
{ { .bitfield = { .class = RegTR } }, "test reg" },
|
||
{ { .bitfield = { .class = RegDR } }, "debug reg" },
|
||
{ { .bitfield = { .class = Reg, .tbyte = 1 } }, "FReg" },
|
||
{ { .bitfield = { .instance = Accum, .tbyte = 1 } }, "FAcc" },
|
||
{ { .bitfield = { .class = SReg } }, "SReg" },
|
||
{ { .bitfield = { .class = RegMMX } }, "rMMX" },
|
||
{ { .bitfield = { .class = RegSIMD, .xmmword = 1 } }, "rXMM" },
|
||
{ { .bitfield = { .class = RegSIMD, .ymmword = 1 } }, "rYMM" },
|
||
{ { .bitfield = { .class = RegSIMD, .zmmword = 1 } }, "rZMM" },
|
||
{ { .bitfield = { .class = RegSIMD, .tmmword = 1 } }, "rTMM" },
|
||
{ { .bitfield = { .class = RegMask } }, "Mask reg" },
|
||
};
|
||
|
||
static void
|
||
pt (i386_operand_type t)
|
||
{
|
||
unsigned int j;
|
||
i386_operand_type a;
|
||
|
||
for (j = 0; j < ARRAY_SIZE (type_names); j++)
|
||
{
|
||
a = operand_type_and (t, type_names[j].mask);
|
||
if (operand_type_equal (&a, &type_names[j].mask))
|
||
fprintf (stdout, "%s, ", type_names[j].name);
|
||
}
|
||
fflush (stdout);
|
||
}
|
||
|
||
#endif /* DEBUG386 */
|
||
|
||
static bfd_reloc_code_real_type
|
||
reloc (unsigned int size,
|
||
int pcrel,
|
||
int sign,
|
||
bfd_reloc_code_real_type other)
|
||
{
|
||
if (other != NO_RELOC)
|
||
{
|
||
reloc_howto_type *rel;
|
||
|
||
if (size == 8)
|
||
switch (other)
|
||
{
|
||
case BFD_RELOC_X86_64_GOT32:
|
||
return BFD_RELOC_X86_64_GOT64;
|
||
break;
|
||
case BFD_RELOC_X86_64_GOTPLT64:
|
||
return BFD_RELOC_X86_64_GOTPLT64;
|
||
break;
|
||
case BFD_RELOC_X86_64_PLTOFF64:
|
||
return BFD_RELOC_X86_64_PLTOFF64;
|
||
break;
|
||
case BFD_RELOC_X86_64_GOTPC32:
|
||
other = BFD_RELOC_X86_64_GOTPC64;
|
||
break;
|
||
case BFD_RELOC_X86_64_GOTPCREL:
|
||
other = BFD_RELOC_X86_64_GOTPCREL64;
|
||
break;
|
||
case BFD_RELOC_X86_64_TPOFF32:
|
||
other = BFD_RELOC_X86_64_TPOFF64;
|
||
break;
|
||
case BFD_RELOC_X86_64_DTPOFF32:
|
||
other = BFD_RELOC_X86_64_DTPOFF64;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (other == BFD_RELOC_SIZE32)
|
||
{
|
||
if (size == 8)
|
||
other = BFD_RELOC_SIZE64;
|
||
if (pcrel)
|
||
{
|
||
as_bad (_("there are no pc-relative size relocations"));
|
||
return NO_RELOC;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
|
||
if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
|
||
sign = -1;
|
||
|
||
rel = bfd_reloc_type_lookup (stdoutput, other);
|
||
if (!rel)
|
||
as_bad (_("unknown relocation (%u)"), other);
|
||
else if (size != bfd_get_reloc_size (rel))
|
||
as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
|
||
bfd_get_reloc_size (rel),
|
||
size);
|
||
else if (pcrel && !rel->pc_relative)
|
||
as_bad (_("non-pc-relative relocation for pc-relative field"));
|
||
else if ((rel->complain_on_overflow == complain_overflow_signed
|
||
&& !sign)
|
||
|| (rel->complain_on_overflow == complain_overflow_unsigned
|
||
&& sign > 0))
|
||
as_bad (_("relocated field and relocation type differ in signedness"));
|
||
else
|
||
return other;
|
||
return NO_RELOC;
|
||
}
|
||
|
||
if (pcrel)
|
||
{
|
||
if (!sign)
|
||
as_bad (_("there are no unsigned pc-relative relocations"));
|
||
switch (size)
|
||
{
|
||
case 1: return BFD_RELOC_8_PCREL;
|
||
case 2: return BFD_RELOC_16_PCREL;
|
||
case 4: return BFD_RELOC_32_PCREL;
|
||
case 8: return BFD_RELOC_64_PCREL;
|
||
}
|
||
as_bad (_("cannot do %u byte pc-relative relocation"), size);
|
||
}
|
||
else
|
||
{
|
||
if (sign > 0)
|
||
switch (size)
|
||
{
|
||
case 4: return BFD_RELOC_X86_64_32S;
|
||
}
|
||
else
|
||
switch (size)
|
||
{
|
||
case 1: return BFD_RELOC_8;
|
||
case 2: return BFD_RELOC_16;
|
||
case 4: return BFD_RELOC_32;
|
||
case 8: return BFD_RELOC_64;
|
||
}
|
||
as_bad (_("cannot do %s %u byte relocation"),
|
||
sign > 0 ? "signed" : "unsigned", size);
|
||
}
|
||
|
||
return NO_RELOC;
|
||
}
|
||
|
||
/* Here we decide which fixups can be adjusted to make them relative to
|
||
the beginning of the section instead of the symbol. Basically we need
|
||
to make sure that the dynamic relocations are done correctly, so in
|
||
some cases we force the original symbol to be used. */
|
||
|
||
int
|
||
tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
|
||
{
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (!IS_ELF)
|
||
return 1;
|
||
|
||
/* Don't adjust pc-relative references to merge sections in 64-bit
|
||
mode. */
|
||
if (use_rela_relocations
|
||
&& (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
|
||
&& fixP->fx_pcrel)
|
||
return 0;
|
||
|
||
/* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
|
||
and changed later by validate_fix. */
|
||
if (GOT_symbol && fixP->fx_subsy == GOT_symbol
|
||
&& fixP->fx_r_type == BFD_RELOC_32_PCREL)
|
||
return 0;
|
||
|
||
/* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
|
||
for size relocations. */
|
||
if (fixP->fx_r_type == BFD_RELOC_SIZE32
|
||
|| fixP->fx_r_type == BFD_RELOC_SIZE64
|
||
|| fixP->fx_r_type == BFD_RELOC_386_GOTOFF
|
||
|| fixP->fx_r_type == BFD_RELOC_386_GOT32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_GOT32X
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_GD
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_IE
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_LE
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
|
||
|| fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
|
||
|| fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
|
||
|| fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|
||
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
|
||
return 0;
|
||
#endif
|
||
return 1;
|
||
}
|
||
|
||
static INLINE bool
|
||
want_disp32 (const insn_template *t)
|
||
{
|
||
return flag_code != CODE_64BIT
|
||
|| i.prefix[ADDR_PREFIX]
|
||
|| (t->mnem_off == MN_lea
|
||
&& (!i.types[1].bitfield.qword
|
||
|| t->opcode_modifier.size == SIZE32));
|
||
}
|
||
|
||
static int
|
||
intel_float_operand (const char *mnemonic)
|
||
{
|
||
/* Note that the value returned is meaningful only for opcodes with (memory)
|
||
operands, hence the code here is free to improperly handle opcodes that
|
||
have no operands (for better performance and smaller code). */
|
||
|
||
if (mnemonic[0] != 'f')
|
||
return 0; /* non-math */
|
||
|
||
switch (mnemonic[1])
|
||
{
|
||
/* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
|
||
the fs segment override prefix not currently handled because no
|
||
call path can make opcodes without operands get here */
|
||
case 'i':
|
||
return 2 /* integer op */;
|
||
case 'l':
|
||
if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
|
||
return 3; /* fldcw/fldenv */
|
||
break;
|
||
case 'n':
|
||
if (mnemonic[2] != 'o' /* fnop */)
|
||
return 3; /* non-waiting control op */
|
||
break;
|
||
case 'r':
|
||
if (mnemonic[2] == 's')
|
||
return 3; /* frstor/frstpm */
|
||
break;
|
||
case 's':
|
||
if (mnemonic[2] == 'a')
|
||
return 3; /* fsave */
|
||
if (mnemonic[2] == 't')
|
||
{
|
||
switch (mnemonic[3])
|
||
{
|
||
case 'c': /* fstcw */
|
||
case 'd': /* fstdw */
|
||
case 'e': /* fstenv */
|
||
case 's': /* fsts[gw] */
|
||
return 3;
|
||
}
|
||
}
|
||
break;
|
||
case 'x':
|
||
if (mnemonic[2] == 'r' || mnemonic[2] == 's')
|
||
return 0; /* fxsave/fxrstor are not really math ops */
|
||
break;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static INLINE void
|
||
install_template (const insn_template *t)
|
||
{
|
||
unsigned int l;
|
||
|
||
i.tm = *t;
|
||
|
||
/* Note that for pseudo prefixes this produces a length of 1. But for them
|
||
the length isn't interesting at all. */
|
||
for (l = 1; l < 4; ++l)
|
||
if (!(t->base_opcode >> (8 * l)))
|
||
break;
|
||
|
||
i.opcode_length = l;
|
||
}
|
||
|
||
/* Build the VEX prefix. */
|
||
|
||
static void
|
||
build_vex_prefix (const insn_template *t)
|
||
{
|
||
unsigned int register_specifier;
|
||
unsigned int vector_length;
|
||
unsigned int w;
|
||
|
||
/* Check register specifier. */
|
||
if (i.vex.register_specifier)
|
||
{
|
||
register_specifier =
|
||
~register_number (i.vex.register_specifier) & 0xf;
|
||
gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
|
||
}
|
||
else
|
||
register_specifier = 0xf;
|
||
|
||
/* Use 2-byte VEX prefix by swapping destination and source operand
|
||
if there are more than 1 register operand. */
|
||
if (i.reg_operands > 1
|
||
&& i.vec_encoding != vex_encoding_vex3
|
||
&& i.dir_encoding == dir_encoding_default
|
||
&& i.operands == i.reg_operands
|
||
&& operand_type_equal (&i.types[0], &i.types[i.operands - 1])
|
||
&& i.tm.opcode_space == SPACE_0F
|
||
&& (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
|
||
&& i.rex == REX_B)
|
||
{
|
||
unsigned int xchg = i.operands - 1;
|
||
union i386_op temp_op;
|
||
i386_operand_type temp_type;
|
||
|
||
temp_type = i.types[xchg];
|
||
i.types[xchg] = i.types[0];
|
||
i.types[0] = temp_type;
|
||
temp_op = i.op[xchg];
|
||
i.op[xchg] = i.op[0];
|
||
i.op[0] = temp_op;
|
||
|
||
gas_assert (i.rm.mode == 3);
|
||
|
||
i.rex = REX_R;
|
||
xchg = i.rm.regmem;
|
||
i.rm.regmem = i.rm.reg;
|
||
i.rm.reg = xchg;
|
||
|
||
if (i.tm.opcode_modifier.d)
|
||
i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
|
||
? Opcode_ExtD : Opcode_SIMD_IntD;
|
||
else /* Use the next insn. */
|
||
install_template (&t[1]);
|
||
}
|
||
|
||
/* Use 2-byte VEX prefix by swapping commutative source operands if there
|
||
are no memory operands and at least 3 register ones. */
|
||
if (i.reg_operands >= 3
|
||
&& i.vec_encoding != vex_encoding_vex3
|
||
&& i.reg_operands == i.operands - i.imm_operands
|
||
&& i.tm.opcode_modifier.vex
|
||
&& i.tm.opcode_modifier.commutative
|
||
&& (i.tm.opcode_modifier.sse2avx
|
||
|| (optimize > 1 && !i.no_optimize))
|
||
&& i.rex == REX_B
|
||
&& i.vex.register_specifier
|
||
&& !(i.vex.register_specifier->reg_flags & RegRex))
|
||
{
|
||
unsigned int xchg = i.operands - i.reg_operands;
|
||
union i386_op temp_op;
|
||
i386_operand_type temp_type;
|
||
|
||
gas_assert (i.tm.opcode_space == SPACE_0F);
|
||
gas_assert (!i.tm.opcode_modifier.sae);
|
||
gas_assert (operand_type_equal (&i.types[i.operands - 2],
|
||
&i.types[i.operands - 3]));
|
||
gas_assert (i.rm.mode == 3);
|
||
|
||
temp_type = i.types[xchg];
|
||
i.types[xchg] = i.types[xchg + 1];
|
||
i.types[xchg + 1] = temp_type;
|
||
temp_op = i.op[xchg];
|
||
i.op[xchg] = i.op[xchg + 1];
|
||
i.op[xchg + 1] = temp_op;
|
||
|
||
i.rex = 0;
|
||
xchg = i.rm.regmem | 8;
|
||
i.rm.regmem = ~register_specifier & 0xf;
|
||
gas_assert (!(i.rm.regmem & 8));
|
||
i.vex.register_specifier += xchg - i.rm.regmem;
|
||
register_specifier = ~xchg & 0xf;
|
||
}
|
||
|
||
if (i.tm.opcode_modifier.vex == VEXScalar)
|
||
vector_length = avxscalar;
|
||
else if (i.tm.opcode_modifier.vex == VEX256)
|
||
vector_length = 1;
|
||
else
|
||
{
|
||
unsigned int op;
|
||
|
||
/* Determine vector length from the last multi-length vector
|
||
operand. */
|
||
vector_length = 0;
|
||
for (op = t->operands; op--;)
|
||
if (t->operand_types[op].bitfield.xmmword
|
||
&& t->operand_types[op].bitfield.ymmword
|
||
&& i.types[op].bitfield.ymmword)
|
||
{
|
||
vector_length = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Check the REX.W bit and VEXW. */
|
||
if (i.tm.opcode_modifier.vexw == VEXWIG)
|
||
w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
|
||
else if (i.tm.opcode_modifier.vexw)
|
||
w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
|
||
else
|
||
w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
|
||
|
||
/* Use 2-byte VEX prefix if possible. */
|
||
if (w == 0
|
||
&& i.vec_encoding != vex_encoding_vex3
|
||
&& i.tm.opcode_space == SPACE_0F
|
||
&& (i.rex & (REX_W | REX_X | REX_B)) == 0)
|
||
{
|
||
/* 2-byte VEX prefix. */
|
||
unsigned int r;
|
||
|
||
i.vex.length = 2;
|
||
i.vex.bytes[0] = 0xc5;
|
||
|
||
/* Check the REX.R bit. */
|
||
r = (i.rex & REX_R) ? 0 : 1;
|
||
i.vex.bytes[1] = (r << 7
|
||
| register_specifier << 3
|
||
| vector_length << 2
|
||
| i.tm.opcode_modifier.opcodeprefix);
|
||
}
|
||
else
|
||
{
|
||
/* 3-byte VEX prefix. */
|
||
i.vex.length = 3;
|
||
|
||
switch (i.tm.opcode_space)
|
||
{
|
||
case SPACE_0F:
|
||
case SPACE_0F38:
|
||
case SPACE_0F3A:
|
||
i.vex.bytes[0] = 0xc4;
|
||
break;
|
||
case SPACE_XOP08:
|
||
case SPACE_XOP09:
|
||
case SPACE_XOP0A:
|
||
i.vex.bytes[0] = 0x8f;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* The high 3 bits of the second VEX byte are 1's compliment
|
||
of RXB bits from REX. */
|
||
i.vex.bytes[1] = (~i.rex & 0x7) << 5 | i.tm.opcode_space;
|
||
|
||
i.vex.bytes[2] = (w << 7
|
||
| register_specifier << 3
|
||
| vector_length << 2
|
||
| i.tm.opcode_modifier.opcodeprefix);
|
||
}
|
||
}
|
||
|
||
static INLINE bool
|
||
is_evex_encoding (const insn_template *t)
|
||
{
|
||
return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
|
||
|| t->opcode_modifier.broadcast || t->opcode_modifier.masking
|
||
|| t->opcode_modifier.sae;
|
||
}
|
||
|
||
static INLINE bool
|
||
is_any_vex_encoding (const insn_template *t)
|
||
{
|
||
return t->opcode_modifier.vex || is_evex_encoding (t);
|
||
}
|
||
|
||
static unsigned int
|
||
get_broadcast_bytes (const insn_template *t, bool diag)
|
||
{
|
||
unsigned int op, bytes;
|
||
const i386_operand_type *types;
|
||
|
||
if (i.broadcast.type)
|
||
return i.broadcast.bytes = ((1 << (t->opcode_modifier.broadcast - 1))
|
||
* i.broadcast.type);
|
||
|
||
gas_assert (intel_syntax);
|
||
|
||
for (op = 0; op < t->operands; ++op)
|
||
if (t->operand_types[op].bitfield.baseindex)
|
||
break;
|
||
|
||
gas_assert (op < t->operands);
|
||
|
||
if (t->opcode_modifier.evex
|
||
&& t->opcode_modifier.evex != EVEXDYN)
|
||
switch (i.broadcast.bytes)
|
||
{
|
||
case 1:
|
||
if (t->operand_types[op].bitfield.word)
|
||
return 2;
|
||
/* Fall through. */
|
||
case 2:
|
||
if (t->operand_types[op].bitfield.dword)
|
||
return 4;
|
||
/* Fall through. */
|
||
case 4:
|
||
if (t->operand_types[op].bitfield.qword)
|
||
return 8;
|
||
/* Fall through. */
|
||
case 8:
|
||
if (t->operand_types[op].bitfield.xmmword)
|
||
return 16;
|
||
if (t->operand_types[op].bitfield.ymmword)
|
||
return 32;
|
||
if (t->operand_types[op].bitfield.zmmword)
|
||
return 64;
|
||
/* Fall through. */
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
gas_assert (op + 1 < t->operands);
|
||
|
||
if (t->operand_types[op + 1].bitfield.xmmword
|
||
+ t->operand_types[op + 1].bitfield.ymmword
|
||
+ t->operand_types[op + 1].bitfield.zmmword > 1)
|
||
{
|
||
types = &i.types[op + 1];
|
||
diag = false;
|
||
}
|
||
else /* Ambiguous - guess with a preference to non-AVX512VL forms. */
|
||
types = &t->operand_types[op];
|
||
|
||
if (types->bitfield.zmmword)
|
||
bytes = 64;
|
||
else if (types->bitfield.ymmword)
|
||
bytes = 32;
|
||
else
|
||
bytes = 16;
|
||
|
||
if (diag)
|
||
as_warn (_("ambiguous broadcast for `%s', using %u-bit form"),
|
||
insn_name (t), bytes * 8);
|
||
|
||
return bytes;
|
||
}
|
||
|
||
/* Build the EVEX prefix. */
|
||
|
||
static void
|
||
build_evex_prefix (void)
|
||
{
|
||
unsigned int register_specifier, w;
|
||
rex_byte vrex_used = 0;
|
||
|
||
/* Check register specifier. */
|
||
if (i.vex.register_specifier)
|
||
{
|
||
gas_assert ((i.vrex & REX_X) == 0);
|
||
|
||
register_specifier = i.vex.register_specifier->reg_num;
|
||
if ((i.vex.register_specifier->reg_flags & RegRex))
|
||
register_specifier += 8;
|
||
/* The upper 16 registers are encoded in the fourth byte of the
|
||
EVEX prefix. */
|
||
if (!(i.vex.register_specifier->reg_flags & RegVRex))
|
||
i.vex.bytes[3] = 0x8;
|
||
register_specifier = ~register_specifier & 0xf;
|
||
}
|
||
else
|
||
{
|
||
register_specifier = 0xf;
|
||
|
||
/* Encode upper 16 vector index register in the fourth byte of
|
||
the EVEX prefix. */
|
||
if (!(i.vrex & REX_X))
|
||
i.vex.bytes[3] = 0x8;
|
||
else
|
||
vrex_used |= REX_X;
|
||
}
|
||
|
||
/* 4 byte EVEX prefix. */
|
||
i.vex.length = 4;
|
||
i.vex.bytes[0] = 0x62;
|
||
|
||
/* The high 3 bits of the second EVEX byte are 1's compliment of RXB
|
||
bits from REX. */
|
||
gas_assert (i.tm.opcode_space >= SPACE_0F);
|
||
gas_assert (i.tm.opcode_space <= SPACE_EVEXMAP6);
|
||
i.vex.bytes[1] = (~i.rex & 0x7) << 5 | i.tm.opcode_space;
|
||
|
||
/* The fifth bit of the second EVEX byte is 1's compliment of the
|
||
REX_R bit in VREX. */
|
||
if (!(i.vrex & REX_R))
|
||
i.vex.bytes[1] |= 0x10;
|
||
else
|
||
vrex_used |= REX_R;
|
||
|
||
if ((i.reg_operands + i.imm_operands) == i.operands)
|
||
{
|
||
/* When all operands are registers, the REX_X bit in REX is not
|
||
used. We reuse it to encode the upper 16 registers, which is
|
||
indicated by the REX_B bit in VREX. The REX_X bit is encoded
|
||
as 1's compliment. */
|
||
if ((i.vrex & REX_B))
|
||
{
|
||
vrex_used |= REX_B;
|
||
i.vex.bytes[1] &= ~0x40;
|
||
}
|
||
}
|
||
|
||
/* EVEX instructions shouldn't need the REX prefix. */
|
||
i.vrex &= ~vrex_used;
|
||
gas_assert (i.vrex == 0);
|
||
|
||
/* Check the REX.W bit and VEXW. */
|
||
if (i.tm.opcode_modifier.vexw == VEXWIG)
|
||
w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
|
||
else if (i.tm.opcode_modifier.vexw)
|
||
w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
|
||
else
|
||
w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
|
||
|
||
/* The third byte of the EVEX prefix. */
|
||
i.vex.bytes[2] = ((w << 7)
|
||
| (register_specifier << 3)
|
||
| 4 /* Encode the U bit. */
|
||
| i.tm.opcode_modifier.opcodeprefix);
|
||
|
||
/* The fourth byte of the EVEX prefix. */
|
||
/* The zeroing-masking bit. */
|
||
if (i.mask.reg && i.mask.zeroing)
|
||
i.vex.bytes[3] |= 0x80;
|
||
|
||
/* Don't always set the broadcast bit if there is no RC. */
|
||
if (i.rounding.type == rc_none)
|
||
{
|
||
/* Encode the vector length. */
|
||
unsigned int vec_length;
|
||
|
||
if (!i.tm.opcode_modifier.evex
|
||
|| i.tm.opcode_modifier.evex == EVEXDYN)
|
||
{
|
||
unsigned int op;
|
||
|
||
/* Determine vector length from the last multi-length vector
|
||
operand. */
|
||
for (op = i.operands; op--;)
|
||
if (i.tm.operand_types[op].bitfield.xmmword
|
||
+ i.tm.operand_types[op].bitfield.ymmword
|
||
+ i.tm.operand_types[op].bitfield.zmmword > 1)
|
||
{
|
||
if (i.types[op].bitfield.zmmword)
|
||
{
|
||
i.tm.opcode_modifier.evex = EVEX512;
|
||
break;
|
||
}
|
||
else if (i.types[op].bitfield.ymmword)
|
||
{
|
||
i.tm.opcode_modifier.evex = EVEX256;
|
||
break;
|
||
}
|
||
else if (i.types[op].bitfield.xmmword)
|
||
{
|
||
i.tm.opcode_modifier.evex = EVEX128;
|
||
break;
|
||
}
|
||
else if (i.broadcast.bytes && op == i.broadcast.operand)
|
||
{
|
||
switch (get_broadcast_bytes (&i.tm, true))
|
||
{
|
||
case 64:
|
||
i.tm.opcode_modifier.evex = EVEX512;
|
||
break;
|
||
case 32:
|
||
i.tm.opcode_modifier.evex = EVEX256;
|
||
break;
|
||
case 16:
|
||
i.tm.opcode_modifier.evex = EVEX128;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (op >= MAX_OPERANDS)
|
||
abort ();
|
||
}
|
||
|
||
switch (i.tm.opcode_modifier.evex)
|
||
{
|
||
case EVEXLIG: /* LL' is ignored */
|
||
vec_length = evexlig << 5;
|
||
break;
|
||
case EVEX128:
|
||
vec_length = 0 << 5;
|
||
break;
|
||
case EVEX256:
|
||
vec_length = 1 << 5;
|
||
break;
|
||
case EVEX512:
|
||
vec_length = 2 << 5;
|
||
break;
|
||
default:
|
||
abort ();
|
||
break;
|
||
}
|
||
i.vex.bytes[3] |= vec_length;
|
||
/* Encode the broadcast bit. */
|
||
if (i.broadcast.bytes)
|
||
i.vex.bytes[3] |= 0x10;
|
||
}
|
||
else if (i.rounding.type != saeonly)
|
||
i.vex.bytes[3] |= 0x10 | (i.rounding.type << 5);
|
||
else
|
||
i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
|
||
|
||
if (i.mask.reg)
|
||
i.vex.bytes[3] |= i.mask.reg->reg_num;
|
||
}
|
||
|
||
static void
|
||
process_immext (void)
|
||
{
|
||
expressionS *exp;
|
||
|
||
/* These AMD 3DNow! and SSE2 instructions have an opcode suffix
|
||
which is coded in the same place as an 8-bit immediate field
|
||
would be. Here we fake an 8-bit immediate operand from the
|
||
opcode suffix stored in tm.extension_opcode.
|
||
|
||
AVX instructions also use this encoding, for some of
|
||
3 argument instructions. */
|
||
|
||
gas_assert (i.imm_operands <= 1
|
||
&& (i.operands <= 2
|
||
|| (is_any_vex_encoding (&i.tm)
|
||
&& i.operands <= 4)));
|
||
|
||
exp = &im_expressions[i.imm_operands++];
|
||
i.op[i.operands].imms = exp;
|
||
i.types[i.operands].bitfield.imm8 = 1;
|
||
i.operands++;
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = i.tm.extension_opcode;
|
||
i.tm.extension_opcode = None;
|
||
}
|
||
|
||
|
||
static int
|
||
check_hle (void)
|
||
{
|
||
switch (i.tm.opcode_modifier.prefixok)
|
||
{
|
||
default:
|
||
abort ();
|
||
case PrefixLock:
|
||
case PrefixNone:
|
||
case PrefixNoTrack:
|
||
case PrefixRep:
|
||
as_bad (_("invalid instruction `%s' after `%s'"),
|
||
insn_name (&i.tm), i.hle_prefix);
|
||
return 0;
|
||
case PrefixHLELock:
|
||
if (i.prefix[LOCK_PREFIX])
|
||
return 1;
|
||
as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
|
||
return 0;
|
||
case PrefixHLEAny:
|
||
return 1;
|
||
case PrefixHLERelease:
|
||
if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
|
||
{
|
||
as_bad (_("instruction `%s' after `xacquire' not allowed"),
|
||
insn_name (&i.tm));
|
||
return 0;
|
||
}
|
||
if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
|
||
{
|
||
as_bad (_("memory destination needed for instruction `%s'"
|
||
" after `xrelease'"), insn_name (&i.tm));
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Encode aligned vector move as unaligned vector move. */
|
||
|
||
static void
|
||
encode_with_unaligned_vector_move (void)
|
||
{
|
||
switch (i.tm.base_opcode)
|
||
{
|
||
case 0x28: /* Load instructions. */
|
||
case 0x29: /* Store instructions. */
|
||
/* movaps/movapd/vmovaps/vmovapd. */
|
||
if (i.tm.opcode_space == SPACE_0F
|
||
&& i.tm.opcode_modifier.opcodeprefix <= PREFIX_0X66)
|
||
i.tm.base_opcode = 0x10 | (i.tm.base_opcode & 1);
|
||
break;
|
||
case 0x6f: /* Load instructions. */
|
||
case 0x7f: /* Store instructions. */
|
||
/* movdqa/vmovdqa/vmovdqa64/vmovdqa32. */
|
||
if (i.tm.opcode_space == SPACE_0F
|
||
&& i.tm.opcode_modifier.opcodeprefix == PREFIX_0X66)
|
||
i.tm.opcode_modifier.opcodeprefix = PREFIX_0XF3;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Try the shortest encoding by shortening operand size. */
|
||
|
||
static void
|
||
optimize_encoding (void)
|
||
{
|
||
unsigned int j;
|
||
|
||
if (i.tm.mnem_off == MN_lea)
|
||
{
|
||
/* Optimize: -O:
|
||
lea symbol, %rN -> mov $symbol, %rN
|
||
lea (%rM), %rN -> mov %rM, %rN
|
||
lea (,%rM,1), %rN -> mov %rM, %rN
|
||
|
||
and in 32-bit mode for 16-bit addressing
|
||
|
||
lea (%rM), %rN -> movzx %rM, %rN
|
||
|
||
and in 64-bit mode zap 32-bit addressing in favor of using a
|
||
32-bit (or less) destination.
|
||
*/
|
||
if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
|
||
{
|
||
if (!i.op[1].regs->reg_type.bitfield.word)
|
||
i.tm.opcode_modifier.size = SIZE32;
|
||
i.prefix[ADDR_PREFIX] = 0;
|
||
}
|
||
|
||
if (!i.index_reg && !i.base_reg)
|
||
{
|
||
/* Handle:
|
||
lea symbol, %rN -> mov $symbol, %rN
|
||
*/
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
/* Don't transform a relocation to a 16-bit one. */
|
||
if (i.op[0].disps
|
||
&& i.op[0].disps->X_op != O_constant
|
||
&& i.op[1].regs->reg_type.bitfield.word)
|
||
return;
|
||
|
||
if (!i.op[1].regs->reg_type.bitfield.qword
|
||
|| i.tm.opcode_modifier.size == SIZE32)
|
||
{
|
||
i.tm.base_opcode = 0xb8;
|
||
i.tm.opcode_modifier.modrm = 0;
|
||
if (!i.op[1].regs->reg_type.bitfield.word)
|
||
i.types[0].bitfield.imm32 = 1;
|
||
else
|
||
{
|
||
i.tm.opcode_modifier.size = SIZE16;
|
||
i.types[0].bitfield.imm16 = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Subject to further optimization below. */
|
||
i.tm.base_opcode = 0xc7;
|
||
i.tm.extension_opcode = 0;
|
||
i.types[0].bitfield.imm32s = 1;
|
||
i.types[0].bitfield.baseindex = 0;
|
||
}
|
||
}
|
||
/* Outside of 64-bit mode address and operand sizes have to match if
|
||
a relocation is involved, as otherwise we wouldn't (currently) or
|
||
even couldn't express the relocation correctly. */
|
||
else if (i.op[0].disps
|
||
&& i.op[0].disps->X_op != O_constant
|
||
&& ((!i.prefix[ADDR_PREFIX])
|
||
!= (flag_code == CODE_32BIT
|
||
? i.op[1].regs->reg_type.bitfield.dword
|
||
: i.op[1].regs->reg_type.bitfield.word)))
|
||
return;
|
||
/* In 16-bit mode converting LEA with 16-bit addressing and a 32-bit
|
||
destination is going to grow encoding size. */
|
||
else if (flag_code == CODE_16BIT
|
||
&& (optimize <= 1 || optimize_for_space)
|
||
&& !i.prefix[ADDR_PREFIX]
|
||
&& i.op[1].regs->reg_type.bitfield.dword)
|
||
return;
|
||
else
|
||
{
|
||
i.tm.base_opcode = 0xb8;
|
||
i.tm.opcode_modifier.modrm = 0;
|
||
if (i.op[1].regs->reg_type.bitfield.dword)
|
||
i.types[0].bitfield.imm32 = 1;
|
||
else
|
||
i.types[0].bitfield.imm16 = 1;
|
||
|
||
if (i.op[0].disps
|
||
&& i.op[0].disps->X_op == O_constant
|
||
&& i.op[1].regs->reg_type.bitfield.dword
|
||
/* NB: Add () to !i.prefix[ADDR_PREFIX] to silence
|
||
GCC 5. */
|
||
&& (!i.prefix[ADDR_PREFIX]) != (flag_code == CODE_32BIT))
|
||
i.op[0].disps->X_add_number &= 0xffff;
|
||
}
|
||
|
||
i.tm.operand_types[0] = i.types[0];
|
||
i.imm_operands = 1;
|
||
if (!i.op[0].imms)
|
||
{
|
||
i.op[0].imms = &im_expressions[0];
|
||
i.op[0].imms->X_op = O_absent;
|
||
}
|
||
}
|
||
else if (i.op[0].disps
|
||
&& (i.op[0].disps->X_op != O_constant
|
||
|| i.op[0].disps->X_add_number))
|
||
return;
|
||
else
|
||
{
|
||
/* Handle:
|
||
lea (%rM), %rN -> mov %rM, %rN
|
||
lea (,%rM,1), %rN -> mov %rM, %rN
|
||
lea (%rM), %rN -> movzx %rM, %rN
|
||
*/
|
||
const reg_entry *addr_reg;
|
||
|
||
if (!i.index_reg && i.base_reg->reg_num != RegIP)
|
||
addr_reg = i.base_reg;
|
||
else if (!i.base_reg
|
||
&& i.index_reg->reg_num != RegIZ
|
||
&& !i.log2_scale_factor)
|
||
addr_reg = i.index_reg;
|
||
else
|
||
return;
|
||
|
||
if (addr_reg->reg_type.bitfield.word
|
||
&& i.op[1].regs->reg_type.bitfield.dword)
|
||
{
|
||
if (flag_code != CODE_32BIT)
|
||
return;
|
||
i.tm.opcode_space = SPACE_0F;
|
||
i.tm.base_opcode = 0xb7;
|
||
}
|
||
else
|
||
i.tm.base_opcode = 0x8b;
|
||
|
||
if (addr_reg->reg_type.bitfield.dword
|
||
&& i.op[1].regs->reg_type.bitfield.qword)
|
||
i.tm.opcode_modifier.size = SIZE32;
|
||
|
||
i.op[0].regs = addr_reg;
|
||
i.reg_operands = 2;
|
||
}
|
||
|
||
i.mem_operands = 0;
|
||
i.disp_operands = 0;
|
||
i.prefix[ADDR_PREFIX] = 0;
|
||
i.prefix[SEG_PREFIX] = 0;
|
||
i.seg[0] = NULL;
|
||
}
|
||
|
||
if (optimize_for_space
|
||
&& i.tm.mnem_off == MN_test
|
||
&& i.reg_operands == 1
|
||
&& i.imm_operands == 1
|
||
&& !i.types[1].bitfield.byte
|
||
&& i.op[0].imms->X_op == O_constant
|
||
&& fits_in_imm7 (i.op[0].imms->X_add_number))
|
||
{
|
||
/* Optimize: -Os:
|
||
test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
|
||
*/
|
||
unsigned int base_regnum = i.op[1].regs->reg_num;
|
||
if (flag_code == CODE_64BIT || base_regnum < 4)
|
||
{
|
||
i.types[1].bitfield.byte = 1;
|
||
/* Ignore the suffix. */
|
||
i.suffix = 0;
|
||
/* Convert to byte registers. */
|
||
if (i.types[1].bitfield.word)
|
||
j = 16;
|
||
else if (i.types[1].bitfield.dword)
|
||
j = 32;
|
||
else
|
||
j = 48;
|
||
if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
|
||
j += 8;
|
||
i.op[1].regs -= j;
|
||
}
|
||
}
|
||
else if (flag_code == CODE_64BIT
|
||
&& i.tm.opcode_space == SPACE_BASE
|
||
&& ((i.types[1].bitfield.qword
|
||
&& i.reg_operands == 1
|
||
&& i.imm_operands == 1
|
||
&& i.op[0].imms->X_op == O_constant
|
||
&& ((i.tm.base_opcode == 0xb8
|
||
&& i.tm.extension_opcode == None
|
||
&& fits_in_unsigned_long (i.op[0].imms->X_add_number))
|
||
|| (fits_in_imm31 (i.op[0].imms->X_add_number)
|
||
&& (i.tm.base_opcode == 0x24
|
||
|| (i.tm.base_opcode == 0x80
|
||
&& i.tm.extension_opcode == 0x4)
|
||
|| i.tm.mnem_off == MN_test
|
||
|| ((i.tm.base_opcode | 1) == 0xc7
|
||
&& i.tm.extension_opcode == 0x0)))
|
||
|| (fits_in_imm7 (i.op[0].imms->X_add_number)
|
||
&& i.tm.base_opcode == 0x83
|
||
&& i.tm.extension_opcode == 0x4)))
|
||
|| (i.types[0].bitfield.qword
|
||
&& ((i.reg_operands == 2
|
||
&& i.op[0].regs == i.op[1].regs
|
||
&& (i.tm.mnem_off == MN_xor
|
||
|| i.tm.mnem_off == MN_sub))
|
||
|| i.tm.mnem_off == MN_clr))))
|
||
{
|
||
/* Optimize: -O:
|
||
andq $imm31, %r64 -> andl $imm31, %r32
|
||
andq $imm7, %r64 -> andl $imm7, %r32
|
||
testq $imm31, %r64 -> testl $imm31, %r32
|
||
xorq %r64, %r64 -> xorl %r32, %r32
|
||
subq %r64, %r64 -> subl %r32, %r32
|
||
movq $imm31, %r64 -> movl $imm31, %r32
|
||
movq $imm32, %r64 -> movl $imm32, %r32
|
||
*/
|
||
i.tm.opcode_modifier.size = SIZE32;
|
||
if (i.imm_operands)
|
||
{
|
||
i.types[0].bitfield.imm32 = 1;
|
||
i.types[0].bitfield.imm32s = 0;
|
||
i.types[0].bitfield.imm64 = 0;
|
||
}
|
||
else
|
||
{
|
||
i.types[0].bitfield.dword = 1;
|
||
i.types[0].bitfield.qword = 0;
|
||
}
|
||
i.types[1].bitfield.dword = 1;
|
||
i.types[1].bitfield.qword = 0;
|
||
if (i.tm.mnem_off == MN_mov || i.tm.mnem_off == MN_lea)
|
||
{
|
||
/* Handle
|
||
movq $imm31, %r64 -> movl $imm31, %r32
|
||
movq $imm32, %r64 -> movl $imm32, %r32
|
||
*/
|
||
i.tm.operand_types[0].bitfield.imm32 = 1;
|
||
i.tm.operand_types[0].bitfield.imm32s = 0;
|
||
i.tm.operand_types[0].bitfield.imm64 = 0;
|
||
if ((i.tm.base_opcode | 1) == 0xc7)
|
||
{
|
||
/* Handle
|
||
movq $imm31, %r64 -> movl $imm31, %r32
|
||
*/
|
||
i.tm.base_opcode = 0xb8;
|
||
i.tm.extension_opcode = None;
|
||
i.tm.opcode_modifier.w = 0;
|
||
i.tm.opcode_modifier.modrm = 0;
|
||
}
|
||
}
|
||
}
|
||
else if (optimize > 1
|
||
&& !optimize_for_space
|
||
&& i.reg_operands == 2
|
||
&& i.op[0].regs == i.op[1].regs
|
||
&& (i.tm.mnem_off == MN_and || i.tm.mnem_off == MN_or)
|
||
&& (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
|
||
{
|
||
/* Optimize: -O2:
|
||
andb %rN, %rN -> testb %rN, %rN
|
||
andw %rN, %rN -> testw %rN, %rN
|
||
andq %rN, %rN -> testq %rN, %rN
|
||
orb %rN, %rN -> testb %rN, %rN
|
||
orw %rN, %rN -> testw %rN, %rN
|
||
orq %rN, %rN -> testq %rN, %rN
|
||
|
||
and outside of 64-bit mode
|
||
|
||
andl %rN, %rN -> testl %rN, %rN
|
||
orl %rN, %rN -> testl %rN, %rN
|
||
*/
|
||
i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
|
||
}
|
||
else if (i.reg_operands == 3
|
||
&& i.op[0].regs == i.op[1].regs
|
||
&& !i.types[2].bitfield.xmmword
|
||
&& (i.tm.opcode_modifier.vex
|
||
|| ((!i.mask.reg || i.mask.zeroing)
|
||
&& is_evex_encoding (&i.tm)
|
||
&& (i.vec_encoding != vex_encoding_evex
|
||
|| cpu_arch_isa_flags.bitfield.cpuavx512vl
|
||
|| i.tm.cpu_flags.bitfield.cpuavx512vl
|
||
|| (i.tm.operand_types[2].bitfield.zmmword
|
||
&& i.types[2].bitfield.ymmword))))
|
||
&& i.tm.opcode_space == SPACE_0F
|
||
&& ((i.tm.base_opcode | 2) == 0x57
|
||
|| i.tm.base_opcode == 0xdf
|
||
|| i.tm.base_opcode == 0xef
|
||
|| (i.tm.base_opcode | 3) == 0xfb
|
||
|| i.tm.base_opcode == 0x42
|
||
|| i.tm.base_opcode == 0x47))
|
||
{
|
||
/* Optimize: -O1:
|
||
VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
|
||
vpsubq and vpsubw:
|
||
EVEX VOP %zmmM, %zmmM, %zmmN
|
||
-> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
|
||
-> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
|
||
EVEX VOP %ymmM, %ymmM, %ymmN
|
||
-> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
|
||
-> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
|
||
VEX VOP %ymmM, %ymmM, %ymmN
|
||
-> VEX VOP %xmmM, %xmmM, %xmmN
|
||
VOP, one of vpandn and vpxor:
|
||
VEX VOP %ymmM, %ymmM, %ymmN
|
||
-> VEX VOP %xmmM, %xmmM, %xmmN
|
||
VOP, one of vpandnd and vpandnq:
|
||
EVEX VOP %zmmM, %zmmM, %zmmN
|
||
-> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
|
||
-> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
|
||
EVEX VOP %ymmM, %ymmM, %ymmN
|
||
-> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
|
||
-> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
|
||
VOP, one of vpxord and vpxorq:
|
||
EVEX VOP %zmmM, %zmmM, %zmmN
|
||
-> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
|
||
-> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
|
||
EVEX VOP %ymmM, %ymmM, %ymmN
|
||
-> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
|
||
-> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
|
||
VOP, one of kxord and kxorq:
|
||
VEX VOP %kM, %kM, %kN
|
||
-> VEX kxorw %kM, %kM, %kN
|
||
VOP, one of kandnd and kandnq:
|
||
VEX VOP %kM, %kM, %kN
|
||
-> VEX kandnw %kM, %kM, %kN
|
||
*/
|
||
if (is_evex_encoding (&i.tm))
|
||
{
|
||
if (i.vec_encoding != vex_encoding_evex)
|
||
{
|
||
i.tm.opcode_modifier.vex = VEX128;
|
||
i.tm.opcode_modifier.vexw = VEXW0;
|
||
i.tm.opcode_modifier.evex = 0;
|
||
}
|
||
else if (optimize > 1)
|
||
i.tm.opcode_modifier.evex = EVEX128;
|
||
else
|
||
return;
|
||
}
|
||
else if (i.tm.operand_types[0].bitfield.class == RegMask)
|
||
{
|
||
i.tm.opcode_modifier.opcodeprefix = PREFIX_NONE;
|
||
i.tm.opcode_modifier.vexw = VEXW0;
|
||
}
|
||
else
|
||
i.tm.opcode_modifier.vex = VEX128;
|
||
|
||
if (i.tm.opcode_modifier.vex)
|
||
for (j = 0; j < 3; j++)
|
||
{
|
||
i.types[j].bitfield.xmmword = 1;
|
||
i.types[j].bitfield.ymmword = 0;
|
||
}
|
||
}
|
||
else if (i.vec_encoding != vex_encoding_evex
|
||
&& !i.types[0].bitfield.zmmword
|
||
&& !i.types[1].bitfield.zmmword
|
||
&& !i.mask.reg
|
||
&& !i.broadcast.bytes
|
||
&& is_evex_encoding (&i.tm)
|
||
&& ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x6f
|
||
|| (i.tm.base_opcode & ~4) == 0xdb
|
||
|| (i.tm.base_opcode & ~4) == 0xeb)
|
||
&& i.tm.extension_opcode == None)
|
||
{
|
||
/* Optimize: -O1:
|
||
VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
|
||
vmovdqu32 and vmovdqu64:
|
||
EVEX VOP %xmmM, %xmmN
|
||
-> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
|
||
EVEX VOP %ymmM, %ymmN
|
||
-> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
|
||
EVEX VOP %xmmM, mem
|
||
-> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
|
||
EVEX VOP %ymmM, mem
|
||
-> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
|
||
EVEX VOP mem, %xmmN
|
||
-> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
|
||
EVEX VOP mem, %ymmN
|
||
-> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
|
||
VOP, one of vpand, vpandn, vpor, vpxor:
|
||
EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
|
||
-> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
|
||
EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
|
||
-> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
|
||
EVEX VOP{d,q} mem, %xmmM, %xmmN
|
||
-> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
|
||
EVEX VOP{d,q} mem, %ymmM, %ymmN
|
||
-> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
|
||
*/
|
||
for (j = 0; j < i.operands; j++)
|
||
if (operand_type_check (i.types[j], disp)
|
||
&& i.op[j].disps->X_op == O_constant)
|
||
{
|
||
/* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
|
||
has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
|
||
bytes, we choose EVEX Disp8 over VEX Disp32. */
|
||
int evex_disp8, vex_disp8;
|
||
unsigned int memshift = i.memshift;
|
||
offsetT n = i.op[j].disps->X_add_number;
|
||
|
||
evex_disp8 = fits_in_disp8 (n);
|
||
i.memshift = 0;
|
||
vex_disp8 = fits_in_disp8 (n);
|
||
if (evex_disp8 != vex_disp8)
|
||
{
|
||
i.memshift = memshift;
|
||
return;
|
||
}
|
||
|
||
i.types[j].bitfield.disp8 = vex_disp8;
|
||
break;
|
||
}
|
||
if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x6f
|
||
&& i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2)
|
||
i.tm.opcode_modifier.opcodeprefix = PREFIX_0XF3;
|
||
i.tm.opcode_modifier.vex
|
||
= i.types[0].bitfield.ymmword ? VEX256 : VEX128;
|
||
i.tm.opcode_modifier.vexw = VEXW0;
|
||
/* VPAND, VPOR, and VPXOR are commutative. */
|
||
if (i.reg_operands == 3 && i.tm.base_opcode != 0xdf)
|
||
i.tm.opcode_modifier.commutative = 1;
|
||
i.tm.opcode_modifier.evex = 0;
|
||
i.tm.opcode_modifier.masking = 0;
|
||
i.tm.opcode_modifier.broadcast = 0;
|
||
i.tm.opcode_modifier.disp8memshift = 0;
|
||
i.memshift = 0;
|
||
if (j < i.operands)
|
||
i.types[j].bitfield.disp8
|
||
= fits_in_disp8 (i.op[j].disps->X_add_number);
|
||
}
|
||
}
|
||
|
||
/* Return non-zero for load instruction. */
|
||
|
||
static int
|
||
load_insn_p (void)
|
||
{
|
||
unsigned int dest;
|
||
int any_vex_p = is_any_vex_encoding (&i.tm);
|
||
unsigned int base_opcode = i.tm.base_opcode | 1;
|
||
|
||
if (!any_vex_p)
|
||
{
|
||
/* Anysize insns: lea, invlpg, clflush, prefetch*, bndmk, bndcl, bndcu,
|
||
bndcn, bndstx, bndldx, clflushopt, clwb, cldemote. */
|
||
if (i.tm.opcode_modifier.operandconstraint == ANY_SIZE)
|
||
return 0;
|
||
|
||
/* pop. */
|
||
if (i.tm.mnem_off == MN_pop)
|
||
return 1;
|
||
}
|
||
|
||
if (i.tm.opcode_space == SPACE_BASE)
|
||
{
|
||
/* popf, popa. */
|
||
if (i.tm.base_opcode == 0x9d
|
||
|| i.tm.base_opcode == 0x61)
|
||
return 1;
|
||
|
||
/* movs, cmps, lods, scas. */
|
||
if ((i.tm.base_opcode | 0xb) == 0xaf)
|
||
return 1;
|
||
|
||
/* outs, xlatb. */
|
||
if (base_opcode == 0x6f
|
||
|| i.tm.base_opcode == 0xd7)
|
||
return 1;
|
||
/* NB: For AMD-specific insns with implicit memory operands,
|
||
they're intentionally not covered. */
|
||
}
|
||
|
||
/* No memory operand. */
|
||
if (!i.mem_operands)
|
||
return 0;
|
||
|
||
if (any_vex_p)
|
||
{
|
||
if (i.tm.mnem_off == MN_vldmxcsr)
|
||
return 1;
|
||
}
|
||
else if (i.tm.opcode_space == SPACE_BASE)
|
||
{
|
||
/* test, not, neg, mul, imul, div, idiv. */
|
||
if (base_opcode == 0xf7 && i.tm.extension_opcode != 1)
|
||
return 1;
|
||
|
||
/* inc, dec. */
|
||
if (base_opcode == 0xff && i.tm.extension_opcode <= 1)
|
||
return 1;
|
||
|
||
/* add, or, adc, sbb, and, sub, xor, cmp. */
|
||
if (i.tm.base_opcode >= 0x80 && i.tm.base_opcode <= 0x83)
|
||
return 1;
|
||
|
||
/* rol, ror, rcl, rcr, shl/sal, shr, sar. */
|
||
if ((base_opcode == 0xc1 || (base_opcode | 2) == 0xd3)
|
||
&& i.tm.extension_opcode != 6)
|
||
return 1;
|
||
|
||
/* Check for x87 instructions. */
|
||
if ((base_opcode | 6) == 0xdf)
|
||
{
|
||
/* Skip fst, fstp, fstenv, fstcw. */
|
||
if (i.tm.base_opcode == 0xd9
|
||
&& (i.tm.extension_opcode == 2
|
||
|| i.tm.extension_opcode == 3
|
||
|| i.tm.extension_opcode == 6
|
||
|| i.tm.extension_opcode == 7))
|
||
return 0;
|
||
|
||
/* Skip fisttp, fist, fistp, fstp. */
|
||
if (i.tm.base_opcode == 0xdb
|
||
&& (i.tm.extension_opcode == 1
|
||
|| i.tm.extension_opcode == 2
|
||
|| i.tm.extension_opcode == 3
|
||
|| i.tm.extension_opcode == 7))
|
||
return 0;
|
||
|
||
/* Skip fisttp, fst, fstp, fsave, fstsw. */
|
||
if (i.tm.base_opcode == 0xdd
|
||
&& (i.tm.extension_opcode == 1
|
||
|| i.tm.extension_opcode == 2
|
||
|| i.tm.extension_opcode == 3
|
||
|| i.tm.extension_opcode == 6
|
||
|| i.tm.extension_opcode == 7))
|
||
return 0;
|
||
|
||
/* Skip fisttp, fist, fistp, fbstp, fistp. */
|
||
if (i.tm.base_opcode == 0xdf
|
||
&& (i.tm.extension_opcode == 1
|
||
|| i.tm.extension_opcode == 2
|
||
|| i.tm.extension_opcode == 3
|
||
|| i.tm.extension_opcode == 6
|
||
|| i.tm.extension_opcode == 7))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
}
|
||
else if (i.tm.opcode_space == SPACE_0F)
|
||
{
|
||
/* bt, bts, btr, btc. */
|
||
if (i.tm.base_opcode == 0xba
|
||
&& (i.tm.extension_opcode | 3) == 7)
|
||
return 1;
|
||
|
||
/* cmpxchg8b, cmpxchg16b, xrstors, vmptrld. */
|
||
if (i.tm.base_opcode == 0xc7
|
||
&& i.tm.opcode_modifier.opcodeprefix == PREFIX_NONE
|
||
&& (i.tm.extension_opcode == 1 || i.tm.extension_opcode == 3
|
||
|| i.tm.extension_opcode == 6))
|
||
return 1;
|
||
|
||
/* fxrstor, ldmxcsr, xrstor. */
|
||
if (i.tm.base_opcode == 0xae
|
||
&& (i.tm.extension_opcode == 1
|
||
|| i.tm.extension_opcode == 2
|
||
|| i.tm.extension_opcode == 5))
|
||
return 1;
|
||
|
||
/* lgdt, lidt, lmsw. */
|
||
if (i.tm.base_opcode == 0x01
|
||
&& (i.tm.extension_opcode == 2
|
||
|| i.tm.extension_opcode == 3
|
||
|| i.tm.extension_opcode == 6))
|
||
return 1;
|
||
}
|
||
|
||
dest = i.operands - 1;
|
||
|
||
/* Check fake imm8 operand and 3 source operands. */
|
||
if ((i.tm.opcode_modifier.immext
|
||
|| i.reg_operands + i.mem_operands == 4)
|
||
&& i.types[dest].bitfield.imm8)
|
||
dest--;
|
||
|
||
/* add, or, adc, sbb, and, sub, xor, cmp, test, xchg. */
|
||
if (i.tm.opcode_space == SPACE_BASE
|
||
&& ((base_opcode | 0x38) == 0x39
|
||
|| (base_opcode | 2) == 0x87))
|
||
return 1;
|
||
|
||
if (i.tm.mnem_off == MN_xadd)
|
||
return 1;
|
||
|
||
/* Check for load instruction. */
|
||
return (i.types[dest].bitfield.class != ClassNone
|
||
|| i.types[dest].bitfield.instance == Accum);
|
||
}
|
||
|
||
/* Output lfence, 0xfaee8, after instruction. */
|
||
|
||
static void
|
||
insert_lfence_after (void)
|
||
{
|
||
if (lfence_after_load && load_insn_p ())
|
||
{
|
||
/* There are also two REP string instructions that require
|
||
special treatment. Specifically, the compare string (CMPS)
|
||
and scan string (SCAS) instructions set EFLAGS in a manner
|
||
that depends on the data being compared/scanned. When used
|
||
with a REP prefix, the number of iterations may therefore
|
||
vary depending on this data. If the data is a program secret
|
||
chosen by the adversary using an LVI method,
|
||
then this data-dependent behavior may leak some aspect
|
||
of the secret. */
|
||
if (((i.tm.base_opcode | 0x9) == 0xaf)
|
||
&& i.prefix[REP_PREFIX])
|
||
{
|
||
as_warn (_("`%s` changes flags which would affect control flow behavior"),
|
||
insn_name (&i.tm));
|
||
}
|
||
char *p = frag_more (3);
|
||
*p++ = 0xf;
|
||
*p++ = 0xae;
|
||
*p = 0xe8;
|
||
}
|
||
}
|
||
|
||
/* Output lfence, 0xfaee8, before instruction. */
|
||
|
||
static void
|
||
insert_lfence_before (void)
|
||
{
|
||
char *p;
|
||
|
||
if (i.tm.opcode_space != SPACE_BASE)
|
||
return;
|
||
|
||
if (i.tm.base_opcode == 0xff
|
||
&& (i.tm.extension_opcode == 2 || i.tm.extension_opcode == 4))
|
||
{
|
||
/* Insert lfence before indirect branch if needed. */
|
||
|
||
if (lfence_before_indirect_branch == lfence_branch_none)
|
||
return;
|
||
|
||
if (i.operands != 1)
|
||
abort ();
|
||
|
||
if (i.reg_operands == 1)
|
||
{
|
||
/* Indirect branch via register. Don't insert lfence with
|
||
-mlfence-after-load=yes. */
|
||
if (lfence_after_load
|
||
|| lfence_before_indirect_branch == lfence_branch_memory)
|
||
return;
|
||
}
|
||
else if (i.mem_operands == 1
|
||
&& lfence_before_indirect_branch != lfence_branch_register)
|
||
{
|
||
as_warn (_("indirect `%s` with memory operand should be avoided"),
|
||
insn_name (&i.tm));
|
||
return;
|
||
}
|
||
else
|
||
return;
|
||
|
||
if (last_insn.kind != last_insn_other
|
||
&& last_insn.seg == now_seg)
|
||
{
|
||
as_warn_where (last_insn.file, last_insn.line,
|
||
_("`%s` skips -mlfence-before-indirect-branch on `%s`"),
|
||
last_insn.name, insn_name (&i.tm));
|
||
return;
|
||
}
|
||
|
||
p = frag_more (3);
|
||
*p++ = 0xf;
|
||
*p++ = 0xae;
|
||
*p = 0xe8;
|
||
return;
|
||
}
|
||
|
||
/* Output or/not/shl and lfence before near ret. */
|
||
if (lfence_before_ret != lfence_before_ret_none
|
||
&& (i.tm.base_opcode | 1) == 0xc3)
|
||
{
|
||
if (last_insn.kind != last_insn_other
|
||
&& last_insn.seg == now_seg)
|
||
{
|
||
as_warn_where (last_insn.file, last_insn.line,
|
||
_("`%s` skips -mlfence-before-ret on `%s`"),
|
||
last_insn.name, insn_name (&i.tm));
|
||
return;
|
||
}
|
||
|
||
/* Near ret ingore operand size override under CPU64. */
|
||
char prefix = flag_code == CODE_64BIT
|
||
? 0x48
|
||
: i.prefix[DATA_PREFIX] ? 0x66 : 0x0;
|
||
|
||
if (lfence_before_ret == lfence_before_ret_not)
|
||
{
|
||
/* not: 0xf71424, may add prefix
|
||
for operand size override or 64-bit code. */
|
||
p = frag_more ((prefix ? 2 : 0) + 6 + 3);
|
||
if (prefix)
|
||
*p++ = prefix;
|
||
*p++ = 0xf7;
|
||
*p++ = 0x14;
|
||
*p++ = 0x24;
|
||
if (prefix)
|
||
*p++ = prefix;
|
||
*p++ = 0xf7;
|
||
*p++ = 0x14;
|
||
*p++ = 0x24;
|
||
}
|
||
else
|
||
{
|
||
p = frag_more ((prefix ? 1 : 0) + 4 + 3);
|
||
if (prefix)
|
||
*p++ = prefix;
|
||
if (lfence_before_ret == lfence_before_ret_or)
|
||
{
|
||
/* or: 0x830c2400, may add prefix
|
||
for operand size override or 64-bit code. */
|
||
*p++ = 0x83;
|
||
*p++ = 0x0c;
|
||
}
|
||
else
|
||
{
|
||
/* shl: 0xc1242400, may add prefix
|
||
for operand size override or 64-bit code. */
|
||
*p++ = 0xc1;
|
||
*p++ = 0x24;
|
||
}
|
||
|
||
*p++ = 0x24;
|
||
*p++ = 0x0;
|
||
}
|
||
|
||
*p++ = 0xf;
|
||
*p++ = 0xae;
|
||
*p = 0xe8;
|
||
}
|
||
}
|
||
|
||
/* Helper for md_assemble() to decide whether to prepare for a possible 2nd
|
||
parsing pass. Instead of introducing a rarely use new insn attribute this
|
||
utilizes a common pattern between affected templates. It is deemed
|
||
acceptable that this will lead to unnecessary pass 2 preparations in a
|
||
limited set of cases. */
|
||
static INLINE bool may_need_pass2 (const insn_template *t)
|
||
{
|
||
return t->opcode_modifier.sse2avx
|
||
/* Note that all SSE2AVX templates have at least one operand. */
|
||
? t->operand_types[t->operands - 1].bitfield.class == RegSIMD
|
||
: (t->opcode_space == SPACE_0F
|
||
&& (t->base_opcode | 1) == 0xbf)
|
||
|| (t->opcode_space == SPACE_BASE
|
||
&& t->base_opcode == 0x63);
|
||
}
|
||
|
||
/* This is the guts of the machine-dependent assembler. LINE points to a
|
||
machine dependent instruction. This function is supposed to emit
|
||
the frags/bytes it assembles to. */
|
||
|
||
void
|
||
md_assemble (char *line)
|
||
{
|
||
unsigned int j;
|
||
char mnemonic[MAX_MNEM_SIZE], mnem_suffix = 0, *copy = NULL;
|
||
const char *end, *pass1_mnem = NULL;
|
||
enum i386_error pass1_err = 0;
|
||
const insn_template *t;
|
||
|
||
/* Initialize globals. */
|
||
current_templates = NULL;
|
||
retry:
|
||
memset (&i, '\0', sizeof (i));
|
||
i.rounding.type = rc_none;
|
||
for (j = 0; j < MAX_OPERANDS; j++)
|
||
i.reloc[j] = NO_RELOC;
|
||
memset (disp_expressions, '\0', sizeof (disp_expressions));
|
||
memset (im_expressions, '\0', sizeof (im_expressions));
|
||
save_stack_p = save_stack;
|
||
|
||
/* First parse an instruction mnemonic & call i386_operand for the operands.
|
||
We assume that the scrubber has arranged it so that line[0] is the valid
|
||
start of a (possibly prefixed) mnemonic. */
|
||
|
||
end = parse_insn (line, mnemonic);
|
||
if (end == NULL)
|
||
{
|
||
if (pass1_mnem != NULL)
|
||
goto match_error;
|
||
if (i.error != no_error)
|
||
{
|
||
gas_assert (current_templates != NULL);
|
||
if (may_need_pass2 (current_templates->start) && !i.suffix)
|
||
goto no_match;
|
||
/* No point in trying a 2nd pass - it'll only find the same suffix
|
||
again. */
|
||
mnem_suffix = i.suffix;
|
||
goto match_error;
|
||
}
|
||
return;
|
||
}
|
||
t = current_templates->start;
|
||
if (may_need_pass2 (t))
|
||
{
|
||
/* Make a copy of the full line in case we need to retry. */
|
||
copy = xstrdup (line);
|
||
}
|
||
line += end - line;
|
||
mnem_suffix = i.suffix;
|
||
|
||
line = parse_operands (line, mnemonic);
|
||
this_operand = -1;
|
||
if (line == NULL)
|
||
{
|
||
free (copy);
|
||
return;
|
||
}
|
||
|
||
/* Now we've parsed the mnemonic into a set of templates, and have the
|
||
operands at hand. */
|
||
|
||
/* All Intel opcodes have reversed operands except for "bound", "enter",
|
||
"invlpg*", "monitor*", "mwait*", "tpause", "umwait", "pvalidate",
|
||
"rmpadjust", "rmpupdate", and "rmpquery". We also don't reverse
|
||
intersegment "jmp" and "call" instructions with 2 immediate operands so
|
||
that the immediate segment precedes the offset consistently in Intel and
|
||
AT&T modes. */
|
||
if (intel_syntax
|
||
&& i.operands > 1
|
||
&& (t->mnem_off != MN_bound)
|
||
&& !startswith (mnemonic, "invlpg")
|
||
&& !startswith (mnemonic, "monitor")
|
||
&& !startswith (mnemonic, "mwait")
|
||
&& (t->mnem_off != MN_pvalidate)
|
||
&& !startswith (mnemonic, "rmp")
|
||
&& (t->mnem_off != MN_tpause)
|
||
&& (t->mnem_off != MN_umwait)
|
||
&& !(i.operands == 2
|
||
&& operand_type_check (i.types[0], imm)
|
||
&& operand_type_check (i.types[1], imm)))
|
||
swap_operands ();
|
||
|
||
/* The order of the immediates should be reversed
|
||
for 2 immediates extrq and insertq instructions */
|
||
if (i.imm_operands == 2
|
||
&& (t->mnem_off == MN_extrq || t->mnem_off == MN_insertq))
|
||
swap_2_operands (0, 1);
|
||
|
||
if (i.imm_operands)
|
||
optimize_imm ();
|
||
|
||
if (i.disp_operands && !want_disp32 (t)
|
||
&& (!t->opcode_modifier.jump
|
||
|| i.jumpabsolute || i.types[0].bitfield.baseindex))
|
||
{
|
||
for (j = 0; j < i.operands; ++j)
|
||
{
|
||
const expressionS *exp = i.op[j].disps;
|
||
|
||
if (!operand_type_check (i.types[j], disp))
|
||
continue;
|
||
|
||
if (exp->X_op != O_constant)
|
||
continue;
|
||
|
||
/* Since displacement is signed extended to 64bit, don't allow
|
||
disp32 if it is out of range. */
|
||
if (fits_in_signed_long (exp->X_add_number))
|
||
continue;
|
||
|
||
i.types[j].bitfield.disp32 = 0;
|
||
if (i.types[j].bitfield.baseindex)
|
||
{
|
||
as_bad (_("0x%" PRIx64 " out of range of signed 32bit displacement"),
|
||
(uint64_t) exp->X_add_number);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Don't optimize displacement for movabs since it only takes 64bit
|
||
displacement. */
|
||
if (i.disp_operands
|
||
&& i.disp_encoding <= disp_encoding_8bit
|
||
&& (flag_code != CODE_64BIT
|
||
|| strcmp (mnemonic, "movabs") != 0))
|
||
optimize_disp ();
|
||
|
||
/* Next, we find a template that matches the given insn,
|
||
making sure the overlap of the given operands types is consistent
|
||
with the template operand types. */
|
||
|
||
if (!(t = match_template (mnem_suffix)))
|
||
{
|
||
const char *err_msg;
|
||
|
||
if (copy && !mnem_suffix)
|
||
{
|
||
line = copy;
|
||
copy = NULL;
|
||
no_match:
|
||
pass1_err = i.error;
|
||
pass1_mnem = insn_name (current_templates->start);
|
||
goto retry;
|
||
}
|
||
|
||
/* If a non-/only-64bit template (group) was found in pass 1, and if
|
||
_some_ template (group) was found in pass 2, squash pass 1's
|
||
error. */
|
||
if (pass1_err == unsupported_64bit)
|
||
pass1_mnem = NULL;
|
||
|
||
match_error:
|
||
free (copy);
|
||
|
||
switch (pass1_mnem ? pass1_err : i.error)
|
||
{
|
||
default:
|
||
abort ();
|
||
case operand_size_mismatch:
|
||
err_msg = _("operand size mismatch");
|
||
break;
|
||
case operand_type_mismatch:
|
||
err_msg = _("operand type mismatch");
|
||
break;
|
||
case register_type_mismatch:
|
||
err_msg = _("register type mismatch");
|
||
break;
|
||
case number_of_operands_mismatch:
|
||
err_msg = _("number of operands mismatch");
|
||
break;
|
||
case invalid_instruction_suffix:
|
||
err_msg = _("invalid instruction suffix");
|
||
break;
|
||
case bad_imm4:
|
||
err_msg = _("constant doesn't fit in 4 bits");
|
||
break;
|
||
case unsupported_with_intel_mnemonic:
|
||
err_msg = _("unsupported with Intel mnemonic");
|
||
break;
|
||
case unsupported_syntax:
|
||
err_msg = _("unsupported syntax");
|
||
break;
|
||
case unsupported:
|
||
as_bad (_("unsupported instruction `%s'"),
|
||
pass1_mnem ? pass1_mnem : insn_name (current_templates->start));
|
||
return;
|
||
case unsupported_on_arch:
|
||
as_bad (_("`%s' is not supported on `%s%s'"),
|
||
pass1_mnem ? pass1_mnem : insn_name (current_templates->start),
|
||
cpu_arch_name ? cpu_arch_name : default_arch,
|
||
cpu_sub_arch_name ? cpu_sub_arch_name : "");
|
||
return;
|
||
case unsupported_64bit:
|
||
if (ISLOWER (mnem_suffix))
|
||
{
|
||
if (flag_code == CODE_64BIT)
|
||
as_bad (_("`%s%c' is not supported in 64-bit mode"),
|
||
pass1_mnem ? pass1_mnem : insn_name (current_templates->start),
|
||
mnem_suffix);
|
||
else
|
||
as_bad (_("`%s%c' is only supported in 64-bit mode"),
|
||
pass1_mnem ? pass1_mnem : insn_name (current_templates->start),
|
||
mnem_suffix);
|
||
}
|
||
else
|
||
{
|
||
if (flag_code == CODE_64BIT)
|
||
as_bad (_("`%s' is not supported in 64-bit mode"),
|
||
pass1_mnem ? pass1_mnem : insn_name (current_templates->start));
|
||
else
|
||
as_bad (_("`%s' is only supported in 64-bit mode"),
|
||
pass1_mnem ? pass1_mnem : insn_name (current_templates->start));
|
||
}
|
||
return;
|
||
case invalid_sib_address:
|
||
err_msg = _("invalid SIB address");
|
||
break;
|
||
case invalid_vsib_address:
|
||
err_msg = _("invalid VSIB address");
|
||
break;
|
||
case invalid_vector_register_set:
|
||
err_msg = _("mask, index, and destination registers must be distinct");
|
||
break;
|
||
case invalid_tmm_register_set:
|
||
err_msg = _("all tmm registers must be distinct");
|
||
break;
|
||
case invalid_dest_and_src_register_set:
|
||
err_msg = _("destination and source registers must be distinct");
|
||
break;
|
||
case unsupported_vector_index_register:
|
||
err_msg = _("unsupported vector index register");
|
||
break;
|
||
case unsupported_broadcast:
|
||
err_msg = _("unsupported broadcast");
|
||
break;
|
||
case broadcast_needed:
|
||
err_msg = _("broadcast is needed for operand of such type");
|
||
break;
|
||
case unsupported_masking:
|
||
err_msg = _("unsupported masking");
|
||
break;
|
||
case mask_not_on_destination:
|
||
err_msg = _("mask not on destination operand");
|
||
break;
|
||
case no_default_mask:
|
||
err_msg = _("default mask isn't allowed");
|
||
break;
|
||
case unsupported_rc_sae:
|
||
err_msg = _("unsupported static rounding/sae");
|
||
break;
|
||
case invalid_register_operand:
|
||
err_msg = _("invalid register operand");
|
||
break;
|
||
}
|
||
as_bad (_("%s for `%s'"), err_msg,
|
||
pass1_mnem ? pass1_mnem : insn_name (current_templates->start));
|
||
return;
|
||
}
|
||
|
||
free (copy);
|
||
|
||
if (sse_check != check_none
|
||
/* The opcode space check isn't strictly needed; it's there only to
|
||
bypass the logic below when easily possible. */
|
||
&& t->opcode_space >= SPACE_0F
|
||
&& t->opcode_space <= SPACE_0F3A
|
||
&& !i.tm.cpu_flags.bitfield.cpusse4a
|
||
&& !is_any_vex_encoding (t))
|
||
{
|
||
bool simd = false;
|
||
|
||
for (j = 0; j < t->operands; ++j)
|
||
{
|
||
if (t->operand_types[j].bitfield.class == RegMMX)
|
||
break;
|
||
if (t->operand_types[j].bitfield.class == RegSIMD)
|
||
simd = true;
|
||
}
|
||
|
||
if (j >= t->operands && simd)
|
||
(sse_check == check_warning
|
||
? as_warn
|
||
: as_bad) (_("SSE instruction `%s' is used"), insn_name (&i.tm));
|
||
}
|
||
|
||
if (i.tm.opcode_modifier.fwait)
|
||
if (!add_prefix (FWAIT_OPCODE))
|
||
return;
|
||
|
||
/* Check if REP prefix is OK. */
|
||
if (i.rep_prefix && i.tm.opcode_modifier.prefixok != PrefixRep)
|
||
{
|
||
as_bad (_("invalid instruction `%s' after `%s'"),
|
||
insn_name (&i.tm), i.rep_prefix);
|
||
return;
|
||
}
|
||
|
||
/* Check for lock without a lockable instruction. Destination operand
|
||
must be memory unless it is xchg (0x86). */
|
||
if (i.prefix[LOCK_PREFIX])
|
||
{
|
||
if (i.tm.opcode_modifier.prefixok < PrefixLock
|
||
|| i.mem_operands == 0
|
||
|| (i.tm.base_opcode != 0x86
|
||
&& !(i.flags[i.operands - 1] & Operand_Mem)))
|
||
{
|
||
as_bad (_("expecting lockable instruction after `lock'"));
|
||
return;
|
||
}
|
||
|
||
/* Zap the redundant prefix from XCHG when optimizing. */
|
||
if (i.tm.base_opcode == 0x86 && optimize && !i.no_optimize)
|
||
i.prefix[LOCK_PREFIX] = 0;
|
||
}
|
||
|
||
if (is_any_vex_encoding (&i.tm)
|
||
|| i.tm.operand_types[i.imm_operands].bitfield.class >= RegMMX
|
||
|| i.tm.operand_types[i.imm_operands + 1].bitfield.class >= RegMMX)
|
||
{
|
||
/* Check for data size prefix on VEX/XOP/EVEX encoded and SIMD insns. */
|
||
if (i.prefix[DATA_PREFIX])
|
||
{
|
||
as_bad (_("data size prefix invalid with `%s'"), insn_name (&i.tm));
|
||
return;
|
||
}
|
||
|
||
/* Don't allow e.g. KMOV in TLS code sequences. */
|
||
for (j = i.imm_operands; j < i.operands; ++j)
|
||
switch (i.reloc[j])
|
||
{
|
||
case BFD_RELOC_386_TLS_GOTIE:
|
||
case BFD_RELOC_386_TLS_LE_32:
|
||
case BFD_RELOC_X86_64_GOTTPOFF:
|
||
case BFD_RELOC_X86_64_TLSLD:
|
||
as_bad (_("TLS relocation cannot be used with `%s'"), insn_name (&i.tm));
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Check if HLE prefix is OK. */
|
||
if (i.hle_prefix && !check_hle ())
|
||
return;
|
||
|
||
/* Check BND prefix. */
|
||
if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
|
||
as_bad (_("expecting valid branch instruction after `bnd'"));
|
||
|
||
/* Check NOTRACK prefix. */
|
||
if (i.notrack_prefix && i.tm.opcode_modifier.prefixok != PrefixNoTrack)
|
||
as_bad (_("expecting indirect branch instruction after `notrack'"));
|
||
|
||
if (i.tm.cpu_flags.bitfield.cpumpx)
|
||
{
|
||
if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
|
||
as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
|
||
else if (flag_code != CODE_16BIT
|
||
? i.prefix[ADDR_PREFIX]
|
||
: i.mem_operands && !i.prefix[ADDR_PREFIX])
|
||
as_bad (_("16-bit address isn't allowed in MPX instructions"));
|
||
}
|
||
|
||
/* Insert BND prefix. */
|
||
if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
|
||
{
|
||
if (!i.prefix[BND_PREFIX])
|
||
add_prefix (BND_PREFIX_OPCODE);
|
||
else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
|
||
{
|
||
as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
|
||
i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
|
||
}
|
||
}
|
||
|
||
/* Check string instruction segment overrides. */
|
||
if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
|
||
{
|
||
gas_assert (i.mem_operands);
|
||
if (!check_string ())
|
||
return;
|
||
i.disp_operands = 0;
|
||
}
|
||
|
||
/* The memory operand of (%dx) should be only used with input/output
|
||
instructions (base opcodes: 0x6c, 0x6e, 0xec, 0xee). */
|
||
if (i.input_output_operand
|
||
&& ((i.tm.base_opcode | 0x82) != 0xee
|
||
|| i.tm.opcode_space != SPACE_BASE))
|
||
{
|
||
as_bad (_("input/output port address isn't allowed with `%s'"),
|
||
insn_name (&i.tm));
|
||
return;
|
||
}
|
||
|
||
if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
|
||
optimize_encoding ();
|
||
|
||
if (use_unaligned_vector_move)
|
||
encode_with_unaligned_vector_move ();
|
||
|
||
if (!process_suffix ())
|
||
return;
|
||
|
||
/* Check if IP-relative addressing requirements can be satisfied. */
|
||
if (i.tm.cpu_flags.bitfield.cpuprefetchi
|
||
&& !(i.base_reg && i.base_reg->reg_num == RegIP))
|
||
as_warn (_("'%s' only supports RIP-relative address"), insn_name (&i.tm));
|
||
|
||
/* Update operand types and check extended states. */
|
||
for (j = 0; j < i.operands; j++)
|
||
{
|
||
i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
|
||
switch (i.tm.operand_types[j].bitfield.class)
|
||
{
|
||
default:
|
||
break;
|
||
case RegMMX:
|
||
i.xstate |= xstate_mmx;
|
||
break;
|
||
case RegMask:
|
||
i.xstate |= xstate_mask;
|
||
break;
|
||
case RegSIMD:
|
||
if (i.tm.operand_types[j].bitfield.tmmword)
|
||
i.xstate |= xstate_tmm;
|
||
else if (i.tm.operand_types[j].bitfield.zmmword)
|
||
i.xstate |= xstate_zmm;
|
||
else if (i.tm.operand_types[j].bitfield.ymmword)
|
||
i.xstate |= xstate_ymm;
|
||
else if (i.tm.operand_types[j].bitfield.xmmword)
|
||
i.xstate |= xstate_xmm;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Make still unresolved immediate matches conform to size of immediate
|
||
given in i.suffix. */
|
||
if (!finalize_imm ())
|
||
return;
|
||
|
||
if (i.types[0].bitfield.imm1)
|
||
i.imm_operands = 0; /* kludge for shift insns. */
|
||
|
||
/* For insns with operands there are more diddles to do to the opcode. */
|
||
if (i.operands)
|
||
{
|
||
if (!process_operands ())
|
||
return;
|
||
}
|
||
else if (!quiet_warnings && i.tm.opcode_modifier.operandconstraint == UGH)
|
||
{
|
||
/* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
|
||
as_warn (_("translating to `%sp'"), insn_name (&i.tm));
|
||
}
|
||
|
||
if (is_any_vex_encoding (&i.tm))
|
||
{
|
||
if (!cpu_arch_flags.bitfield.cpui286)
|
||
{
|
||
as_bad (_("instruction `%s' isn't supported outside of protected mode."),
|
||
insn_name (&i.tm));
|
||
return;
|
||
}
|
||
|
||
/* Check for explicit REX prefix. */
|
||
if (i.prefix[REX_PREFIX] || i.rex_encoding)
|
||
{
|
||
as_bad (_("REX prefix invalid with `%s'"), insn_name (&i.tm));
|
||
return;
|
||
}
|
||
|
||
if (i.tm.opcode_modifier.vex)
|
||
build_vex_prefix (t);
|
||
else
|
||
build_evex_prefix ();
|
||
|
||
/* The individual REX.RXBW bits got consumed. */
|
||
i.rex &= REX_OPCODE;
|
||
}
|
||
|
||
/* Handle conversion of 'int $3' --> special int3 insn. */
|
||
if (i.tm.mnem_off == MN_int
|
||
&& i.op[0].imms->X_add_number == 3)
|
||
{
|
||
i.tm.base_opcode = INT3_OPCODE;
|
||
i.imm_operands = 0;
|
||
}
|
||
|
||
if ((i.tm.opcode_modifier.jump == JUMP
|
||
|| i.tm.opcode_modifier.jump == JUMP_BYTE
|
||
|| i.tm.opcode_modifier.jump == JUMP_DWORD)
|
||
&& i.op[0].disps->X_op == O_constant)
|
||
{
|
||
/* Convert "jmp constant" (and "call constant") to a jump (call) to
|
||
the absolute address given by the constant. Since ix86 jumps and
|
||
calls are pc relative, we need to generate a reloc. */
|
||
i.op[0].disps->X_add_symbol = &abs_symbol;
|
||
i.op[0].disps->X_op = O_symbol;
|
||
}
|
||
|
||
/* For 8 bit registers we need an empty rex prefix. Also if the
|
||
instruction already has a prefix, we need to convert old
|
||
registers to new ones. */
|
||
|
||
if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
|
||
&& (i.op[0].regs->reg_flags & RegRex64) != 0)
|
||
|| (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
|
||
&& (i.op[1].regs->reg_flags & RegRex64) != 0)
|
||
|| (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
|
||
|| (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
|
||
&& i.rex != 0))
|
||
{
|
||
int x;
|
||
|
||
i.rex |= REX_OPCODE;
|
||
for (x = 0; x < 2; x++)
|
||
{
|
||
/* Look for 8 bit operand that uses old registers. */
|
||
if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
|
||
&& (i.op[x].regs->reg_flags & RegRex64) == 0)
|
||
{
|
||
gas_assert (!(i.op[x].regs->reg_flags & RegRex));
|
||
/* In case it is "hi" register, give up. */
|
||
if (i.op[x].regs->reg_num > 3)
|
||
as_bad (_("can't encode register '%s%s' in an "
|
||
"instruction requiring REX prefix."),
|
||
register_prefix, i.op[x].regs->reg_name);
|
||
|
||
/* Otherwise it is equivalent to the extended register.
|
||
Since the encoding doesn't change this is merely
|
||
cosmetic cleanup for debug output. */
|
||
|
||
i.op[x].regs = i.op[x].regs + 8;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (i.rex == 0 && i.rex_encoding)
|
||
{
|
||
/* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
|
||
that uses legacy register. If it is "hi" register, don't add
|
||
the REX_OPCODE byte. */
|
||
int x;
|
||
for (x = 0; x < 2; x++)
|
||
if (i.types[x].bitfield.class == Reg
|
||
&& i.types[x].bitfield.byte
|
||
&& (i.op[x].regs->reg_flags & RegRex64) == 0
|
||
&& i.op[x].regs->reg_num > 3)
|
||
{
|
||
gas_assert (!(i.op[x].regs->reg_flags & RegRex));
|
||
i.rex_encoding = false;
|
||
break;
|
||
}
|
||
|
||
if (i.rex_encoding)
|
||
i.rex = REX_OPCODE;
|
||
}
|
||
|
||
if (i.rex != 0)
|
||
add_prefix (REX_OPCODE | i.rex);
|
||
|
||
insert_lfence_before ();
|
||
|
||
/* We are ready to output the insn. */
|
||
output_insn ();
|
||
|
||
insert_lfence_after ();
|
||
|
||
last_insn.seg = now_seg;
|
||
|
||
if (i.tm.opcode_modifier.isprefix)
|
||
{
|
||
last_insn.kind = last_insn_prefix;
|
||
last_insn.name = insn_name (&i.tm);
|
||
last_insn.file = as_where (&last_insn.line);
|
||
}
|
||
else
|
||
last_insn.kind = last_insn_other;
|
||
}
|
||
|
||
/* The Q suffix is generally valid only in 64-bit mode, with very few
|
||
exceptions: fild, fistp, fisttp, and cmpxchg8b. Note that for fild
|
||
and fisttp only one of their two templates is matched below: That's
|
||
sufficient since other relevant attributes are the same between both
|
||
respective templates. */
|
||
static INLINE bool q_suffix_allowed(const insn_template *t)
|
||
{
|
||
return flag_code == CODE_64BIT
|
||
|| (t->opcode_space == SPACE_BASE
|
||
&& t->base_opcode == 0xdf
|
||
&& (t->extension_opcode & 1)) /* fild / fistp / fisttp */
|
||
|| t->mnem_off == MN_cmpxchg8b;
|
||
}
|
||
|
||
static const char *
|
||
parse_insn (const char *line, char *mnemonic)
|
||
{
|
||
const char *l = line, *token_start = l;
|
||
char *mnem_p;
|
||
bool pass1 = !current_templates;
|
||
int supported;
|
||
const insn_template *t;
|
||
char *dot_p = NULL;
|
||
|
||
while (1)
|
||
{
|
||
mnem_p = mnemonic;
|
||
while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
|
||
{
|
||
if (*mnem_p == '.')
|
||
dot_p = mnem_p;
|
||
mnem_p++;
|
||
if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
|
||
{
|
||
as_bad (_("no such instruction: `%s'"), token_start);
|
||
return NULL;
|
||
}
|
||
l++;
|
||
}
|
||
if (!is_space_char (*l)
|
||
&& *l != END_OF_INSN
|
||
&& (intel_syntax
|
||
|| (*l != PREFIX_SEPARATOR
|
||
&& *l != ',')))
|
||
{
|
||
as_bad (_("invalid character %s in mnemonic"),
|
||
output_invalid (*l));
|
||
return NULL;
|
||
}
|
||
if (token_start == l)
|
||
{
|
||
if (!intel_syntax && *l == PREFIX_SEPARATOR)
|
||
as_bad (_("expecting prefix; got nothing"));
|
||
else
|
||
as_bad (_("expecting mnemonic; got nothing"));
|
||
return NULL;
|
||
}
|
||
|
||
/* Look up instruction (or prefix) via hash table. */
|
||
current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
|
||
|
||
if (*l != END_OF_INSN
|
||
&& (!is_space_char (*l) || l[1] != END_OF_INSN)
|
||
&& current_templates
|
||
&& current_templates->start->opcode_modifier.isprefix)
|
||
{
|
||
if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
|
||
{
|
||
as_bad ((flag_code != CODE_64BIT
|
||
? _("`%s' is only supported in 64-bit mode")
|
||
: _("`%s' is not supported in 64-bit mode")),
|
||
insn_name (current_templates->start));
|
||
return NULL;
|
||
}
|
||
/* If we are in 16-bit mode, do not allow addr16 or data16.
|
||
Similarly, in 32-bit mode, do not allow addr32 or data32. */
|
||
if ((current_templates->start->opcode_modifier.size == SIZE16
|
||
|| current_templates->start->opcode_modifier.size == SIZE32)
|
||
&& flag_code != CODE_64BIT
|
||
&& ((current_templates->start->opcode_modifier.size == SIZE32)
|
||
^ (flag_code == CODE_16BIT)))
|
||
{
|
||
as_bad (_("redundant %s prefix"),
|
||
insn_name (current_templates->start));
|
||
return NULL;
|
||
}
|
||
|
||
if (current_templates->start->base_opcode == PSEUDO_PREFIX)
|
||
{
|
||
/* Handle pseudo prefixes. */
|
||
switch (current_templates->start->extension_opcode)
|
||
{
|
||
case Prefix_Disp8:
|
||
/* {disp8} */
|
||
i.disp_encoding = disp_encoding_8bit;
|
||
break;
|
||
case Prefix_Disp16:
|
||
/* {disp16} */
|
||
i.disp_encoding = disp_encoding_16bit;
|
||
break;
|
||
case Prefix_Disp32:
|
||
/* {disp32} */
|
||
i.disp_encoding = disp_encoding_32bit;
|
||
break;
|
||
case Prefix_Load:
|
||
/* {load} */
|
||
i.dir_encoding = dir_encoding_load;
|
||
break;
|
||
case Prefix_Store:
|
||
/* {store} */
|
||
i.dir_encoding = dir_encoding_store;
|
||
break;
|
||
case Prefix_VEX:
|
||
/* {vex} */
|
||
i.vec_encoding = vex_encoding_vex;
|
||
break;
|
||
case Prefix_VEX3:
|
||
/* {vex3} */
|
||
i.vec_encoding = vex_encoding_vex3;
|
||
break;
|
||
case Prefix_EVEX:
|
||
/* {evex} */
|
||
i.vec_encoding = vex_encoding_evex;
|
||
break;
|
||
case Prefix_REX:
|
||
/* {rex} */
|
||
i.rex_encoding = true;
|
||
break;
|
||
case Prefix_NoOptimize:
|
||
/* {nooptimize} */
|
||
i.no_optimize = true;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Add prefix, checking for repeated prefixes. */
|
||
switch (add_prefix (current_templates->start->base_opcode))
|
||
{
|
||
case PREFIX_EXIST:
|
||
return NULL;
|
||
case PREFIX_DS:
|
||
if (current_templates->start->cpu_flags.bitfield.cpuibt)
|
||
i.notrack_prefix = insn_name (current_templates->start);
|
||
break;
|
||
case PREFIX_REP:
|
||
if (current_templates->start->cpu_flags.bitfield.cpuhle)
|
||
i.hle_prefix = insn_name (current_templates->start);
|
||
else if (current_templates->start->cpu_flags.bitfield.cpumpx)
|
||
i.bnd_prefix = insn_name (current_templates->start);
|
||
else
|
||
i.rep_prefix = insn_name (current_templates->start);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
/* Skip past PREFIX_SEPARATOR and reset token_start. */
|
||
token_start = ++l;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
if (!current_templates)
|
||
{
|
||
/* Deprecated functionality (new code should use pseudo-prefixes instead):
|
||
Check if we should swap operand or force 32bit displacement in
|
||
encoding. */
|
||
if (mnem_p - 2 == dot_p && dot_p[1] == 's')
|
||
i.dir_encoding = dir_encoding_swap;
|
||
else if (mnem_p - 3 == dot_p
|
||
&& dot_p[1] == 'd'
|
||
&& dot_p[2] == '8')
|
||
i.disp_encoding = disp_encoding_8bit;
|
||
else if (mnem_p - 4 == dot_p
|
||
&& dot_p[1] == 'd'
|
||
&& dot_p[2] == '3'
|
||
&& dot_p[3] == '2')
|
||
i.disp_encoding = disp_encoding_32bit;
|
||
else
|
||
goto check_suffix;
|
||
mnem_p = dot_p;
|
||
*dot_p = '\0';
|
||
current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
|
||
}
|
||
|
||
if (!current_templates || !pass1)
|
||
{
|
||
current_templates = NULL;
|
||
|
||
check_suffix:
|
||
if (mnem_p > mnemonic)
|
||
{
|
||
/* See if we can get a match by trimming off a suffix. */
|
||
switch (mnem_p[-1])
|
||
{
|
||
case WORD_MNEM_SUFFIX:
|
||
if (intel_syntax && (intel_float_operand (mnemonic) & 2))
|
||
i.suffix = SHORT_MNEM_SUFFIX;
|
||
else
|
||
/* Fall through. */
|
||
case BYTE_MNEM_SUFFIX:
|
||
case QWORD_MNEM_SUFFIX:
|
||
i.suffix = mnem_p[-1];
|
||
mnem_p[-1] = '\0';
|
||
current_templates
|
||
= (const templates *) str_hash_find (op_hash, mnemonic);
|
||
break;
|
||
case SHORT_MNEM_SUFFIX:
|
||
case LONG_MNEM_SUFFIX:
|
||
if (!intel_syntax)
|
||
{
|
||
i.suffix = mnem_p[-1];
|
||
mnem_p[-1] = '\0';
|
||
current_templates
|
||
= (const templates *) str_hash_find (op_hash, mnemonic);
|
||
}
|
||
break;
|
||
|
||
/* Intel Syntax. */
|
||
case 'd':
|
||
if (intel_syntax)
|
||
{
|
||
if (intel_float_operand (mnemonic) == 1)
|
||
i.suffix = SHORT_MNEM_SUFFIX;
|
||
else
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
mnem_p[-1] = '\0';
|
||
current_templates
|
||
= (const templates *) str_hash_find (op_hash, mnemonic);
|
||
}
|
||
/* For compatibility reasons accept MOVSD and CMPSD without
|
||
operands even in AT&T mode. */
|
||
else if (*l == END_OF_INSN
|
||
|| (is_space_char (*l) && l[1] == END_OF_INSN))
|
||
{
|
||
mnem_p[-1] = '\0';
|
||
current_templates
|
||
= (const templates *) str_hash_find (op_hash, mnemonic);
|
||
if (current_templates != NULL
|
||
/* MOVS or CMPS */
|
||
&& (current_templates->start->base_opcode | 2) == 0xa6
|
||
&& current_templates->start->opcode_space
|
||
== SPACE_BASE
|
||
&& mnem_p[-2] == 's')
|
||
{
|
||
as_warn (_("found `%sd'; assuming `%sl' was meant"),
|
||
mnemonic, mnemonic);
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
}
|
||
else
|
||
{
|
||
current_templates = NULL;
|
||
mnem_p[-1] = 'd';
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!current_templates)
|
||
{
|
||
if (pass1)
|
||
as_bad (_("no such instruction: `%s'"), token_start);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
if (current_templates->start->opcode_modifier.jump == JUMP
|
||
|| current_templates->start->opcode_modifier.jump == JUMP_BYTE)
|
||
{
|
||
/* Check for a branch hint. We allow ",pt" and ",pn" for
|
||
predict taken and predict not taken respectively.
|
||
I'm not sure that branch hints actually do anything on loop
|
||
and jcxz insns (JumpByte) for current Pentium4 chips. They
|
||
may work in the future and it doesn't hurt to accept them
|
||
now. */
|
||
if (l[0] == ',' && l[1] == 'p')
|
||
{
|
||
if (l[2] == 't')
|
||
{
|
||
if (!add_prefix (DS_PREFIX_OPCODE))
|
||
return NULL;
|
||
l += 3;
|
||
}
|
||
else if (l[2] == 'n')
|
||
{
|
||
if (!add_prefix (CS_PREFIX_OPCODE))
|
||
return NULL;
|
||
l += 3;
|
||
}
|
||
}
|
||
}
|
||
/* Any other comma loses. */
|
||
if (*l == ',')
|
||
{
|
||
as_bad (_("invalid character %s in mnemonic"),
|
||
output_invalid (*l));
|
||
return NULL;
|
||
}
|
||
|
||
/* Check if instruction is supported on specified architecture. */
|
||
supported = 0;
|
||
for (t = current_templates->start; t < current_templates->end; ++t)
|
||
{
|
||
supported |= cpu_flags_match (t);
|
||
|
||
if (i.suffix == QWORD_MNEM_SUFFIX && !q_suffix_allowed (t))
|
||
supported &= ~CPU_FLAGS_64BIT_MATCH;
|
||
|
||
if (supported == CPU_FLAGS_PERFECT_MATCH)
|
||
return l;
|
||
}
|
||
|
||
if (pass1)
|
||
{
|
||
if (supported & CPU_FLAGS_64BIT_MATCH)
|
||
i.error = unsupported_on_arch;
|
||
else
|
||
i.error = unsupported_64bit;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static char *
|
||
parse_operands (char *l, const char *mnemonic)
|
||
{
|
||
char *token_start;
|
||
|
||
/* 1 if operand is pending after ','. */
|
||
unsigned int expecting_operand = 0;
|
||
|
||
while (*l != END_OF_INSN)
|
||
{
|
||
/* Non-zero if operand parens not balanced. */
|
||
unsigned int paren_not_balanced = 0;
|
||
/* True if inside double quotes. */
|
||
bool in_quotes = false;
|
||
|
||
/* Skip optional white space before operand. */
|
||
if (is_space_char (*l))
|
||
++l;
|
||
if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
|
||
{
|
||
as_bad (_("invalid character %s before operand %d"),
|
||
output_invalid (*l),
|
||
i.operands + 1);
|
||
return NULL;
|
||
}
|
||
token_start = l; /* After white space. */
|
||
while (in_quotes || paren_not_balanced || *l != ',')
|
||
{
|
||
if (*l == END_OF_INSN)
|
||
{
|
||
if (in_quotes)
|
||
{
|
||
as_bad (_("unbalanced double quotes in operand %d."),
|
||
i.operands + 1);
|
||
return NULL;
|
||
}
|
||
if (paren_not_balanced)
|
||
{
|
||
know (!intel_syntax);
|
||
as_bad (_("unbalanced parenthesis in operand %d."),
|
||
i.operands + 1);
|
||
return NULL;
|
||
}
|
||
else
|
||
break; /* we are done */
|
||
}
|
||
else if (*l == '\\' && l[1] == '"')
|
||
++l;
|
||
else if (*l == '"')
|
||
in_quotes = !in_quotes;
|
||
else if (!in_quotes && !is_operand_char (*l) && !is_space_char (*l))
|
||
{
|
||
as_bad (_("invalid character %s in operand %d"),
|
||
output_invalid (*l),
|
||
i.operands + 1);
|
||
return NULL;
|
||
}
|
||
if (!intel_syntax && !in_quotes)
|
||
{
|
||
if (*l == '(')
|
||
++paren_not_balanced;
|
||
if (*l == ')')
|
||
--paren_not_balanced;
|
||
}
|
||
l++;
|
||
}
|
||
if (l != token_start)
|
||
{ /* Yes, we've read in another operand. */
|
||
unsigned int operand_ok;
|
||
this_operand = i.operands++;
|
||
if (i.operands > MAX_OPERANDS)
|
||
{
|
||
as_bad (_("spurious operands; (%d operands/instruction max)"),
|
||
MAX_OPERANDS);
|
||
return NULL;
|
||
}
|
||
i.types[this_operand].bitfield.unspecified = 1;
|
||
/* Now parse operand adding info to 'i' as we go along. */
|
||
END_STRING_AND_SAVE (l);
|
||
|
||
if (i.mem_operands > 1)
|
||
{
|
||
as_bad (_("too many memory references for `%s'"),
|
||
mnemonic);
|
||
return 0;
|
||
}
|
||
|
||
if (intel_syntax)
|
||
operand_ok =
|
||
i386_intel_operand (token_start,
|
||
intel_float_operand (mnemonic));
|
||
else
|
||
operand_ok = i386_att_operand (token_start);
|
||
|
||
RESTORE_END_STRING (l);
|
||
if (!operand_ok)
|
||
return NULL;
|
||
}
|
||
else
|
||
{
|
||
if (expecting_operand)
|
||
{
|
||
expecting_operand_after_comma:
|
||
as_bad (_("expecting operand after ','; got nothing"));
|
||
return NULL;
|
||
}
|
||
if (*l == ',')
|
||
{
|
||
as_bad (_("expecting operand before ','; got nothing"));
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Now *l must be either ',' or END_OF_INSN. */
|
||
if (*l == ',')
|
||
{
|
||
if (*++l == END_OF_INSN)
|
||
{
|
||
/* Just skip it, if it's \n complain. */
|
||
goto expecting_operand_after_comma;
|
||
}
|
||
expecting_operand = 1;
|
||
}
|
||
}
|
||
return l;
|
||
}
|
||
|
||
static void
|
||
swap_2_operands (unsigned int xchg1, unsigned int xchg2)
|
||
{
|
||
union i386_op temp_op;
|
||
i386_operand_type temp_type;
|
||
unsigned int temp_flags;
|
||
enum bfd_reloc_code_real temp_reloc;
|
||
|
||
temp_type = i.types[xchg2];
|
||
i.types[xchg2] = i.types[xchg1];
|
||
i.types[xchg1] = temp_type;
|
||
|
||
temp_flags = i.flags[xchg2];
|
||
i.flags[xchg2] = i.flags[xchg1];
|
||
i.flags[xchg1] = temp_flags;
|
||
|
||
temp_op = i.op[xchg2];
|
||
i.op[xchg2] = i.op[xchg1];
|
||
i.op[xchg1] = temp_op;
|
||
|
||
temp_reloc = i.reloc[xchg2];
|
||
i.reloc[xchg2] = i.reloc[xchg1];
|
||
i.reloc[xchg1] = temp_reloc;
|
||
|
||
if (i.mask.reg)
|
||
{
|
||
if (i.mask.operand == xchg1)
|
||
i.mask.operand = xchg2;
|
||
else if (i.mask.operand == xchg2)
|
||
i.mask.operand = xchg1;
|
||
}
|
||
if (i.broadcast.type || i.broadcast.bytes)
|
||
{
|
||
if (i.broadcast.operand == xchg1)
|
||
i.broadcast.operand = xchg2;
|
||
else if (i.broadcast.operand == xchg2)
|
||
i.broadcast.operand = xchg1;
|
||
}
|
||
}
|
||
|
||
static void
|
||
swap_operands (void)
|
||
{
|
||
switch (i.operands)
|
||
{
|
||
case 5:
|
||
case 4:
|
||
swap_2_operands (1, i.operands - 2);
|
||
/* Fall through. */
|
||
case 3:
|
||
case 2:
|
||
swap_2_operands (0, i.operands - 1);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
if (i.mem_operands == 2)
|
||
{
|
||
const reg_entry *temp_seg;
|
||
temp_seg = i.seg[0];
|
||
i.seg[0] = i.seg[1];
|
||
i.seg[1] = temp_seg;
|
||
}
|
||
}
|
||
|
||
/* Try to ensure constant immediates are represented in the smallest
|
||
opcode possible. */
|
||
static void
|
||
optimize_imm (void)
|
||
{
|
||
char guess_suffix = 0;
|
||
int op;
|
||
|
||
if (i.suffix)
|
||
guess_suffix = i.suffix;
|
||
else if (i.reg_operands)
|
||
{
|
||
/* Figure out a suffix from the last register operand specified.
|
||
We can't do this properly yet, i.e. excluding special register
|
||
instances, but the following works for instructions with
|
||
immediates. In any case, we can't set i.suffix yet. */
|
||
for (op = i.operands; --op >= 0;)
|
||
if (i.types[op].bitfield.class != Reg)
|
||
continue;
|
||
else if (i.types[op].bitfield.byte)
|
||
{
|
||
guess_suffix = BYTE_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
else if (i.types[op].bitfield.word)
|
||
{
|
||
guess_suffix = WORD_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
else if (i.types[op].bitfield.dword)
|
||
{
|
||
guess_suffix = LONG_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
else if (i.types[op].bitfield.qword)
|
||
{
|
||
guess_suffix = QWORD_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
}
|
||
else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
|
||
guess_suffix = WORD_MNEM_SUFFIX;
|
||
|
||
for (op = i.operands; --op >= 0;)
|
||
if (operand_type_check (i.types[op], imm))
|
||
{
|
||
switch (i.op[op].imms->X_op)
|
||
{
|
||
case O_constant:
|
||
/* If a suffix is given, this operand may be shortened. */
|
||
switch (guess_suffix)
|
||
{
|
||
case LONG_MNEM_SUFFIX:
|
||
i.types[op].bitfield.imm32 = 1;
|
||
i.types[op].bitfield.imm64 = 1;
|
||
break;
|
||
case WORD_MNEM_SUFFIX:
|
||
i.types[op].bitfield.imm16 = 1;
|
||
i.types[op].bitfield.imm32 = 1;
|
||
i.types[op].bitfield.imm32s = 1;
|
||
i.types[op].bitfield.imm64 = 1;
|
||
break;
|
||
case BYTE_MNEM_SUFFIX:
|
||
i.types[op].bitfield.imm8 = 1;
|
||
i.types[op].bitfield.imm8s = 1;
|
||
i.types[op].bitfield.imm16 = 1;
|
||
i.types[op].bitfield.imm32 = 1;
|
||
i.types[op].bitfield.imm32s = 1;
|
||
i.types[op].bitfield.imm64 = 1;
|
||
break;
|
||
}
|
||
|
||
/* If this operand is at most 16 bits, convert it
|
||
to a signed 16 bit number before trying to see
|
||
whether it will fit in an even smaller size.
|
||
This allows a 16-bit operand such as $0xffe0 to
|
||
be recognised as within Imm8S range. */
|
||
if ((i.types[op].bitfield.imm16)
|
||
&& fits_in_unsigned_word (i.op[op].imms->X_add_number))
|
||
{
|
||
i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
|
||
^ 0x8000) - 0x8000);
|
||
}
|
||
#ifdef BFD64
|
||
/* Store 32-bit immediate in 64-bit for 64-bit BFD. */
|
||
if ((i.types[op].bitfield.imm32)
|
||
&& fits_in_unsigned_long (i.op[op].imms->X_add_number))
|
||
{
|
||
i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
|
||
^ ((offsetT) 1 << 31))
|
||
- ((offsetT) 1 << 31));
|
||
}
|
||
#endif
|
||
i.types[op]
|
||
= operand_type_or (i.types[op],
|
||
smallest_imm_type (i.op[op].imms->X_add_number));
|
||
|
||
/* We must avoid matching of Imm32 templates when 64bit
|
||
only immediate is available. */
|
||
if (guess_suffix == QWORD_MNEM_SUFFIX)
|
||
i.types[op].bitfield.imm32 = 0;
|
||
break;
|
||
|
||
case O_absent:
|
||
case O_register:
|
||
abort ();
|
||
|
||
/* Symbols and expressions. */
|
||
default:
|
||
/* Convert symbolic operand to proper sizes for matching, but don't
|
||
prevent matching a set of insns that only supports sizes other
|
||
than those matching the insn suffix. */
|
||
{
|
||
i386_operand_type mask, allowed;
|
||
const insn_template *t = current_templates->start;
|
||
|
||
operand_type_set (&mask, 0);
|
||
switch (guess_suffix)
|
||
{
|
||
case QWORD_MNEM_SUFFIX:
|
||
mask.bitfield.imm64 = 1;
|
||
mask.bitfield.imm32s = 1;
|
||
break;
|
||
case LONG_MNEM_SUFFIX:
|
||
mask.bitfield.imm32 = 1;
|
||
break;
|
||
case WORD_MNEM_SUFFIX:
|
||
mask.bitfield.imm16 = 1;
|
||
break;
|
||
case BYTE_MNEM_SUFFIX:
|
||
mask.bitfield.imm8 = 1;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
allowed = operand_type_and (t->operand_types[op], mask);
|
||
while (++t < current_templates->end)
|
||
{
|
||
allowed = operand_type_or (allowed, t->operand_types[op]);
|
||
allowed = operand_type_and (allowed, mask);
|
||
}
|
||
|
||
if (!operand_type_all_zero (&allowed))
|
||
i.types[op] = operand_type_and (i.types[op], mask);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Try to use the smallest displacement type too. */
|
||
static void
|
||
optimize_disp (void)
|
||
{
|
||
int op;
|
||
|
||
for (op = i.operands; --op >= 0;)
|
||
if (operand_type_check (i.types[op], disp))
|
||
{
|
||
if (i.op[op].disps->X_op == O_constant)
|
||
{
|
||
offsetT op_disp = i.op[op].disps->X_add_number;
|
||
|
||
if (!op_disp && i.types[op].bitfield.baseindex)
|
||
{
|
||
i.types[op] = operand_type_and_not (i.types[op], anydisp);
|
||
i.op[op].disps = NULL;
|
||
i.disp_operands--;
|
||
continue;
|
||
}
|
||
|
||
if (i.types[op].bitfield.disp16
|
||
&& fits_in_unsigned_word (op_disp))
|
||
{
|
||
/* If this operand is at most 16 bits, convert
|
||
to a signed 16 bit number and don't use 64bit
|
||
displacement. */
|
||
op_disp = ((op_disp ^ 0x8000) - 0x8000);
|
||
i.types[op].bitfield.disp64 = 0;
|
||
}
|
||
|
||
#ifdef BFD64
|
||
/* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
|
||
if ((flag_code != CODE_64BIT
|
||
? i.types[op].bitfield.disp32
|
||
: want_disp32 (current_templates->start)
|
||
&& (!current_templates->start->opcode_modifier.jump
|
||
|| i.jumpabsolute || i.types[op].bitfield.baseindex))
|
||
&& fits_in_unsigned_long (op_disp))
|
||
{
|
||
/* If this operand is at most 32 bits, convert
|
||
to a signed 32 bit number and don't use 64bit
|
||
displacement. */
|
||
op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
|
||
i.types[op].bitfield.disp64 = 0;
|
||
i.types[op].bitfield.disp32 = 1;
|
||
}
|
||
|
||
if (flag_code == CODE_64BIT && fits_in_signed_long (op_disp))
|
||
{
|
||
i.types[op].bitfield.disp64 = 0;
|
||
i.types[op].bitfield.disp32 = 1;
|
||
}
|
||
#endif
|
||
if ((i.types[op].bitfield.disp32
|
||
|| i.types[op].bitfield.disp16)
|
||
&& fits_in_disp8 (op_disp))
|
||
i.types[op].bitfield.disp8 = 1;
|
||
|
||
i.op[op].disps->X_add_number = op_disp;
|
||
}
|
||
else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
|
||
|| i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
|
||
{
|
||
fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
|
||
i.op[op].disps, 0, i.reloc[op]);
|
||
i.types[op] = operand_type_and_not (i.types[op], anydisp);
|
||
}
|
||
else
|
||
/* We only support 64bit displacement on constants. */
|
||
i.types[op].bitfield.disp64 = 0;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if there is a match in broadcast bytes between operand
|
||
GIVEN and instruction template T. */
|
||
|
||
static INLINE int
|
||
match_broadcast_size (const insn_template *t, unsigned int given)
|
||
{
|
||
return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
|
||
&& i.types[given].bitfield.byte)
|
||
|| (t->opcode_modifier.broadcast == WORD_BROADCAST
|
||
&& i.types[given].bitfield.word)
|
||
|| (t->opcode_modifier.broadcast == DWORD_BROADCAST
|
||
&& i.types[given].bitfield.dword)
|
||
|| (t->opcode_modifier.broadcast == QWORD_BROADCAST
|
||
&& i.types[given].bitfield.qword));
|
||
}
|
||
|
||
/* Check if operands are valid for the instruction. */
|
||
|
||
static int
|
||
check_VecOperands (const insn_template *t)
|
||
{
|
||
unsigned int op;
|
||
i386_cpu_flags cpu;
|
||
|
||
/* Templates allowing for ZMMword as well as YMMword and/or XMMword for
|
||
any one operand are implicity requiring AVX512VL support if the actual
|
||
operand size is YMMword or XMMword. Since this function runs after
|
||
template matching, there's no need to check for YMMword/XMMword in
|
||
the template. */
|
||
cpu = cpu_flags_and (t->cpu_flags, avx512);
|
||
if (!cpu_flags_all_zero (&cpu)
|
||
&& !t->cpu_flags.bitfield.cpuavx512vl
|
||
&& !cpu_arch_flags.bitfield.cpuavx512vl)
|
||
{
|
||
for (op = 0; op < t->operands; ++op)
|
||
{
|
||
if (t->operand_types[op].bitfield.zmmword
|
||
&& (i.types[op].bitfield.ymmword
|
||
|| i.types[op].bitfield.xmmword))
|
||
{
|
||
i.error = unsupported;
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Somewhat similarly, templates specifying both AVX and AVX2 are
|
||
requiring AVX2 support if the actual operand size is YMMword. */
|
||
if (t->cpu_flags.bitfield.cpuavx
|
||
&& t->cpu_flags.bitfield.cpuavx2
|
||
&& !cpu_arch_flags.bitfield.cpuavx2)
|
||
{
|
||
for (op = 0; op < t->operands; ++op)
|
||
{
|
||
if (t->operand_types[op].bitfield.xmmword
|
||
&& i.types[op].bitfield.ymmword)
|
||
{
|
||
i.error = unsupported;
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Without VSIB byte, we can't have a vector register for index. */
|
||
if (!t->opcode_modifier.sib
|
||
&& i.index_reg
|
||
&& (i.index_reg->reg_type.bitfield.xmmword
|
||
|| i.index_reg->reg_type.bitfield.ymmword
|
||
|| i.index_reg->reg_type.bitfield.zmmword))
|
||
{
|
||
i.error = unsupported_vector_index_register;
|
||
return 1;
|
||
}
|
||
|
||
/* Check if default mask is allowed. */
|
||
if (t->opcode_modifier.operandconstraint == NO_DEFAULT_MASK
|
||
&& (!i.mask.reg || i.mask.reg->reg_num == 0))
|
||
{
|
||
i.error = no_default_mask;
|
||
return 1;
|
||
}
|
||
|
||
/* For VSIB byte, we need a vector register for index, and all vector
|
||
registers must be distinct. */
|
||
if (t->opcode_modifier.sib && t->opcode_modifier.sib != SIBMEM)
|
||
{
|
||
if (!i.index_reg
|
||
|| !((t->opcode_modifier.sib == VECSIB128
|
||
&& i.index_reg->reg_type.bitfield.xmmword)
|
||
|| (t->opcode_modifier.sib == VECSIB256
|
||
&& i.index_reg->reg_type.bitfield.ymmword)
|
||
|| (t->opcode_modifier.sib == VECSIB512
|
||
&& i.index_reg->reg_type.bitfield.zmmword)))
|
||
{
|
||
i.error = invalid_vsib_address;
|
||
return 1;
|
||
}
|
||
|
||
gas_assert (i.reg_operands == 2 || i.mask.reg);
|
||
if (i.reg_operands == 2 && !i.mask.reg)
|
||
{
|
||
gas_assert (i.types[0].bitfield.class == RegSIMD);
|
||
gas_assert (i.types[0].bitfield.xmmword
|
||
|| i.types[0].bitfield.ymmword);
|
||
gas_assert (i.types[2].bitfield.class == RegSIMD);
|
||
gas_assert (i.types[2].bitfield.xmmword
|
||
|| i.types[2].bitfield.ymmword);
|
||
if (operand_check == check_none)
|
||
return 0;
|
||
if (register_number (i.op[0].regs)
|
||
!= register_number (i.index_reg)
|
||
&& register_number (i.op[2].regs)
|
||
!= register_number (i.index_reg)
|
||
&& register_number (i.op[0].regs)
|
||
!= register_number (i.op[2].regs))
|
||
return 0;
|
||
if (operand_check == check_error)
|
||
{
|
||
i.error = invalid_vector_register_set;
|
||
return 1;
|
||
}
|
||
as_warn (_("mask, index, and destination registers should be distinct"));
|
||
}
|
||
else if (i.reg_operands == 1 && i.mask.reg)
|
||
{
|
||
if (i.types[1].bitfield.class == RegSIMD
|
||
&& (i.types[1].bitfield.xmmword
|
||
|| i.types[1].bitfield.ymmword
|
||
|| i.types[1].bitfield.zmmword)
|
||
&& (register_number (i.op[1].regs)
|
||
== register_number (i.index_reg)))
|
||
{
|
||
if (operand_check == check_error)
|
||
{
|
||
i.error = invalid_vector_register_set;
|
||
return 1;
|
||
}
|
||
if (operand_check != check_none)
|
||
as_warn (_("index and destination registers should be distinct"));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* For AMX instructions with 3 TMM register operands, all operands
|
||
must be distinct. */
|
||
if (i.reg_operands == 3
|
||
&& t->operand_types[0].bitfield.tmmword
|
||
&& (i.op[0].regs == i.op[1].regs
|
||
|| i.op[0].regs == i.op[2].regs
|
||
|| i.op[1].regs == i.op[2].regs))
|
||
{
|
||
i.error = invalid_tmm_register_set;
|
||
return 1;
|
||
}
|
||
|
||
/* For some special instructions require that destination must be distinct
|
||
from source registers. */
|
||
if (t->opcode_modifier.operandconstraint == DISTINCT_DEST)
|
||
{
|
||
unsigned int dest_reg = i.operands - 1;
|
||
|
||
know (i.operands >= 3);
|
||
|
||
/* #UD if dest_reg == src1_reg or dest_reg == src2_reg. */
|
||
if (i.op[dest_reg - 1].regs == i.op[dest_reg].regs
|
||
|| (i.reg_operands > 2
|
||
&& i.op[dest_reg - 2].regs == i.op[dest_reg].regs))
|
||
{
|
||
i.error = invalid_dest_and_src_register_set;
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Check if broadcast is supported by the instruction and is applied
|
||
to the memory operand. */
|
||
if (i.broadcast.type || i.broadcast.bytes)
|
||
{
|
||
i386_operand_type type, overlap;
|
||
|
||
/* Check if specified broadcast is supported in this instruction,
|
||
and its broadcast bytes match the memory operand. */
|
||
op = i.broadcast.operand;
|
||
if (!t->opcode_modifier.broadcast
|
||
|| !(i.flags[op] & Operand_Mem)
|
||
|| (!i.types[op].bitfield.unspecified
|
||
&& !match_broadcast_size (t, op)))
|
||
{
|
||
bad_broadcast:
|
||
i.error = unsupported_broadcast;
|
||
return 1;
|
||
}
|
||
|
||
if (i.broadcast.type)
|
||
i.broadcast.bytes = ((1 << (t->opcode_modifier.broadcast - 1))
|
||
* i.broadcast.type);
|
||
operand_type_set (&type, 0);
|
||
switch (get_broadcast_bytes (t, false))
|
||
{
|
||
case 2:
|
||
type.bitfield.word = 1;
|
||
break;
|
||
case 4:
|
||
type.bitfield.dword = 1;
|
||
break;
|
||
case 8:
|
||
type.bitfield.qword = 1;
|
||
break;
|
||
case 16:
|
||
type.bitfield.xmmword = 1;
|
||
break;
|
||
case 32:
|
||
type.bitfield.ymmword = 1;
|
||
break;
|
||
case 64:
|
||
type.bitfield.zmmword = 1;
|
||
break;
|
||
default:
|
||
goto bad_broadcast;
|
||
}
|
||
|
||
overlap = operand_type_and (type, t->operand_types[op]);
|
||
if (t->operand_types[op].bitfield.class == RegSIMD
|
||
&& t->operand_types[op].bitfield.byte
|
||
+ t->operand_types[op].bitfield.word
|
||
+ t->operand_types[op].bitfield.dword
|
||
+ t->operand_types[op].bitfield.qword > 1)
|
||
{
|
||
overlap.bitfield.xmmword = 0;
|
||
overlap.bitfield.ymmword = 0;
|
||
overlap.bitfield.zmmword = 0;
|
||
}
|
||
if (operand_type_all_zero (&overlap))
|
||
goto bad_broadcast;
|
||
|
||
if (t->opcode_modifier.checkoperandsize)
|
||
{
|
||
unsigned int j;
|
||
|
||
type.bitfield.baseindex = 1;
|
||
for (j = 0; j < i.operands; ++j)
|
||
{
|
||
if (j != op
|
||
&& !operand_type_register_match(i.types[j],
|
||
t->operand_types[j],
|
||
type,
|
||
t->operand_types[op]))
|
||
goto bad_broadcast;
|
||
}
|
||
}
|
||
}
|
||
/* If broadcast is supported in this instruction, we need to check if
|
||
operand of one-element size isn't specified without broadcast. */
|
||
else if (t->opcode_modifier.broadcast && i.mem_operands)
|
||
{
|
||
/* Find memory operand. */
|
||
for (op = 0; op < i.operands; op++)
|
||
if (i.flags[op] & Operand_Mem)
|
||
break;
|
||
gas_assert (op < i.operands);
|
||
/* Check size of the memory operand. */
|
||
if (match_broadcast_size (t, op))
|
||
{
|
||
i.error = broadcast_needed;
|
||
return 1;
|
||
}
|
||
}
|
||
else
|
||
op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
|
||
|
||
/* Check if requested masking is supported. */
|
||
if (i.mask.reg)
|
||
{
|
||
switch (t->opcode_modifier.masking)
|
||
{
|
||
case BOTH_MASKING:
|
||
break;
|
||
case MERGING_MASKING:
|
||
if (i.mask.zeroing)
|
||
{
|
||
case 0:
|
||
i.error = unsupported_masking;
|
||
return 1;
|
||
}
|
||
break;
|
||
case DYNAMIC_MASKING:
|
||
/* Memory destinations allow only merging masking. */
|
||
if (i.mask.zeroing && i.mem_operands)
|
||
{
|
||
/* Find memory operand. */
|
||
for (op = 0; op < i.operands; op++)
|
||
if (i.flags[op] & Operand_Mem)
|
||
break;
|
||
gas_assert (op < i.operands);
|
||
if (op == i.operands - 1)
|
||
{
|
||
i.error = unsupported_masking;
|
||
return 1;
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Check if masking is applied to dest operand. */
|
||
if (i.mask.reg && (i.mask.operand != i.operands - 1))
|
||
{
|
||
i.error = mask_not_on_destination;
|
||
return 1;
|
||
}
|
||
|
||
/* Check RC/SAE. */
|
||
if (i.rounding.type != rc_none)
|
||
{
|
||
if (!t->opcode_modifier.sae
|
||
|| ((i.rounding.type != saeonly) != t->opcode_modifier.staticrounding)
|
||
|| i.mem_operands)
|
||
{
|
||
i.error = unsupported_rc_sae;
|
||
return 1;
|
||
}
|
||
|
||
/* Non-EVEX.LIG forms need to have a ZMM register as at least one
|
||
operand. */
|
||
if (t->opcode_modifier.evex != EVEXLIG)
|
||
{
|
||
for (op = 0; op < t->operands; ++op)
|
||
if (i.types[op].bitfield.zmmword)
|
||
break;
|
||
if (op >= t->operands)
|
||
{
|
||
i.error = operand_size_mismatch;
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check the special Imm4 cases; must be the first operand. */
|
||
if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
|
||
{
|
||
if (i.op[0].imms->X_op != O_constant
|
||
|| !fits_in_imm4 (i.op[0].imms->X_add_number))
|
||
{
|
||
i.error = bad_imm4;
|
||
return 1;
|
||
}
|
||
|
||
/* Turn off Imm<N> so that update_imm won't complain. */
|
||
operand_type_set (&i.types[0], 0);
|
||
}
|
||
|
||
/* Check vector Disp8 operand. */
|
||
if (t->opcode_modifier.disp8memshift
|
||
&& i.disp_encoding <= disp_encoding_8bit)
|
||
{
|
||
if (i.broadcast.bytes)
|
||
i.memshift = t->opcode_modifier.broadcast - 1;
|
||
else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
|
||
i.memshift = t->opcode_modifier.disp8memshift;
|
||
else
|
||
{
|
||
const i386_operand_type *type = NULL, *fallback = NULL;
|
||
|
||
i.memshift = 0;
|
||
for (op = 0; op < i.operands; op++)
|
||
if (i.flags[op] & Operand_Mem)
|
||
{
|
||
if (t->opcode_modifier.evex == EVEXLIG)
|
||
i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
|
||
else if (t->operand_types[op].bitfield.xmmword
|
||
+ t->operand_types[op].bitfield.ymmword
|
||
+ t->operand_types[op].bitfield.zmmword <= 1)
|
||
type = &t->operand_types[op];
|
||
else if (!i.types[op].bitfield.unspecified)
|
||
type = &i.types[op];
|
||
else /* Ambiguities get resolved elsewhere. */
|
||
fallback = &t->operand_types[op];
|
||
}
|
||
else if (i.types[op].bitfield.class == RegSIMD
|
||
&& t->opcode_modifier.evex != EVEXLIG)
|
||
{
|
||
if (i.types[op].bitfield.zmmword)
|
||
i.memshift = 6;
|
||
else if (i.types[op].bitfield.ymmword && i.memshift < 5)
|
||
i.memshift = 5;
|
||
else if (i.types[op].bitfield.xmmword && i.memshift < 4)
|
||
i.memshift = 4;
|
||
}
|
||
|
||
if (!type && !i.memshift)
|
||
type = fallback;
|
||
if (type)
|
||
{
|
||
if (type->bitfield.zmmword)
|
||
i.memshift = 6;
|
||
else if (type->bitfield.ymmword)
|
||
i.memshift = 5;
|
||
else if (type->bitfield.xmmword)
|
||
i.memshift = 4;
|
||
}
|
||
|
||
/* For the check in fits_in_disp8(). */
|
||
if (i.memshift == 0)
|
||
i.memshift = -1;
|
||
}
|
||
|
||
for (op = 0; op < i.operands; op++)
|
||
if (operand_type_check (i.types[op], disp)
|
||
&& i.op[op].disps->X_op == O_constant)
|
||
{
|
||
if (fits_in_disp8 (i.op[op].disps->X_add_number))
|
||
{
|
||
i.types[op].bitfield.disp8 = 1;
|
||
return 0;
|
||
}
|
||
i.types[op].bitfield.disp8 = 0;
|
||
}
|
||
}
|
||
|
||
i.memshift = 0;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Check if encoding requirements are met by the instruction. */
|
||
|
||
static int
|
||
VEX_check_encoding (const insn_template *t)
|
||
{
|
||
if (i.vec_encoding == vex_encoding_error)
|
||
{
|
||
i.error = unsupported;
|
||
return 1;
|
||
}
|
||
|
||
if (i.vec_encoding == vex_encoding_evex)
|
||
{
|
||
/* This instruction must be encoded with EVEX prefix. */
|
||
if (!is_evex_encoding (t))
|
||
{
|
||
i.error = unsupported;
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
if (!t->opcode_modifier.vex)
|
||
{
|
||
/* This instruction template doesn't have VEX prefix. */
|
||
if (i.vec_encoding != vex_encoding_default)
|
||
{
|
||
i.error = unsupported;
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Helper function for the progress() macro in match_template(). */
|
||
static INLINE enum i386_error progress (enum i386_error new,
|
||
enum i386_error last,
|
||
unsigned int line, unsigned int *line_p)
|
||
{
|
||
if (line <= *line_p)
|
||
return last;
|
||
*line_p = line;
|
||
return new;
|
||
}
|
||
|
||
static const insn_template *
|
||
match_template (char mnem_suffix)
|
||
{
|
||
/* Points to template once we've found it. */
|
||
const insn_template *t;
|
||
i386_operand_type overlap0, overlap1, overlap2, overlap3;
|
||
i386_operand_type overlap4;
|
||
unsigned int found_reverse_match;
|
||
i386_operand_type operand_types [MAX_OPERANDS];
|
||
int addr_prefix_disp;
|
||
unsigned int j, size_match, check_register, errline = __LINE__;
|
||
enum i386_error specific_error = number_of_operands_mismatch;
|
||
#define progress(err) progress (err, specific_error, __LINE__, &errline)
|
||
|
||
#if MAX_OPERANDS != 5
|
||
# error "MAX_OPERANDS must be 5."
|
||
#endif
|
||
|
||
found_reverse_match = 0;
|
||
addr_prefix_disp = -1;
|
||
|
||
for (t = current_templates->start; t < current_templates->end; t++)
|
||
{
|
||
addr_prefix_disp = -1;
|
||
found_reverse_match = 0;
|
||
|
||
/* Must have right number of operands. */
|
||
if (i.operands != t->operands)
|
||
continue;
|
||
|
||
/* Check processor support. */
|
||
specific_error = progress (unsupported);
|
||
if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
|
||
continue;
|
||
|
||
/* Check AT&T mnemonic. */
|
||
specific_error = progress (unsupported_with_intel_mnemonic);
|
||
if (intel_mnemonic && t->opcode_modifier.attmnemonic)
|
||
continue;
|
||
|
||
/* Check AT&T/Intel syntax. */
|
||
specific_error = progress (unsupported_syntax);
|
||
if ((intel_syntax && t->opcode_modifier.attsyntax)
|
||
|| (!intel_syntax && t->opcode_modifier.intelsyntax))
|
||
continue;
|
||
|
||
/* Check Intel64/AMD64 ISA. */
|
||
switch (isa64)
|
||
{
|
||
default:
|
||
/* Default: Don't accept Intel64. */
|
||
if (t->opcode_modifier.isa64 == INTEL64)
|
||
continue;
|
||
break;
|
||
case amd64:
|
||
/* -mamd64: Don't accept Intel64 and Intel64 only. */
|
||
if (t->opcode_modifier.isa64 >= INTEL64)
|
||
continue;
|
||
break;
|
||
case intel64:
|
||
/* -mintel64: Don't accept AMD64. */
|
||
if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
|
||
continue;
|
||
break;
|
||
}
|
||
|
||
/* Check the suffix. */
|
||
specific_error = progress (invalid_instruction_suffix);
|
||
if ((t->opcode_modifier.no_bsuf && mnem_suffix == BYTE_MNEM_SUFFIX)
|
||
|| (t->opcode_modifier.no_wsuf && mnem_suffix == WORD_MNEM_SUFFIX)
|
||
|| (t->opcode_modifier.no_lsuf && mnem_suffix == LONG_MNEM_SUFFIX)
|
||
|| (t->opcode_modifier.no_ssuf && mnem_suffix == SHORT_MNEM_SUFFIX)
|
||
|| (t->opcode_modifier.no_qsuf && mnem_suffix == QWORD_MNEM_SUFFIX))
|
||
continue;
|
||
|
||
specific_error = progress (operand_size_mismatch);
|
||
size_match = operand_size_match (t);
|
||
if (!size_match)
|
||
continue;
|
||
|
||
/* This is intentionally not
|
||
|
||
if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
|
||
|
||
as the case of a missing * on the operand is accepted (perhaps with
|
||
a warning, issued further down). */
|
||
specific_error = progress (operand_type_mismatch);
|
||
if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
|
||
continue;
|
||
|
||
/* In Intel syntax, normally we can check for memory operand size when
|
||
there is no mnemonic suffix. But jmp and call have 2 different
|
||
encodings with Dword memory operand size. Skip the "near" one
|
||
(permitting a register operand) when "far" was requested. */
|
||
if (i.far_branch
|
||
&& t->opcode_modifier.jump == JUMP_ABSOLUTE
|
||
&& t->operand_types[0].bitfield.class == Reg)
|
||
continue;
|
||
|
||
for (j = 0; j < MAX_OPERANDS; j++)
|
||
operand_types[j] = t->operand_types[j];
|
||
|
||
/* In general, don't allow 32-bit operands on pre-386. */
|
||
specific_error = progress (mnem_suffix ? invalid_instruction_suffix
|
||
: operand_size_mismatch);
|
||
j = i.imm_operands + (t->operands > i.imm_operands + 1);
|
||
if (i.suffix == LONG_MNEM_SUFFIX
|
||
&& !cpu_arch_flags.bitfield.cpui386
|
||
&& (intel_syntax
|
||
? (t->opcode_modifier.mnemonicsize != IGNORESIZE
|
||
&& !intel_float_operand (insn_name (t)))
|
||
: intel_float_operand (insn_name (t)) != 2)
|
||
&& (t->operands == i.imm_operands
|
||
|| (operand_types[i.imm_operands].bitfield.class != RegMMX
|
||
&& operand_types[i.imm_operands].bitfield.class != RegSIMD
|
||
&& operand_types[i.imm_operands].bitfield.class != RegMask)
|
||
|| (operand_types[j].bitfield.class != RegMMX
|
||
&& operand_types[j].bitfield.class != RegSIMD
|
||
&& operand_types[j].bitfield.class != RegMask))
|
||
&& !t->opcode_modifier.sib)
|
||
continue;
|
||
|
||
/* Do not verify operands when there are none. */
|
||
if (!t->operands)
|
||
{
|
||
if (VEX_check_encoding (t))
|
||
{
|
||
specific_error = progress (i.error);
|
||
continue;
|
||
}
|
||
|
||
/* We've found a match; break out of loop. */
|
||
break;
|
||
}
|
||
|
||
if (!t->opcode_modifier.jump
|
||
|| t->opcode_modifier.jump == JUMP_ABSOLUTE)
|
||
{
|
||
/* There should be only one Disp operand. */
|
||
for (j = 0; j < MAX_OPERANDS; j++)
|
||
if (operand_type_check (operand_types[j], disp))
|
||
break;
|
||
if (j < MAX_OPERANDS)
|
||
{
|
||
bool override = (i.prefix[ADDR_PREFIX] != 0);
|
||
|
||
addr_prefix_disp = j;
|
||
|
||
/* Address size prefix will turn Disp64 operand into Disp32 and
|
||
Disp32/Disp16 one into Disp16/Disp32 respectively. */
|
||
switch (flag_code)
|
||
{
|
||
case CODE_16BIT:
|
||
override = !override;
|
||
/* Fall through. */
|
||
case CODE_32BIT:
|
||
if (operand_types[j].bitfield.disp32
|
||
&& operand_types[j].bitfield.disp16)
|
||
{
|
||
operand_types[j].bitfield.disp16 = override;
|
||
operand_types[j].bitfield.disp32 = !override;
|
||
}
|
||
gas_assert (!operand_types[j].bitfield.disp64);
|
||
break;
|
||
|
||
case CODE_64BIT:
|
||
if (operand_types[j].bitfield.disp64)
|
||
{
|
||
gas_assert (!operand_types[j].bitfield.disp32);
|
||
operand_types[j].bitfield.disp32 = override;
|
||
operand_types[j].bitfield.disp64 = !override;
|
||
}
|
||
operand_types[j].bitfield.disp16 = 0;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* We check register size if needed. */
|
||
if (t->opcode_modifier.checkoperandsize)
|
||
{
|
||
check_register = (1 << t->operands) - 1;
|
||
if (i.broadcast.type || i.broadcast.bytes)
|
||
check_register &= ~(1 << i.broadcast.operand);
|
||
}
|
||
else
|
||
check_register = 0;
|
||
|
||
overlap0 = operand_type_and (i.types[0], operand_types[0]);
|
||
switch (t->operands)
|
||
{
|
||
case 1:
|
||
if (!operand_type_match (overlap0, i.types[0]))
|
||
continue;
|
||
break;
|
||
case 2:
|
||
/* xchg %eax, %eax is a special case. It is an alias for nop
|
||
only in 32bit mode and we can use opcode 0x90. In 64bit
|
||
mode, we can't use 0x90 for xchg %eax, %eax since it should
|
||
zero-extend %eax to %rax. */
|
||
if (flag_code == CODE_64BIT
|
||
&& t->base_opcode == 0x90
|
||
&& t->opcode_space == SPACE_BASE
|
||
&& i.types[0].bitfield.instance == Accum
|
||
&& i.types[0].bitfield.dword
|
||
&& i.types[1].bitfield.instance == Accum)
|
||
continue;
|
||
|
||
if (t->base_opcode == MOV_AX_DISP32
|
||
&& t->opcode_space == SPACE_BASE
|
||
&& t->mnem_off != MN_movabs)
|
||
{
|
||
/* Force 0x8b encoding for "mov foo@GOT, %eax". */
|
||
if (i.reloc[0] == BFD_RELOC_386_GOT32)
|
||
continue;
|
||
|
||
/* xrelease mov %eax, <disp> is another special case. It must not
|
||
match the accumulator-only encoding of mov. */
|
||
if (i.hle_prefix)
|
||
continue;
|
||
}
|
||
/* Fall through. */
|
||
|
||
case 3:
|
||
if (!(size_match & MATCH_STRAIGHT))
|
||
goto check_reverse;
|
||
/* Reverse direction of operands if swapping is possible in the first
|
||
place (operands need to be symmetric) and
|
||
- the load form is requested, and the template is a store form,
|
||
- the store form is requested, and the template is a load form,
|
||
- the non-default (swapped) form is requested. */
|
||
overlap1 = operand_type_and (operand_types[0], operand_types[1]);
|
||
if (t->opcode_modifier.d && i.reg_operands == i.operands
|
||
&& !operand_type_all_zero (&overlap1))
|
||
switch (i.dir_encoding)
|
||
{
|
||
case dir_encoding_load:
|
||
if (operand_type_check (operand_types[i.operands - 1], anymem)
|
||
|| t->opcode_modifier.regmem)
|
||
goto check_reverse;
|
||
break;
|
||
|
||
case dir_encoding_store:
|
||
if (!operand_type_check (operand_types[i.operands - 1], anymem)
|
||
&& !t->opcode_modifier.regmem)
|
||
goto check_reverse;
|
||
break;
|
||
|
||
case dir_encoding_swap:
|
||
goto check_reverse;
|
||
|
||
case dir_encoding_default:
|
||
break;
|
||
}
|
||
/* If we want store form, we skip the current load. */
|
||
if ((i.dir_encoding == dir_encoding_store
|
||
|| i.dir_encoding == dir_encoding_swap)
|
||
&& i.mem_operands == 0
|
||
&& t->opcode_modifier.load)
|
||
continue;
|
||
/* Fall through. */
|
||
case 4:
|
||
case 5:
|
||
overlap1 = operand_type_and (i.types[1], operand_types[1]);
|
||
if (!operand_type_match (overlap0, i.types[0])
|
||
|| !operand_type_match (overlap1, i.types[1])
|
||
|| ((check_register & 3) == 3
|
||
&& !operand_type_register_match (i.types[0],
|
||
operand_types[0],
|
||
i.types[1],
|
||
operand_types[1])))
|
||
{
|
||
specific_error = progress (i.error);
|
||
|
||
/* Check if other direction is valid ... */
|
||
if (!t->opcode_modifier.d)
|
||
continue;
|
||
|
||
check_reverse:
|
||
if (!(size_match & MATCH_REVERSE))
|
||
continue;
|
||
/* Try reversing direction of operands. */
|
||
j = t->cpu_flags.bitfield.cpufma4
|
||
|| t->cpu_flags.bitfield.cpuxop ? 1 : i.operands - 1;
|
||
overlap0 = operand_type_and (i.types[0], operand_types[j]);
|
||
overlap1 = operand_type_and (i.types[j], operand_types[0]);
|
||
overlap2 = operand_type_and (i.types[1], operand_types[1]);
|
||
gas_assert (t->operands != 3 || !check_register);
|
||
if (!operand_type_match (overlap0, i.types[0])
|
||
|| !operand_type_match (overlap1, i.types[j])
|
||
|| (t->operands == 3
|
||
&& !operand_type_match (overlap2, i.types[1]))
|
||
|| (check_register
|
||
&& !operand_type_register_match (i.types[0],
|
||
operand_types[j],
|
||
i.types[j],
|
||
operand_types[0])))
|
||
{
|
||
/* Does not match either direction. */
|
||
specific_error = progress (i.error);
|
||
continue;
|
||
}
|
||
/* found_reverse_match holds which variant of D
|
||
we've found. */
|
||
if (!t->opcode_modifier.d)
|
||
found_reverse_match = 0;
|
||
else if (operand_types[0].bitfield.tbyte)
|
||
{
|
||
if (t->opcode_modifier.operandconstraint != UGH)
|
||
found_reverse_match = Opcode_FloatD;
|
||
else
|
||
found_reverse_match = ~0;
|
||
/* FSUB{,R} and FDIV{,R} may need a 2nd bit flipped. */
|
||
if ((t->extension_opcode & 4)
|
||
&& (intel_syntax || intel_mnemonic))
|
||
found_reverse_match |= Opcode_FloatR;
|
||
}
|
||
else if (t->cpu_flags.bitfield.cpufma4
|
||
|| t->cpu_flags.bitfield.cpuxop)
|
||
{
|
||
found_reverse_match = Opcode_VexW;
|
||
goto check_operands_345;
|
||
}
|
||
else if (t->opcode_space != SPACE_BASE
|
||
&& (t->opcode_space != SPACE_0F
|
||
/* MOV to/from CR/DR/TR, as an exception, follow
|
||
the base opcode space encoding model. */
|
||
|| (t->base_opcode | 7) != 0x27))
|
||
found_reverse_match = (t->base_opcode & 0xee) != 0x6e
|
||
? Opcode_ExtD : Opcode_SIMD_IntD;
|
||
else if (!t->opcode_modifier.commutative)
|
||
found_reverse_match = Opcode_D;
|
||
else
|
||
found_reverse_match = ~0;
|
||
}
|
||
else
|
||
{
|
||
/* Found a forward 2 operand match here. */
|
||
check_operands_345:
|
||
switch (t->operands)
|
||
{
|
||
case 5:
|
||
overlap4 = operand_type_and (i.types[4], operand_types[4]);
|
||
if (!operand_type_match (overlap4, i.types[4])
|
||
|| !operand_type_register_match (i.types[3],
|
||
operand_types[3],
|
||
i.types[4],
|
||
operand_types[4]))
|
||
{
|
||
specific_error = progress (i.error);
|
||
continue;
|
||
}
|
||
/* Fall through. */
|
||
case 4:
|
||
overlap3 = operand_type_and (i.types[3], operand_types[3]);
|
||
if (!operand_type_match (overlap3, i.types[3])
|
||
|| ((check_register & 0xa) == 0xa
|
||
&& !operand_type_register_match (i.types[1],
|
||
operand_types[1],
|
||
i.types[3],
|
||
operand_types[3]))
|
||
|| ((check_register & 0xc) == 0xc
|
||
&& !operand_type_register_match (i.types[2],
|
||
operand_types[2],
|
||
i.types[3],
|
||
operand_types[3])))
|
||
{
|
||
specific_error = progress (i.error);
|
||
continue;
|
||
}
|
||
/* Fall through. */
|
||
case 3:
|
||
overlap2 = operand_type_and (i.types[2], operand_types[2]);
|
||
if (!operand_type_match (overlap2, i.types[2])
|
||
|| ((check_register & 5) == 5
|
||
&& !operand_type_register_match (i.types[0],
|
||
operand_types[0],
|
||
i.types[2],
|
||
operand_types[2]))
|
||
|| ((check_register & 6) == 6
|
||
&& !operand_type_register_match (i.types[1],
|
||
operand_types[1],
|
||
i.types[2],
|
||
operand_types[2])))
|
||
{
|
||
specific_error = progress (i.error);
|
||
continue;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
/* Found either forward/reverse 2, 3 or 4 operand match here:
|
||
slip through to break. */
|
||
}
|
||
|
||
/* Check if VEX/EVEX encoding requirements can be satisfied. */
|
||
if (VEX_check_encoding (t))
|
||
{
|
||
specific_error = progress (i.error);
|
||
continue;
|
||
}
|
||
|
||
/* Check if vector operands are valid. */
|
||
if (check_VecOperands (t))
|
||
{
|
||
specific_error = progress (i.error);
|
||
continue;
|
||
}
|
||
|
||
/* We've found a match; break out of loop. */
|
||
break;
|
||
}
|
||
|
||
#undef progress
|
||
|
||
if (t == current_templates->end)
|
||
{
|
||
/* We found no match. */
|
||
i.error = specific_error;
|
||
return NULL;
|
||
}
|
||
|
||
if (!quiet_warnings)
|
||
{
|
||
if (!intel_syntax
|
||
&& (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
|
||
as_warn (_("indirect %s without `*'"), insn_name (t));
|
||
|
||
if (t->opcode_modifier.isprefix
|
||
&& t->opcode_modifier.mnemonicsize == IGNORESIZE)
|
||
{
|
||
/* Warn them that a data or address size prefix doesn't
|
||
affect assembly of the next line of code. */
|
||
as_warn (_("stand-alone `%s' prefix"), insn_name (t));
|
||
}
|
||
}
|
||
|
||
/* Copy the template we found. */
|
||
install_template (t);
|
||
|
||
if (addr_prefix_disp != -1)
|
||
i.tm.operand_types[addr_prefix_disp]
|
||
= operand_types[addr_prefix_disp];
|
||
|
||
switch (found_reverse_match)
|
||
{
|
||
case 0:
|
||
break;
|
||
|
||
case Opcode_FloatR:
|
||
case Opcode_FloatR | Opcode_FloatD:
|
||
i.tm.extension_opcode ^= Opcode_FloatR >> 3;
|
||
found_reverse_match &= Opcode_FloatD;
|
||
|
||
/* Fall through. */
|
||
default:
|
||
/* If we found a reverse match we must alter the opcode direction
|
||
bit and clear/flip the regmem modifier one. found_reverse_match
|
||
holds bits to change (different for int & float insns). */
|
||
|
||
i.tm.base_opcode ^= found_reverse_match;
|
||
|
||
/* Certain SIMD insns have their load forms specified in the opcode
|
||
table, and hence we need to _set_ RegMem instead of clearing it.
|
||
We need to avoid setting the bit though on insns like KMOVW. */
|
||
i.tm.opcode_modifier.regmem
|
||
= i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
|
||
&& i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
|
||
&& !i.tm.opcode_modifier.regmem;
|
||
|
||
/* Fall through. */
|
||
case ~0:
|
||
i.tm.operand_types[0] = operand_types[i.operands - 1];
|
||
i.tm.operand_types[i.operands - 1] = operand_types[0];
|
||
break;
|
||
|
||
case Opcode_VexW:
|
||
/* Only the first two register operands need reversing, alongside
|
||
flipping VEX.W. */
|
||
i.tm.opcode_modifier.vexw ^= VEXW0 ^ VEXW1;
|
||
|
||
j = i.tm.operand_types[0].bitfield.imm8;
|
||
i.tm.operand_types[j] = operand_types[j + 1];
|
||
i.tm.operand_types[j + 1] = operand_types[j];
|
||
break;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
static int
|
||
check_string (void)
|
||
{
|
||
unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
|
||
unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
|
||
|
||
if (i.seg[op] != NULL && i.seg[op] != reg_es)
|
||
{
|
||
as_bad (_("`%s' operand %u must use `%ses' segment"),
|
||
insn_name (&i.tm),
|
||
intel_syntax ? i.tm.operands - es_op : es_op + 1,
|
||
register_prefix);
|
||
return 0;
|
||
}
|
||
|
||
/* There's only ever one segment override allowed per instruction.
|
||
This instruction possibly has a legal segment override on the
|
||
second operand, so copy the segment to where non-string
|
||
instructions store it, allowing common code. */
|
||
i.seg[op] = i.seg[1];
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
process_suffix (void)
|
||
{
|
||
bool is_movx = false;
|
||
|
||
/* If matched instruction specifies an explicit instruction mnemonic
|
||
suffix, use it. */
|
||
if (i.tm.opcode_modifier.size == SIZE16)
|
||
i.suffix = WORD_MNEM_SUFFIX;
|
||
else if (i.tm.opcode_modifier.size == SIZE32)
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
else if (i.tm.opcode_modifier.size == SIZE64)
|
||
i.suffix = QWORD_MNEM_SUFFIX;
|
||
else if (i.reg_operands
|
||
&& (i.operands > 1 || i.types[0].bitfield.class == Reg)
|
||
&& i.tm.opcode_modifier.operandconstraint != ADDR_PREFIX_OP_REG)
|
||
{
|
||
unsigned int numop = i.operands;
|
||
|
||
/* MOVSX/MOVZX */
|
||
is_movx = (i.tm.opcode_space == SPACE_0F
|
||
&& (i.tm.base_opcode | 8) == 0xbe)
|
||
|| (i.tm.opcode_space == SPACE_BASE
|
||
&& i.tm.base_opcode == 0x63
|
||
&& i.tm.cpu_flags.bitfield.cpu64);
|
||
|
||
/* movsx/movzx want only their source operand considered here, for the
|
||
ambiguity checking below. The suffix will be replaced afterwards
|
||
to represent the destination (register). */
|
||
if (is_movx && (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63))
|
||
--i.operands;
|
||
|
||
/* crc32 needs REX.W set regardless of suffix / source operand size. */
|
||
if (i.tm.mnem_off == MN_crc32 && i.tm.operand_types[1].bitfield.qword)
|
||
i.rex |= REX_W;
|
||
|
||
/* If there's no instruction mnemonic suffix we try to invent one
|
||
based on GPR operands. */
|
||
if (!i.suffix)
|
||
{
|
||
/* We take i.suffix from the last register operand specified,
|
||
Destination register type is more significant than source
|
||
register type. crc32 in SSE4.2 prefers source register
|
||
type. */
|
||
unsigned int op = i.tm.mnem_off == MN_crc32 ? 1 : i.operands;
|
||
|
||
while (op--)
|
||
if (i.tm.operand_types[op].bitfield.instance == InstanceNone
|
||
|| i.tm.operand_types[op].bitfield.instance == Accum)
|
||
{
|
||
if (i.types[op].bitfield.class != Reg)
|
||
continue;
|
||
if (i.types[op].bitfield.byte)
|
||
i.suffix = BYTE_MNEM_SUFFIX;
|
||
else if (i.types[op].bitfield.word)
|
||
i.suffix = WORD_MNEM_SUFFIX;
|
||
else if (i.types[op].bitfield.dword)
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
else if (i.types[op].bitfield.qword)
|
||
i.suffix = QWORD_MNEM_SUFFIX;
|
||
else
|
||
continue;
|
||
break;
|
||
}
|
||
|
||
/* As an exception, movsx/movzx silently default to a byte source
|
||
in AT&T mode. */
|
||
if (is_movx && i.tm.opcode_modifier.w && !i.suffix && !intel_syntax)
|
||
i.suffix = BYTE_MNEM_SUFFIX;
|
||
}
|
||
else if (i.suffix == BYTE_MNEM_SUFFIX)
|
||
{
|
||
if (!check_byte_reg ())
|
||
return 0;
|
||
}
|
||
else if (i.suffix == LONG_MNEM_SUFFIX)
|
||
{
|
||
if (!check_long_reg ())
|
||
return 0;
|
||
}
|
||
else if (i.suffix == QWORD_MNEM_SUFFIX)
|
||
{
|
||
if (!check_qword_reg ())
|
||
return 0;
|
||
}
|
||
else if (i.suffix == WORD_MNEM_SUFFIX)
|
||
{
|
||
if (!check_word_reg ())
|
||
return 0;
|
||
}
|
||
else if (intel_syntax
|
||
&& i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
|
||
/* Do nothing if the instruction is going to ignore the prefix. */
|
||
;
|
||
else
|
||
abort ();
|
||
|
||
/* Undo the movsx/movzx change done above. */
|
||
i.operands = numop;
|
||
}
|
||
else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
|
||
&& !i.suffix)
|
||
{
|
||
i.suffix = stackop_size;
|
||
if (stackop_size == LONG_MNEM_SUFFIX)
|
||
{
|
||
/* stackop_size is set to LONG_MNEM_SUFFIX for the
|
||
.code16gcc directive to support 16-bit mode with
|
||
32-bit address. For IRET without a suffix, generate
|
||
16-bit IRET (opcode 0xcf) to return from an interrupt
|
||
handler. */
|
||
if (i.tm.base_opcode == 0xcf)
|
||
{
|
||
i.suffix = WORD_MNEM_SUFFIX;
|
||
as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
|
||
}
|
||
/* Warn about changed behavior for segment register push/pop. */
|
||
else if ((i.tm.base_opcode | 1) == 0x07)
|
||
as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
|
||
insn_name (&i.tm));
|
||
}
|
||
}
|
||
else if (!i.suffix
|
||
&& (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
|
||
|| i.tm.opcode_modifier.jump == JUMP_BYTE
|
||
|| i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
|
||
|| (i.tm.opcode_space == SPACE_0F
|
||
&& i.tm.base_opcode == 0x01 /* [ls][gi]dt */
|
||
&& i.tm.extension_opcode <= 3)))
|
||
{
|
||
switch (flag_code)
|
||
{
|
||
case CODE_64BIT:
|
||
if (!i.tm.opcode_modifier.no_qsuf)
|
||
{
|
||
if (i.tm.opcode_modifier.jump == JUMP_BYTE
|
||
|| i.tm.opcode_modifier.no_lsuf)
|
||
i.suffix = QWORD_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
case CODE_32BIT:
|
||
if (!i.tm.opcode_modifier.no_lsuf)
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
break;
|
||
case CODE_16BIT:
|
||
if (!i.tm.opcode_modifier.no_wsuf)
|
||
i.suffix = WORD_MNEM_SUFFIX;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!i.suffix
|
||
&& (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
|
||
/* Also cover lret/retf/iret in 64-bit mode. */
|
||
|| (flag_code == CODE_64BIT
|
||
&& !i.tm.opcode_modifier.no_lsuf
|
||
&& !i.tm.opcode_modifier.no_qsuf))
|
||
&& i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
|
||
/* Explicit sizing prefixes are assumed to disambiguate insns. */
|
||
&& !i.prefix[DATA_PREFIX] && !(i.prefix[REX_PREFIX] & REX_W)
|
||
/* Accept FLDENV et al without suffix. */
|
||
&& (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
|
||
{
|
||
unsigned int suffixes, evex = 0;
|
||
|
||
suffixes = !i.tm.opcode_modifier.no_bsuf;
|
||
if (!i.tm.opcode_modifier.no_wsuf)
|
||
suffixes |= 1 << 1;
|
||
if (!i.tm.opcode_modifier.no_lsuf)
|
||
suffixes |= 1 << 2;
|
||
if (!i.tm.opcode_modifier.no_ssuf)
|
||
suffixes |= 1 << 4;
|
||
if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
|
||
suffixes |= 1 << 5;
|
||
|
||
/* For [XYZ]MMWORD operands inspect operand sizes. While generally
|
||
also suitable for AT&T syntax mode, it was requested that this be
|
||
restricted to just Intel syntax. */
|
||
if (intel_syntax && is_any_vex_encoding (&i.tm)
|
||
&& !i.broadcast.type && !i.broadcast.bytes)
|
||
{
|
||
unsigned int op;
|
||
|
||
for (op = 0; op < i.tm.operands; ++op)
|
||
{
|
||
if (is_evex_encoding (&i.tm)
|
||
&& !cpu_arch_flags.bitfield.cpuavx512vl)
|
||
{
|
||
if (i.tm.operand_types[op].bitfield.ymmword)
|
||
i.tm.operand_types[op].bitfield.xmmword = 0;
|
||
if (i.tm.operand_types[op].bitfield.zmmword)
|
||
i.tm.operand_types[op].bitfield.ymmword = 0;
|
||
if (!i.tm.opcode_modifier.evex
|
||
|| i.tm.opcode_modifier.evex == EVEXDYN)
|
||
i.tm.opcode_modifier.evex = EVEX512;
|
||
}
|
||
|
||
if (i.tm.operand_types[op].bitfield.xmmword
|
||
+ i.tm.operand_types[op].bitfield.ymmword
|
||
+ i.tm.operand_types[op].bitfield.zmmword < 2)
|
||
continue;
|
||
|
||
/* Any properly sized operand disambiguates the insn. */
|
||
if (i.types[op].bitfield.xmmword
|
||
|| i.types[op].bitfield.ymmword
|
||
|| i.types[op].bitfield.zmmword)
|
||
{
|
||
suffixes &= ~(7 << 6);
|
||
evex = 0;
|
||
break;
|
||
}
|
||
|
||
if ((i.flags[op] & Operand_Mem)
|
||
&& i.tm.operand_types[op].bitfield.unspecified)
|
||
{
|
||
if (i.tm.operand_types[op].bitfield.xmmword)
|
||
suffixes |= 1 << 6;
|
||
if (i.tm.operand_types[op].bitfield.ymmword)
|
||
suffixes |= 1 << 7;
|
||
if (i.tm.operand_types[op].bitfield.zmmword)
|
||
suffixes |= 1 << 8;
|
||
if (is_evex_encoding (&i.tm))
|
||
evex = EVEX512;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Are multiple suffixes / operand sizes allowed? */
|
||
if (suffixes & (suffixes - 1))
|
||
{
|
||
if (intel_syntax
|
||
&& (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
|
||
|| operand_check == check_error))
|
||
{
|
||
as_bad (_("ambiguous operand size for `%s'"), insn_name (&i.tm));
|
||
return 0;
|
||
}
|
||
if (operand_check == check_error)
|
||
{
|
||
as_bad (_("no instruction mnemonic suffix given and "
|
||
"no register operands; can't size `%s'"), insn_name (&i.tm));
|
||
return 0;
|
||
}
|
||
if (operand_check == check_warning)
|
||
as_warn (_("%s; using default for `%s'"),
|
||
intel_syntax
|
||
? _("ambiguous operand size")
|
||
: _("no instruction mnemonic suffix given and "
|
||
"no register operands"),
|
||
insn_name (&i.tm));
|
||
|
||
if (i.tm.opcode_modifier.floatmf)
|
||
i.suffix = SHORT_MNEM_SUFFIX;
|
||
else if (is_movx)
|
||
/* handled below */;
|
||
else if (evex)
|
||
i.tm.opcode_modifier.evex = evex;
|
||
else if (flag_code == CODE_16BIT)
|
||
i.suffix = WORD_MNEM_SUFFIX;
|
||
else if (!i.tm.opcode_modifier.no_lsuf)
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
else
|
||
i.suffix = QWORD_MNEM_SUFFIX;
|
||
}
|
||
}
|
||
|
||
if (is_movx)
|
||
{
|
||
/* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
|
||
In AT&T syntax, if there is no suffix (warned about above), the default
|
||
will be byte extension. */
|
||
if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
|
||
i.tm.base_opcode |= 1;
|
||
|
||
/* For further processing, the suffix should represent the destination
|
||
(register). This is already the case when one was used with
|
||
mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
|
||
no suffix to begin with. */
|
||
if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
|
||
{
|
||
if (i.types[1].bitfield.word)
|
||
i.suffix = WORD_MNEM_SUFFIX;
|
||
else if (i.types[1].bitfield.qword)
|
||
i.suffix = QWORD_MNEM_SUFFIX;
|
||
else
|
||
i.suffix = LONG_MNEM_SUFFIX;
|
||
|
||
i.tm.opcode_modifier.w = 0;
|
||
}
|
||
}
|
||
|
||
if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
|
||
i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
|
||
!= (i.tm.operand_types[1].bitfield.class == Reg);
|
||
|
||
/* Change the opcode based on the operand size given by i.suffix. */
|
||
switch (i.suffix)
|
||
{
|
||
/* Size floating point instruction. */
|
||
case LONG_MNEM_SUFFIX:
|
||
if (i.tm.opcode_modifier.floatmf)
|
||
{
|
||
i.tm.base_opcode ^= 4;
|
||
break;
|
||
}
|
||
/* fall through */
|
||
case WORD_MNEM_SUFFIX:
|
||
case QWORD_MNEM_SUFFIX:
|
||
/* It's not a byte, select word/dword operation. */
|
||
if (i.tm.opcode_modifier.w)
|
||
{
|
||
if (i.short_form)
|
||
i.tm.base_opcode |= 8;
|
||
else
|
||
i.tm.base_opcode |= 1;
|
||
}
|
||
/* fall through */
|
||
case SHORT_MNEM_SUFFIX:
|
||
/* Now select between word & dword operations via the operand
|
||
size prefix, except for instructions that will ignore this
|
||
prefix anyway. */
|
||
if (i.suffix != QWORD_MNEM_SUFFIX
|
||
&& i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
|
||
&& !i.tm.opcode_modifier.floatmf
|
||
&& !is_any_vex_encoding (&i.tm)
|
||
&& ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
|
||
|| (flag_code == CODE_64BIT
|
||
&& i.tm.opcode_modifier.jump == JUMP_BYTE)))
|
||
{
|
||
unsigned int prefix = DATA_PREFIX_OPCODE;
|
||
|
||
if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
|
||
prefix = ADDR_PREFIX_OPCODE;
|
||
|
||
if (!add_prefix (prefix))
|
||
return 0;
|
||
}
|
||
|
||
/* Set mode64 for an operand. */
|
||
if (i.suffix == QWORD_MNEM_SUFFIX
|
||
&& flag_code == CODE_64BIT
|
||
&& !i.tm.opcode_modifier.norex64
|
||
&& !i.tm.opcode_modifier.vexw
|
||
/* Special case for xchg %rax,%rax. It is NOP and doesn't
|
||
need rex64. */
|
||
&& ! (i.operands == 2
|
||
&& i.tm.base_opcode == 0x90
|
||
&& i.tm.opcode_space == SPACE_BASE
|
||
&& i.types[0].bitfield.instance == Accum
|
||
&& i.types[0].bitfield.qword
|
||
&& i.types[1].bitfield.instance == Accum))
|
||
i.rex |= REX_W;
|
||
|
||
break;
|
||
|
||
case 0:
|
||
/* Select word/dword/qword operation with explicit data sizing prefix
|
||
when there are no suitable register operands. */
|
||
if (i.tm.opcode_modifier.w
|
||
&& (i.prefix[DATA_PREFIX] || (i.prefix[REX_PREFIX] & REX_W))
|
||
&& (!i.reg_operands
|
||
|| (i.reg_operands == 1
|
||
/* ShiftCount */
|
||
&& (i.tm.operand_types[0].bitfield.instance == RegC
|
||
/* InOutPortReg */
|
||
|| i.tm.operand_types[0].bitfield.instance == RegD
|
||
|| i.tm.operand_types[1].bitfield.instance == RegD
|
||
|| i.tm.mnem_off == MN_crc32))))
|
||
i.tm.base_opcode |= 1;
|
||
break;
|
||
}
|
||
|
||
if (i.tm.opcode_modifier.operandconstraint == ADDR_PREFIX_OP_REG)
|
||
{
|
||
gas_assert (!i.suffix);
|
||
gas_assert (i.reg_operands);
|
||
|
||
if (i.tm.operand_types[0].bitfield.instance == Accum
|
||
|| i.operands == 1)
|
||
{
|
||
/* The address size override prefix changes the size of the
|
||
first operand. */
|
||
if (flag_code == CODE_64BIT
|
||
&& i.op[0].regs->reg_type.bitfield.word)
|
||
{
|
||
as_bad (_("16-bit addressing unavailable for `%s'"),
|
||
insn_name (&i.tm));
|
||
return 0;
|
||
}
|
||
|
||
if ((flag_code == CODE_32BIT
|
||
? i.op[0].regs->reg_type.bitfield.word
|
||
: i.op[0].regs->reg_type.bitfield.dword)
|
||
&& !add_prefix (ADDR_PREFIX_OPCODE))
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
/* Check invalid register operand when the address size override
|
||
prefix changes the size of register operands. */
|
||
unsigned int op;
|
||
enum { need_word, need_dword, need_qword } need;
|
||
|
||
/* Check the register operand for the address size prefix if
|
||
the memory operand has no real registers, like symbol, DISP
|
||
or bogus (x32-only) symbol(%rip) when symbol(%eip) is meant. */
|
||
if (i.mem_operands == 1
|
||
&& i.reg_operands == 1
|
||
&& i.operands == 2
|
||
&& i.types[1].bitfield.class == Reg
|
||
&& (flag_code == CODE_32BIT
|
||
? i.op[1].regs->reg_type.bitfield.word
|
||
: i.op[1].regs->reg_type.bitfield.dword)
|
||
&& ((i.base_reg == NULL && i.index_reg == NULL)
|
||
#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
|
||
|| (x86_elf_abi == X86_64_X32_ABI
|
||
&& i.base_reg
|
||
&& i.base_reg->reg_num == RegIP
|
||
&& i.base_reg->reg_type.bitfield.qword))
|
||
#else
|
||
|| 0)
|
||
#endif
|
||
&& !add_prefix (ADDR_PREFIX_OPCODE))
|
||
return 0;
|
||
|
||
if (flag_code == CODE_32BIT)
|
||
need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
|
||
else if (i.prefix[ADDR_PREFIX])
|
||
need = need_dword;
|
||
else
|
||
need = flag_code == CODE_64BIT ? need_qword : need_word;
|
||
|
||
for (op = 0; op < i.operands; op++)
|
||
{
|
||
if (i.types[op].bitfield.class != Reg)
|
||
continue;
|
||
|
||
switch (need)
|
||
{
|
||
case need_word:
|
||
if (i.op[op].regs->reg_type.bitfield.word)
|
||
continue;
|
||
break;
|
||
case need_dword:
|
||
if (i.op[op].regs->reg_type.bitfield.dword)
|
||
continue;
|
||
break;
|
||
case need_qword:
|
||
if (i.op[op].regs->reg_type.bitfield.qword)
|
||
continue;
|
||
break;
|
||
}
|
||
|
||
as_bad (_("invalid register operand size for `%s'"),
|
||
insn_name (&i.tm));
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
check_byte_reg (void)
|
||
{
|
||
int op;
|
||
|
||
for (op = i.operands; --op >= 0;)
|
||
{
|
||
/* Skip non-register operands. */
|
||
if (i.types[op].bitfield.class != Reg)
|
||
continue;
|
||
|
||
/* If this is an eight bit register, it's OK. If it's the 16 or
|
||
32 bit version of an eight bit register, we will just use the
|
||
low portion, and that's OK too. */
|
||
if (i.types[op].bitfield.byte)
|
||
continue;
|
||
|
||
/* I/O port address operands are OK too. */
|
||
if (i.tm.operand_types[op].bitfield.instance == RegD
|
||
&& i.tm.operand_types[op].bitfield.word)
|
||
continue;
|
||
|
||
/* crc32 only wants its source operand checked here. */
|
||
if (i.tm.mnem_off == MN_crc32 && op != 0)
|
||
continue;
|
||
|
||
/* Any other register is bad. */
|
||
as_bad (_("`%s%s' not allowed with `%s%c'"),
|
||
register_prefix, i.op[op].regs->reg_name,
|
||
insn_name (&i.tm), i.suffix);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
check_long_reg (void)
|
||
{
|
||
int op;
|
||
|
||
for (op = i.operands; --op >= 0;)
|
||
/* Skip non-register operands. */
|
||
if (i.types[op].bitfield.class != Reg)
|
||
continue;
|
||
/* Reject eight bit registers, except where the template requires
|
||
them. (eg. movzb) */
|
||
else if (i.types[op].bitfield.byte
|
||
&& (i.tm.operand_types[op].bitfield.class == Reg
|
||
|| i.tm.operand_types[op].bitfield.instance == Accum)
|
||
&& (i.tm.operand_types[op].bitfield.word
|
||
|| i.tm.operand_types[op].bitfield.dword))
|
||
{
|
||
as_bad (_("`%s%s' not allowed with `%s%c'"),
|
||
register_prefix,
|
||
i.op[op].regs->reg_name,
|
||
insn_name (&i.tm),
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
/* Error if the e prefix on a general reg is missing. */
|
||
else if (i.types[op].bitfield.word
|
||
&& (i.tm.operand_types[op].bitfield.class == Reg
|
||
|| i.tm.operand_types[op].bitfield.instance == Accum)
|
||
&& i.tm.operand_types[op].bitfield.dword)
|
||
{
|
||
as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
|
||
register_prefix, i.op[op].regs->reg_name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
/* Warn if the r prefix on a general reg is present. */
|
||
else if (i.types[op].bitfield.qword
|
||
&& (i.tm.operand_types[op].bitfield.class == Reg
|
||
|| i.tm.operand_types[op].bitfield.instance == Accum)
|
||
&& i.tm.operand_types[op].bitfield.dword)
|
||
{
|
||
as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
|
||
register_prefix, i.op[op].regs->reg_name, i.suffix);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
check_qword_reg (void)
|
||
{
|
||
int op;
|
||
|
||
for (op = i.operands; --op >= 0; )
|
||
/* Skip non-register operands. */
|
||
if (i.types[op].bitfield.class != Reg)
|
||
continue;
|
||
/* Reject eight bit registers, except where the template requires
|
||
them. (eg. movzb) */
|
||
else if (i.types[op].bitfield.byte
|
||
&& (i.tm.operand_types[op].bitfield.class == Reg
|
||
|| i.tm.operand_types[op].bitfield.instance == Accum)
|
||
&& (i.tm.operand_types[op].bitfield.word
|
||
|| i.tm.operand_types[op].bitfield.dword))
|
||
{
|
||
as_bad (_("`%s%s' not allowed with `%s%c'"),
|
||
register_prefix,
|
||
i.op[op].regs->reg_name,
|
||
insn_name (&i.tm),
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
/* Warn if the r prefix on a general reg is missing. */
|
||
else if ((i.types[op].bitfield.word
|
||
|| i.types[op].bitfield.dword)
|
||
&& (i.tm.operand_types[op].bitfield.class == Reg
|
||
|| i.tm.operand_types[op].bitfield.instance == Accum)
|
||
&& i.tm.operand_types[op].bitfield.qword)
|
||
{
|
||
/* Prohibit these changes in the 64bit mode, since the
|
||
lowering is more complicated. */
|
||
as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
|
||
register_prefix, i.op[op].regs->reg_name, i.suffix);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
check_word_reg (void)
|
||
{
|
||
int op;
|
||
for (op = i.operands; --op >= 0;)
|
||
/* Skip non-register operands. */
|
||
if (i.types[op].bitfield.class != Reg)
|
||
continue;
|
||
/* Reject eight bit registers, except where the template requires
|
||
them. (eg. movzb) */
|
||
else if (i.types[op].bitfield.byte
|
||
&& (i.tm.operand_types[op].bitfield.class == Reg
|
||
|| i.tm.operand_types[op].bitfield.instance == Accum)
|
||
&& (i.tm.operand_types[op].bitfield.word
|
||
|| i.tm.operand_types[op].bitfield.dword))
|
||
{
|
||
as_bad (_("`%s%s' not allowed with `%s%c'"),
|
||
register_prefix,
|
||
i.op[op].regs->reg_name,
|
||
insn_name (&i.tm),
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
/* Error if the e or r prefix on a general reg is present. */
|
||
else if ((i.types[op].bitfield.dword
|
||
|| i.types[op].bitfield.qword)
|
||
&& (i.tm.operand_types[op].bitfield.class == Reg
|
||
|| i.tm.operand_types[op].bitfield.instance == Accum)
|
||
&& i.tm.operand_types[op].bitfield.word)
|
||
{
|
||
as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
|
||
register_prefix, i.op[op].regs->reg_name,
|
||
i.suffix);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
update_imm (unsigned int j)
|
||
{
|
||
i386_operand_type overlap = i.types[j];
|
||
if (overlap.bitfield.imm8
|
||
+ overlap.bitfield.imm8s
|
||
+ overlap.bitfield.imm16
|
||
+ overlap.bitfield.imm32
|
||
+ overlap.bitfield.imm32s
|
||
+ overlap.bitfield.imm64 > 1)
|
||
{
|
||
static const i386_operand_type imm16 = { .bitfield = { .imm16 = 1 } };
|
||
static const i386_operand_type imm32 = { .bitfield = { .imm32 = 1 } };
|
||
static const i386_operand_type imm32s = { .bitfield = { .imm32s = 1 } };
|
||
static const i386_operand_type imm16_32 = { .bitfield =
|
||
{ .imm16 = 1, .imm32 = 1 }
|
||
};
|
||
static const i386_operand_type imm16_32s = { .bitfield =
|
||
{ .imm16 = 1, .imm32s = 1 }
|
||
};
|
||
static const i386_operand_type imm16_32_32s = { .bitfield =
|
||
{ .imm16 = 1, .imm32 = 1, .imm32s = 1 }
|
||
};
|
||
|
||
if (i.suffix)
|
||
{
|
||
i386_operand_type temp;
|
||
|
||
operand_type_set (&temp, 0);
|
||
if (i.suffix == BYTE_MNEM_SUFFIX)
|
||
{
|
||
temp.bitfield.imm8 = overlap.bitfield.imm8;
|
||
temp.bitfield.imm8s = overlap.bitfield.imm8s;
|
||
}
|
||
else if (i.suffix == WORD_MNEM_SUFFIX)
|
||
temp.bitfield.imm16 = overlap.bitfield.imm16;
|
||
else if (i.suffix == QWORD_MNEM_SUFFIX)
|
||
{
|
||
temp.bitfield.imm64 = overlap.bitfield.imm64;
|
||
temp.bitfield.imm32s = overlap.bitfield.imm32s;
|
||
}
|
||
else
|
||
temp.bitfield.imm32 = overlap.bitfield.imm32;
|
||
overlap = temp;
|
||
}
|
||
else if (operand_type_equal (&overlap, &imm16_32_32s)
|
||
|| operand_type_equal (&overlap, &imm16_32)
|
||
|| operand_type_equal (&overlap, &imm16_32s))
|
||
{
|
||
if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
|
||
overlap = imm16;
|
||
else
|
||
overlap = imm32s;
|
||
}
|
||
else if (i.prefix[REX_PREFIX] & REX_W)
|
||
overlap = operand_type_and (overlap, imm32s);
|
||
else if (i.prefix[DATA_PREFIX])
|
||
overlap = operand_type_and (overlap,
|
||
flag_code != CODE_16BIT ? imm16 : imm32);
|
||
if (overlap.bitfield.imm8
|
||
+ overlap.bitfield.imm8s
|
||
+ overlap.bitfield.imm16
|
||
+ overlap.bitfield.imm32
|
||
+ overlap.bitfield.imm32s
|
||
+ overlap.bitfield.imm64 != 1)
|
||
{
|
||
as_bad (_("no instruction mnemonic suffix given; "
|
||
"can't determine immediate size"));
|
||
return 0;
|
||
}
|
||
}
|
||
i.types[j] = overlap;
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
finalize_imm (void)
|
||
{
|
||
unsigned int j, n;
|
||
|
||
/* Update the first 2 immediate operands. */
|
||
n = i.operands > 2 ? 2 : i.operands;
|
||
if (n)
|
||
{
|
||
for (j = 0; j < n; j++)
|
||
if (update_imm (j) == 0)
|
||
return 0;
|
||
|
||
/* The 3rd operand can't be immediate operand. */
|
||
gas_assert (operand_type_check (i.types[2], imm) == 0);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
process_operands (void)
|
||
{
|
||
/* Default segment register this instruction will use for memory
|
||
accesses. 0 means unknown. This is only for optimizing out
|
||
unnecessary segment overrides. */
|
||
const reg_entry *default_seg = NULL;
|
||
|
||
/* We only need to check those implicit registers for instructions
|
||
with 3 operands or less. */
|
||
if (i.operands <= 3)
|
||
for (unsigned int j = 0; j < i.operands; j++)
|
||
if (i.types[j].bitfield.instance != InstanceNone)
|
||
i.reg_operands--;
|
||
|
||
if (i.tm.opcode_modifier.sse2avx)
|
||
{
|
||
/* Legacy encoded insns allow explicit REX prefixes, so these prefixes
|
||
need converting. */
|
||
i.rex |= i.prefix[REX_PREFIX] & (REX_W | REX_R | REX_X | REX_B);
|
||
i.prefix[REX_PREFIX] = 0;
|
||
i.rex_encoding = 0;
|
||
}
|
||
/* ImmExt should be processed after SSE2AVX. */
|
||
else if (i.tm.opcode_modifier.immext)
|
||
process_immext ();
|
||
|
||
if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
|
||
{
|
||
static const i386_operand_type regxmm = {
|
||
.bitfield = { .class = RegSIMD, .xmmword = 1 }
|
||
};
|
||
unsigned int dupl = i.operands;
|
||
unsigned int dest = dupl - 1;
|
||
unsigned int j;
|
||
|
||
/* The destination must be an xmm register. */
|
||
gas_assert (i.reg_operands
|
||
&& MAX_OPERANDS > dupl
|
||
&& operand_type_equal (&i.types[dest], ®xmm));
|
||
|
||
if (i.tm.operand_types[0].bitfield.instance == Accum
|
||
&& i.tm.operand_types[0].bitfield.xmmword)
|
||
{
|
||
/* Keep xmm0 for instructions with VEX prefix and 3
|
||
sources. */
|
||
i.tm.operand_types[0].bitfield.instance = InstanceNone;
|
||
i.tm.operand_types[0].bitfield.class = RegSIMD;
|
||
i.reg_operands++;
|
||
goto duplicate;
|
||
}
|
||
|
||
if (i.tm.opcode_modifier.operandconstraint == IMPLICIT_1ST_XMM0)
|
||
{
|
||
gas_assert ((MAX_OPERANDS - 1) > dupl);
|
||
|
||
/* Add the implicit xmm0 for instructions with VEX prefix
|
||
and 3 sources. */
|
||
for (j = i.operands; j > 0; j--)
|
||
{
|
||
i.op[j] = i.op[j - 1];
|
||
i.types[j] = i.types[j - 1];
|
||
i.tm.operand_types[j] = i.tm.operand_types[j - 1];
|
||
i.flags[j] = i.flags[j - 1];
|
||
}
|
||
i.op[0].regs
|
||
= (const reg_entry *) str_hash_find (reg_hash, "xmm0");
|
||
i.types[0] = regxmm;
|
||
i.tm.operand_types[0] = regxmm;
|
||
|
||
i.operands += 2;
|
||
i.reg_operands += 2;
|
||
i.tm.operands += 2;
|
||
|
||
dupl++;
|
||
dest++;
|
||
i.op[dupl] = i.op[dest];
|
||
i.types[dupl] = i.types[dest];
|
||
i.tm.operand_types[dupl] = i.tm.operand_types[dest];
|
||
i.flags[dupl] = i.flags[dest];
|
||
}
|
||
else
|
||
{
|
||
duplicate:
|
||
i.operands++;
|
||
i.reg_operands++;
|
||
i.tm.operands++;
|
||
|
||
i.op[dupl] = i.op[dest];
|
||
i.types[dupl] = i.types[dest];
|
||
i.tm.operand_types[dupl] = i.tm.operand_types[dest];
|
||
i.flags[dupl] = i.flags[dest];
|
||
}
|
||
|
||
if (i.tm.opcode_modifier.immext)
|
||
process_immext ();
|
||
}
|
||
else if (i.tm.operand_types[0].bitfield.instance == Accum
|
||
&& i.tm.opcode_modifier.modrm)
|
||
{
|
||
unsigned int j;
|
||
|
||
for (j = 1; j < i.operands; j++)
|
||
{
|
||
i.op[j - 1] = i.op[j];
|
||
i.types[j - 1] = i.types[j];
|
||
|
||
/* We need to adjust fields in i.tm since they are used by
|
||
build_modrm_byte. */
|
||
i.tm.operand_types [j - 1] = i.tm.operand_types [j];
|
||
|
||
i.flags[j - 1] = i.flags[j];
|
||
}
|
||
|
||
/* No adjustment to i.reg_operands: This was already done at the top
|
||
of the function. */
|
||
i.operands--;
|
||
i.tm.operands--;
|
||
}
|
||
else if (i.tm.opcode_modifier.operandconstraint == IMPLICIT_QUAD_GROUP)
|
||
{
|
||
unsigned int regnum, first_reg_in_group, last_reg_in_group;
|
||
|
||
/* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
|
||
gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
|
||
regnum = register_number (i.op[1].regs);
|
||
first_reg_in_group = regnum & ~3;
|
||
last_reg_in_group = first_reg_in_group + 3;
|
||
if (regnum != first_reg_in_group)
|
||
as_warn (_("source register `%s%s' implicitly denotes"
|
||
" `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
|
||
register_prefix, i.op[1].regs->reg_name,
|
||
register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
|
||
register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
|
||
insn_name (&i.tm));
|
||
}
|
||
else if (i.tm.opcode_modifier.operandconstraint == REG_KLUDGE)
|
||
{
|
||
/* The imul $imm, %reg instruction is converted into
|
||
imul $imm, %reg, %reg, and the clr %reg instruction
|
||
is converted into xor %reg, %reg. */
|
||
|
||
unsigned int first_reg_op;
|
||
|
||
if (operand_type_check (i.types[0], reg))
|
||
first_reg_op = 0;
|
||
else
|
||
first_reg_op = 1;
|
||
/* Pretend we saw the extra register operand. */
|
||
gas_assert (i.reg_operands == 1
|
||
&& i.op[first_reg_op + 1].regs == 0);
|
||
i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
|
||
i.types[first_reg_op + 1] = i.types[first_reg_op];
|
||
i.operands++;
|
||
i.reg_operands++;
|
||
}
|
||
|
||
if (i.tm.opcode_modifier.modrm)
|
||
{
|
||
/* The opcode is completed (modulo i.tm.extension_opcode which
|
||
must be put into the modrm byte). Now, we make the modrm and
|
||
index base bytes based on all the info we've collected. */
|
||
|
||
default_seg = build_modrm_byte ();
|
||
|
||
if (!quiet_warnings && i.tm.opcode_modifier.operandconstraint == UGH)
|
||
{
|
||
/* Warn about some common errors, but press on regardless. */
|
||
if (i.operands == 2)
|
||
{
|
||
/* Reversed arguments on faddp or fmulp. */
|
||
as_warn (_("translating to `%s %s%s,%s%s'"), insn_name (&i.tm),
|
||
register_prefix, i.op[!intel_syntax].regs->reg_name,
|
||
register_prefix, i.op[intel_syntax].regs->reg_name);
|
||
}
|
||
else if (i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
|
||
{
|
||
/* Extraneous `l' suffix on fp insn. */
|
||
as_warn (_("translating to `%s %s%s'"), insn_name (&i.tm),
|
||
register_prefix, i.op[0].regs->reg_name);
|
||
}
|
||
}
|
||
}
|
||
else if (i.types[0].bitfield.class == SReg)
|
||
{
|
||
if (flag_code != CODE_64BIT
|
||
? i.tm.base_opcode == POP_SEG_SHORT
|
||
&& i.op[0].regs->reg_num == 1
|
||
: (i.tm.base_opcode | 1) == (POP_SEG386_SHORT & 0xff)
|
||
&& i.op[0].regs->reg_num < 4)
|
||
{
|
||
as_bad (_("you can't `%s %s%s'"),
|
||
insn_name (&i.tm), register_prefix, i.op[0].regs->reg_name);
|
||
return 0;
|
||
}
|
||
if (i.op[0].regs->reg_num > 3
|
||
&& i.tm.opcode_space == SPACE_BASE )
|
||
{
|
||
i.tm.base_opcode ^= (POP_SEG_SHORT ^ POP_SEG386_SHORT) & 0xff;
|
||
i.tm.opcode_space = SPACE_0F;
|
||
}
|
||
i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
|
||
}
|
||
else if (i.tm.opcode_space == SPACE_BASE
|
||
&& (i.tm.base_opcode & ~3) == MOV_AX_DISP32)
|
||
{
|
||
default_seg = reg_ds;
|
||
}
|
||
else if (i.tm.opcode_modifier.isstring)
|
||
{
|
||
/* For the string instructions that allow a segment override
|
||
on one of their operands, the default segment is ds. */
|
||
default_seg = reg_ds;
|
||
}
|
||
else if (i.short_form)
|
||
{
|
||
/* The register operand is in operand 0 or 1. */
|
||
const reg_entry *r = i.op[0].regs;
|
||
|
||
if (i.imm_operands
|
||
|| (r->reg_type.bitfield.instance == Accum && i.op[1].regs))
|
||
r = i.op[1].regs;
|
||
/* Register goes in low 3 bits of opcode. */
|
||
i.tm.base_opcode |= r->reg_num;
|
||
if ((r->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_B;
|
||
}
|
||
|
||
if ((i.seg[0] || i.prefix[SEG_PREFIX])
|
||
&& i.tm.mnem_off == MN_lea)
|
||
{
|
||
if (!quiet_warnings)
|
||
as_warn (_("segment override on `%s' is ineffectual"), insn_name (&i.tm));
|
||
if (optimize && !i.no_optimize)
|
||
{
|
||
i.seg[0] = NULL;
|
||
i.prefix[SEG_PREFIX] = 0;
|
||
}
|
||
}
|
||
|
||
/* If a segment was explicitly specified, and the specified segment
|
||
is neither the default nor the one already recorded from a prefix,
|
||
use an opcode prefix to select it. If we never figured out what
|
||
the default segment is, then default_seg will be zero at this
|
||
point, and the specified segment prefix will always be used. */
|
||
if (i.seg[0]
|
||
&& i.seg[0] != default_seg
|
||
&& i386_seg_prefixes[i.seg[0]->reg_num] != i.prefix[SEG_PREFIX])
|
||
{
|
||
if (!add_prefix (i386_seg_prefixes[i.seg[0]->reg_num]))
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static INLINE void set_rex_vrex (const reg_entry *r, unsigned int rex_bit,
|
||
bool do_sse2avx)
|
||
{
|
||
if (r->reg_flags & RegRex)
|
||
{
|
||
if (i.rex & rex_bit)
|
||
as_bad (_("same type of prefix used twice"));
|
||
i.rex |= rex_bit;
|
||
}
|
||
else if (do_sse2avx && (i.rex & rex_bit) && i.vex.register_specifier)
|
||
{
|
||
gas_assert (i.vex.register_specifier == r);
|
||
i.vex.register_specifier += 8;
|
||
}
|
||
|
||
if (r->reg_flags & RegVRex)
|
||
i.vrex |= rex_bit;
|
||
}
|
||
|
||
static const reg_entry *
|
||
build_modrm_byte (void)
|
||
{
|
||
const reg_entry *default_seg = NULL;
|
||
unsigned int source, dest;
|
||
bool vex_3_sources = (i.reg_operands + i.mem_operands == 4);
|
||
|
||
if (vex_3_sources)
|
||
{
|
||
unsigned int nds, reg_slot;
|
||
expressionS *exp;
|
||
|
||
dest = i.operands - 1;
|
||
nds = dest - 1;
|
||
|
||
/* There are 2 kinds of instructions:
|
||
1. 5 operands: 4 register operands or 3 register operands
|
||
plus 1 memory operand plus one Imm4 operand, VexXDS, and
|
||
VexW0 or VexW1. The destination must be either XMM, YMM or
|
||
ZMM register.
|
||
2. 4 operands: 4 register operands or 3 register operands
|
||
plus 1 memory operand, with VexXDS. */
|
||
gas_assert (i.tm.opcode_modifier.vexvvvv == VEXXDS
|
||
&& i.tm.opcode_modifier.vexw
|
||
&& i.tm.operand_types[dest].bitfield.class == RegSIMD);
|
||
|
||
/* If VexW1 is set, the first non-immediate operand is the source and
|
||
the second non-immediate one is encoded in the immediate operand. */
|
||
if (i.tm.opcode_modifier.vexw == VEXW1)
|
||
{
|
||
source = i.imm_operands;
|
||
reg_slot = i.imm_operands + 1;
|
||
}
|
||
else
|
||
{
|
||
source = i.imm_operands + 1;
|
||
reg_slot = i.imm_operands;
|
||
}
|
||
|
||
if (i.imm_operands == 0)
|
||
{
|
||
/* When there is no immediate operand, generate an 8bit
|
||
immediate operand to encode the first operand. */
|
||
exp = &im_expressions[i.imm_operands++];
|
||
i.op[i.operands].imms = exp;
|
||
i.types[i.operands].bitfield.imm8 = 1;
|
||
i.operands++;
|
||
|
||
gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
|
||
gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
|
||
}
|
||
else
|
||
{
|
||
gas_assert (i.imm_operands == 1);
|
||
gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
|
||
gas_assert (!i.tm.opcode_modifier.immext);
|
||
|
||
/* Turn on Imm8 again so that output_imm will generate it. */
|
||
i.types[0].bitfield.imm8 = 1;
|
||
|
||
gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
|
||
i.op[0].imms->X_add_number
|
||
|= register_number (i.op[reg_slot].regs) << 4;
|
||
gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
|
||
}
|
||
|
||
gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
|
||
i.vex.register_specifier = i.op[nds].regs;
|
||
}
|
||
else
|
||
source = dest = 0;
|
||
|
||
/* i.reg_operands MUST be the number of real register operands;
|
||
implicit registers do not count. If there are 3 register
|
||
operands, it must be a instruction with VexNDS. For a
|
||
instruction with VexNDD, the destination register is encoded
|
||
in VEX prefix. If there are 4 register operands, it must be
|
||
a instruction with VEX prefix and 3 sources. */
|
||
if (i.mem_operands == 0
|
||
&& ((i.reg_operands == 2
|
||
&& i.tm.opcode_modifier.vexvvvv <= VEXXDS)
|
||
|| (i.reg_operands == 3
|
||
&& i.tm.opcode_modifier.vexvvvv == VEXXDS)
|
||
|| (i.reg_operands == 4 && vex_3_sources)))
|
||
{
|
||
switch (i.operands)
|
||
{
|
||
case 2:
|
||
source = 0;
|
||
break;
|
||
case 3:
|
||
/* When there are 3 operands, one of them may be immediate,
|
||
which may be the first or the last operand. Otherwise,
|
||
the first operand must be shift count register (cl) or it
|
||
is an instruction with VexNDS. */
|
||
gas_assert (i.imm_operands == 1
|
||
|| (i.imm_operands == 0
|
||
&& (i.tm.opcode_modifier.vexvvvv == VEXXDS
|
||
|| (i.types[0].bitfield.instance == RegC
|
||
&& i.types[0].bitfield.byte))));
|
||
if (operand_type_check (i.types[0], imm)
|
||
|| (i.types[0].bitfield.instance == RegC
|
||
&& i.types[0].bitfield.byte))
|
||
source = 1;
|
||
else
|
||
source = 0;
|
||
break;
|
||
case 4:
|
||
/* When there are 4 operands, the first two must be 8bit
|
||
immediate operands. The source operand will be the 3rd
|
||
one.
|
||
|
||
For instructions with VexNDS, if the first operand
|
||
an imm8, the source operand is the 2nd one. If the last
|
||
operand is imm8, the source operand is the first one. */
|
||
gas_assert ((i.imm_operands == 2
|
||
&& i.types[0].bitfield.imm8
|
||
&& i.types[1].bitfield.imm8)
|
||
|| (i.tm.opcode_modifier.vexvvvv == VEXXDS
|
||
&& i.imm_operands == 1
|
||
&& (i.types[0].bitfield.imm8
|
||
|| i.types[i.operands - 1].bitfield.imm8)));
|
||
if (i.imm_operands == 2)
|
||
source = 2;
|
||
else
|
||
{
|
||
if (i.types[0].bitfield.imm8)
|
||
source = 1;
|
||
else
|
||
source = 0;
|
||
}
|
||
break;
|
||
case 5:
|
||
gas_assert (!is_evex_encoding (&i.tm));
|
||
gas_assert (i.imm_operands == 1 && vex_3_sources);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
if (!vex_3_sources)
|
||
{
|
||
dest = source + 1;
|
||
|
||
if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
|
||
{
|
||
/* For instructions with VexNDS, the register-only source
|
||
operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
|
||
register. It is encoded in VEX prefix. */
|
||
|
||
i386_operand_type op;
|
||
unsigned int vvvv;
|
||
|
||
/* Swap two source operands if needed. */
|
||
if (i.tm.opcode_modifier.operandconstraint == SWAP_SOURCES)
|
||
{
|
||
vvvv = source;
|
||
source = dest;
|
||
}
|
||
else
|
||
vvvv = dest;
|
||
|
||
op = i.tm.operand_types[vvvv];
|
||
if ((dest + 1) >= i.operands
|
||
|| ((op.bitfield.class != Reg
|
||
|| (!op.bitfield.dword && !op.bitfield.qword))
|
||
&& op.bitfield.class != RegSIMD
|
||
&& op.bitfield.class != RegMask))
|
||
abort ();
|
||
i.vex.register_specifier = i.op[vvvv].regs;
|
||
dest++;
|
||
}
|
||
}
|
||
|
||
i.rm.mode = 3;
|
||
/* One of the register operands will be encoded in the i.rm.reg
|
||
field, the other in the combined i.rm.mode and i.rm.regmem
|
||
fields. If no form of this instruction supports a memory
|
||
destination operand, then we assume the source operand may
|
||
sometimes be a memory operand and so we need to store the
|
||
destination in the i.rm.reg field. */
|
||
if (!i.tm.opcode_modifier.regmem
|
||
&& operand_type_check (i.tm.operand_types[dest], anymem) == 0)
|
||
{
|
||
i.rm.reg = i.op[dest].regs->reg_num;
|
||
i.rm.regmem = i.op[source].regs->reg_num;
|
||
set_rex_vrex (i.op[dest].regs, REX_R, i.tm.opcode_modifier.sse2avx);
|
||
set_rex_vrex (i.op[source].regs, REX_B, false);
|
||
}
|
||
else
|
||
{
|
||
i.rm.reg = i.op[source].regs->reg_num;
|
||
i.rm.regmem = i.op[dest].regs->reg_num;
|
||
set_rex_vrex (i.op[dest].regs, REX_B, i.tm.opcode_modifier.sse2avx);
|
||
set_rex_vrex (i.op[source].regs, REX_R, false);
|
||
}
|
||
if (flag_code != CODE_64BIT && (i.rex & REX_R))
|
||
{
|
||
if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
|
||
abort ();
|
||
i.rex &= ~REX_R;
|
||
add_prefix (LOCK_PREFIX_OPCODE);
|
||
}
|
||
}
|
||
else
|
||
{ /* If it's not 2 reg operands... */
|
||
unsigned int mem;
|
||
|
||
if (i.mem_operands)
|
||
{
|
||
unsigned int fake_zero_displacement = 0;
|
||
unsigned int op;
|
||
|
||
for (op = 0; op < i.operands; op++)
|
||
if (i.flags[op] & Operand_Mem)
|
||
break;
|
||
gas_assert (op < i.operands);
|
||
|
||
if (i.tm.opcode_modifier.sib)
|
||
{
|
||
/* The index register of VSIB shouldn't be RegIZ. */
|
||
if (i.tm.opcode_modifier.sib != SIBMEM
|
||
&& i.index_reg->reg_num == RegIZ)
|
||
abort ();
|
||
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
if (!i.base_reg)
|
||
{
|
||
i.sib.base = NO_BASE_REGISTER;
|
||
i.sib.scale = i.log2_scale_factor;
|
||
i.types[op] = operand_type_and_not (i.types[op], anydisp);
|
||
i.types[op].bitfield.disp32 = 1;
|
||
}
|
||
|
||
/* Since the mandatory SIB always has index register, so
|
||
the code logic remains unchanged. The non-mandatory SIB
|
||
without index register is allowed and will be handled
|
||
later. */
|
||
if (i.index_reg)
|
||
{
|
||
if (i.index_reg->reg_num == RegIZ)
|
||
i.sib.index = NO_INDEX_REGISTER;
|
||
else
|
||
i.sib.index = i.index_reg->reg_num;
|
||
set_rex_vrex (i.index_reg, REX_X, false);
|
||
}
|
||
}
|
||
|
||
default_seg = reg_ds;
|
||
|
||
if (i.base_reg == 0)
|
||
{
|
||
i.rm.mode = 0;
|
||
if (!i.disp_operands)
|
||
fake_zero_displacement = 1;
|
||
if (i.index_reg == 0)
|
||
{
|
||
/* Both check for VSIB and mandatory non-vector SIB. */
|
||
gas_assert (!i.tm.opcode_modifier.sib
|
||
|| i.tm.opcode_modifier.sib == SIBMEM);
|
||
/* Operand is just <disp> */
|
||
i.types[op] = operand_type_and_not (i.types[op], anydisp);
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
/* 64bit mode overwrites the 32bit absolute
|
||
addressing by RIP relative addressing and
|
||
absolute addressing is encoded by one of the
|
||
redundant SIB forms. */
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
i.sib.base = NO_BASE_REGISTER;
|
||
i.sib.index = NO_INDEX_REGISTER;
|
||
i.types[op].bitfield.disp32 = 1;
|
||
}
|
||
else if ((flag_code == CODE_16BIT)
|
||
^ (i.prefix[ADDR_PREFIX] != 0))
|
||
{
|
||
i.rm.regmem = NO_BASE_REGISTER_16;
|
||
i.types[op].bitfield.disp16 = 1;
|
||
}
|
||
else
|
||
{
|
||
i.rm.regmem = NO_BASE_REGISTER;
|
||
i.types[op].bitfield.disp32 = 1;
|
||
}
|
||
}
|
||
else if (!i.tm.opcode_modifier.sib)
|
||
{
|
||
/* !i.base_reg && i.index_reg */
|
||
if (i.index_reg->reg_num == RegIZ)
|
||
i.sib.index = NO_INDEX_REGISTER;
|
||
else
|
||
i.sib.index = i.index_reg->reg_num;
|
||
i.sib.base = NO_BASE_REGISTER;
|
||
i.sib.scale = i.log2_scale_factor;
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
i.types[op] = operand_type_and_not (i.types[op], anydisp);
|
||
i.types[op].bitfield.disp32 = 1;
|
||
if ((i.index_reg->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_X;
|
||
}
|
||
}
|
||
/* RIP addressing for 64bit mode. */
|
||
else if (i.base_reg->reg_num == RegIP)
|
||
{
|
||
gas_assert (!i.tm.opcode_modifier.sib);
|
||
i.rm.regmem = NO_BASE_REGISTER;
|
||
i.types[op].bitfield.disp8 = 0;
|
||
i.types[op].bitfield.disp16 = 0;
|
||
i.types[op].bitfield.disp32 = 1;
|
||
i.types[op].bitfield.disp64 = 0;
|
||
i.flags[op] |= Operand_PCrel;
|
||
if (! i.disp_operands)
|
||
fake_zero_displacement = 1;
|
||
}
|
||
else if (i.base_reg->reg_type.bitfield.word)
|
||
{
|
||
gas_assert (!i.tm.opcode_modifier.sib);
|
||
switch (i.base_reg->reg_num)
|
||
{
|
||
case 3: /* (%bx) */
|
||
if (i.index_reg == 0)
|
||
i.rm.regmem = 7;
|
||
else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
|
||
i.rm.regmem = i.index_reg->reg_num - 6;
|
||
break;
|
||
case 5: /* (%bp) */
|
||
default_seg = reg_ss;
|
||
if (i.index_reg == 0)
|
||
{
|
||
i.rm.regmem = 6;
|
||
if (operand_type_check (i.types[op], disp) == 0)
|
||
{
|
||
/* fake (%bp) into 0(%bp) */
|
||
if (i.disp_encoding == disp_encoding_16bit)
|
||
i.types[op].bitfield.disp16 = 1;
|
||
else
|
||
i.types[op].bitfield.disp8 = 1;
|
||
fake_zero_displacement = 1;
|
||
}
|
||
}
|
||
else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
|
||
i.rm.regmem = i.index_reg->reg_num - 6 + 2;
|
||
break;
|
||
default: /* (%si) -> 4 or (%di) -> 5 */
|
||
i.rm.regmem = i.base_reg->reg_num - 6 + 4;
|
||
}
|
||
if (!fake_zero_displacement
|
||
&& !i.disp_operands
|
||
&& i.disp_encoding)
|
||
{
|
||
fake_zero_displacement = 1;
|
||
if (i.disp_encoding == disp_encoding_8bit)
|
||
i.types[op].bitfield.disp8 = 1;
|
||
else
|
||
i.types[op].bitfield.disp16 = 1;
|
||
}
|
||
i.rm.mode = mode_from_disp_size (i.types[op]);
|
||
}
|
||
else /* i.base_reg and 32/64 bit mode */
|
||
{
|
||
if (operand_type_check (i.types[op], disp))
|
||
{
|
||
i.types[op].bitfield.disp16 = 0;
|
||
i.types[op].bitfield.disp64 = 0;
|
||
i.types[op].bitfield.disp32 = 1;
|
||
}
|
||
|
||
if (!i.tm.opcode_modifier.sib)
|
||
i.rm.regmem = i.base_reg->reg_num;
|
||
if ((i.base_reg->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_B;
|
||
i.sib.base = i.base_reg->reg_num;
|
||
/* x86-64 ignores REX prefix bit here to avoid decoder
|
||
complications. */
|
||
if (!(i.base_reg->reg_flags & RegRex)
|
||
&& (i.base_reg->reg_num == EBP_REG_NUM
|
||
|| i.base_reg->reg_num == ESP_REG_NUM))
|
||
default_seg = reg_ss;
|
||
if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
|
||
{
|
||
fake_zero_displacement = 1;
|
||
if (i.disp_encoding == disp_encoding_32bit)
|
||
i.types[op].bitfield.disp32 = 1;
|
||
else
|
||
i.types[op].bitfield.disp8 = 1;
|
||
}
|
||
i.sib.scale = i.log2_scale_factor;
|
||
if (i.index_reg == 0)
|
||
{
|
||
/* Only check for VSIB. */
|
||
gas_assert (i.tm.opcode_modifier.sib != VECSIB128
|
||
&& i.tm.opcode_modifier.sib != VECSIB256
|
||
&& i.tm.opcode_modifier.sib != VECSIB512);
|
||
|
||
/* <disp>(%esp) becomes two byte modrm with no index
|
||
register. We've already stored the code for esp
|
||
in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
|
||
Any base register besides %esp will not use the
|
||
extra modrm byte. */
|
||
i.sib.index = NO_INDEX_REGISTER;
|
||
}
|
||
else if (!i.tm.opcode_modifier.sib)
|
||
{
|
||
if (i.index_reg->reg_num == RegIZ)
|
||
i.sib.index = NO_INDEX_REGISTER;
|
||
else
|
||
i.sib.index = i.index_reg->reg_num;
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
if ((i.index_reg->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_X;
|
||
}
|
||
|
||
if (i.disp_operands
|
||
&& (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
|
||
|| i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
|
||
i.rm.mode = 0;
|
||
else
|
||
{
|
||
if (!fake_zero_displacement
|
||
&& !i.disp_operands
|
||
&& i.disp_encoding)
|
||
{
|
||
fake_zero_displacement = 1;
|
||
if (i.disp_encoding == disp_encoding_8bit)
|
||
i.types[op].bitfield.disp8 = 1;
|
||
else
|
||
i.types[op].bitfield.disp32 = 1;
|
||
}
|
||
i.rm.mode = mode_from_disp_size (i.types[op]);
|
||
}
|
||
}
|
||
|
||
if (fake_zero_displacement)
|
||
{
|
||
/* Fakes a zero displacement assuming that i.types[op]
|
||
holds the correct displacement size. */
|
||
expressionS *exp;
|
||
|
||
gas_assert (i.op[op].disps == 0);
|
||
exp = &disp_expressions[i.disp_operands++];
|
||
i.op[op].disps = exp;
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = 0;
|
||
exp->X_add_symbol = (symbolS *) 0;
|
||
exp->X_op_symbol = (symbolS *) 0;
|
||
}
|
||
|
||
mem = op;
|
||
}
|
||
else
|
||
mem = ~0;
|
||
|
||
if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
|
||
{
|
||
i.vex.register_specifier = i.op[2].regs;
|
||
if (!i.mem_operands)
|
||
{
|
||
i.rm.mode = 3;
|
||
i.rm.regmem = i.op[1].regs->reg_num;
|
||
if ((i.op[1].regs->reg_flags & RegRex) != 0)
|
||
i.rex |= REX_B;
|
||
}
|
||
}
|
||
/* Fill in i.rm.reg or i.rm.regmem field with register operand
|
||
(if any) based on i.tm.extension_opcode. Again, we must be
|
||
careful to make sure that segment/control/debug/test/MMX
|
||
registers are coded into the i.rm.reg field. */
|
||
else if (i.reg_operands)
|
||
{
|
||
unsigned int op;
|
||
unsigned int vex_reg = ~0;
|
||
|
||
for (op = 0; op < i.operands; op++)
|
||
if (i.types[op].bitfield.class == Reg
|
||
|| i.types[op].bitfield.class == RegBND
|
||
|| i.types[op].bitfield.class == RegMask
|
||
|| i.types[op].bitfield.class == SReg
|
||
|| i.types[op].bitfield.class == RegCR
|
||
|| i.types[op].bitfield.class == RegDR
|
||
|| i.types[op].bitfield.class == RegTR
|
||
|| i.types[op].bitfield.class == RegSIMD
|
||
|| i.types[op].bitfield.class == RegMMX)
|
||
break;
|
||
|
||
if (vex_3_sources)
|
||
op = dest;
|
||
else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
|
||
{
|
||
/* For instructions with VexNDS, the register-only
|
||
source operand is encoded in VEX prefix. */
|
||
gas_assert (mem != (unsigned int) ~0);
|
||
|
||
if (op > mem || i.tm.cpu_flags.bitfield.cpucmpccxadd)
|
||
{
|
||
vex_reg = op++;
|
||
gas_assert (op < i.operands);
|
||
}
|
||
else
|
||
{
|
||
/* Check register-only source operand when two source
|
||
operands are swapped. */
|
||
if (!i.tm.operand_types[op].bitfield.baseindex
|
||
&& i.tm.operand_types[op + 1].bitfield.baseindex)
|
||
{
|
||
vex_reg = op;
|
||
op += 2;
|
||
gas_assert (mem == (vex_reg + 1)
|
||
&& op < i.operands);
|
||
}
|
||
else
|
||
{
|
||
vex_reg = op + 1;
|
||
gas_assert (vex_reg < i.operands);
|
||
}
|
||
}
|
||
}
|
||
else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
|
||
{
|
||
/* For instructions with VexNDD, the register destination
|
||
is encoded in VEX prefix. */
|
||
if (i.mem_operands == 0)
|
||
{
|
||
/* There is no memory operand. */
|
||
gas_assert ((op + 2) == i.operands);
|
||
vex_reg = op + 1;
|
||
}
|
||
else
|
||
{
|
||
/* There are only 2 non-immediate operands. */
|
||
gas_assert (op < i.imm_operands + 2
|
||
&& i.operands == i.imm_operands + 2);
|
||
vex_reg = i.imm_operands + 1;
|
||
}
|
||
}
|
||
else
|
||
gas_assert (op < i.operands);
|
||
|
||
if (vex_reg != (unsigned int) ~0)
|
||
{
|
||
i386_operand_type *type = &i.tm.operand_types[vex_reg];
|
||
|
||
if ((type->bitfield.class != Reg
|
||
|| (!type->bitfield.dword && !type->bitfield.qword))
|
||
&& type->bitfield.class != RegSIMD
|
||
&& type->bitfield.class != RegMask)
|
||
abort ();
|
||
|
||
i.vex.register_specifier = i.op[vex_reg].regs;
|
||
}
|
||
|
||
/* Don't set OP operand twice. */
|
||
if (vex_reg != op)
|
||
{
|
||
/* If there is an extension opcode to put here, the
|
||
register number must be put into the regmem field. */
|
||
if (i.tm.extension_opcode != None)
|
||
{
|
||
i.rm.regmem = i.op[op].regs->reg_num;
|
||
set_rex_vrex (i.op[op].regs, REX_B,
|
||
i.tm.opcode_modifier.sse2avx);
|
||
}
|
||
else
|
||
{
|
||
i.rm.reg = i.op[op].regs->reg_num;
|
||
set_rex_vrex (i.op[op].regs, REX_R,
|
||
i.tm.opcode_modifier.sse2avx);
|
||
}
|
||
}
|
||
|
||
/* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
|
||
must set it to 3 to indicate this is a register operand
|
||
in the regmem field. */
|
||
if (!i.mem_operands)
|
||
i.rm.mode = 3;
|
||
}
|
||
|
||
/* Fill in i.rm.reg field with extension opcode (if any). */
|
||
if (i.tm.extension_opcode != None)
|
||
i.rm.reg = i.tm.extension_opcode;
|
||
}
|
||
return default_seg;
|
||
}
|
||
|
||
static INLINE void
|
||
frag_opcode_byte (unsigned char byte)
|
||
{
|
||
if (now_seg != absolute_section)
|
||
FRAG_APPEND_1_CHAR (byte);
|
||
else
|
||
++abs_section_offset;
|
||
}
|
||
|
||
static unsigned int
|
||
flip_code16 (unsigned int code16)
|
||
{
|
||
gas_assert (i.tm.operands == 1);
|
||
|
||
return !(i.prefix[REX_PREFIX] & REX_W)
|
||
&& (code16 ? i.tm.operand_types[0].bitfield.disp32
|
||
: i.tm.operand_types[0].bitfield.disp16)
|
||
? CODE16 : 0;
|
||
}
|
||
|
||
static void
|
||
output_branch (void)
|
||
{
|
||
char *p;
|
||
int size;
|
||
int code16;
|
||
int prefix;
|
||
relax_substateT subtype;
|
||
symbolS *sym;
|
||
offsetT off;
|
||
|
||
if (now_seg == absolute_section)
|
||
{
|
||
as_bad (_("relaxable branches not supported in absolute section"));
|
||
return;
|
||
}
|
||
|
||
code16 = flag_code == CODE_16BIT ? CODE16 : 0;
|
||
size = i.disp_encoding > disp_encoding_8bit ? BIG : SMALL;
|
||
|
||
prefix = 0;
|
||
if (i.prefix[DATA_PREFIX] != 0)
|
||
{
|
||
prefix = 1;
|
||
i.prefixes -= 1;
|
||
code16 ^= flip_code16(code16);
|
||
}
|
||
/* Pentium4 branch hints. */
|
||
if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
|
||
|| i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
|
||
{
|
||
prefix++;
|
||
i.prefixes--;
|
||
}
|
||
if (i.prefix[REX_PREFIX] != 0)
|
||
{
|
||
prefix++;
|
||
i.prefixes--;
|
||
}
|
||
|
||
/* BND prefixed jump. */
|
||
if (i.prefix[BND_PREFIX] != 0)
|
||
{
|
||
prefix++;
|
||
i.prefixes--;
|
||
}
|
||
|
||
if (i.prefixes != 0)
|
||
as_warn (_("skipping prefixes on `%s'"), insn_name (&i.tm));
|
||
|
||
/* It's always a symbol; End frag & setup for relax.
|
||
Make sure there is enough room in this frag for the largest
|
||
instruction we may generate in md_convert_frag. This is 2
|
||
bytes for the opcode and room for the prefix and largest
|
||
displacement. */
|
||
frag_grow (prefix + 2 + 4);
|
||
/* Prefix and 1 opcode byte go in fr_fix. */
|
||
p = frag_more (prefix + 1);
|
||
if (i.prefix[DATA_PREFIX] != 0)
|
||
*p++ = DATA_PREFIX_OPCODE;
|
||
if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
|
||
|| i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
|
||
*p++ = i.prefix[SEG_PREFIX];
|
||
if (i.prefix[BND_PREFIX] != 0)
|
||
*p++ = BND_PREFIX_OPCODE;
|
||
if (i.prefix[REX_PREFIX] != 0)
|
||
*p++ = i.prefix[REX_PREFIX];
|
||
*p = i.tm.base_opcode;
|
||
|
||
if ((unsigned char) *p == JUMP_PC_RELATIVE)
|
||
subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
|
||
else if (cpu_arch_flags.bitfield.cpui386)
|
||
subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
|
||
else
|
||
subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
|
||
subtype |= code16;
|
||
|
||
sym = i.op[0].disps->X_add_symbol;
|
||
off = i.op[0].disps->X_add_number;
|
||
|
||
if (i.op[0].disps->X_op != O_constant
|
||
&& i.op[0].disps->X_op != O_symbol)
|
||
{
|
||
/* Handle complex expressions. */
|
||
sym = make_expr_symbol (i.op[0].disps);
|
||
off = 0;
|
||
}
|
||
|
||
frag_now->tc_frag_data.code64 = flag_code == CODE_64BIT;
|
||
|
||
/* 1 possible extra opcode + 4 byte displacement go in var part.
|
||
Pass reloc in fr_var. */
|
||
frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
|
||
}
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
/* Return TRUE iff PLT32 relocation should be used for branching to
|
||
symbol S. */
|
||
|
||
static bool
|
||
need_plt32_p (symbolS *s)
|
||
{
|
||
/* PLT32 relocation is ELF only. */
|
||
if (!IS_ELF)
|
||
return false;
|
||
|
||
#ifdef TE_SOLARIS
|
||
/* Don't emit PLT32 relocation on Solaris: neither native linker nor
|
||
krtld support it. */
|
||
return false;
|
||
#endif
|
||
|
||
/* Since there is no need to prepare for PLT branch on x86-64, we
|
||
can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
|
||
be used as a marker for 32-bit PC-relative branches. */
|
||
if (!object_64bit)
|
||
return false;
|
||
|
||
if (s == NULL)
|
||
return false;
|
||
|
||
/* Weak or undefined symbol need PLT32 relocation. */
|
||
if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
|
||
return true;
|
||
|
||
/* Non-global symbol doesn't need PLT32 relocation. */
|
||
if (! S_IS_EXTERNAL (s))
|
||
return false;
|
||
|
||
/* Other global symbols need PLT32 relocation. NB: Symbol with
|
||
non-default visibilities are treated as normal global symbol
|
||
so that PLT32 relocation can be used as a marker for 32-bit
|
||
PC-relative branches. It is useful for linker relaxation. */
|
||
return true;
|
||
}
|
||
#endif
|
||
|
||
static void
|
||
output_jump (void)
|
||
{
|
||
char *p;
|
||
int size;
|
||
fixS *fixP;
|
||
bfd_reloc_code_real_type jump_reloc = i.reloc[0];
|
||
|
||
if (i.tm.opcode_modifier.jump == JUMP_BYTE)
|
||
{
|
||
/* This is a loop or jecxz type instruction. */
|
||
size = 1;
|
||
if (i.prefix[ADDR_PREFIX] != 0)
|
||
{
|
||
frag_opcode_byte (ADDR_PREFIX_OPCODE);
|
||
i.prefixes -= 1;
|
||
}
|
||
/* Pentium4 branch hints. */
|
||
if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
|
||
|| i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
|
||
{
|
||
frag_opcode_byte (i.prefix[SEG_PREFIX]);
|
||
i.prefixes--;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int code16;
|
||
|
||
code16 = 0;
|
||
if (flag_code == CODE_16BIT)
|
||
code16 = CODE16;
|
||
|
||
if (i.prefix[DATA_PREFIX] != 0)
|
||
{
|
||
frag_opcode_byte (DATA_PREFIX_OPCODE);
|
||
i.prefixes -= 1;
|
||
code16 ^= flip_code16(code16);
|
||
}
|
||
|
||
size = 4;
|
||
if (code16)
|
||
size = 2;
|
||
}
|
||
|
||
/* BND prefixed jump. */
|
||
if (i.prefix[BND_PREFIX] != 0)
|
||
{
|
||
frag_opcode_byte (i.prefix[BND_PREFIX]);
|
||
i.prefixes -= 1;
|
||
}
|
||
|
||
if (i.prefix[REX_PREFIX] != 0)
|
||
{
|
||
frag_opcode_byte (i.prefix[REX_PREFIX]);
|
||
i.prefixes -= 1;
|
||
}
|
||
|
||
if (i.prefixes != 0)
|
||
as_warn (_("skipping prefixes on `%s'"), insn_name (&i.tm));
|
||
|
||
if (now_seg == absolute_section)
|
||
{
|
||
abs_section_offset += i.opcode_length + size;
|
||
return;
|
||
}
|
||
|
||
p = frag_more (i.opcode_length + size);
|
||
switch (i.opcode_length)
|
||
{
|
||
case 2:
|
||
*p++ = i.tm.base_opcode >> 8;
|
||
/* Fall through. */
|
||
case 1:
|
||
*p++ = i.tm.base_opcode;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (flag_code == CODE_64BIT && size == 4
|
||
&& jump_reloc == NO_RELOC && i.op[0].disps->X_add_number == 0
|
||
&& need_plt32_p (i.op[0].disps->X_add_symbol))
|
||
jump_reloc = BFD_RELOC_X86_64_PLT32;
|
||
#endif
|
||
|
||
jump_reloc = reloc (size, 1, 1, jump_reloc);
|
||
|
||
fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.op[0].disps, 1, jump_reloc);
|
||
|
||
/* All jumps handled here are signed, but don't unconditionally use a
|
||
signed limit check for 32 and 16 bit jumps as we want to allow wrap
|
||
around at 4G (outside of 64-bit mode) and 64k (except for XBEGIN)
|
||
respectively. */
|
||
switch (size)
|
||
{
|
||
case 1:
|
||
fixP->fx_signed = 1;
|
||
break;
|
||
|
||
case 2:
|
||
if (i.tm.mnem_off == MN_xbegin)
|
||
fixP->fx_signed = 1;
|
||
break;
|
||
|
||
case 4:
|
||
if (flag_code == CODE_64BIT)
|
||
fixP->fx_signed = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void
|
||
output_interseg_jump (void)
|
||
{
|
||
char *p;
|
||
int size;
|
||
int prefix;
|
||
int code16;
|
||
|
||
code16 = 0;
|
||
if (flag_code == CODE_16BIT)
|
||
code16 = CODE16;
|
||
|
||
prefix = 0;
|
||
if (i.prefix[DATA_PREFIX] != 0)
|
||
{
|
||
prefix = 1;
|
||
i.prefixes -= 1;
|
||
code16 ^= CODE16;
|
||
}
|
||
|
||
gas_assert (!i.prefix[REX_PREFIX]);
|
||
|
||
size = 4;
|
||
if (code16)
|
||
size = 2;
|
||
|
||
if (i.prefixes != 0)
|
||
as_warn (_("skipping prefixes on `%s'"), insn_name (&i.tm));
|
||
|
||
if (now_seg == absolute_section)
|
||
{
|
||
abs_section_offset += prefix + 1 + 2 + size;
|
||
return;
|
||
}
|
||
|
||
/* 1 opcode; 2 segment; offset */
|
||
p = frag_more (prefix + 1 + 2 + size);
|
||
|
||
if (i.prefix[DATA_PREFIX] != 0)
|
||
*p++ = DATA_PREFIX_OPCODE;
|
||
|
||
if (i.prefix[REX_PREFIX] != 0)
|
||
*p++ = i.prefix[REX_PREFIX];
|
||
|
||
*p++ = i.tm.base_opcode;
|
||
if (i.op[1].imms->X_op == O_constant)
|
||
{
|
||
offsetT n = i.op[1].imms->X_add_number;
|
||
|
||
if (size == 2
|
||
&& !fits_in_unsigned_word (n)
|
||
&& !fits_in_signed_word (n))
|
||
{
|
||
as_bad (_("16-bit jump out of range"));
|
||
return;
|
||
}
|
||
md_number_to_chars (p, n, size);
|
||
}
|
||
else
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
|
||
|
||
p += size;
|
||
if (i.op[0].imms->X_op == O_constant)
|
||
md_number_to_chars (p, (valueT) i.op[0].imms->X_add_number, 2);
|
||
else
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
|
||
i.op[0].imms, 0, reloc (2, 0, 0, i.reloc[0]));
|
||
}
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
void
|
||
x86_cleanup (void)
|
||
{
|
||
char *p;
|
||
asection *seg = now_seg;
|
||
subsegT subseg = now_subseg;
|
||
asection *sec;
|
||
unsigned int alignment, align_size_1;
|
||
unsigned int isa_1_descsz, feature_2_descsz, descsz;
|
||
unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
|
||
unsigned int padding;
|
||
|
||
if (!IS_ELF || !x86_used_note)
|
||
return;
|
||
|
||
x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
|
||
|
||
/* The .note.gnu.property section layout:
|
||
|
||
Field Length Contents
|
||
---- ---- ----
|
||
n_namsz 4 4
|
||
n_descsz 4 The note descriptor size
|
||
n_type 4 NT_GNU_PROPERTY_TYPE_0
|
||
n_name 4 "GNU"
|
||
n_desc n_descsz The program property array
|
||
.... .... ....
|
||
*/
|
||
|
||
/* Create the .note.gnu.property section. */
|
||
sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
|
||
bfd_set_section_flags (sec,
|
||
(SEC_ALLOC
|
||
| SEC_LOAD
|
||
| SEC_DATA
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_READONLY));
|
||
|
||
if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
|
||
{
|
||
align_size_1 = 7;
|
||
alignment = 3;
|
||
}
|
||
else
|
||
{
|
||
align_size_1 = 3;
|
||
alignment = 2;
|
||
}
|
||
|
||
bfd_set_section_alignment (sec, alignment);
|
||
elf_section_type (sec) = SHT_NOTE;
|
||
|
||
/* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
|
||
+ 4-byte data */
|
||
isa_1_descsz_raw = 4 + 4 + 4;
|
||
/* Align GNU_PROPERTY_X86_ISA_1_USED. */
|
||
isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
|
||
|
||
feature_2_descsz_raw = isa_1_descsz;
|
||
/* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
|
||
+ 4-byte data */
|
||
feature_2_descsz_raw += 4 + 4 + 4;
|
||
/* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
|
||
feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
|
||
& ~align_size_1);
|
||
|
||
descsz = feature_2_descsz;
|
||
/* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
|
||
p = frag_more (4 + 4 + 4 + 4 + descsz);
|
||
|
||
/* Write n_namsz. */
|
||
md_number_to_chars (p, (valueT) 4, 4);
|
||
|
||
/* Write n_descsz. */
|
||
md_number_to_chars (p + 4, (valueT) descsz, 4);
|
||
|
||
/* Write n_type. */
|
||
md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
|
||
|
||
/* Write n_name. */
|
||
memcpy (p + 4 * 3, "GNU", 4);
|
||
|
||
/* Write 4-byte type. */
|
||
md_number_to_chars (p + 4 * 4,
|
||
(valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
|
||
|
||
/* Write 4-byte data size. */
|
||
md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
|
||
|
||
/* Write 4-byte data. */
|
||
md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
|
||
|
||
/* Zero out paddings. */
|
||
padding = isa_1_descsz - isa_1_descsz_raw;
|
||
if (padding)
|
||
memset (p + 4 * 7, 0, padding);
|
||
|
||
/* Write 4-byte type. */
|
||
md_number_to_chars (p + isa_1_descsz + 4 * 4,
|
||
(valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
|
||
|
||
/* Write 4-byte data size. */
|
||
md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
|
||
|
||
/* Write 4-byte data. */
|
||
md_number_to_chars (p + isa_1_descsz + 4 * 6,
|
||
(valueT) x86_feature_2_used, 4);
|
||
|
||
/* Zero out paddings. */
|
||
padding = feature_2_descsz - feature_2_descsz_raw;
|
||
if (padding)
|
||
memset (p + isa_1_descsz + 4 * 7, 0, padding);
|
||
|
||
/* We probably can't restore the current segment, for there likely
|
||
isn't one yet... */
|
||
if (seg && subseg)
|
||
subseg_set (seg, subseg);
|
||
}
|
||
|
||
bool
|
||
x86_support_sframe_p (void)
|
||
{
|
||
/* At this time, SFrame stack trace is supported for AMD64 ABI only. */
|
||
return (x86_elf_abi == X86_64_ABI);
|
||
}
|
||
|
||
bool
|
||
x86_sframe_ra_tracking_p (void)
|
||
{
|
||
/* In AMD64, return address is always stored on the stack at a fixed offset
|
||
from the CFA (provided via x86_sframe_cfa_ra_offset ()).
|
||
Do not track explicitly via an SFrame Frame Row Entry. */
|
||
return false;
|
||
}
|
||
|
||
offsetT
|
||
x86_sframe_cfa_ra_offset (void)
|
||
{
|
||
gas_assert (x86_elf_abi == X86_64_ABI);
|
||
return (offsetT) -8;
|
||
}
|
||
|
||
unsigned char
|
||
x86_sframe_get_abi_arch (void)
|
||
{
|
||
unsigned char sframe_abi_arch = 0;
|
||
|
||
if (x86_support_sframe_p ())
|
||
{
|
||
gas_assert (!target_big_endian);
|
||
sframe_abi_arch = SFRAME_ABI_AMD64_ENDIAN_LITTLE;
|
||
}
|
||
|
||
return sframe_abi_arch;
|
||
}
|
||
|
||
#endif
|
||
|
||
static unsigned int
|
||
encoding_length (const fragS *start_frag, offsetT start_off,
|
||
const char *frag_now_ptr)
|
||
{
|
||
unsigned int len = 0;
|
||
|
||
if (start_frag != frag_now)
|
||
{
|
||
const fragS *fr = start_frag;
|
||
|
||
do {
|
||
len += fr->fr_fix;
|
||
fr = fr->fr_next;
|
||
} while (fr && fr != frag_now);
|
||
}
|
||
|
||
return len - start_off + (frag_now_ptr - frag_now->fr_literal);
|
||
}
|
||
|
||
/* Return 1 for test, and, cmp, add, sub, inc and dec which may
|
||
be macro-fused with conditional jumps.
|
||
NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
|
||
or is one of the following format:
|
||
|
||
cmp m, imm
|
||
add m, imm
|
||
sub m, imm
|
||
test m, imm
|
||
and m, imm
|
||
inc m
|
||
dec m
|
||
|
||
it is unfusible. */
|
||
|
||
static int
|
||
maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
|
||
{
|
||
/* No RIP address. */
|
||
if (i.base_reg && i.base_reg->reg_num == RegIP)
|
||
return 0;
|
||
|
||
/* No opcodes outside of base encoding space. */
|
||
if (i.tm.opcode_space != SPACE_BASE)
|
||
return 0;
|
||
|
||
/* add, sub without add/sub m, imm. */
|
||
if (i.tm.base_opcode <= 5
|
||
|| (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
|
||
|| ((i.tm.base_opcode | 3) == 0x83
|
||
&& (i.tm.extension_opcode == 0x5
|
||
|| i.tm.extension_opcode == 0x0)))
|
||
{
|
||
*mf_cmp_p = mf_cmp_alu_cmp;
|
||
return !(i.mem_operands && i.imm_operands);
|
||
}
|
||
|
||
/* and without and m, imm. */
|
||
if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
|
||
|| ((i.tm.base_opcode | 3) == 0x83
|
||
&& i.tm.extension_opcode == 0x4))
|
||
{
|
||
*mf_cmp_p = mf_cmp_test_and;
|
||
return !(i.mem_operands && i.imm_operands);
|
||
}
|
||
|
||
/* test without test m imm. */
|
||
if ((i.tm.base_opcode | 1) == 0x85
|
||
|| (i.tm.base_opcode | 1) == 0xa9
|
||
|| ((i.tm.base_opcode | 1) == 0xf7
|
||
&& i.tm.extension_opcode == 0))
|
||
{
|
||
*mf_cmp_p = mf_cmp_test_and;
|
||
return !(i.mem_operands && i.imm_operands);
|
||
}
|
||
|
||
/* cmp without cmp m, imm. */
|
||
if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
|
||
|| ((i.tm.base_opcode | 3) == 0x83
|
||
&& (i.tm.extension_opcode == 0x7)))
|
||
{
|
||
*mf_cmp_p = mf_cmp_alu_cmp;
|
||
return !(i.mem_operands && i.imm_operands);
|
||
}
|
||
|
||
/* inc, dec without inc/dec m. */
|
||
if ((i.tm.cpu_flags.bitfield.cpuno64
|
||
&& (i.tm.base_opcode | 0xf) == 0x4f)
|
||
|| ((i.tm.base_opcode | 1) == 0xff
|
||
&& i.tm.extension_opcode <= 0x1))
|
||
{
|
||
*mf_cmp_p = mf_cmp_incdec;
|
||
return !i.mem_operands;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
|
||
|
||
static int
|
||
add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
|
||
{
|
||
/* NB: Don't work with COND_JUMP86 without i386. */
|
||
if (!align_branch_power
|
||
|| now_seg == absolute_section
|
||
|| !cpu_arch_flags.bitfield.cpui386
|
||
|| !(align_branch & align_branch_fused_bit))
|
||
return 0;
|
||
|
||
if (maybe_fused_with_jcc_p (mf_cmp_p))
|
||
{
|
||
if (last_insn.kind == last_insn_other
|
||
|| last_insn.seg != now_seg)
|
||
return 1;
|
||
if (flag_debug)
|
||
as_warn_where (last_insn.file, last_insn.line,
|
||
_("`%s` skips -malign-branch-boundary on `%s`"),
|
||
last_insn.name, insn_name (&i.tm));
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if a BRANCH_PREFIX frag should be generated. */
|
||
|
||
static int
|
||
add_branch_prefix_frag_p (void)
|
||
{
|
||
/* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
|
||
to PadLock instructions since they include prefixes in opcode. */
|
||
if (!align_branch_power
|
||
|| !align_branch_prefix_size
|
||
|| now_seg == absolute_section
|
||
|| i.tm.cpu_flags.bitfield.cpupadlock
|
||
|| !cpu_arch_flags.bitfield.cpui386)
|
||
return 0;
|
||
|
||
/* Don't add prefix if it is a prefix or there is no operand in case
|
||
that segment prefix is special. */
|
||
if (!i.operands || i.tm.opcode_modifier.isprefix)
|
||
return 0;
|
||
|
||
if (last_insn.kind == last_insn_other
|
||
|| last_insn.seg != now_seg)
|
||
return 1;
|
||
|
||
if (flag_debug)
|
||
as_warn_where (last_insn.file, last_insn.line,
|
||
_("`%s` skips -malign-branch-boundary on `%s`"),
|
||
last_insn.name, insn_name (&i.tm));
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if a BRANCH_PADDING frag should be generated. */
|
||
|
||
static int
|
||
add_branch_padding_frag_p (enum align_branch_kind *branch_p,
|
||
enum mf_jcc_kind *mf_jcc_p)
|
||
{
|
||
int add_padding;
|
||
|
||
/* NB: Don't work with COND_JUMP86 without i386. */
|
||
if (!align_branch_power
|
||
|| now_seg == absolute_section
|
||
|| !cpu_arch_flags.bitfield.cpui386
|
||
|| i.tm.opcode_space != SPACE_BASE)
|
||
return 0;
|
||
|
||
add_padding = 0;
|
||
|
||
/* Check for jcc and direct jmp. */
|
||
if (i.tm.opcode_modifier.jump == JUMP)
|
||
{
|
||
if (i.tm.base_opcode == JUMP_PC_RELATIVE)
|
||
{
|
||
*branch_p = align_branch_jmp;
|
||
add_padding = align_branch & align_branch_jmp_bit;
|
||
}
|
||
else
|
||
{
|
||
/* Because J<cc> and JN<cc> share same group in macro-fusible table,
|
||
igore the lowest bit. */
|
||
*mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
|
||
*branch_p = align_branch_jcc;
|
||
if ((align_branch & align_branch_jcc_bit))
|
||
add_padding = 1;
|
||
}
|
||
}
|
||
else if ((i.tm.base_opcode | 1) == 0xc3)
|
||
{
|
||
/* Near ret. */
|
||
*branch_p = align_branch_ret;
|
||
if ((align_branch & align_branch_ret_bit))
|
||
add_padding = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Check for indirect jmp, direct and indirect calls. */
|
||
if (i.tm.base_opcode == 0xe8)
|
||
{
|
||
/* Direct call. */
|
||
*branch_p = align_branch_call;
|
||
if ((align_branch & align_branch_call_bit))
|
||
add_padding = 1;
|
||
}
|
||
else if (i.tm.base_opcode == 0xff
|
||
&& (i.tm.extension_opcode == 2
|
||
|| i.tm.extension_opcode == 4))
|
||
{
|
||
/* Indirect call and jmp. */
|
||
*branch_p = align_branch_indirect;
|
||
if ((align_branch & align_branch_indirect_bit))
|
||
add_padding = 1;
|
||
}
|
||
|
||
if (add_padding
|
||
&& i.disp_operands
|
||
&& tls_get_addr
|
||
&& (i.op[0].disps->X_op == O_symbol
|
||
|| (i.op[0].disps->X_op == O_subtract
|
||
&& i.op[0].disps->X_op_symbol == GOT_symbol)))
|
||
{
|
||
symbolS *s = i.op[0].disps->X_add_symbol;
|
||
/* No padding to call to global or undefined tls_get_addr. */
|
||
if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
|
||
&& strcmp (S_GET_NAME (s), tls_get_addr) == 0)
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
if (add_padding
|
||
&& last_insn.kind != last_insn_other
|
||
&& last_insn.seg == now_seg)
|
||
{
|
||
if (flag_debug)
|
||
as_warn_where (last_insn.file, last_insn.line,
|
||
_("`%s` skips -malign-branch-boundary on `%s`"),
|
||
last_insn.name, insn_name (&i.tm));
|
||
return 0;
|
||
}
|
||
|
||
return add_padding;
|
||
}
|
||
|
||
static void
|
||
output_insn (void)
|
||
{
|
||
fragS *insn_start_frag;
|
||
offsetT insn_start_off;
|
||
fragS *fragP = NULL;
|
||
enum align_branch_kind branch = align_branch_none;
|
||
/* The initializer is arbitrary just to avoid uninitialized error.
|
||
it's actually either assigned in add_branch_padding_frag_p
|
||
or never be used. */
|
||
enum mf_jcc_kind mf_jcc = mf_jcc_jo;
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (IS_ELF && x86_used_note && now_seg != absolute_section)
|
||
{
|
||
if ((i.xstate & xstate_tmm) == xstate_tmm
|
||
|| i.tm.cpu_flags.bitfield.cpuamx_tile)
|
||
x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_TMM;
|
||
|
||
if (i.tm.cpu_flags.bitfield.cpu8087
|
||
|| i.tm.cpu_flags.bitfield.cpu287
|
||
|| i.tm.cpu_flags.bitfield.cpu387
|
||
|| i.tm.cpu_flags.bitfield.cpu687
|
||
|| i.tm.cpu_flags.bitfield.cpufisttp)
|
||
x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
|
||
|
||
if ((i.xstate & xstate_mmx)
|
||
|| i.tm.mnem_off == MN_emms
|
||
|| i.tm.mnem_off == MN_femms)
|
||
x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
|
||
|
||
if (i.index_reg)
|
||
{
|
||
if (i.index_reg->reg_type.bitfield.zmmword)
|
||
i.xstate |= xstate_zmm;
|
||
else if (i.index_reg->reg_type.bitfield.ymmword)
|
||
i.xstate |= xstate_ymm;
|
||
else if (i.index_reg->reg_type.bitfield.xmmword)
|
||
i.xstate |= xstate_xmm;
|
||
}
|
||
|
||
/* vzeroall / vzeroupper */
|
||
if (i.tm.base_opcode == 0x77 && i.tm.cpu_flags.bitfield.cpuavx)
|
||
i.xstate |= xstate_ymm;
|
||
|
||
if ((i.xstate & xstate_xmm)
|
||
/* ldmxcsr / stmxcsr / vldmxcsr / vstmxcsr */
|
||
|| (i.tm.base_opcode == 0xae
|
||
&& (i.tm.cpu_flags.bitfield.cpusse
|
||
|| i.tm.cpu_flags.bitfield.cpuavx))
|
||
|| i.tm.cpu_flags.bitfield.cpuwidekl
|
||
|| i.tm.cpu_flags.bitfield.cpukl)
|
||
x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
|
||
|
||
if ((i.xstate & xstate_ymm) == xstate_ymm)
|
||
x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
|
||
if ((i.xstate & xstate_zmm) == xstate_zmm)
|
||
x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
|
||
if (i.mask.reg || (i.xstate & xstate_mask) == xstate_mask)
|
||
x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MASK;
|
||
if (i.tm.cpu_flags.bitfield.cpufxsr)
|
||
x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
|
||
if (i.tm.cpu_flags.bitfield.cpuxsave)
|
||
x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
|
||
if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
|
||
x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
|
||
if (i.tm.cpu_flags.bitfield.cpuxsavec)
|
||
x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
|
||
|
||
if (x86_feature_2_used
|
||
|| i.tm.cpu_flags.bitfield.cpucmov
|
||
|| i.tm.cpu_flags.bitfield.cpusyscall
|
||
|| i.tm.mnem_off == MN_cmpxchg8b)
|
||
x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_BASELINE;
|
||
if (i.tm.cpu_flags.bitfield.cpusse3
|
||
|| i.tm.cpu_flags.bitfield.cpussse3
|
||
|| i.tm.cpu_flags.bitfield.cpusse4_1
|
||
|| i.tm.cpu_flags.bitfield.cpusse4_2
|
||
|| i.tm.cpu_flags.bitfield.cpucx16
|
||
|| i.tm.cpu_flags.bitfield.cpupopcnt
|
||
/* LAHF-SAHF insns in 64-bit mode. */
|
||
|| (flag_code == CODE_64BIT
|
||
&& (i.tm.base_opcode | 1) == 0x9f
|
||
&& i.tm.opcode_space == SPACE_BASE))
|
||
x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V2;
|
||
if (i.tm.cpu_flags.bitfield.cpuavx
|
||
|| i.tm.cpu_flags.bitfield.cpuavx2
|
||
/* Any VEX encoded insns execpt for AVX512F, AVX512BW, AVX512DQ,
|
||
XOP, FMA4, LPW, TBM, and AMX. */
|
||
|| (i.tm.opcode_modifier.vex
|
||
&& !i.tm.cpu_flags.bitfield.cpuavx512f
|
||
&& !i.tm.cpu_flags.bitfield.cpuavx512bw
|
||
&& !i.tm.cpu_flags.bitfield.cpuavx512dq
|
||
&& !i.tm.cpu_flags.bitfield.cpuxop
|
||
&& !i.tm.cpu_flags.bitfield.cpufma4
|
||
&& !i.tm.cpu_flags.bitfield.cpulwp
|
||
&& !i.tm.cpu_flags.bitfield.cputbm
|
||
&& !(x86_feature_2_used & GNU_PROPERTY_X86_FEATURE_2_TMM))
|
||
|| i.tm.cpu_flags.bitfield.cpuf16c
|
||
|| i.tm.cpu_flags.bitfield.cpufma
|
||
|| i.tm.cpu_flags.bitfield.cpulzcnt
|
||
|| i.tm.cpu_flags.bitfield.cpumovbe
|
||
|| i.tm.cpu_flags.bitfield.cpuxsaves
|
||
|| (x86_feature_2_used
|
||
& (GNU_PROPERTY_X86_FEATURE_2_XSAVE
|
||
| GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT
|
||
| GNU_PROPERTY_X86_FEATURE_2_XSAVEC)) != 0)
|
||
x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V3;
|
||
if (i.tm.cpu_flags.bitfield.cpuavx512f
|
||
|| i.tm.cpu_flags.bitfield.cpuavx512bw
|
||
|| i.tm.cpu_flags.bitfield.cpuavx512dq
|
||
|| i.tm.cpu_flags.bitfield.cpuavx512vl
|
||
/* Any EVEX encoded insns except for AVX512ER, AVX512PF,
|
||
AVX512-4FMAPS, and AVX512-4VNNIW. */
|
||
|| (i.tm.opcode_modifier.evex
|
||
&& !i.tm.cpu_flags.bitfield.cpuavx512er
|
||
&& !i.tm.cpu_flags.bitfield.cpuavx512pf
|
||
&& !i.tm.cpu_flags.bitfield.cpuavx512_4fmaps
|
||
&& !i.tm.cpu_flags.bitfield.cpuavx512_4vnniw))
|
||
x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V4;
|
||
}
|
||
#endif
|
||
|
||
/* Tie dwarf2 debug info to the address at the start of the insn.
|
||
We can't do this after the insn has been output as the current
|
||
frag may have been closed off. eg. by frag_var. */
|
||
dwarf2_emit_insn (0);
|
||
|
||
insn_start_frag = frag_now;
|
||
insn_start_off = frag_now_fix ();
|
||
|
||
if (add_branch_padding_frag_p (&branch, &mf_jcc))
|
||
{
|
||
char *p;
|
||
/* Branch can be 8 bytes. Leave some room for prefixes. */
|
||
unsigned int max_branch_padding_size = 14;
|
||
|
||
/* Align section to boundary. */
|
||
record_alignment (now_seg, align_branch_power);
|
||
|
||
/* Make room for padding. */
|
||
frag_grow (max_branch_padding_size);
|
||
|
||
/* Start of the padding. */
|
||
p = frag_more (0);
|
||
|
||
fragP = frag_now;
|
||
|
||
frag_var (rs_machine_dependent, max_branch_padding_size, 0,
|
||
ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
|
||
NULL, 0, p);
|
||
|
||
fragP->tc_frag_data.mf_type = mf_jcc;
|
||
fragP->tc_frag_data.branch_type = branch;
|
||
fragP->tc_frag_data.max_bytes = max_branch_padding_size;
|
||
}
|
||
|
||
if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT)
|
||
&& !pre_386_16bit_warned)
|
||
{
|
||
as_warn (_("use .code16 to ensure correct addressing mode"));
|
||
pre_386_16bit_warned = true;
|
||
}
|
||
|
||
/* Output jumps. */
|
||
if (i.tm.opcode_modifier.jump == JUMP)
|
||
output_branch ();
|
||
else if (i.tm.opcode_modifier.jump == JUMP_BYTE
|
||
|| i.tm.opcode_modifier.jump == JUMP_DWORD)
|
||
output_jump ();
|
||
else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
|
||
output_interseg_jump ();
|
||
else
|
||
{
|
||
/* Output normal instructions here. */
|
||
char *p;
|
||
unsigned char *q;
|
||
unsigned int j;
|
||
enum mf_cmp_kind mf_cmp;
|
||
|
||
if (avoid_fence
|
||
&& (i.tm.base_opcode == 0xaee8
|
||
|| i.tm.base_opcode == 0xaef0
|
||
|| i.tm.base_opcode == 0xaef8))
|
||
{
|
||
/* Encode lfence, mfence, and sfence as
|
||
f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
|
||
if (flag_code == CODE_16BIT)
|
||
as_bad (_("Cannot convert `%s' in 16-bit mode"), insn_name (&i.tm));
|
||
else if (omit_lock_prefix)
|
||
as_bad (_("Cannot convert `%s' with `-momit-lock-prefix=yes' in effect"),
|
||
insn_name (&i.tm));
|
||
else if (now_seg != absolute_section)
|
||
{
|
||
offsetT val = 0x240483f0ULL;
|
||
|
||
p = frag_more (5);
|
||
md_number_to_chars (p, val, 5);
|
||
}
|
||
else
|
||
abs_section_offset += 5;
|
||
return;
|
||
}
|
||
|
||
/* Some processors fail on LOCK prefix. This options makes
|
||
assembler ignore LOCK prefix and serves as a workaround. */
|
||
if (omit_lock_prefix)
|
||
{
|
||
if (i.tm.base_opcode == LOCK_PREFIX_OPCODE
|
||
&& i.tm.opcode_modifier.isprefix)
|
||
return;
|
||
i.prefix[LOCK_PREFIX] = 0;
|
||
}
|
||
|
||
if (branch)
|
||
/* Skip if this is a branch. */
|
||
;
|
||
else if (add_fused_jcc_padding_frag_p (&mf_cmp))
|
||
{
|
||
/* Make room for padding. */
|
||
frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
|
||
p = frag_more (0);
|
||
|
||
fragP = frag_now;
|
||
|
||
frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
|
||
ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
|
||
NULL, 0, p);
|
||
|
||
fragP->tc_frag_data.mf_type = mf_cmp;
|
||
fragP->tc_frag_data.branch_type = align_branch_fused;
|
||
fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
|
||
}
|
||
else if (add_branch_prefix_frag_p ())
|
||
{
|
||
unsigned int max_prefix_size = align_branch_prefix_size;
|
||
|
||
/* Make room for padding. */
|
||
frag_grow (max_prefix_size);
|
||
p = frag_more (0);
|
||
|
||
fragP = frag_now;
|
||
|
||
frag_var (rs_machine_dependent, max_prefix_size, 0,
|
||
ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
|
||
NULL, 0, p);
|
||
|
||
fragP->tc_frag_data.max_bytes = max_prefix_size;
|
||
}
|
||
|
||
/* Since the VEX/EVEX prefix contains the implicit prefix, we
|
||
don't need the explicit prefix. */
|
||
if (!is_any_vex_encoding (&i.tm))
|
||
{
|
||
switch (i.tm.opcode_modifier.opcodeprefix)
|
||
{
|
||
case PREFIX_0X66:
|
||
add_prefix (0x66);
|
||
break;
|
||
case PREFIX_0XF2:
|
||
add_prefix (0xf2);
|
||
break;
|
||
case PREFIX_0XF3:
|
||
if (!i.tm.cpu_flags.bitfield.cpupadlock
|
||
|| (i.prefix[REP_PREFIX] != 0xf3))
|
||
add_prefix (0xf3);
|
||
break;
|
||
case PREFIX_NONE:
|
||
switch (i.opcode_length)
|
||
{
|
||
case 2:
|
||
break;
|
||
case 1:
|
||
/* Check for pseudo prefixes. */
|
||
if (!i.tm.opcode_modifier.isprefix || i.tm.base_opcode)
|
||
break;
|
||
as_bad_where (insn_start_frag->fr_file,
|
||
insn_start_frag->fr_line,
|
||
_("pseudo prefix without instruction"));
|
||
return;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
|
||
/* For x32, add a dummy REX_OPCODE prefix for mov/add with
|
||
R_X86_64_GOTTPOFF relocation so that linker can safely
|
||
perform IE->LE optimization. A dummy REX_OPCODE prefix
|
||
is also needed for lea with R_X86_64_GOTPC32_TLSDESC
|
||
relocation for GDesc -> IE/LE optimization. */
|
||
if (x86_elf_abi == X86_64_X32_ABI
|
||
&& i.operands == 2
|
||
&& (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
|
||
|| i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
|
||
&& i.prefix[REX_PREFIX] == 0)
|
||
add_prefix (REX_OPCODE);
|
||
#endif
|
||
|
||
/* The prefix bytes. */
|
||
for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
|
||
if (*q)
|
||
frag_opcode_byte (*q);
|
||
}
|
||
else
|
||
{
|
||
for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
|
||
if (*q)
|
||
switch (j)
|
||
{
|
||
case SEG_PREFIX:
|
||
case ADDR_PREFIX:
|
||
frag_opcode_byte (*q);
|
||
break;
|
||
default:
|
||
/* There should be no other prefixes for instructions
|
||
with VEX prefix. */
|
||
abort ();
|
||
}
|
||
|
||
/* For EVEX instructions i.vrex should become 0 after
|
||
build_evex_prefix. For VEX instructions upper 16 registers
|
||
aren't available, so VREX should be 0. */
|
||
if (i.vrex)
|
||
abort ();
|
||
/* Now the VEX prefix. */
|
||
if (now_seg != absolute_section)
|
||
{
|
||
p = frag_more (i.vex.length);
|
||
for (j = 0; j < i.vex.length; j++)
|
||
p[j] = i.vex.bytes[j];
|
||
}
|
||
else
|
||
abs_section_offset += i.vex.length;
|
||
}
|
||
|
||
/* Now the opcode; be careful about word order here! */
|
||
j = i.opcode_length;
|
||
if (!i.vex.length)
|
||
switch (i.tm.opcode_space)
|
||
{
|
||
case SPACE_BASE:
|
||
break;
|
||
case SPACE_0F:
|
||
++j;
|
||
break;
|
||
case SPACE_0F38:
|
||
case SPACE_0F3A:
|
||
j += 2;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
if (now_seg == absolute_section)
|
||
abs_section_offset += j;
|
||
else if (j == 1)
|
||
{
|
||
FRAG_APPEND_1_CHAR (i.tm.base_opcode);
|
||
}
|
||
else
|
||
{
|
||
p = frag_more (j);
|
||
if (!i.vex.length
|
||
&& i.tm.opcode_space != SPACE_BASE)
|
||
{
|
||
*p++ = 0x0f;
|
||
if (i.tm.opcode_space != SPACE_0F)
|
||
*p++ = i.tm.opcode_space == SPACE_0F38
|
||
? 0x38 : 0x3a;
|
||
}
|
||
|
||
switch (i.opcode_length)
|
||
{
|
||
case 2:
|
||
/* Put out high byte first: can't use md_number_to_chars! */
|
||
*p++ = (i.tm.base_opcode >> 8) & 0xff;
|
||
/* Fall through. */
|
||
case 1:
|
||
*p = i.tm.base_opcode & 0xff;
|
||
break;
|
||
default:
|
||
abort ();
|
||
break;
|
||
}
|
||
|
||
}
|
||
|
||
/* Now the modrm byte and sib byte (if present). */
|
||
if (i.tm.opcode_modifier.modrm)
|
||
{
|
||
frag_opcode_byte ((i.rm.regmem << 0)
|
||
| (i.rm.reg << 3)
|
||
| (i.rm.mode << 6));
|
||
/* If i.rm.regmem == ESP (4)
|
||
&& i.rm.mode != (Register mode)
|
||
&& not 16 bit
|
||
==> need second modrm byte. */
|
||
if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
|
||
&& i.rm.mode != 3
|
||
&& !(i.base_reg && i.base_reg->reg_type.bitfield.word))
|
||
frag_opcode_byte ((i.sib.base << 0)
|
||
| (i.sib.index << 3)
|
||
| (i.sib.scale << 6));
|
||
}
|
||
|
||
if (i.disp_operands)
|
||
output_disp (insn_start_frag, insn_start_off);
|
||
|
||
if (i.imm_operands)
|
||
output_imm (insn_start_frag, insn_start_off);
|
||
|
||
/*
|
||
* frag_now_fix () returning plain abs_section_offset when we're in the
|
||
* absolute section, and abs_section_offset not getting updated as data
|
||
* gets added to the frag breaks the logic below.
|
||
*/
|
||
if (now_seg != absolute_section)
|
||
{
|
||
j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
|
||
if (j > 15)
|
||
as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
|
||
j);
|
||
else if (fragP)
|
||
{
|
||
/* NB: Don't add prefix with GOTPC relocation since
|
||
output_disp() above depends on the fixed encoding
|
||
length. Can't add prefix with TLS relocation since
|
||
it breaks TLS linker optimization. */
|
||
unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
|
||
/* Prefix count on the current instruction. */
|
||
unsigned int count = i.vex.length;
|
||
unsigned int k;
|
||
for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
|
||
/* REX byte is encoded in VEX/EVEX prefix. */
|
||
if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
|
||
count++;
|
||
|
||
/* Count prefixes for extended opcode maps. */
|
||
if (!i.vex.length)
|
||
switch (i.tm.opcode_space)
|
||
{
|
||
case SPACE_BASE:
|
||
break;
|
||
case SPACE_0F:
|
||
count++;
|
||
break;
|
||
case SPACE_0F38:
|
||
case SPACE_0F3A:
|
||
count += 2;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
|
||
== BRANCH_PREFIX)
|
||
{
|
||
/* Set the maximum prefix size in BRANCH_PREFIX
|
||
frag. */
|
||
if (fragP->tc_frag_data.max_bytes > max)
|
||
fragP->tc_frag_data.max_bytes = max;
|
||
if (fragP->tc_frag_data.max_bytes > count)
|
||
fragP->tc_frag_data.max_bytes -= count;
|
||
else
|
||
fragP->tc_frag_data.max_bytes = 0;
|
||
}
|
||
else
|
||
{
|
||
/* Remember the maximum prefix size in FUSED_JCC_PADDING
|
||
frag. */
|
||
unsigned int max_prefix_size;
|
||
if (align_branch_prefix_size > max)
|
||
max_prefix_size = max;
|
||
else
|
||
max_prefix_size = align_branch_prefix_size;
|
||
if (max_prefix_size > count)
|
||
fragP->tc_frag_data.max_prefix_length
|
||
= max_prefix_size - count;
|
||
}
|
||
|
||
/* Use existing segment prefix if possible. Use CS
|
||
segment prefix in 64-bit mode. In 32-bit mode, use SS
|
||
segment prefix with ESP/EBP base register and use DS
|
||
segment prefix without ESP/EBP base register. */
|
||
if (i.prefix[SEG_PREFIX])
|
||
fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
|
||
else if (flag_code == CODE_64BIT)
|
||
fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
|
||
else if (i.base_reg
|
||
&& (i.base_reg->reg_num == 4
|
||
|| i.base_reg->reg_num == 5))
|
||
fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
|
||
else
|
||
fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* NB: Don't work with COND_JUMP86 without i386. */
|
||
if (align_branch_power
|
||
&& now_seg != absolute_section
|
||
&& cpu_arch_flags.bitfield.cpui386)
|
||
{
|
||
/* Terminate each frag so that we can add prefix and check for
|
||
fused jcc. */
|
||
frag_wane (frag_now);
|
||
frag_new (0);
|
||
}
|
||
|
||
#ifdef DEBUG386
|
||
if (flag_debug)
|
||
{
|
||
pi ("" /*line*/, &i);
|
||
}
|
||
#endif /* DEBUG386 */
|
||
}
|
||
|
||
/* Return the size of the displacement operand N. */
|
||
|
||
static int
|
||
disp_size (unsigned int n)
|
||
{
|
||
int size = 4;
|
||
|
||
if (i.types[n].bitfield.disp64)
|
||
size = 8;
|
||
else if (i.types[n].bitfield.disp8)
|
||
size = 1;
|
||
else if (i.types[n].bitfield.disp16)
|
||
size = 2;
|
||
return size;
|
||
}
|
||
|
||
/* Return the size of the immediate operand N. */
|
||
|
||
static int
|
||
imm_size (unsigned int n)
|
||
{
|
||
int size = 4;
|
||
if (i.types[n].bitfield.imm64)
|
||
size = 8;
|
||
else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
|
||
size = 1;
|
||
else if (i.types[n].bitfield.imm16)
|
||
size = 2;
|
||
return size;
|
||
}
|
||
|
||
static void
|
||
output_disp (fragS *insn_start_frag, offsetT insn_start_off)
|
||
{
|
||
char *p;
|
||
unsigned int n;
|
||
|
||
for (n = 0; n < i.operands; n++)
|
||
{
|
||
if (operand_type_check (i.types[n], disp))
|
||
{
|
||
int size = disp_size (n);
|
||
|
||
if (now_seg == absolute_section)
|
||
abs_section_offset += size;
|
||
else if (i.op[n].disps->X_op == O_constant)
|
||
{
|
||
offsetT val = i.op[n].disps->X_add_number;
|
||
|
||
val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
|
||
size);
|
||
p = frag_more (size);
|
||
md_number_to_chars (p, val, size);
|
||
}
|
||
else
|
||
{
|
||
enum bfd_reloc_code_real reloc_type;
|
||
bool pcrel = (i.flags[n] & Operand_PCrel) != 0;
|
||
bool sign = (flag_code == CODE_64BIT && size == 4
|
||
&& (!want_disp32 (&i.tm)
|
||
|| (i.tm.opcode_modifier.jump && !i.jumpabsolute
|
||
&& !i.types[n].bitfield.baseindex)))
|
||
|| pcrel;
|
||
fixS *fixP;
|
||
|
||
/* We can't have 8 bit displacement here. */
|
||
gas_assert (!i.types[n].bitfield.disp8);
|
||
|
||
/* The PC relative address is computed relative
|
||
to the instruction boundary, so in case immediate
|
||
fields follows, we need to adjust the value. */
|
||
if (pcrel && i.imm_operands)
|
||
{
|
||
unsigned int n1;
|
||
int sz = 0;
|
||
|
||
for (n1 = 0; n1 < i.operands; n1++)
|
||
if (operand_type_check (i.types[n1], imm))
|
||
{
|
||
/* Only one immediate is allowed for PC
|
||
relative address. */
|
||
gas_assert (sz == 0);
|
||
sz = imm_size (n1);
|
||
i.op[n].disps->X_add_number -= sz;
|
||
}
|
||
/* We should find the immediate. */
|
||
gas_assert (sz != 0);
|
||
}
|
||
|
||
p = frag_more (size);
|
||
reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
|
||
if (GOT_symbol
|
||
&& GOT_symbol == i.op[n].disps->X_add_symbol
|
||
&& (((reloc_type == BFD_RELOC_32
|
||
|| reloc_type == BFD_RELOC_X86_64_32S
|
||
|| (reloc_type == BFD_RELOC_64
|
||
&& object_64bit))
|
||
&& (i.op[n].disps->X_op == O_symbol
|
||
|| (i.op[n].disps->X_op == O_add
|
||
&& ((symbol_get_value_expression
|
||
(i.op[n].disps->X_op_symbol)->X_op)
|
||
== O_subtract))))
|
||
|| reloc_type == BFD_RELOC_32_PCREL))
|
||
{
|
||
if (!object_64bit)
|
||
{
|
||
reloc_type = BFD_RELOC_386_GOTPC;
|
||
i.has_gotpc_tls_reloc = true;
|
||
i.op[n].disps->X_add_number +=
|
||
encoding_length (insn_start_frag, insn_start_off, p);
|
||
}
|
||
else if (reloc_type == BFD_RELOC_64)
|
||
reloc_type = BFD_RELOC_X86_64_GOTPC64;
|
||
else
|
||
/* Don't do the adjustment for x86-64, as there
|
||
the pcrel addressing is relative to the _next_
|
||
insn, and that is taken care of in other code. */
|
||
reloc_type = BFD_RELOC_X86_64_GOTPC32;
|
||
}
|
||
else if (align_branch_power)
|
||
{
|
||
switch (reloc_type)
|
||
{
|
||
case BFD_RELOC_386_TLS_GD:
|
||
case BFD_RELOC_386_TLS_LDM:
|
||
case BFD_RELOC_386_TLS_IE:
|
||
case BFD_RELOC_386_TLS_IE_32:
|
||
case BFD_RELOC_386_TLS_GOTIE:
|
||
case BFD_RELOC_386_TLS_GOTDESC:
|
||
case BFD_RELOC_386_TLS_DESC_CALL:
|
||
case BFD_RELOC_X86_64_TLSGD:
|
||
case BFD_RELOC_X86_64_TLSLD:
|
||
case BFD_RELOC_X86_64_GOTTPOFF:
|
||
case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
|
||
case BFD_RELOC_X86_64_TLSDESC_CALL:
|
||
i.has_gotpc_tls_reloc = true;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
|
||
size, i.op[n].disps, pcrel,
|
||
reloc_type);
|
||
|
||
if (flag_code == CODE_64BIT && size == 4 && pcrel
|
||
&& !i.prefix[ADDR_PREFIX])
|
||
fixP->fx_signed = 1;
|
||
|
||
/* Check for "call/jmp *mem", "mov mem, %reg",
|
||
"test %reg, mem" and "binop mem, %reg" where binop
|
||
is one of adc, add, and, cmp, or, sbb, sub, xor
|
||
instructions without data prefix. Always generate
|
||
R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
|
||
if (i.prefix[DATA_PREFIX] == 0
|
||
&& (generate_relax_relocations
|
||
|| (!object_64bit
|
||
&& i.rm.mode == 0
|
||
&& i.rm.regmem == 5))
|
||
&& (i.rm.mode == 2
|
||
|| (i.rm.mode == 0 && i.rm.regmem == 5))
|
||
&& i.tm.opcode_space == SPACE_BASE
|
||
&& ((i.operands == 1
|
||
&& i.tm.base_opcode == 0xff
|
||
&& (i.rm.reg == 2 || i.rm.reg == 4))
|
||
|| (i.operands == 2
|
||
&& (i.tm.base_opcode == 0x8b
|
||
|| i.tm.base_opcode == 0x85
|
||
|| (i.tm.base_opcode & ~0x38) == 0x03))))
|
||
{
|
||
if (object_64bit)
|
||
{
|
||
fixP->fx_tcbit = i.rex != 0;
|
||
if (i.base_reg
|
||
&& (i.base_reg->reg_num == RegIP))
|
||
fixP->fx_tcbit2 = 1;
|
||
}
|
||
else
|
||
fixP->fx_tcbit2 = 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
output_imm (fragS *insn_start_frag, offsetT insn_start_off)
|
||
{
|
||
char *p;
|
||
unsigned int n;
|
||
|
||
for (n = 0; n < i.operands; n++)
|
||
{
|
||
if (operand_type_check (i.types[n], imm))
|
||
{
|
||
int size = imm_size (n);
|
||
|
||
if (now_seg == absolute_section)
|
||
abs_section_offset += size;
|
||
else if (i.op[n].imms->X_op == O_constant)
|
||
{
|
||
offsetT val;
|
||
|
||
val = offset_in_range (i.op[n].imms->X_add_number,
|
||
size);
|
||
p = frag_more (size);
|
||
md_number_to_chars (p, val, size);
|
||
}
|
||
else
|
||
{
|
||
/* Not absolute_section.
|
||
Need a 32-bit fixup (don't support 8bit
|
||
non-absolute imms). Try to support other
|
||
sizes ... */
|
||
enum bfd_reloc_code_real reloc_type;
|
||
int sign;
|
||
|
||
if (i.types[n].bitfield.imm32s
|
||
&& (i.suffix == QWORD_MNEM_SUFFIX
|
||
|| (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
|
||
sign = 1;
|
||
else
|
||
sign = 0;
|
||
|
||
p = frag_more (size);
|
||
reloc_type = reloc (size, 0, sign, i.reloc[n]);
|
||
|
||
/* This is tough to explain. We end up with this one if we
|
||
* have operands that look like
|
||
* "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
|
||
* obtain the absolute address of the GOT, and it is strongly
|
||
* preferable from a performance point of view to avoid using
|
||
* a runtime relocation for this. The actual sequence of
|
||
* instructions often look something like:
|
||
*
|
||
* call .L66
|
||
* .L66:
|
||
* popl %ebx
|
||
* addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
|
||
*
|
||
* The call and pop essentially return the absolute address
|
||
* of the label .L66 and store it in %ebx. The linker itself
|
||
* will ultimately change the first operand of the addl so
|
||
* that %ebx points to the GOT, but to keep things simple, the
|
||
* .o file must have this operand set so that it generates not
|
||
* the absolute address of .L66, but the absolute address of
|
||
* itself. This allows the linker itself simply treat a GOTPC
|
||
* relocation as asking for a pcrel offset to the GOT to be
|
||
* added in, and the addend of the relocation is stored in the
|
||
* operand field for the instruction itself.
|
||
*
|
||
* Our job here is to fix the operand so that it would add
|
||
* the correct offset so that %ebx would point to itself. The
|
||
* thing that is tricky is that .-.L66 will point to the
|
||
* beginning of the instruction, so we need to further modify
|
||
* the operand so that it will point to itself. There are
|
||
* other cases where you have something like:
|
||
*
|
||
* .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
|
||
*
|
||
* and here no correction would be required. Internally in
|
||
* the assembler we treat operands of this form as not being
|
||
* pcrel since the '.' is explicitly mentioned, and I wonder
|
||
* whether it would simplify matters to do it this way. Who
|
||
* knows. In earlier versions of the PIC patches, the
|
||
* pcrel_adjust field was used to store the correction, but
|
||
* since the expression is not pcrel, I felt it would be
|
||
* confusing to do it this way. */
|
||
|
||
if ((reloc_type == BFD_RELOC_32
|
||
|| reloc_type == BFD_RELOC_X86_64_32S
|
||
|| reloc_type == BFD_RELOC_64)
|
||
&& GOT_symbol
|
||
&& GOT_symbol == i.op[n].imms->X_add_symbol
|
||
&& (i.op[n].imms->X_op == O_symbol
|
||
|| (i.op[n].imms->X_op == O_add
|
||
&& ((symbol_get_value_expression
|
||
(i.op[n].imms->X_op_symbol)->X_op)
|
||
== O_subtract))))
|
||
{
|
||
if (!object_64bit)
|
||
reloc_type = BFD_RELOC_386_GOTPC;
|
||
else if (size == 4)
|
||
reloc_type = BFD_RELOC_X86_64_GOTPC32;
|
||
else if (size == 8)
|
||
reloc_type = BFD_RELOC_X86_64_GOTPC64;
|
||
i.has_gotpc_tls_reloc = true;
|
||
i.op[n].imms->X_add_number +=
|
||
encoding_length (insn_start_frag, insn_start_off, p);
|
||
}
|
||
fix_new_exp (frag_now, p - frag_now->fr_literal, size,
|
||
i.op[n].imms, 0, reloc_type);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* x86_cons_fix_new is called via the expression parsing code when a
|
||
reloc is needed. We use this hook to get the correct .got reloc. */
|
||
static int cons_sign = -1;
|
||
|
||
void
|
||
x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
|
||
expressionS *exp, bfd_reloc_code_real_type r)
|
||
{
|
||
r = reloc (len, 0, cons_sign, r);
|
||
|
||
#ifdef TE_PE
|
||
if (exp->X_op == O_secrel)
|
||
{
|
||
exp->X_op = O_symbol;
|
||
r = BFD_RELOC_32_SECREL;
|
||
}
|
||
else if (exp->X_op == O_secidx)
|
||
r = BFD_RELOC_16_SECIDX;
|
||
#endif
|
||
|
||
fix_new_exp (frag, off, len, exp, 0, r);
|
||
}
|
||
|
||
/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
|
||
purpose of the `.dc.a' internal pseudo-op. */
|
||
|
||
int
|
||
x86_address_bytes (void)
|
||
{
|
||
if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
|
||
return 4;
|
||
return stdoutput->arch_info->bits_per_address / 8;
|
||
}
|
||
|
||
#if (!(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
|
||
|| defined (LEX_AT)) && !defined (TE_PE)
|
||
# define lex_got(reloc, adjust, types) NULL
|
||
#else
|
||
/* Parse operands of the form
|
||
<symbol>@GOTOFF+<nnn>
|
||
and similar .plt or .got references.
|
||
|
||
If we find one, set up the correct relocation in RELOC and copy the
|
||
input string, minus the `@GOTOFF' into a malloc'd buffer for
|
||
parsing by the calling routine. Return this buffer, and if ADJUST
|
||
is non-null set it to the length of the string we removed from the
|
||
input line. Otherwise return NULL. */
|
||
static char *
|
||
lex_got (enum bfd_reloc_code_real *rel,
|
||
int *adjust,
|
||
i386_operand_type *types)
|
||
{
|
||
/* Some of the relocations depend on the size of what field is to
|
||
be relocated. But in our callers i386_immediate and i386_displacement
|
||
we don't yet know the operand size (this will be set by insn
|
||
matching). Hence we record the word32 relocation here,
|
||
and adjust the reloc according to the real size in reloc(). */
|
||
static const struct
|
||
{
|
||
const char *str;
|
||
int len;
|
||
const enum bfd_reloc_code_real rel[2];
|
||
const i386_operand_type types64;
|
||
bool need_GOT_symbol;
|
||
}
|
||
gotrel[] =
|
||
{
|
||
|
||
#define OPERAND_TYPE_IMM32_32S_DISP32 { .bitfield = \
|
||
{ .imm32 = 1, .imm32s = 1, .disp32 = 1 } }
|
||
#define OPERAND_TYPE_IMM32_32S_64_DISP32 { .bitfield = \
|
||
{ .imm32 = 1, .imm32s = 1, .imm64 = 1, .disp32 = 1 } }
|
||
#define OPERAND_TYPE_IMM32_32S_64_DISP32_64 { .bitfield = \
|
||
{ .imm32 = 1, .imm32s = 1, .imm64 = 1, .disp32 = 1, .disp64 = 1 } }
|
||
#define OPERAND_TYPE_IMM64_DISP64 { .bitfield = \
|
||
{ .imm64 = 1, .disp64 = 1 } }
|
||
|
||
#ifndef TE_PE
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
{ STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
|
||
BFD_RELOC_SIZE32 },
|
||
{ .bitfield = { .imm32 = 1, .imm64 = 1 } }, false },
|
||
#endif
|
||
{ STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
|
||
BFD_RELOC_X86_64_PLTOFF64 },
|
||
{ .bitfield = { .imm64 = 1 } }, true },
|
||
{ STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
|
||
BFD_RELOC_X86_64_PLT32 },
|
||
OPERAND_TYPE_IMM32_32S_DISP32, false },
|
||
{ STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
|
||
BFD_RELOC_X86_64_GOTPLT64 },
|
||
OPERAND_TYPE_IMM64_DISP64, true },
|
||
{ STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
|
||
BFD_RELOC_X86_64_GOTOFF64 },
|
||
OPERAND_TYPE_IMM64_DISP64, true },
|
||
{ STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
|
||
BFD_RELOC_X86_64_GOTPCREL },
|
||
OPERAND_TYPE_IMM32_32S_DISP32, true },
|
||
{ STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
|
||
BFD_RELOC_X86_64_TLSGD },
|
||
OPERAND_TYPE_IMM32_32S_DISP32, true },
|
||
{ STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
|
||
_dummy_first_bfd_reloc_code_real },
|
||
OPERAND_TYPE_NONE, true },
|
||
{ STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
|
||
BFD_RELOC_X86_64_TLSLD },
|
||
OPERAND_TYPE_IMM32_32S_DISP32, true },
|
||
{ STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
|
||
BFD_RELOC_X86_64_GOTTPOFF },
|
||
OPERAND_TYPE_IMM32_32S_DISP32, true },
|
||
{ STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
|
||
BFD_RELOC_X86_64_TPOFF32 },
|
||
OPERAND_TYPE_IMM32_32S_64_DISP32_64, true },
|
||
{ STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
|
||
_dummy_first_bfd_reloc_code_real },
|
||
OPERAND_TYPE_NONE, true },
|
||
{ STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
|
||
BFD_RELOC_X86_64_DTPOFF32 },
|
||
OPERAND_TYPE_IMM32_32S_64_DISP32_64, true },
|
||
{ STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
|
||
_dummy_first_bfd_reloc_code_real },
|
||
OPERAND_TYPE_NONE, true },
|
||
{ STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
|
||
_dummy_first_bfd_reloc_code_real },
|
||
OPERAND_TYPE_NONE, true },
|
||
{ STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
|
||
BFD_RELOC_X86_64_GOT32 },
|
||
OPERAND_TYPE_IMM32_32S_64_DISP32, true },
|
||
{ STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
|
||
BFD_RELOC_X86_64_GOTPC32_TLSDESC },
|
||
OPERAND_TYPE_IMM32_32S_DISP32, true },
|
||
{ STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
|
||
BFD_RELOC_X86_64_TLSDESC_CALL },
|
||
OPERAND_TYPE_IMM32_32S_DISP32, true },
|
||
#else /* TE_PE */
|
||
{ STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
|
||
BFD_RELOC_32_SECREL },
|
||
OPERAND_TYPE_IMM32_32S_64_DISP32_64, false },
|
||
#endif
|
||
|
||
#undef OPERAND_TYPE_IMM32_32S_DISP32
|
||
#undef OPERAND_TYPE_IMM32_32S_64_DISP32
|
||
#undef OPERAND_TYPE_IMM32_32S_64_DISP32_64
|
||
#undef OPERAND_TYPE_IMM64_DISP64
|
||
|
||
};
|
||
char *cp;
|
||
unsigned int j;
|
||
|
||
#if defined (OBJ_MAYBE_ELF) && !defined (TE_PE)
|
||
if (!IS_ELF)
|
||
return NULL;
|
||
#endif
|
||
|
||
for (cp = input_line_pointer; *cp != '@'; cp++)
|
||
if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
|
||
return NULL;
|
||
|
||
for (j = 0; j < ARRAY_SIZE (gotrel); j++)
|
||
{
|
||
int len = gotrel[j].len;
|
||
if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
|
||
{
|
||
if (gotrel[j].rel[object_64bit] != 0)
|
||
{
|
||
int first, second;
|
||
char *tmpbuf, *past_reloc;
|
||
|
||
*rel = gotrel[j].rel[object_64bit];
|
||
|
||
if (types)
|
||
{
|
||
if (flag_code != CODE_64BIT)
|
||
{
|
||
types->bitfield.imm32 = 1;
|
||
types->bitfield.disp32 = 1;
|
||
}
|
||
else
|
||
*types = gotrel[j].types64;
|
||
}
|
||
|
||
if (gotrel[j].need_GOT_symbol && GOT_symbol == NULL)
|
||
GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
|
||
|
||
/* The length of the first part of our input line. */
|
||
first = cp - input_line_pointer;
|
||
|
||
/* The second part goes from after the reloc token until
|
||
(and including) an end_of_line char or comma. */
|
||
past_reloc = cp + 1 + len;
|
||
cp = past_reloc;
|
||
while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
|
||
++cp;
|
||
second = cp + 1 - past_reloc;
|
||
|
||
/* Allocate and copy string. The trailing NUL shouldn't
|
||
be necessary, but be safe. */
|
||
tmpbuf = XNEWVEC (char, first + second + 2);
|
||
memcpy (tmpbuf, input_line_pointer, first);
|
||
if (second != 0 && *past_reloc != ' ')
|
||
/* Replace the relocation token with ' ', so that
|
||
errors like foo@GOTOFF1 will be detected. */
|
||
tmpbuf[first++] = ' ';
|
||
else
|
||
/* Increment length by 1 if the relocation token is
|
||
removed. */
|
||
len++;
|
||
if (adjust)
|
||
*adjust = len;
|
||
memcpy (tmpbuf + first, past_reloc, second);
|
||
tmpbuf[first + second] = '\0';
|
||
return tmpbuf;
|
||
}
|
||
|
||
as_bad (_("@%s reloc is not supported with %d-bit output format"),
|
||
gotrel[j].str, 1 << (5 + object_64bit));
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Might be a symbol version string. Don't as_bad here. */
|
||
return NULL;
|
||
}
|
||
#endif
|
||
|
||
bfd_reloc_code_real_type
|
||
x86_cons (expressionS *exp, int size)
|
||
{
|
||
bfd_reloc_code_real_type got_reloc = NO_RELOC;
|
||
|
||
#if ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
|
||
&& !defined (LEX_AT)) \
|
||
|| defined (TE_PE)
|
||
intel_syntax = -intel_syntax;
|
||
|
||
exp->X_md = 0;
|
||
if (size == 4 || (object_64bit && size == 8))
|
||
{
|
||
/* Handle @GOTOFF and the like in an expression. */
|
||
char *save;
|
||
char *gotfree_input_line;
|
||
int adjust = 0;
|
||
|
||
save = input_line_pointer;
|
||
gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
|
||
if (gotfree_input_line)
|
||
input_line_pointer = gotfree_input_line;
|
||
|
||
expression (exp);
|
||
|
||
if (gotfree_input_line)
|
||
{
|
||
/* expression () has merrily parsed up to the end of line,
|
||
or a comma - in the wrong buffer. Transfer how far
|
||
input_line_pointer has moved to the right buffer. */
|
||
input_line_pointer = (save
|
||
+ (input_line_pointer - gotfree_input_line)
|
||
+ adjust);
|
||
free (gotfree_input_line);
|
||
if (exp->X_op == O_constant
|
||
|| exp->X_op == O_absent
|
||
|| exp->X_op == O_illegal
|
||
|| exp->X_op == O_register
|
||
|| exp->X_op == O_big)
|
||
{
|
||
char c = *input_line_pointer;
|
||
*input_line_pointer = 0;
|
||
as_bad (_("missing or invalid expression `%s'"), save);
|
||
*input_line_pointer = c;
|
||
}
|
||
else if ((got_reloc == BFD_RELOC_386_PLT32
|
||
|| got_reloc == BFD_RELOC_X86_64_PLT32)
|
||
&& exp->X_op != O_symbol)
|
||
{
|
||
char c = *input_line_pointer;
|
||
*input_line_pointer = 0;
|
||
as_bad (_("invalid PLT expression `%s'"), save);
|
||
*input_line_pointer = c;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
expression (exp);
|
||
|
||
intel_syntax = -intel_syntax;
|
||
|
||
if (intel_syntax)
|
||
i386_intel_simplify (exp);
|
||
#else
|
||
expression (exp);
|
||
#endif
|
||
|
||
/* If not 64bit, massage value, to account for wraparound when !BFD64. */
|
||
if (size == 4 && exp->X_op == O_constant && !object_64bit)
|
||
exp->X_add_number = extend_to_32bit_address (exp->X_add_number);
|
||
|
||
return got_reloc;
|
||
}
|
||
|
||
static void
|
||
signed_cons (int size)
|
||
{
|
||
if (object_64bit)
|
||
cons_sign = 1;
|
||
cons (size);
|
||
cons_sign = -1;
|
||
}
|
||
|
||
#ifdef TE_PE
|
||
static void
|
||
pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
|
||
{
|
||
expressionS exp;
|
||
|
||
do
|
||
{
|
||
expression (&exp);
|
||
if (exp.X_op == O_symbol)
|
||
exp.X_op = O_secrel;
|
||
|
||
emit_expr (&exp, 4);
|
||
}
|
||
while (*input_line_pointer++ == ',');
|
||
|
||
input_line_pointer--;
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
static void
|
||
pe_directive_secidx (int dummy ATTRIBUTE_UNUSED)
|
||
{
|
||
expressionS exp;
|
||
|
||
do
|
||
{
|
||
expression (&exp);
|
||
if (exp.X_op == O_symbol)
|
||
exp.X_op = O_secidx;
|
||
|
||
emit_expr (&exp, 2);
|
||
}
|
||
while (*input_line_pointer++ == ',');
|
||
|
||
input_line_pointer--;
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
#endif
|
||
|
||
/* Handle Rounding Control / SAE specifiers. */
|
||
|
||
static char *
|
||
RC_SAE_specifier (const char *pstr)
|
||
{
|
||
unsigned int j;
|
||
|
||
for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
|
||
{
|
||
if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
|
||
{
|
||
if (i.rounding.type != rc_none)
|
||
{
|
||
as_bad (_("duplicated `{%s}'"), RC_NamesTable[j].name);
|
||
return NULL;
|
||
}
|
||
|
||
i.rounding.type = RC_NamesTable[j].type;
|
||
|
||
return (char *)(pstr + RC_NamesTable[j].len);
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Handle Vector operations. */
|
||
|
||
static char *
|
||
check_VecOperations (char *op_string)
|
||
{
|
||
const reg_entry *mask;
|
||
const char *saved;
|
||
char *end_op;
|
||
|
||
while (*op_string)
|
||
{
|
||
saved = op_string;
|
||
if (*op_string == '{')
|
||
{
|
||
op_string++;
|
||
|
||
/* Check broadcasts. */
|
||
if (startswith (op_string, "1to"))
|
||
{
|
||
unsigned int bcst_type;
|
||
|
||
if (i.broadcast.type)
|
||
goto duplicated_vec_op;
|
||
|
||
op_string += 3;
|
||
if (*op_string == '8')
|
||
bcst_type = 8;
|
||
else if (*op_string == '4')
|
||
bcst_type = 4;
|
||
else if (*op_string == '2')
|
||
bcst_type = 2;
|
||
else if (*op_string == '1'
|
||
&& *(op_string+1) == '6')
|
||
{
|
||
bcst_type = 16;
|
||
op_string++;
|
||
}
|
||
else if (*op_string == '3'
|
||
&& *(op_string+1) == '2')
|
||
{
|
||
bcst_type = 32;
|
||
op_string++;
|
||
}
|
||
else
|
||
{
|
||
as_bad (_("Unsupported broadcast: `%s'"), saved);
|
||
return NULL;
|
||
}
|
||
op_string++;
|
||
|
||
i.broadcast.type = bcst_type;
|
||
i.broadcast.operand = this_operand;
|
||
}
|
||
/* Check masking operation. */
|
||
else if ((mask = parse_register (op_string, &end_op)) != NULL)
|
||
{
|
||
if (mask == &bad_reg)
|
||
return NULL;
|
||
|
||
/* k0 can't be used for write mask. */
|
||
if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
|
||
{
|
||
as_bad (_("`%s%s' can't be used for write mask"),
|
||
register_prefix, mask->reg_name);
|
||
return NULL;
|
||
}
|
||
|
||
if (!i.mask.reg)
|
||
{
|
||
i.mask.reg = mask;
|
||
i.mask.operand = this_operand;
|
||
}
|
||
else if (i.mask.reg->reg_num)
|
||
goto duplicated_vec_op;
|
||
else
|
||
{
|
||
i.mask.reg = mask;
|
||
|
||
/* Only "{z}" is allowed here. No need to check
|
||
zeroing mask explicitly. */
|
||
if (i.mask.operand != (unsigned int) this_operand)
|
||
{
|
||
as_bad (_("invalid write mask `%s'"), saved);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
op_string = end_op;
|
||
}
|
||
/* Check zeroing-flag for masking operation. */
|
||
else if (*op_string == 'z')
|
||
{
|
||
if (!i.mask.reg)
|
||
{
|
||
i.mask.reg = reg_k0;
|
||
i.mask.zeroing = 1;
|
||
i.mask.operand = this_operand;
|
||
}
|
||
else
|
||
{
|
||
if (i.mask.zeroing)
|
||
{
|
||
duplicated_vec_op:
|
||
as_bad (_("duplicated `%s'"), saved);
|
||
return NULL;
|
||
}
|
||
|
||
i.mask.zeroing = 1;
|
||
|
||
/* Only "{%k}" is allowed here. No need to check mask
|
||
register explicitly. */
|
||
if (i.mask.operand != (unsigned int) this_operand)
|
||
{
|
||
as_bad (_("invalid zeroing-masking `%s'"),
|
||
saved);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
op_string++;
|
||
}
|
||
else if (intel_syntax
|
||
&& (op_string = RC_SAE_specifier (op_string)) != NULL)
|
||
i.rounding.modifier = true;
|
||
else
|
||
goto unknown_vec_op;
|
||
|
||
if (*op_string != '}')
|
||
{
|
||
as_bad (_("missing `}' in `%s'"), saved);
|
||
return NULL;
|
||
}
|
||
op_string++;
|
||
|
||
/* Strip whitespace since the addition of pseudo prefixes
|
||
changed how the scrubber treats '{'. */
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
|
||
continue;
|
||
}
|
||
unknown_vec_op:
|
||
/* We don't know this one. */
|
||
as_bad (_("unknown vector operation: `%s'"), saved);
|
||
return NULL;
|
||
}
|
||
|
||
if (i.mask.reg && i.mask.zeroing && !i.mask.reg->reg_num)
|
||
{
|
||
as_bad (_("zeroing-masking only allowed with write mask"));
|
||
return NULL;
|
||
}
|
||
|
||
return op_string;
|
||
}
|
||
|
||
static int
|
||
i386_immediate (char *imm_start)
|
||
{
|
||
char *save_input_line_pointer;
|
||
char *gotfree_input_line;
|
||
segT exp_seg = 0;
|
||
expressionS *exp;
|
||
i386_operand_type types;
|
||
|
||
operand_type_set (&types, ~0);
|
||
|
||
if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
|
||
{
|
||
as_bad (_("at most %d immediate operands are allowed"),
|
||
MAX_IMMEDIATE_OPERANDS);
|
||
return 0;
|
||
}
|
||
|
||
exp = &im_expressions[i.imm_operands++];
|
||
i.op[this_operand].imms = exp;
|
||
|
||
if (is_space_char (*imm_start))
|
||
++imm_start;
|
||
|
||
save_input_line_pointer = input_line_pointer;
|
||
input_line_pointer = imm_start;
|
||
|
||
gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
|
||
if (gotfree_input_line)
|
||
input_line_pointer = gotfree_input_line;
|
||
|
||
exp_seg = expression (exp);
|
||
|
||
SKIP_WHITESPACE ();
|
||
if (*input_line_pointer)
|
||
as_bad (_("junk `%s' after expression"), input_line_pointer);
|
||
|
||
input_line_pointer = save_input_line_pointer;
|
||
if (gotfree_input_line)
|
||
{
|
||
free (gotfree_input_line);
|
||
|
||
if (exp->X_op == O_constant)
|
||
exp->X_op = O_illegal;
|
||
}
|
||
|
||
if (exp_seg == reg_section)
|
||
{
|
||
as_bad (_("illegal immediate register operand %s"), imm_start);
|
||
return 0;
|
||
}
|
||
|
||
return i386_finalize_immediate (exp_seg, exp, types, imm_start);
|
||
}
|
||
|
||
static int
|
||
i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
|
||
i386_operand_type types, const char *imm_start)
|
||
{
|
||
if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
|
||
{
|
||
if (imm_start)
|
||
as_bad (_("missing or invalid immediate expression `%s'"),
|
||
imm_start);
|
||
return 0;
|
||
}
|
||
else if (exp->X_op == O_constant)
|
||
{
|
||
/* Size it properly later. */
|
||
i.types[this_operand].bitfield.imm64 = 1;
|
||
|
||
/* If not 64bit, sign/zero extend val, to account for wraparound
|
||
when !BFD64. */
|
||
if (flag_code != CODE_64BIT)
|
||
exp->X_add_number = extend_to_32bit_address (exp->X_add_number);
|
||
}
|
||
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
|
||
else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
|
||
&& exp_seg != absolute_section
|
||
&& exp_seg != text_section
|
||
&& exp_seg != data_section
|
||
&& exp_seg != bss_section
|
||
&& exp_seg != undefined_section
|
||
&& !bfd_is_com_section (exp_seg))
|
||
{
|
||
as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
|
||
return 0;
|
||
}
|
||
#endif
|
||
else
|
||
{
|
||
/* This is an address. The size of the address will be
|
||
determined later, depending on destination register,
|
||
suffix, or the default for the section. */
|
||
i.types[this_operand].bitfield.imm8 = 1;
|
||
i.types[this_operand].bitfield.imm16 = 1;
|
||
i.types[this_operand].bitfield.imm32 = 1;
|
||
i.types[this_operand].bitfield.imm32s = 1;
|
||
i.types[this_operand].bitfield.imm64 = 1;
|
||
i.types[this_operand] = operand_type_and (i.types[this_operand],
|
||
types);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
static char *
|
||
i386_scale (char *scale)
|
||
{
|
||
offsetT val;
|
||
char *save = input_line_pointer;
|
||
|
||
input_line_pointer = scale;
|
||
val = get_absolute_expression ();
|
||
|
||
switch (val)
|
||
{
|
||
case 1:
|
||
i.log2_scale_factor = 0;
|
||
break;
|
||
case 2:
|
||
i.log2_scale_factor = 1;
|
||
break;
|
||
case 4:
|
||
i.log2_scale_factor = 2;
|
||
break;
|
||
case 8:
|
||
i.log2_scale_factor = 3;
|
||
break;
|
||
default:
|
||
{
|
||
char sep = *input_line_pointer;
|
||
|
||
*input_line_pointer = '\0';
|
||
as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
|
||
scale);
|
||
*input_line_pointer = sep;
|
||
input_line_pointer = save;
|
||
return NULL;
|
||
}
|
||
}
|
||
if (i.log2_scale_factor != 0 && i.index_reg == 0)
|
||
{
|
||
as_warn (_("scale factor of %d without an index register"),
|
||
1 << i.log2_scale_factor);
|
||
i.log2_scale_factor = 0;
|
||
}
|
||
scale = input_line_pointer;
|
||
input_line_pointer = save;
|
||
return scale;
|
||
}
|
||
|
||
static int
|
||
i386_displacement (char *disp_start, char *disp_end)
|
||
{
|
||
expressionS *exp;
|
||
segT exp_seg = 0;
|
||
char *save_input_line_pointer;
|
||
char *gotfree_input_line;
|
||
int override;
|
||
i386_operand_type bigdisp, types = anydisp;
|
||
int ret;
|
||
|
||
if (i.disp_operands == MAX_MEMORY_OPERANDS)
|
||
{
|
||
as_bad (_("at most %d displacement operands are allowed"),
|
||
MAX_MEMORY_OPERANDS);
|
||
return 0;
|
||
}
|
||
|
||
operand_type_set (&bigdisp, 0);
|
||
if (i.jumpabsolute
|
||
|| i.types[this_operand].bitfield.baseindex
|
||
|| (current_templates->start->opcode_modifier.jump != JUMP
|
||
&& current_templates->start->opcode_modifier.jump != JUMP_DWORD))
|
||
{
|
||
i386_addressing_mode ();
|
||
override = (i.prefix[ADDR_PREFIX] != 0);
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
bigdisp.bitfield.disp32 = 1;
|
||
if (!override)
|
||
bigdisp.bitfield.disp64 = 1;
|
||
}
|
||
else if ((flag_code == CODE_16BIT) ^ override)
|
||
bigdisp.bitfield.disp16 = 1;
|
||
else
|
||
bigdisp.bitfield.disp32 = 1;
|
||
}
|
||
else
|
||
{
|
||
/* For PC-relative branches, the width of the displacement may be
|
||
dependent upon data size, but is never dependent upon address size.
|
||
Also make sure to not unintentionally match against a non-PC-relative
|
||
branch template. */
|
||
static templates aux_templates;
|
||
const insn_template *t = current_templates->start;
|
||
bool has_intel64 = false;
|
||
|
||
aux_templates.start = t;
|
||
while (++t < current_templates->end)
|
||
{
|
||
if (t->opcode_modifier.jump
|
||
!= current_templates->start->opcode_modifier.jump)
|
||
break;
|
||
if ((t->opcode_modifier.isa64 >= INTEL64))
|
||
has_intel64 = true;
|
||
}
|
||
if (t < current_templates->end)
|
||
{
|
||
aux_templates.end = t;
|
||
current_templates = &aux_templates;
|
||
}
|
||
|
||
override = (i.prefix[DATA_PREFIX] != 0);
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
if ((override || i.suffix == WORD_MNEM_SUFFIX)
|
||
&& (!intel64 || !has_intel64))
|
||
bigdisp.bitfield.disp16 = 1;
|
||
else
|
||
bigdisp.bitfield.disp32 = 1;
|
||
}
|
||
else
|
||
{
|
||
if (!override)
|
||
override = (i.suffix == (flag_code != CODE_16BIT
|
||
? WORD_MNEM_SUFFIX
|
||
: LONG_MNEM_SUFFIX));
|
||
bigdisp.bitfield.disp32 = 1;
|
||
if ((flag_code == CODE_16BIT) ^ override)
|
||
{
|
||
bigdisp.bitfield.disp32 = 0;
|
||
bigdisp.bitfield.disp16 = 1;
|
||
}
|
||
}
|
||
}
|
||
i.types[this_operand] = operand_type_or (i.types[this_operand],
|
||
bigdisp);
|
||
|
||
exp = &disp_expressions[i.disp_operands];
|
||
i.op[this_operand].disps = exp;
|
||
i.disp_operands++;
|
||
save_input_line_pointer = input_line_pointer;
|
||
input_line_pointer = disp_start;
|
||
END_STRING_AND_SAVE (disp_end);
|
||
|
||
#ifndef GCC_ASM_O_HACK
|
||
#define GCC_ASM_O_HACK 0
|
||
#endif
|
||
#if GCC_ASM_O_HACK
|
||
END_STRING_AND_SAVE (disp_end + 1);
|
||
if (i.types[this_operand].bitfield.baseIndex
|
||
&& displacement_string_end[-1] == '+')
|
||
{
|
||
/* This hack is to avoid a warning when using the "o"
|
||
constraint within gcc asm statements.
|
||
For instance:
|
||
|
||
#define _set_tssldt_desc(n,addr,limit,type) \
|
||
__asm__ __volatile__ ( \
|
||
"movw %w2,%0\n\t" \
|
||
"movw %w1,2+%0\n\t" \
|
||
"rorl $16,%1\n\t" \
|
||
"movb %b1,4+%0\n\t" \
|
||
"movb %4,5+%0\n\t" \
|
||
"movb $0,6+%0\n\t" \
|
||
"movb %h1,7+%0\n\t" \
|
||
"rorl $16,%1" \
|
||
: "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
|
||
|
||
This works great except that the output assembler ends
|
||
up looking a bit weird if it turns out that there is
|
||
no offset. You end up producing code that looks like:
|
||
|
||
#APP
|
||
movw $235,(%eax)
|
||
movw %dx,2+(%eax)
|
||
rorl $16,%edx
|
||
movb %dl,4+(%eax)
|
||
movb $137,5+(%eax)
|
||
movb $0,6+(%eax)
|
||
movb %dh,7+(%eax)
|
||
rorl $16,%edx
|
||
#NO_APP
|
||
|
||
So here we provide the missing zero. */
|
||
|
||
*displacement_string_end = '0';
|
||
}
|
||
#endif
|
||
gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
|
||
if (gotfree_input_line)
|
||
input_line_pointer = gotfree_input_line;
|
||
|
||
exp_seg = expression (exp);
|
||
|
||
SKIP_WHITESPACE ();
|
||
if (*input_line_pointer)
|
||
as_bad (_("junk `%s' after expression"), input_line_pointer);
|
||
#if GCC_ASM_O_HACK
|
||
RESTORE_END_STRING (disp_end + 1);
|
||
#endif
|
||
input_line_pointer = save_input_line_pointer;
|
||
if (gotfree_input_line)
|
||
{
|
||
free (gotfree_input_line);
|
||
|
||
if (exp->X_op == O_constant || exp->X_op == O_register)
|
||
exp->X_op = O_illegal;
|
||
}
|
||
|
||
ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
|
||
|
||
RESTORE_END_STRING (disp_end);
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int
|
||
i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
|
||
i386_operand_type types, const char *disp_start)
|
||
{
|
||
int ret = 1;
|
||
|
||
/* We do this to make sure that the section symbol is in
|
||
the symbol table. We will ultimately change the relocation
|
||
to be relative to the beginning of the section. */
|
||
if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
|
||
|| i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
|
||
|| i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
|
||
{
|
||
if (exp->X_op != O_symbol)
|
||
goto inv_disp;
|
||
|
||
if (S_IS_LOCAL (exp->X_add_symbol)
|
||
&& S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
|
||
&& S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
|
||
section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
|
||
exp->X_op = O_subtract;
|
||
exp->X_op_symbol = GOT_symbol;
|
||
if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
|
||
i.reloc[this_operand] = BFD_RELOC_32_PCREL;
|
||
else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
|
||
i.reloc[this_operand] = BFD_RELOC_64;
|
||
else
|
||
i.reloc[this_operand] = BFD_RELOC_32;
|
||
}
|
||
|
||
else if (exp->X_op == O_absent
|
||
|| exp->X_op == O_illegal
|
||
|| exp->X_op == O_big)
|
||
{
|
||
inv_disp:
|
||
as_bad (_("missing or invalid displacement expression `%s'"),
|
||
disp_start);
|
||
ret = 0;
|
||
}
|
||
|
||
else if (exp->X_op == O_constant)
|
||
{
|
||
/* Sizing gets taken care of by optimize_disp().
|
||
|
||
If not 64bit, sign/zero extend val, to account for wraparound
|
||
when !BFD64. */
|
||
if (flag_code != CODE_64BIT)
|
||
exp->X_add_number = extend_to_32bit_address (exp->X_add_number);
|
||
}
|
||
|
||
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
|
||
else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
|
||
&& exp_seg != absolute_section
|
||
&& exp_seg != text_section
|
||
&& exp_seg != data_section
|
||
&& exp_seg != bss_section
|
||
&& exp_seg != undefined_section
|
||
&& !bfd_is_com_section (exp_seg))
|
||
{
|
||
as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
|
||
ret = 0;
|
||
}
|
||
#endif
|
||
|
||
else if (current_templates->start->opcode_modifier.jump == JUMP_BYTE)
|
||
i.types[this_operand].bitfield.disp8 = 1;
|
||
|
||
/* Check if this is a displacement only operand. */
|
||
if (!i.types[this_operand].bitfield.baseindex)
|
||
i.types[this_operand] =
|
||
operand_type_or (operand_type_and_not (i.types[this_operand], anydisp),
|
||
operand_type_and (i.types[this_operand], types));
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Return the active addressing mode, taking address override and
|
||
registers forming the address into consideration. Update the
|
||
address override prefix if necessary. */
|
||
|
||
static enum flag_code
|
||
i386_addressing_mode (void)
|
||
{
|
||
enum flag_code addr_mode;
|
||
|
||
if (i.prefix[ADDR_PREFIX])
|
||
addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
|
||
else if (flag_code == CODE_16BIT
|
||
&& current_templates->start->cpu_flags.bitfield.cpumpx
|
||
/* Avoid replacing the "16-bit addressing not allowed" diagnostic
|
||
from md_assemble() by "is not a valid base/index expression"
|
||
when there is a base and/or index. */
|
||
&& !i.types[this_operand].bitfield.baseindex)
|
||
{
|
||
/* MPX insn memory operands with neither base nor index must be forced
|
||
to use 32-bit addressing in 16-bit mode. */
|
||
addr_mode = CODE_32BIT;
|
||
i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
|
||
++i.prefixes;
|
||
gas_assert (!i.types[this_operand].bitfield.disp16);
|
||
gas_assert (!i.types[this_operand].bitfield.disp32);
|
||
}
|
||
else
|
||
{
|
||
addr_mode = flag_code;
|
||
|
||
#if INFER_ADDR_PREFIX
|
||
if (i.mem_operands == 0)
|
||
{
|
||
/* Infer address prefix from the first memory operand. */
|
||
const reg_entry *addr_reg = i.base_reg;
|
||
|
||
if (addr_reg == NULL)
|
||
addr_reg = i.index_reg;
|
||
|
||
if (addr_reg)
|
||
{
|
||
if (addr_reg->reg_type.bitfield.dword)
|
||
addr_mode = CODE_32BIT;
|
||
else if (flag_code != CODE_64BIT
|
||
&& addr_reg->reg_type.bitfield.word)
|
||
addr_mode = CODE_16BIT;
|
||
|
||
if (addr_mode != flag_code)
|
||
{
|
||
i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
|
||
i.prefixes += 1;
|
||
/* Change the size of any displacement too. At most one
|
||
of Disp16 or Disp32 is set.
|
||
FIXME. There doesn't seem to be any real need for
|
||
separate Disp16 and Disp32 flags. The same goes for
|
||
Imm16 and Imm32. Removing them would probably clean
|
||
up the code quite a lot. */
|
||
if (flag_code != CODE_64BIT
|
||
&& (i.types[this_operand].bitfield.disp16
|
||
|| i.types[this_operand].bitfield.disp32))
|
||
{
|
||
static const i386_operand_type disp16_32 = {
|
||
.bitfield = { .disp16 = 1, .disp32 = 1 }
|
||
};
|
||
|
||
i.types[this_operand]
|
||
= operand_type_xor (i.types[this_operand], disp16_32);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
|
||
return addr_mode;
|
||
}
|
||
|
||
/* Make sure the memory operand we've been dealt is valid.
|
||
Return 1 on success, 0 on a failure. */
|
||
|
||
static int
|
||
i386_index_check (const char *operand_string)
|
||
{
|
||
const char *kind = "base/index";
|
||
enum flag_code addr_mode = i386_addressing_mode ();
|
||
const insn_template *t = current_templates->end - 1;
|
||
|
||
if (t->opcode_modifier.isstring)
|
||
{
|
||
/* Memory operands of string insns are special in that they only allow
|
||
a single register (rDI, rSI, or rBX) as their memory address. */
|
||
const reg_entry *expected_reg;
|
||
static const char *di_si[][2] =
|
||
{
|
||
{ "esi", "edi" },
|
||
{ "si", "di" },
|
||
{ "rsi", "rdi" }
|
||
};
|
||
static const char *bx[] = { "ebx", "bx", "rbx" };
|
||
|
||
kind = "string address";
|
||
|
||
if (t->opcode_modifier.prefixok == PrefixRep)
|
||
{
|
||
int es_op = t->opcode_modifier.isstring - IS_STRING_ES_OP0;
|
||
int op = 0;
|
||
|
||
if (!t->operand_types[0].bitfield.baseindex
|
||
|| ((!i.mem_operands != !intel_syntax)
|
||
&& t->operand_types[1].bitfield.baseindex))
|
||
op = 1;
|
||
expected_reg
|
||
= (const reg_entry *) str_hash_find (reg_hash,
|
||
di_si[addr_mode][op == es_op]);
|
||
}
|
||
else
|
||
expected_reg
|
||
= (const reg_entry *)str_hash_find (reg_hash, bx[addr_mode]);
|
||
|
||
if (i.base_reg != expected_reg
|
||
|| i.index_reg
|
||
|| operand_type_check (i.types[this_operand], disp))
|
||
{
|
||
/* The second memory operand must have the same size as
|
||
the first one. */
|
||
if (i.mem_operands
|
||
&& i.base_reg
|
||
&& !((addr_mode == CODE_64BIT
|
||
&& i.base_reg->reg_type.bitfield.qword)
|
||
|| (addr_mode == CODE_32BIT
|
||
? i.base_reg->reg_type.bitfield.dword
|
||
: i.base_reg->reg_type.bitfield.word)))
|
||
goto bad_address;
|
||
|
||
as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
|
||
operand_string,
|
||
intel_syntax ? '[' : '(',
|
||
register_prefix,
|
||
expected_reg->reg_name,
|
||
intel_syntax ? ']' : ')');
|
||
return 1;
|
||
}
|
||
else
|
||
return 1;
|
||
|
||
bad_address:
|
||
as_bad (_("`%s' is not a valid %s expression"),
|
||
operand_string, kind);
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
t = current_templates->start;
|
||
|
||
if (addr_mode != CODE_16BIT)
|
||
{
|
||
/* 32-bit/64-bit checks. */
|
||
if (i.disp_encoding == disp_encoding_16bit)
|
||
{
|
||
bad_disp:
|
||
as_bad (_("invalid `%s' prefix"),
|
||
addr_mode == CODE_16BIT ? "{disp32}" : "{disp16}");
|
||
return 0;
|
||
}
|
||
|
||
if ((i.base_reg
|
||
&& ((addr_mode == CODE_64BIT
|
||
? !i.base_reg->reg_type.bitfield.qword
|
||
: !i.base_reg->reg_type.bitfield.dword)
|
||
|| (i.index_reg && i.base_reg->reg_num == RegIP)
|
||
|| i.base_reg->reg_num == RegIZ))
|
||
|| (i.index_reg
|
||
&& !i.index_reg->reg_type.bitfield.xmmword
|
||
&& !i.index_reg->reg_type.bitfield.ymmword
|
||
&& !i.index_reg->reg_type.bitfield.zmmword
|
||
&& ((addr_mode == CODE_64BIT
|
||
? !i.index_reg->reg_type.bitfield.qword
|
||
: !i.index_reg->reg_type.bitfield.dword)
|
||
|| !i.index_reg->reg_type.bitfield.baseindex)))
|
||
goto bad_address;
|
||
|
||
/* bndmk, bndldx, bndstx and mandatory non-vector SIB have special restrictions. */
|
||
if (t->mnem_off == MN_bndmk
|
||
|| t->mnem_off == MN_bndldx
|
||
|| t->mnem_off == MN_bndstx
|
||
|| t->opcode_modifier.sib == SIBMEM)
|
||
{
|
||
/* They cannot use RIP-relative addressing. */
|
||
if (i.base_reg && i.base_reg->reg_num == RegIP)
|
||
{
|
||
as_bad (_("`%s' cannot be used here"), operand_string);
|
||
return 0;
|
||
}
|
||
|
||
/* bndldx and bndstx ignore their scale factor. */
|
||
if ((t->mnem_off == MN_bndldx || t->mnem_off == MN_bndstx)
|
||
&& i.log2_scale_factor)
|
||
as_warn (_("register scaling is being ignored here"));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* 16-bit checks. */
|
||
if (i.disp_encoding == disp_encoding_32bit)
|
||
goto bad_disp;
|
||
|
||
if ((i.base_reg
|
||
&& (!i.base_reg->reg_type.bitfield.word
|
||
|| !i.base_reg->reg_type.bitfield.baseindex))
|
||
|| (i.index_reg
|
||
&& (!i.index_reg->reg_type.bitfield.word
|
||
|| !i.index_reg->reg_type.bitfield.baseindex
|
||
|| !(i.base_reg
|
||
&& i.base_reg->reg_num < 6
|
||
&& i.index_reg->reg_num >= 6
|
||
&& i.log2_scale_factor == 0))))
|
||
goto bad_address;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Handle vector immediates. */
|
||
|
||
static int
|
||
RC_SAE_immediate (const char *imm_start)
|
||
{
|
||
const char *pstr = imm_start;
|
||
|
||
if (*pstr != '{')
|
||
return 0;
|
||
|
||
pstr = RC_SAE_specifier (pstr + 1);
|
||
if (pstr == NULL)
|
||
return 0;
|
||
|
||
if (*pstr++ != '}')
|
||
{
|
||
as_bad (_("Missing '}': '%s'"), imm_start);
|
||
return 0;
|
||
}
|
||
/* RC/SAE immediate string should contain nothing more. */;
|
||
if (*pstr != 0)
|
||
{
|
||
as_bad (_("Junk after '}': '%s'"), imm_start);
|
||
return 0;
|
||
}
|
||
|
||
/* Internally this doesn't count as an operand. */
|
||
--i.operands;
|
||
|
||
return 1;
|
||
}
|
||
|
||
static INLINE bool starts_memory_operand (char c)
|
||
{
|
||
return ISDIGIT (c)
|
||
|| is_identifier_char (c)
|
||
|| strchr ("([\"+-!~", c);
|
||
}
|
||
|
||
/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
|
||
on error. */
|
||
|
||
static int
|
||
i386_att_operand (char *operand_string)
|
||
{
|
||
const reg_entry *r;
|
||
char *end_op;
|
||
char *op_string = operand_string;
|
||
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
|
||
/* We check for an absolute prefix (differentiating,
|
||
for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
|
||
if (*op_string == ABSOLUTE_PREFIX)
|
||
{
|
||
++op_string;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
i.jumpabsolute = true;
|
||
}
|
||
|
||
/* Check if operand is a register. */
|
||
if ((r = parse_register (op_string, &end_op)) != NULL)
|
||
{
|
||
i386_operand_type temp;
|
||
|
||
if (r == &bad_reg)
|
||
return 0;
|
||
|
||
/* Check for a segment override by searching for ':' after a
|
||
segment register. */
|
||
op_string = end_op;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
|
||
{
|
||
i.seg[i.mem_operands] = r;
|
||
|
||
/* Skip the ':' and whitespace. */
|
||
++op_string;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
|
||
/* Handle case of %es:*foo. */
|
||
if (!i.jumpabsolute && *op_string == ABSOLUTE_PREFIX)
|
||
{
|
||
++op_string;
|
||
if (is_space_char (*op_string))
|
||
++op_string;
|
||
i.jumpabsolute = true;
|
||
}
|
||
|
||
if (!starts_memory_operand (*op_string))
|
||
{
|
||
as_bad (_("bad memory operand `%s'"), op_string);
|
||
return 0;
|
||
}
|
||
goto do_memory_reference;
|
||
}
|
||
|
||
/* Handle vector operations. */
|
||
if (*op_string == '{')
|
||
{
|
||
op_string = check_VecOperations (op_string);
|
||
if (op_string == NULL)
|
||
return 0;
|
||
}
|
||
|
||
if (*op_string)
|
||
{
|
||
as_bad (_("junk `%s' after register"), op_string);
|
||
return 0;
|
||
}
|
||
temp = r->reg_type;
|
||
temp.bitfield.baseindex = 0;
|
||
i.types[this_operand] = operand_type_or (i.types[this_operand],
|
||
temp);
|
||
i.types[this_operand].bitfield.unspecified = 0;
|
||
i.op[this_operand].regs = r;
|
||
i.reg_operands++;
|
||
|
||
/* A GPR may follow an RC or SAE immediate only if a (vector) register
|
||
operand was also present earlier on. */
|
||
if (i.rounding.type != rc_none && temp.bitfield.class == Reg
|
||
&& i.reg_operands == 1)
|
||
{
|
||
unsigned int j;
|
||
|
||
for (j = 0; j < ARRAY_SIZE (RC_NamesTable); ++j)
|
||
if (i.rounding.type == RC_NamesTable[j].type)
|
||
break;
|
||
as_bad (_("`%s': misplaced `{%s}'"),
|
||
insn_name (current_templates->start), RC_NamesTable[j].name);
|
||
return 0;
|
||
}
|
||
}
|
||
else if (*op_string == REGISTER_PREFIX)
|
||
{
|
||
as_bad (_("bad register name `%s'"), op_string);
|
||
return 0;
|
||
}
|
||
else if (*op_string == IMMEDIATE_PREFIX)
|
||
{
|
||
++op_string;
|
||
if (i.jumpabsolute)
|
||
{
|
||
as_bad (_("immediate operand illegal with absolute jump"));
|
||
return 0;
|
||
}
|
||
if (!i386_immediate (op_string))
|
||
return 0;
|
||
if (i.rounding.type != rc_none)
|
||
{
|
||
as_bad (_("`%s': RC/SAE operand must follow immediate operands"),
|
||
insn_name (current_templates->start));
|
||
return 0;
|
||
}
|
||
}
|
||
else if (RC_SAE_immediate (operand_string))
|
||
{
|
||
/* If it is a RC or SAE immediate, do the necessary placement check:
|
||
Only another immediate or a GPR may precede it. */
|
||
if (i.mem_operands || i.reg_operands + i.imm_operands > 1
|
||
|| (i.reg_operands == 1
|
||
&& i.op[0].regs->reg_type.bitfield.class != Reg))
|
||
{
|
||
as_bad (_("`%s': misplaced `%s'"),
|
||
insn_name (current_templates->start), operand_string);
|
||
return 0;
|
||
}
|
||
}
|
||
else if (starts_memory_operand (*op_string))
|
||
{
|
||
/* This is a memory reference of some sort. */
|
||
char *base_string;
|
||
|
||
/* Start and end of displacement string expression (if found). */
|
||
char *displacement_string_start;
|
||
char *displacement_string_end;
|
||
|
||
do_memory_reference:
|
||
/* Check for base index form. We detect the base index form by
|
||
looking for an ')' at the end of the operand, searching
|
||
for the '(' matching it, and finding a REGISTER_PREFIX or ','
|
||
after the '('. */
|
||
base_string = op_string + strlen (op_string);
|
||
|
||
/* Handle vector operations. */
|
||
--base_string;
|
||
if (is_space_char (*base_string))
|
||
--base_string;
|
||
|
||
if (*base_string == '}')
|
||
{
|
||
char *vop_start = NULL;
|
||
|
||
while (base_string-- > op_string)
|
||
{
|
||
if (*base_string == '"')
|
||
break;
|
||
if (*base_string != '{')
|
||
continue;
|
||
|
||
vop_start = base_string;
|
||
|
||
--base_string;
|
||
if (is_space_char (*base_string))
|
||
--base_string;
|
||
|
||
if (*base_string != '}')
|
||
break;
|
||
|
||
vop_start = NULL;
|
||
}
|
||
|
||
if (!vop_start)
|
||
{
|
||
as_bad (_("unbalanced figure braces"));
|
||
return 0;
|
||
}
|
||
|
||
if (check_VecOperations (vop_start) == NULL)
|
||
return 0;
|
||
}
|
||
|
||
/* If we only have a displacement, set-up for it to be parsed later. */
|
||
displacement_string_start = op_string;
|
||
displacement_string_end = base_string + 1;
|
||
|
||
if (*base_string == ')')
|
||
{
|
||
char *temp_string;
|
||
unsigned int parens_not_balanced = 0;
|
||
bool in_quotes = false;
|
||
|
||
/* We've already checked that the number of left & right ()'s are
|
||
equal, and that there's a matching set of double quotes. */
|
||
end_op = base_string;
|
||
for (temp_string = op_string; temp_string < end_op; temp_string++)
|
||
{
|
||
if (*temp_string == '\\' && temp_string[1] == '"')
|
||
++temp_string;
|
||
else if (*temp_string == '"')
|
||
in_quotes = !in_quotes;
|
||
else if (!in_quotes)
|
||
{
|
||
if (*temp_string == '(' && !parens_not_balanced++)
|
||
base_string = temp_string;
|
||
if (*temp_string == ')')
|
||
--parens_not_balanced;
|
||
}
|
||
}
|
||
|
||
temp_string = base_string;
|
||
|
||
/* Skip past '(' and whitespace. */
|
||
gas_assert (*base_string == '(');
|
||
++base_string;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
|
||
if (*base_string == ','
|
||
|| ((i.base_reg = parse_register (base_string, &end_op))
|
||
!= NULL))
|
||
{
|
||
displacement_string_end = temp_string;
|
||
|
||
i.types[this_operand].bitfield.baseindex = 1;
|
||
|
||
if (i.base_reg)
|
||
{
|
||
if (i.base_reg == &bad_reg)
|
||
return 0;
|
||
base_string = end_op;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
}
|
||
|
||
/* There may be an index reg or scale factor here. */
|
||
if (*base_string == ',')
|
||
{
|
||
++base_string;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
|
||
if ((i.index_reg = parse_register (base_string, &end_op))
|
||
!= NULL)
|
||
{
|
||
if (i.index_reg == &bad_reg)
|
||
return 0;
|
||
base_string = end_op;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
if (*base_string == ',')
|
||
{
|
||
++base_string;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
}
|
||
else if (*base_string != ')')
|
||
{
|
||
as_bad (_("expecting `,' or `)' "
|
||
"after index register in `%s'"),
|
||
operand_string);
|
||
return 0;
|
||
}
|
||
}
|
||
else if (*base_string == REGISTER_PREFIX)
|
||
{
|
||
end_op = strchr (base_string, ',');
|
||
if (end_op)
|
||
*end_op = '\0';
|
||
as_bad (_("bad register name `%s'"), base_string);
|
||
return 0;
|
||
}
|
||
|
||
/* Check for scale factor. */
|
||
if (*base_string != ')')
|
||
{
|
||
char *end_scale = i386_scale (base_string);
|
||
|
||
if (!end_scale)
|
||
return 0;
|
||
|
||
base_string = end_scale;
|
||
if (is_space_char (*base_string))
|
||
++base_string;
|
||
if (*base_string != ')')
|
||
{
|
||
as_bad (_("expecting `)' "
|
||
"after scale factor in `%s'"),
|
||
operand_string);
|
||
return 0;
|
||
}
|
||
}
|
||
else if (!i.index_reg)
|
||
{
|
||
as_bad (_("expecting index register or scale factor "
|
||
"after `,'; got '%c'"),
|
||
*base_string);
|
||
return 0;
|
||
}
|
||
}
|
||
else if (*base_string != ')')
|
||
{
|
||
as_bad (_("expecting `,' or `)' "
|
||
"after base register in `%s'"),
|
||
operand_string);
|
||
return 0;
|
||
}
|
||
}
|
||
else if (*base_string == REGISTER_PREFIX)
|
||
{
|
||
end_op = strchr (base_string, ',');
|
||
if (end_op)
|
||
*end_op = '\0';
|
||
as_bad (_("bad register name `%s'"), base_string);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* If there's an expression beginning the operand, parse it,
|
||
assuming displacement_string_start and
|
||
displacement_string_end are meaningful. */
|
||
if (displacement_string_start != displacement_string_end)
|
||
{
|
||
if (!i386_displacement (displacement_string_start,
|
||
displacement_string_end))
|
||
return 0;
|
||
}
|
||
|
||
/* Special case for (%dx) while doing input/output op. */
|
||
if (i.base_reg
|
||
&& i.base_reg->reg_type.bitfield.instance == RegD
|
||
&& i.base_reg->reg_type.bitfield.word
|
||
&& i.index_reg == 0
|
||
&& i.log2_scale_factor == 0
|
||
&& i.seg[i.mem_operands] == 0
|
||
&& !operand_type_check (i.types[this_operand], disp))
|
||
{
|
||
i.types[this_operand] = i.base_reg->reg_type;
|
||
i.input_output_operand = true;
|
||
return 1;
|
||
}
|
||
|
||
if (i386_index_check (operand_string) == 0)
|
||
return 0;
|
||
i.flags[this_operand] |= Operand_Mem;
|
||
i.mem_operands++;
|
||
}
|
||
else
|
||
{
|
||
/* It's not a memory operand; argh! */
|
||
as_bad (_("invalid char %s beginning operand %d `%s'"),
|
||
output_invalid (*op_string),
|
||
this_operand + 1,
|
||
op_string);
|
||
return 0;
|
||
}
|
||
return 1; /* Normal return. */
|
||
}
|
||
|
||
/* Calculate the maximum variable size (i.e., excluding fr_fix)
|
||
that an rs_machine_dependent frag may reach. */
|
||
|
||
unsigned int
|
||
i386_frag_max_var (fragS *frag)
|
||
{
|
||
/* The only relaxable frags are for jumps.
|
||
Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
|
||
gas_assert (frag->fr_type == rs_machine_dependent);
|
||
return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
|
||
}
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
static int
|
||
elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
|
||
{
|
||
/* STT_GNU_IFUNC symbol must go through PLT. */
|
||
if ((symbol_get_bfdsym (fr_symbol)->flags
|
||
& BSF_GNU_INDIRECT_FUNCTION) != 0)
|
||
return 0;
|
||
|
||
if (!S_IS_EXTERNAL (fr_symbol))
|
||
/* Symbol may be weak or local. */
|
||
return !S_IS_WEAK (fr_symbol);
|
||
|
||
/* Global symbols with non-default visibility can't be preempted. */
|
||
if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
|
||
return 1;
|
||
|
||
if (fr_var != NO_RELOC)
|
||
switch ((enum bfd_reloc_code_real) fr_var)
|
||
{
|
||
case BFD_RELOC_386_PLT32:
|
||
case BFD_RELOC_X86_64_PLT32:
|
||
/* Symbol with PLT relocation may be preempted. */
|
||
return 0;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* Global symbols with default visibility in a shared library may be
|
||
preempted by another definition. */
|
||
return !shared;
|
||
}
|
||
#endif
|
||
|
||
/* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
|
||
Note also work for Skylake and Cascadelake.
|
||
---------------------------------------------------------------------
|
||
| JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
|
||
| ------ | ----------- | ------- | -------- |
|
||
| Jo | N | N | Y |
|
||
| Jno | N | N | Y |
|
||
| Jc/Jb | Y | N | Y |
|
||
| Jae/Jnb | Y | N | Y |
|
||
| Je/Jz | Y | Y | Y |
|
||
| Jne/Jnz | Y | Y | Y |
|
||
| Jna/Jbe | Y | N | Y |
|
||
| Ja/Jnbe | Y | N | Y |
|
||
| Js | N | N | Y |
|
||
| Jns | N | N | Y |
|
||
| Jp/Jpe | N | N | Y |
|
||
| Jnp/Jpo | N | N | Y |
|
||
| Jl/Jnge | Y | Y | Y |
|
||
| Jge/Jnl | Y | Y | Y |
|
||
| Jle/Jng | Y | Y | Y |
|
||
| Jg/Jnle | Y | Y | Y |
|
||
--------------------------------------------------------------------- */
|
||
static int
|
||
i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
|
||
{
|
||
if (mf_cmp == mf_cmp_alu_cmp)
|
||
return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
|
||
|| mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
|
||
if (mf_cmp == mf_cmp_incdec)
|
||
return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
|
||
|| mf_jcc == mf_jcc_jle);
|
||
if (mf_cmp == mf_cmp_test_and)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Return the next non-empty frag. */
|
||
|
||
static fragS *
|
||
i386_next_non_empty_frag (fragS *fragP)
|
||
{
|
||
/* There may be a frag with a ".fill 0" when there is no room in
|
||
the current frag for frag_grow in output_insn. */
|
||
for (fragP = fragP->fr_next;
|
||
(fragP != NULL
|
||
&& fragP->fr_type == rs_fill
|
||
&& fragP->fr_fix == 0);
|
||
fragP = fragP->fr_next)
|
||
;
|
||
return fragP;
|
||
}
|
||
|
||
/* Return the next jcc frag after BRANCH_PADDING. */
|
||
|
||
static fragS *
|
||
i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
|
||
{
|
||
fragS *branch_fragP;
|
||
if (!pad_fragP)
|
||
return NULL;
|
||
|
||
if (pad_fragP->fr_type == rs_machine_dependent
|
||
&& (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
|
||
== BRANCH_PADDING))
|
||
{
|
||
branch_fragP = i386_next_non_empty_frag (pad_fragP);
|
||
if (branch_fragP->fr_type != rs_machine_dependent)
|
||
return NULL;
|
||
if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
|
||
&& i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
|
||
pad_fragP->tc_frag_data.mf_type))
|
||
return branch_fragP;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
|
||
|
||
static void
|
||
i386_classify_machine_dependent_frag (fragS *fragP)
|
||
{
|
||
fragS *cmp_fragP;
|
||
fragS *pad_fragP;
|
||
fragS *branch_fragP;
|
||
fragS *next_fragP;
|
||
unsigned int max_prefix_length;
|
||
|
||
if (fragP->tc_frag_data.classified)
|
||
return;
|
||
|
||
/* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
|
||
FUSED_JCC_PADDING and merge BRANCH_PADDING. */
|
||
for (next_fragP = fragP;
|
||
next_fragP != NULL;
|
||
next_fragP = next_fragP->fr_next)
|
||
{
|
||
next_fragP->tc_frag_data.classified = 1;
|
||
if (next_fragP->fr_type == rs_machine_dependent)
|
||
switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
|
||
{
|
||
case BRANCH_PADDING:
|
||
/* The BRANCH_PADDING frag must be followed by a branch
|
||
frag. */
|
||
branch_fragP = i386_next_non_empty_frag (next_fragP);
|
||
next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
|
||
break;
|
||
case FUSED_JCC_PADDING:
|
||
/* Check if this is a fused jcc:
|
||
FUSED_JCC_PADDING
|
||
CMP like instruction
|
||
BRANCH_PADDING
|
||
COND_JUMP
|
||
*/
|
||
cmp_fragP = i386_next_non_empty_frag (next_fragP);
|
||
pad_fragP = i386_next_non_empty_frag (cmp_fragP);
|
||
branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
|
||
if (branch_fragP)
|
||
{
|
||
/* The BRANCH_PADDING frag is merged with the
|
||
FUSED_JCC_PADDING frag. */
|
||
next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
|
||
/* CMP like instruction size. */
|
||
next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
|
||
frag_wane (pad_fragP);
|
||
/* Skip to branch_fragP. */
|
||
next_fragP = branch_fragP;
|
||
}
|
||
else if (next_fragP->tc_frag_data.max_prefix_length)
|
||
{
|
||
/* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
|
||
a fused jcc. */
|
||
next_fragP->fr_subtype
|
||
= ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
|
||
next_fragP->tc_frag_data.max_bytes
|
||
= next_fragP->tc_frag_data.max_prefix_length;
|
||
/* This will be updated in the BRANCH_PREFIX scan. */
|
||
next_fragP->tc_frag_data.max_prefix_length = 0;
|
||
}
|
||
else
|
||
frag_wane (next_fragP);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Stop if there is no BRANCH_PREFIX. */
|
||
if (!align_branch_prefix_size)
|
||
return;
|
||
|
||
/* Scan for BRANCH_PREFIX. */
|
||
for (; fragP != NULL; fragP = fragP->fr_next)
|
||
{
|
||
if (fragP->fr_type != rs_machine_dependent
|
||
|| (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
|
||
!= BRANCH_PREFIX))
|
||
continue;
|
||
|
||
/* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
|
||
COND_JUMP_PREFIX. */
|
||
max_prefix_length = 0;
|
||
for (next_fragP = fragP;
|
||
next_fragP != NULL;
|
||
next_fragP = next_fragP->fr_next)
|
||
{
|
||
if (next_fragP->fr_type == rs_fill)
|
||
/* Skip rs_fill frags. */
|
||
continue;
|
||
else if (next_fragP->fr_type != rs_machine_dependent)
|
||
/* Stop for all other frags. */
|
||
break;
|
||
|
||
/* rs_machine_dependent frags. */
|
||
if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
|
||
== BRANCH_PREFIX)
|
||
{
|
||
/* Count BRANCH_PREFIX frags. */
|
||
if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
|
||
{
|
||
max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
|
||
frag_wane (next_fragP);
|
||
}
|
||
else
|
||
max_prefix_length
|
||
+= next_fragP->tc_frag_data.max_bytes;
|
||
}
|
||
else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
|
||
== BRANCH_PADDING)
|
||
|| (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
|
||
== FUSED_JCC_PADDING))
|
||
{
|
||
/* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
|
||
fragP->tc_frag_data.u.padding_fragP = next_fragP;
|
||
break;
|
||
}
|
||
else
|
||
/* Stop for other rs_machine_dependent frags. */
|
||
break;
|
||
}
|
||
|
||
fragP->tc_frag_data.max_prefix_length = max_prefix_length;
|
||
|
||
/* Skip to the next frag. */
|
||
fragP = next_fragP;
|
||
}
|
||
}
|
||
|
||
/* Compute padding size for
|
||
|
||
FUSED_JCC_PADDING
|
||
CMP like instruction
|
||
BRANCH_PADDING
|
||
COND_JUMP/UNCOND_JUMP
|
||
|
||
or
|
||
|
||
BRANCH_PADDING
|
||
COND_JUMP/UNCOND_JUMP
|
||
*/
|
||
|
||
static int
|
||
i386_branch_padding_size (fragS *fragP, offsetT address)
|
||
{
|
||
unsigned int offset, size, padding_size;
|
||
fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
|
||
|
||
/* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
|
||
if (!address)
|
||
address = fragP->fr_address;
|
||
address += fragP->fr_fix;
|
||
|
||
/* CMP like instrunction size. */
|
||
size = fragP->tc_frag_data.cmp_size;
|
||
|
||
/* The base size of the branch frag. */
|
||
size += branch_fragP->fr_fix;
|
||
|
||
/* Add opcode and displacement bytes for the rs_machine_dependent
|
||
branch frag. */
|
||
if (branch_fragP->fr_type == rs_machine_dependent)
|
||
size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
|
||
|
||
/* Check if branch is within boundary and doesn't end at the last
|
||
byte. */
|
||
offset = address & ((1U << align_branch_power) - 1);
|
||
if ((offset + size) >= (1U << align_branch_power))
|
||
/* Padding needed to avoid crossing boundary. */
|
||
padding_size = (1U << align_branch_power) - offset;
|
||
else
|
||
/* No padding needed. */
|
||
padding_size = 0;
|
||
|
||
/* The return value may be saved in tc_frag_data.length which is
|
||
unsigned byte. */
|
||
if (!fits_in_unsigned_byte (padding_size))
|
||
abort ();
|
||
|
||
return padding_size;
|
||
}
|
||
|
||
/* i386_generic_table_relax_frag()
|
||
|
||
Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
|
||
grow/shrink padding to align branch frags. Hand others to
|
||
relax_frag(). */
|
||
|
||
long
|
||
i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
|
||
{
|
||
if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
|
||
|| TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
|
||
{
|
||
long padding_size = i386_branch_padding_size (fragP, 0);
|
||
long grow = padding_size - fragP->tc_frag_data.length;
|
||
|
||
/* When the BRANCH_PREFIX frag is used, the computed address
|
||
must match the actual address and there should be no padding. */
|
||
if (fragP->tc_frag_data.padding_address
|
||
&& (fragP->tc_frag_data.padding_address != fragP->fr_address
|
||
|| padding_size))
|
||
abort ();
|
||
|
||
/* Update the padding size. */
|
||
if (grow)
|
||
fragP->tc_frag_data.length = padding_size;
|
||
|
||
return grow;
|
||
}
|
||
else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
|
||
{
|
||
fragS *padding_fragP, *next_fragP;
|
||
long padding_size, left_size, last_size;
|
||
|
||
padding_fragP = fragP->tc_frag_data.u.padding_fragP;
|
||
if (!padding_fragP)
|
||
/* Use the padding set by the leading BRANCH_PREFIX frag. */
|
||
return (fragP->tc_frag_data.length
|
||
- fragP->tc_frag_data.last_length);
|
||
|
||
/* Compute the relative address of the padding frag in the very
|
||
first time where the BRANCH_PREFIX frag sizes are zero. */
|
||
if (!fragP->tc_frag_data.padding_address)
|
||
fragP->tc_frag_data.padding_address
|
||
= padding_fragP->fr_address - (fragP->fr_address - stretch);
|
||
|
||
/* First update the last length from the previous interation. */
|
||
left_size = fragP->tc_frag_data.prefix_length;
|
||
for (next_fragP = fragP;
|
||
next_fragP != padding_fragP;
|
||
next_fragP = next_fragP->fr_next)
|
||
if (next_fragP->fr_type == rs_machine_dependent
|
||
&& (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
|
||
== BRANCH_PREFIX))
|
||
{
|
||
if (left_size)
|
||
{
|
||
int max = next_fragP->tc_frag_data.max_bytes;
|
||
if (max)
|
||
{
|
||
int size;
|
||
if (max > left_size)
|
||
size = left_size;
|
||
else
|
||
size = max;
|
||
left_size -= size;
|
||
next_fragP->tc_frag_data.last_length = size;
|
||
}
|
||
}
|
||
else
|
||
next_fragP->tc_frag_data.last_length = 0;
|
||
}
|
||
|
||
/* Check the padding size for the padding frag. */
|
||
padding_size = i386_branch_padding_size
|
||
(padding_fragP, (fragP->fr_address
|
||
+ fragP->tc_frag_data.padding_address));
|
||
|
||
last_size = fragP->tc_frag_data.prefix_length;
|
||
/* Check if there is change from the last interation. */
|
||
if (padding_size == last_size)
|
||
{
|
||
/* Update the expected address of the padding frag. */
|
||
padding_fragP->tc_frag_data.padding_address
|
||
= (fragP->fr_address + padding_size
|
||
+ fragP->tc_frag_data.padding_address);
|
||
return 0;
|
||
}
|
||
|
||
if (padding_size > fragP->tc_frag_data.max_prefix_length)
|
||
{
|
||
/* No padding if there is no sufficient room. Clear the
|
||
expected address of the padding frag. */
|
||
padding_fragP->tc_frag_data.padding_address = 0;
|
||
padding_size = 0;
|
||
}
|
||
else
|
||
/* Store the expected address of the padding frag. */
|
||
padding_fragP->tc_frag_data.padding_address
|
||
= (fragP->fr_address + padding_size
|
||
+ fragP->tc_frag_data.padding_address);
|
||
|
||
fragP->tc_frag_data.prefix_length = padding_size;
|
||
|
||
/* Update the length for the current interation. */
|
||
left_size = padding_size;
|
||
for (next_fragP = fragP;
|
||
next_fragP != padding_fragP;
|
||
next_fragP = next_fragP->fr_next)
|
||
if (next_fragP->fr_type == rs_machine_dependent
|
||
&& (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
|
||
== BRANCH_PREFIX))
|
||
{
|
||
if (left_size)
|
||
{
|
||
int max = next_fragP->tc_frag_data.max_bytes;
|
||
if (max)
|
||
{
|
||
int size;
|
||
if (max > left_size)
|
||
size = left_size;
|
||
else
|
||
size = max;
|
||
left_size -= size;
|
||
next_fragP->tc_frag_data.length = size;
|
||
}
|
||
}
|
||
else
|
||
next_fragP->tc_frag_data.length = 0;
|
||
}
|
||
|
||
return (fragP->tc_frag_data.length
|
||
- fragP->tc_frag_data.last_length);
|
||
}
|
||
return relax_frag (segment, fragP, stretch);
|
||
}
|
||
|
||
/* md_estimate_size_before_relax()
|
||
|
||
Called just before relax() for rs_machine_dependent frags. The x86
|
||
assembler uses these frags to handle variable size jump
|
||
instructions.
|
||
|
||
Any symbol that is now undefined will not become defined.
|
||
Return the correct fr_subtype in the frag.
|
||
Return the initial "guess for variable size of frag" to caller.
|
||
The guess is actually the growth beyond the fixed part. Whatever
|
||
we do to grow the fixed or variable part contributes to our
|
||
returned value. */
|
||
|
||
int
|
||
md_estimate_size_before_relax (fragS *fragP, segT segment)
|
||
{
|
||
if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
|
||
|| TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
|
||
|| TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
|
||
{
|
||
i386_classify_machine_dependent_frag (fragP);
|
||
return fragP->tc_frag_data.length;
|
||
}
|
||
|
||
/* We've already got fragP->fr_subtype right; all we have to do is
|
||
check for un-relaxable symbols. On an ELF system, we can't relax
|
||
an externally visible symbol, because it may be overridden by a
|
||
shared library. */
|
||
if (S_GET_SEGMENT (fragP->fr_symbol) != segment
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
|| (IS_ELF
|
||
&& !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
|
||
fragP->fr_var))
|
||
#endif
|
||
#if defined (OBJ_COFF) && defined (TE_PE)
|
||
|| (OUTPUT_FLAVOR == bfd_target_coff_flavour
|
||
&& S_IS_WEAK (fragP->fr_symbol))
|
||
#endif
|
||
)
|
||
{
|
||
/* Symbol is undefined in this segment, or we need to keep a
|
||
reloc so that weak symbols can be overridden. */
|
||
int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
|
||
enum bfd_reloc_code_real reloc_type;
|
||
unsigned char *opcode;
|
||
int old_fr_fix;
|
||
fixS *fixP = NULL;
|
||
|
||
if (fragP->fr_var != NO_RELOC)
|
||
reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
|
||
else if (size == 2)
|
||
reloc_type = BFD_RELOC_16_PCREL;
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
else if (fragP->tc_frag_data.code64 && fragP->fr_offset == 0
|
||
&& need_plt32_p (fragP->fr_symbol))
|
||
reloc_type = BFD_RELOC_X86_64_PLT32;
|
||
#endif
|
||
else
|
||
reloc_type = BFD_RELOC_32_PCREL;
|
||
|
||
old_fr_fix = fragP->fr_fix;
|
||
opcode = (unsigned char *) fragP->fr_opcode;
|
||
|
||
switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
|
||
{
|
||
case UNCOND_JUMP:
|
||
/* Make jmp (0xeb) a (d)word displacement jump. */
|
||
opcode[0] = 0xe9;
|
||
fragP->fr_fix += size;
|
||
fixP = fix_new (fragP, old_fr_fix, size,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
reloc_type);
|
||
break;
|
||
|
||
case COND_JUMP86:
|
||
if (size == 2
|
||
&& (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
|
||
{
|
||
/* Negate the condition, and branch past an
|
||
unconditional jump. */
|
||
opcode[0] ^= 1;
|
||
opcode[1] = 3;
|
||
/* Insert an unconditional jump. */
|
||
opcode[2] = 0xe9;
|
||
/* We added two extra opcode bytes, and have a two byte
|
||
offset. */
|
||
fragP->fr_fix += 2 + 2;
|
||
fix_new (fragP, old_fr_fix + 2, 2,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
reloc_type);
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
|
||
case COND_JUMP:
|
||
if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
|
||
{
|
||
fragP->fr_fix += 1;
|
||
fixP = fix_new (fragP, old_fr_fix, 1,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
BFD_RELOC_8_PCREL);
|
||
fixP->fx_signed = 1;
|
||
break;
|
||
}
|
||
|
||
/* This changes the byte-displacement jump 0x7N
|
||
to the (d)word-displacement jump 0x0f,0x8N. */
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
|
||
/* We've added an opcode byte. */
|
||
fragP->fr_fix += 1 + size;
|
||
fixP = fix_new (fragP, old_fr_fix + 1, size,
|
||
fragP->fr_symbol,
|
||
fragP->fr_offset, 1,
|
||
reloc_type);
|
||
break;
|
||
|
||
default:
|
||
BAD_CASE (fragP->fr_subtype);
|
||
break;
|
||
}
|
||
|
||
/* All jumps handled here are signed, but don't unconditionally use a
|
||
signed limit check for 32 and 16 bit jumps as we want to allow wrap
|
||
around at 4G (outside of 64-bit mode) and 64k. */
|
||
if (size == 4 && flag_code == CODE_64BIT)
|
||
fixP->fx_signed = 1;
|
||
|
||
frag_wane (fragP);
|
||
return fragP->fr_fix - old_fr_fix;
|
||
}
|
||
|
||
/* Guess size depending on current relax state. Initially the relax
|
||
state will correspond to a short jump and we return 1, because
|
||
the variable part of the frag (the branch offset) is one byte
|
||
long. However, we can relax a section more than once and in that
|
||
case we must either set fr_subtype back to the unrelaxed state,
|
||
or return the value for the appropriate branch. */
|
||
return md_relax_table[fragP->fr_subtype].rlx_length;
|
||
}
|
||
|
||
/* Called after relax() is finished.
|
||
|
||
In: Address of frag.
|
||
fr_type == rs_machine_dependent.
|
||
fr_subtype is what the address relaxed to.
|
||
|
||
Out: Any fixSs and constants are set up.
|
||
Caller will turn frag into a ".space 0". */
|
||
|
||
void
|
||
md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
|
||
fragS *fragP)
|
||
{
|
||
unsigned char *opcode;
|
||
unsigned char *where_to_put_displacement = NULL;
|
||
offsetT target_address;
|
||
offsetT opcode_address;
|
||
unsigned int extension = 0;
|
||
offsetT displacement_from_opcode_start;
|
||
|
||
if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
|
||
|| TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
|
||
|| TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
|
||
{
|
||
/* Generate nop padding. */
|
||
unsigned int size = fragP->tc_frag_data.length;
|
||
if (size)
|
||
{
|
||
if (size > fragP->tc_frag_data.max_bytes)
|
||
abort ();
|
||
|
||
if (flag_debug)
|
||
{
|
||
const char *msg;
|
||
const char *branch = "branch";
|
||
const char *prefix = "";
|
||
fragS *padding_fragP;
|
||
if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
|
||
== BRANCH_PREFIX)
|
||
{
|
||
padding_fragP = fragP->tc_frag_data.u.padding_fragP;
|
||
switch (fragP->tc_frag_data.default_prefix)
|
||
{
|
||
default:
|
||
abort ();
|
||
break;
|
||
case CS_PREFIX_OPCODE:
|
||
prefix = " cs";
|
||
break;
|
||
case DS_PREFIX_OPCODE:
|
||
prefix = " ds";
|
||
break;
|
||
case ES_PREFIX_OPCODE:
|
||
prefix = " es";
|
||
break;
|
||
case FS_PREFIX_OPCODE:
|
||
prefix = " fs";
|
||
break;
|
||
case GS_PREFIX_OPCODE:
|
||
prefix = " gs";
|
||
break;
|
||
case SS_PREFIX_OPCODE:
|
||
prefix = " ss";
|
||
break;
|
||
}
|
||
if (padding_fragP)
|
||
msg = _("%s:%u: add %d%s at 0x%llx to align "
|
||
"%s within %d-byte boundary\n");
|
||
else
|
||
msg = _("%s:%u: add additional %d%s at 0x%llx to "
|
||
"align %s within %d-byte boundary\n");
|
||
}
|
||
else
|
||
{
|
||
padding_fragP = fragP;
|
||
msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
|
||
"%s within %d-byte boundary\n");
|
||
}
|
||
|
||
if (padding_fragP)
|
||
switch (padding_fragP->tc_frag_data.branch_type)
|
||
{
|
||
case align_branch_jcc:
|
||
branch = "jcc";
|
||
break;
|
||
case align_branch_fused:
|
||
branch = "fused jcc";
|
||
break;
|
||
case align_branch_jmp:
|
||
branch = "jmp";
|
||
break;
|
||
case align_branch_call:
|
||
branch = "call";
|
||
break;
|
||
case align_branch_indirect:
|
||
branch = "indiret branch";
|
||
break;
|
||
case align_branch_ret:
|
||
branch = "ret";
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
fprintf (stdout, msg,
|
||
fragP->fr_file, fragP->fr_line, size, prefix,
|
||
(long long) fragP->fr_address, branch,
|
||
1 << align_branch_power);
|
||
}
|
||
if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
|
||
memset (fragP->fr_opcode,
|
||
fragP->tc_frag_data.default_prefix, size);
|
||
else
|
||
i386_generate_nops (fragP, (char *) fragP->fr_opcode,
|
||
size, 0);
|
||
fragP->fr_fix += size;
|
||
}
|
||
return;
|
||
}
|
||
|
||
opcode = (unsigned char *) fragP->fr_opcode;
|
||
|
||
/* Address we want to reach in file space. */
|
||
target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
|
||
|
||
/* Address opcode resides at in file space. */
|
||
opcode_address = fragP->fr_address + fragP->fr_fix;
|
||
|
||
/* Displacement from opcode start to fill into instruction. */
|
||
displacement_from_opcode_start = target_address - opcode_address;
|
||
|
||
if ((fragP->fr_subtype & BIG) == 0)
|
||
{
|
||
/* Don't have to change opcode. */
|
||
extension = 1; /* 1 opcode + 1 displacement */
|
||
where_to_put_displacement = &opcode[1];
|
||
}
|
||
else
|
||
{
|
||
if (no_cond_jump_promotion
|
||
&& TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
|
||
as_warn_where (fragP->fr_file, fragP->fr_line,
|
||
_("long jump required"));
|
||
|
||
switch (fragP->fr_subtype)
|
||
{
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
|
||
extension = 4; /* 1 opcode + 4 displacement */
|
||
opcode[0] = 0xe9;
|
||
where_to_put_displacement = &opcode[1];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
|
||
extension = 2; /* 1 opcode + 2 displacement */
|
||
opcode[0] = 0xe9;
|
||
where_to_put_displacement = &opcode[1];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (COND_JUMP, BIG):
|
||
case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
|
||
extension = 5; /* 2 opcode + 4 displacement */
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
|
||
where_to_put_displacement = &opcode[2];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
|
||
extension = 3; /* 2 opcode + 2 displacement */
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
|
||
where_to_put_displacement = &opcode[2];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
|
||
extension = 4;
|
||
opcode[0] ^= 1;
|
||
opcode[1] = 3;
|
||
opcode[2] = 0xe9;
|
||
where_to_put_displacement = &opcode[3];
|
||
break;
|
||
|
||
default:
|
||
BAD_CASE (fragP->fr_subtype);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If size if less then four we are sure that the operand fits,
|
||
but if it's 4, then it could be that the displacement is larger
|
||
then -/+ 2GB. */
|
||
if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
|
||
&& object_64bit
|
||
&& ((addressT) (displacement_from_opcode_start - extension
|
||
+ ((addressT) 1 << 31))
|
||
> (((addressT) 2 << 31) - 1)))
|
||
{
|
||
as_bad_where (fragP->fr_file, fragP->fr_line,
|
||
_("jump target out of range"));
|
||
/* Make us emit 0. */
|
||
displacement_from_opcode_start = extension;
|
||
}
|
||
/* Now put displacement after opcode. */
|
||
md_number_to_chars ((char *) where_to_put_displacement,
|
||
(valueT) (displacement_from_opcode_start - extension),
|
||
DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
|
||
fragP->fr_fix += extension;
|
||
}
|
||
|
||
/* Apply a fixup (fixP) to segment data, once it has been determined
|
||
by our caller that we have all the info we need to fix it up.
|
||
|
||
Parameter valP is the pointer to the value of the bits.
|
||
|
||
On the 386, immediates, displacements, and data pointers are all in
|
||
the same (little-endian) format, so we don't need to care about which
|
||
we are handling. */
|
||
|
||
void
|
||
md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
|
||
{
|
||
char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
|
||
valueT value = *valP;
|
||
|
||
#if !defined (TE_Mach)
|
||
if (fixP->fx_pcrel)
|
||
{
|
||
switch (fixP->fx_r_type)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case BFD_RELOC_64:
|
||
fixP->fx_r_type = BFD_RELOC_64_PCREL;
|
||
break;
|
||
case BFD_RELOC_32:
|
||
case BFD_RELOC_X86_64_32S:
|
||
fixP->fx_r_type = BFD_RELOC_32_PCREL;
|
||
break;
|
||
case BFD_RELOC_16:
|
||
fixP->fx_r_type = BFD_RELOC_16_PCREL;
|
||
break;
|
||
case BFD_RELOC_8:
|
||
fixP->fx_r_type = BFD_RELOC_8_PCREL;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (fixP->fx_addsy != NULL
|
||
&& (fixP->fx_r_type == BFD_RELOC_32_PCREL
|
||
|| fixP->fx_r_type == BFD_RELOC_64_PCREL
|
||
|| fixP->fx_r_type == BFD_RELOC_16_PCREL
|
||
|| fixP->fx_r_type == BFD_RELOC_8_PCREL)
|
||
&& !use_rela_relocations)
|
||
{
|
||
/* This is a hack. There should be a better way to handle this.
|
||
This covers for the fact that bfd_install_relocation will
|
||
subtract the current location (for partial_inplace, PC relative
|
||
relocations); see more below. */
|
||
#ifndef OBJ_AOUT
|
||
if (IS_ELF
|
||
#ifdef TE_PE
|
||
|| OUTPUT_FLAVOR == bfd_target_coff_flavour
|
||
#endif
|
||
)
|
||
value += fixP->fx_where + fixP->fx_frag->fr_address;
|
||
#endif
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (IS_ELF)
|
||
{
|
||
segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
|
||
|
||
if ((sym_seg == seg
|
||
|| (symbol_section_p (fixP->fx_addsy)
|
||
&& sym_seg != absolute_section))
|
||
&& !generic_force_reloc (fixP))
|
||
{
|
||
/* Yes, we add the values in twice. This is because
|
||
bfd_install_relocation subtracts them out again. I think
|
||
bfd_install_relocation is broken, but I don't dare change
|
||
it. FIXME. */
|
||
value += fixP->fx_where + fixP->fx_frag->fr_address;
|
||
}
|
||
}
|
||
#endif
|
||
#if defined (OBJ_COFF) && defined (TE_PE)
|
||
/* For some reason, the PE format does not store a
|
||
section address offset for a PC relative symbol. */
|
||
if (S_GET_SEGMENT (fixP->fx_addsy) != seg
|
||
|| S_IS_WEAK (fixP->fx_addsy))
|
||
value += md_pcrel_from (fixP);
|
||
#endif
|
||
}
|
||
#if defined (OBJ_COFF) && defined (TE_PE)
|
||
if (fixP->fx_addsy != NULL
|
||
&& S_IS_WEAK (fixP->fx_addsy)
|
||
/* PR 16858: Do not modify weak function references. */
|
||
&& ! fixP->fx_pcrel)
|
||
{
|
||
#if !defined (TE_PEP)
|
||
/* For x86 PE weak function symbols are neither PC-relative
|
||
nor do they set S_IS_FUNCTION. So the only reliable way
|
||
to detect them is to check the flags of their containing
|
||
section. */
|
||
if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
|
||
&& S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
|
||
;
|
||
else
|
||
#endif
|
||
value -= S_GET_VALUE (fixP->fx_addsy);
|
||
}
|
||
#endif
|
||
|
||
/* Fix a few things - the dynamic linker expects certain values here,
|
||
and we must not disappoint it. */
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (IS_ELF && fixP->fx_addsy)
|
||
switch (fixP->fx_r_type)
|
||
{
|
||
case BFD_RELOC_386_PLT32:
|
||
case BFD_RELOC_X86_64_PLT32:
|
||
/* Make the jump instruction point to the address of the operand.
|
||
At runtime we merely add the offset to the actual PLT entry.
|
||
NB: Subtract the offset size only for jump instructions. */
|
||
if (fixP->fx_pcrel)
|
||
value = -4;
|
||
break;
|
||
|
||
case BFD_RELOC_386_TLS_GD:
|
||
case BFD_RELOC_386_TLS_LDM:
|
||
case BFD_RELOC_386_TLS_IE_32:
|
||
case BFD_RELOC_386_TLS_IE:
|
||
case BFD_RELOC_386_TLS_GOTIE:
|
||
case BFD_RELOC_386_TLS_GOTDESC:
|
||
case BFD_RELOC_X86_64_TLSGD:
|
||
case BFD_RELOC_X86_64_TLSLD:
|
||
case BFD_RELOC_X86_64_GOTTPOFF:
|
||
case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
|
||
value = 0; /* Fully resolved at runtime. No addend. */
|
||
/* Fallthrough */
|
||
case BFD_RELOC_386_TLS_LE:
|
||
case BFD_RELOC_386_TLS_LDO_32:
|
||
case BFD_RELOC_386_TLS_LE_32:
|
||
case BFD_RELOC_X86_64_DTPOFF32:
|
||
case BFD_RELOC_X86_64_DTPOFF64:
|
||
case BFD_RELOC_X86_64_TPOFF32:
|
||
case BFD_RELOC_X86_64_TPOFF64:
|
||
S_SET_THREAD_LOCAL (fixP->fx_addsy);
|
||
break;
|
||
|
||
case BFD_RELOC_386_TLS_DESC_CALL:
|
||
case BFD_RELOC_X86_64_TLSDESC_CALL:
|
||
value = 0; /* Fully resolved at runtime. No addend. */
|
||
S_SET_THREAD_LOCAL (fixP->fx_addsy);
|
||
fixP->fx_done = 0;
|
||
return;
|
||
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
fixP->fx_done = 0;
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
|
||
|
||
/* If not 64bit, massage value, to account for wraparound when !BFD64. */
|
||
if (!object_64bit)
|
||
value = extend_to_32bit_address (value);
|
||
|
||
*valP = value;
|
||
#endif /* !defined (TE_Mach) */
|
||
|
||
/* Are we finished with this relocation now? */
|
||
if (fixP->fx_addsy == NULL)
|
||
{
|
||
fixP->fx_done = 1;
|
||
switch (fixP->fx_r_type)
|
||
{
|
||
case BFD_RELOC_X86_64_32S:
|
||
fixP->fx_signed = 1;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
#if defined (OBJ_COFF) && defined (TE_PE)
|
||
else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
|
||
{
|
||
fixP->fx_done = 0;
|
||
/* Remember value for tc_gen_reloc. */
|
||
fixP->fx_addnumber = value;
|
||
/* Clear out the frag for now. */
|
||
value = 0;
|
||
}
|
||
#endif
|
||
else if (use_rela_relocations)
|
||
{
|
||
if (!disallow_64bit_reloc || fixP->fx_r_type == NO_RELOC)
|
||
fixP->fx_no_overflow = 1;
|
||
/* Remember value for tc_gen_reloc. */
|
||
fixP->fx_addnumber = value;
|
||
value = 0;
|
||
}
|
||
|
||
md_number_to_chars (p, value, fixP->fx_size);
|
||
}
|
||
|
||
const char *
|
||
md_atof (int type, char *litP, int *sizeP)
|
||
{
|
||
/* This outputs the LITTLENUMs in REVERSE order;
|
||
in accord with the bigendian 386. */
|
||
return ieee_md_atof (type, litP, sizeP, false);
|
||
}
|
||
|
||
static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
|
||
|
||
static char *
|
||
output_invalid (int c)
|
||
{
|
||
if (ISPRINT (c))
|
||
snprintf (output_invalid_buf, sizeof (output_invalid_buf),
|
||
"'%c'", c);
|
||
else
|
||
snprintf (output_invalid_buf, sizeof (output_invalid_buf),
|
||
"(0x%x)", (unsigned char) c);
|
||
return output_invalid_buf;
|
||
}
|
||
|
||
/* Verify that @r can be used in the current context. */
|
||
|
||
static bool check_register (const reg_entry *r)
|
||
{
|
||
if (allow_pseudo_reg)
|
||
return true;
|
||
|
||
if (operand_type_all_zero (&r->reg_type))
|
||
return false;
|
||
|
||
if ((r->reg_type.bitfield.dword
|
||
|| (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
|
||
|| r->reg_type.bitfield.class == RegCR
|
||
|| r->reg_type.bitfield.class == RegDR)
|
||
&& !cpu_arch_flags.bitfield.cpui386)
|
||
return false;
|
||
|
||
if (r->reg_type.bitfield.class == RegTR
|
||
&& (flag_code == CODE_64BIT
|
||
|| !cpu_arch_flags.bitfield.cpui386
|
||
|| cpu_arch_isa_flags.bitfield.cpui586
|
||
|| cpu_arch_isa_flags.bitfield.cpui686))
|
||
return false;
|
||
|
||
if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
|
||
return false;
|
||
|
||
if (!cpu_arch_flags.bitfield.cpuavx512f)
|
||
{
|
||
if (r->reg_type.bitfield.zmmword
|
||
|| r->reg_type.bitfield.class == RegMask)
|
||
return false;
|
||
|
||
if (!cpu_arch_flags.bitfield.cpuavx)
|
||
{
|
||
if (r->reg_type.bitfield.ymmword)
|
||
return false;
|
||
|
||
if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (r->reg_type.bitfield.tmmword
|
||
&& (!cpu_arch_flags.bitfield.cpuamx_tile
|
||
|| flag_code != CODE_64BIT))
|
||
return false;
|
||
|
||
if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
|
||
return false;
|
||
|
||
/* Don't allow fake index register unless allow_index_reg isn't 0. */
|
||
if (!allow_index_reg && r->reg_num == RegIZ)
|
||
return false;
|
||
|
||
/* Upper 16 vector registers are only available with VREX in 64bit
|
||
mode, and require EVEX encoding. */
|
||
if (r->reg_flags & RegVRex)
|
||
{
|
||
if (!cpu_arch_flags.bitfield.cpuavx512f
|
||
|| flag_code != CODE_64BIT)
|
||
return false;
|
||
|
||
if (i.vec_encoding == vex_encoding_default)
|
||
i.vec_encoding = vex_encoding_evex;
|
||
else if (i.vec_encoding != vex_encoding_evex)
|
||
i.vec_encoding = vex_encoding_error;
|
||
}
|
||
|
||
if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
|
||
&& (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
|
||
&& flag_code != CODE_64BIT)
|
||
return false;
|
||
|
||
if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
|
||
&& !intel_syntax)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* REG_STRING starts *before* REGISTER_PREFIX. */
|
||
|
||
static const reg_entry *
|
||
parse_real_register (char *reg_string, char **end_op)
|
||
{
|
||
char *s = reg_string;
|
||
char *p;
|
||
char reg_name_given[MAX_REG_NAME_SIZE + 1];
|
||
const reg_entry *r;
|
||
|
||
/* Skip possible REGISTER_PREFIX and possible whitespace. */
|
||
if (*s == REGISTER_PREFIX)
|
||
++s;
|
||
|
||
if (is_space_char (*s))
|
||
++s;
|
||
|
||
p = reg_name_given;
|
||
while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
|
||
{
|
||
if (p >= reg_name_given + MAX_REG_NAME_SIZE)
|
||
return (const reg_entry *) NULL;
|
||
s++;
|
||
}
|
||
|
||
/* For naked regs, make sure that we are not dealing with an identifier.
|
||
This prevents confusing an identifier like `eax_var' with register
|
||
`eax'. */
|
||
if (allow_naked_reg && identifier_chars[(unsigned char) *s])
|
||
return (const reg_entry *) NULL;
|
||
|
||
*end_op = s;
|
||
|
||
r = (const reg_entry *) str_hash_find (reg_hash, reg_name_given);
|
||
|
||
/* Handle floating point regs, allowing spaces in the (i) part. */
|
||
if (r == reg_st0)
|
||
{
|
||
if (!cpu_arch_flags.bitfield.cpu8087
|
||
&& !cpu_arch_flags.bitfield.cpu287
|
||
&& !cpu_arch_flags.bitfield.cpu387
|
||
&& !allow_pseudo_reg)
|
||
return (const reg_entry *) NULL;
|
||
|
||
if (is_space_char (*s))
|
||
++s;
|
||
if (*s == '(')
|
||
{
|
||
++s;
|
||
if (is_space_char (*s))
|
||
++s;
|
||
if (*s >= '0' && *s <= '7')
|
||
{
|
||
int fpr = *s - '0';
|
||
++s;
|
||
if (is_space_char (*s))
|
||
++s;
|
||
if (*s == ')')
|
||
{
|
||
*end_op = s + 1;
|
||
know (r[fpr].reg_num == fpr);
|
||
return r + fpr;
|
||
}
|
||
}
|
||
/* We have "%st(" then garbage. */
|
||
return (const reg_entry *) NULL;
|
||
}
|
||
}
|
||
|
||
return r && check_register (r) ? r : NULL;
|
||
}
|
||
|
||
/* REG_STRING starts *before* REGISTER_PREFIX. */
|
||
|
||
static const reg_entry *
|
||
parse_register (char *reg_string, char **end_op)
|
||
{
|
||
const reg_entry *r;
|
||
|
||
if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
|
||
r = parse_real_register (reg_string, end_op);
|
||
else
|
||
r = NULL;
|
||
if (!r)
|
||
{
|
||
char *save = input_line_pointer;
|
||
char c;
|
||
symbolS *symbolP;
|
||
|
||
input_line_pointer = reg_string;
|
||
c = get_symbol_name (®_string);
|
||
symbolP = symbol_find (reg_string);
|
||
while (symbolP && S_GET_SEGMENT (symbolP) != reg_section)
|
||
{
|
||
const expressionS *e = symbol_get_value_expression(symbolP);
|
||
|
||
if (e->X_op != O_symbol || e->X_add_number)
|
||
break;
|
||
symbolP = e->X_add_symbol;
|
||
}
|
||
if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
|
||
{
|
||
const expressionS *e = symbol_get_value_expression (symbolP);
|
||
|
||
if (e->X_op == O_register)
|
||
{
|
||
know (e->X_add_number >= 0
|
||
&& (valueT) e->X_add_number < i386_regtab_size);
|
||
r = i386_regtab + e->X_add_number;
|
||
*end_op = input_line_pointer;
|
||
}
|
||
if (r && !check_register (r))
|
||
{
|
||
as_bad (_("register '%s%s' cannot be used here"),
|
||
register_prefix, r->reg_name);
|
||
r = &bad_reg;
|
||
}
|
||
}
|
||
*input_line_pointer = c;
|
||
input_line_pointer = save;
|
||
}
|
||
return r;
|
||
}
|
||
|
||
int
|
||
i386_parse_name (char *name, expressionS *e, char *nextcharP)
|
||
{
|
||
const reg_entry *r = NULL;
|
||
char *end = input_line_pointer;
|
||
|
||
*end = *nextcharP;
|
||
if (*name == REGISTER_PREFIX || allow_naked_reg)
|
||
r = parse_real_register (name, &input_line_pointer);
|
||
if (r && end <= input_line_pointer)
|
||
{
|
||
*nextcharP = *input_line_pointer;
|
||
*input_line_pointer = 0;
|
||
if (r != &bad_reg)
|
||
{
|
||
e->X_op = O_register;
|
||
e->X_add_number = r - i386_regtab;
|
||
}
|
||
else
|
||
e->X_op = O_illegal;
|
||
return 1;
|
||
}
|
||
input_line_pointer = end;
|
||
*end = 0;
|
||
return intel_syntax ? i386_intel_parse_name (name, e) : 0;
|
||
}
|
||
|
||
void
|
||
md_operand (expressionS *e)
|
||
{
|
||
char *end;
|
||
const reg_entry *r;
|
||
|
||
switch (*input_line_pointer)
|
||
{
|
||
case REGISTER_PREFIX:
|
||
r = parse_real_register (input_line_pointer, &end);
|
||
if (r)
|
||
{
|
||
e->X_op = O_register;
|
||
e->X_add_number = r - i386_regtab;
|
||
input_line_pointer = end;
|
||
}
|
||
break;
|
||
|
||
case '[':
|
||
gas_assert (intel_syntax);
|
||
end = input_line_pointer++;
|
||
expression (e);
|
||
if (*input_line_pointer == ']')
|
||
{
|
||
++input_line_pointer;
|
||
e->X_op_symbol = make_expr_symbol (e);
|
||
e->X_add_symbol = NULL;
|
||
e->X_add_number = 0;
|
||
e->X_op = O_index;
|
||
}
|
||
else
|
||
{
|
||
e->X_op = O_absent;
|
||
input_line_pointer = end;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
const char *md_shortopts = "kVQ:sqnO::";
|
||
#else
|
||
const char *md_shortopts = "qnO::";
|
||
#endif
|
||
|
||
#define OPTION_32 (OPTION_MD_BASE + 0)
|
||
#define OPTION_64 (OPTION_MD_BASE + 1)
|
||
#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
|
||
#define OPTION_MARCH (OPTION_MD_BASE + 3)
|
||
#define OPTION_MTUNE (OPTION_MD_BASE + 4)
|
||
#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
|
||
#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
|
||
#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
|
||
#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
|
||
#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
|
||
#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
|
||
#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
|
||
#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
|
||
#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
|
||
#define OPTION_X32 (OPTION_MD_BASE + 14)
|
||
#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
|
||
#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
|
||
#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
|
||
#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
|
||
#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
|
||
#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
|
||
#define OPTION_MSHARED (OPTION_MD_BASE + 21)
|
||
#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
|
||
#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
|
||
#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
|
||
#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
|
||
#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
|
||
#define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
|
||
#define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
|
||
#define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
|
||
#define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
|
||
#define OPTION_MLFENCE_AFTER_LOAD (OPTION_MD_BASE + 31)
|
||
#define OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH (OPTION_MD_BASE + 32)
|
||
#define OPTION_MLFENCE_BEFORE_RET (OPTION_MD_BASE + 33)
|
||
#define OPTION_MUSE_UNALIGNED_VECTOR_MOVE (OPTION_MD_BASE + 34)
|
||
|
||
struct option md_longopts[] =
|
||
{
|
||
{"32", no_argument, NULL, OPTION_32},
|
||
#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
|
||
|| defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
|
||
{"64", no_argument, NULL, OPTION_64},
|
||
#endif
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
{"x32", no_argument, NULL, OPTION_X32},
|
||
{"mshared", no_argument, NULL, OPTION_MSHARED},
|
||
{"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
|
||
#endif
|
||
{"divide", no_argument, NULL, OPTION_DIVIDE},
|
||
{"march", required_argument, NULL, OPTION_MARCH},
|
||
{"mtune", required_argument, NULL, OPTION_MTUNE},
|
||
{"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
|
||
{"msyntax", required_argument, NULL, OPTION_MSYNTAX},
|
||
{"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
|
||
{"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
|
||
{"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
|
||
{"muse-unaligned-vector-move", no_argument, NULL, OPTION_MUSE_UNALIGNED_VECTOR_MOVE},
|
||
{"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
|
||
{"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
|
||
{"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
|
||
{"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
|
||
{"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
|
||
{"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
|
||
{"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
|
||
# if defined (TE_PE) || defined (TE_PEP)
|
||
{"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
|
||
#endif
|
||
{"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
|
||
{"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
|
||
{"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
|
||
{"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
|
||
{"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
|
||
{"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
|
||
{"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
|
||
{"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
|
||
{"mlfence-after-load", required_argument, NULL, OPTION_MLFENCE_AFTER_LOAD},
|
||
{"mlfence-before-indirect-branch", required_argument, NULL,
|
||
OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH},
|
||
{"mlfence-before-ret", required_argument, NULL, OPTION_MLFENCE_BEFORE_RET},
|
||
{"mamd64", no_argument, NULL, OPTION_MAMD64},
|
||
{"mintel64", no_argument, NULL, OPTION_MINTEL64},
|
||
{NULL, no_argument, NULL, 0}
|
||
};
|
||
size_t md_longopts_size = sizeof (md_longopts);
|
||
|
||
int
|
||
md_parse_option (int c, const char *arg)
|
||
{
|
||
unsigned int j;
|
||
char *arch, *next, *saved, *type;
|
||
|
||
switch (c)
|
||
{
|
||
case 'n':
|
||
optimize_align_code = 0;
|
||
break;
|
||
|
||
case 'q':
|
||
quiet_warnings = 1;
|
||
break;
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
/* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
|
||
should be emitted or not. FIXME: Not implemented. */
|
||
case 'Q':
|
||
if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
|
||
return 0;
|
||
break;
|
||
|
||
/* -V: SVR4 argument to print version ID. */
|
||
case 'V':
|
||
print_version_id ();
|
||
break;
|
||
|
||
/* -k: Ignore for FreeBSD compatibility. */
|
||
case 'k':
|
||
break;
|
||
|
||
case 's':
|
||
/* -s: On i386 Solaris, this tells the native assembler to use
|
||
.stab instead of .stab.excl. We always use .stab anyhow. */
|
||
break;
|
||
|
||
case OPTION_MSHARED:
|
||
shared = 1;
|
||
break;
|
||
|
||
case OPTION_X86_USED_NOTE:
|
||
if (strcasecmp (arg, "yes") == 0)
|
||
x86_used_note = 1;
|
||
else if (strcasecmp (arg, "no") == 0)
|
||
x86_used_note = 0;
|
||
else
|
||
as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
|
||
break;
|
||
|
||
|
||
#endif
|
||
#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
|
||
|| defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
|
||
case OPTION_64:
|
||
{
|
||
const char **list, **l;
|
||
|
||
list = bfd_target_list ();
|
||
for (l = list; *l != NULL; l++)
|
||
if (startswith (*l, "elf64-x86-64")
|
||
|| strcmp (*l, "coff-x86-64") == 0
|
||
|| strcmp (*l, "pe-x86-64") == 0
|
||
|| strcmp (*l, "pei-x86-64") == 0
|
||
|| strcmp (*l, "mach-o-x86-64") == 0)
|
||
{
|
||
default_arch = "x86_64";
|
||
break;
|
||
}
|
||
if (*l == NULL)
|
||
as_fatal (_("no compiled in support for x86_64"));
|
||
free (list);
|
||
}
|
||
break;
|
||
#endif
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
case OPTION_X32:
|
||
if (IS_ELF)
|
||
{
|
||
const char **list, **l;
|
||
|
||
list = bfd_target_list ();
|
||
for (l = list; *l != NULL; l++)
|
||
if (startswith (*l, "elf32-x86-64"))
|
||
{
|
||
default_arch = "x86_64:32";
|
||
break;
|
||
}
|
||
if (*l == NULL)
|
||
as_fatal (_("no compiled in support for 32bit x86_64"));
|
||
free (list);
|
||
}
|
||
else
|
||
as_fatal (_("32bit x86_64 is only supported for ELF"));
|
||
break;
|
||
#endif
|
||
|
||
case OPTION_32:
|
||
default_arch = "i386";
|
||
break;
|
||
|
||
case OPTION_DIVIDE:
|
||
#ifdef SVR4_COMMENT_CHARS
|
||
{
|
||
char *n, *t;
|
||
const char *s;
|
||
|
||
n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
|
||
t = n;
|
||
for (s = i386_comment_chars; *s != '\0'; s++)
|
||
if (*s != '/')
|
||
*t++ = *s;
|
||
*t = '\0';
|
||
i386_comment_chars = n;
|
||
}
|
||
#endif
|
||
break;
|
||
|
||
case OPTION_MARCH:
|
||
saved = xstrdup (arg);
|
||
arch = saved;
|
||
/* Allow -march=+nosse. */
|
||
if (*arch == '+')
|
||
arch++;
|
||
do
|
||
{
|
||
if (*arch == '.')
|
||
as_fatal (_("invalid -march= option: `%s'"), arg);
|
||
next = strchr (arch, '+');
|
||
if (next)
|
||
*next++ = '\0';
|
||
for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
|
||
{
|
||
if (arch == saved && cpu_arch[j].type != PROCESSOR_NONE
|
||
&& strcmp (arch, cpu_arch[j].name) == 0)
|
||
{
|
||
/* Processor. */
|
||
if (! cpu_arch[j].enable.bitfield.cpui386)
|
||
continue;
|
||
|
||
cpu_arch_name = cpu_arch[j].name;
|
||
free (cpu_sub_arch_name);
|
||
cpu_sub_arch_name = NULL;
|
||
cpu_arch_flags = cpu_arch[j].enable;
|
||
cpu_arch_isa = cpu_arch[j].type;
|
||
cpu_arch_isa_flags = cpu_arch[j].enable;
|
||
if (!cpu_arch_tune_set)
|
||
{
|
||
cpu_arch_tune = cpu_arch_isa;
|
||
cpu_arch_tune_flags = cpu_arch_isa_flags;
|
||
}
|
||
break;
|
||
}
|
||
else if (cpu_arch[j].type == PROCESSOR_NONE
|
||
&& strcmp (arch, cpu_arch[j].name) == 0
|
||
&& !cpu_flags_all_zero (&cpu_arch[j].enable))
|
||
{
|
||
/* ISA extension. */
|
||
i386_cpu_flags flags;
|
||
|
||
flags = cpu_flags_or (cpu_arch_flags,
|
||
cpu_arch[j].enable);
|
||
|
||
if (!cpu_flags_equal (&flags, &cpu_arch_flags))
|
||
{
|
||
extend_cpu_sub_arch_name (arch);
|
||
cpu_arch_flags = flags;
|
||
cpu_arch_isa_flags = flags;
|
||
}
|
||
else
|
||
cpu_arch_isa_flags
|
||
= cpu_flags_or (cpu_arch_isa_flags,
|
||
cpu_arch[j].enable);
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (j >= ARRAY_SIZE (cpu_arch) && startswith (arch, "no"))
|
||
{
|
||
/* Disable an ISA extension. */
|
||
for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
|
||
if (cpu_arch[j].type == PROCESSOR_NONE
|
||
&& strcmp (arch + 2, cpu_arch[j].name) == 0)
|
||
{
|
||
i386_cpu_flags flags;
|
||
|
||
flags = cpu_flags_and_not (cpu_arch_flags,
|
||
cpu_arch[j].disable);
|
||
if (!cpu_flags_equal (&flags, &cpu_arch_flags))
|
||
{
|
||
extend_cpu_sub_arch_name (arch);
|
||
cpu_arch_flags = flags;
|
||
cpu_arch_isa_flags = flags;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (j >= ARRAY_SIZE (cpu_arch))
|
||
as_fatal (_("invalid -march= option: `%s'"), arg);
|
||
|
||
arch = next;
|
||
}
|
||
while (next != NULL);
|
||
free (saved);
|
||
break;
|
||
|
||
case OPTION_MTUNE:
|
||
if (*arg == '.')
|
||
as_fatal (_("invalid -mtune= option: `%s'"), arg);
|
||
for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
|
||
{
|
||
if (cpu_arch[j].type != PROCESSOR_NONE
|
||
&& strcmp (arg, cpu_arch[j].name) == 0)
|
||
{
|
||
cpu_arch_tune_set = 1;
|
||
cpu_arch_tune = cpu_arch [j].type;
|
||
cpu_arch_tune_flags = cpu_arch[j].enable;
|
||
break;
|
||
}
|
||
}
|
||
if (j >= ARRAY_SIZE (cpu_arch))
|
||
as_fatal (_("invalid -mtune= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MMNEMONIC:
|
||
if (strcasecmp (arg, "att") == 0)
|
||
intel_mnemonic = 0;
|
||
else if (strcasecmp (arg, "intel") == 0)
|
||
intel_mnemonic = 1;
|
||
else
|
||
as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MSYNTAX:
|
||
if (strcasecmp (arg, "att") == 0)
|
||
intel_syntax = 0;
|
||
else if (strcasecmp (arg, "intel") == 0)
|
||
intel_syntax = 1;
|
||
else
|
||
as_fatal (_("invalid -msyntax= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MINDEX_REG:
|
||
allow_index_reg = 1;
|
||
break;
|
||
|
||
case OPTION_MNAKED_REG:
|
||
allow_naked_reg = 1;
|
||
break;
|
||
|
||
case OPTION_MSSE2AVX:
|
||
sse2avx = 1;
|
||
break;
|
||
|
||
case OPTION_MUSE_UNALIGNED_VECTOR_MOVE:
|
||
use_unaligned_vector_move = 1;
|
||
break;
|
||
|
||
case OPTION_MSSE_CHECK:
|
||
if (strcasecmp (arg, "error") == 0)
|
||
sse_check = check_error;
|
||
else if (strcasecmp (arg, "warning") == 0)
|
||
sse_check = check_warning;
|
||
else if (strcasecmp (arg, "none") == 0)
|
||
sse_check = check_none;
|
||
else
|
||
as_fatal (_("invalid -msse-check= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MOPERAND_CHECK:
|
||
if (strcasecmp (arg, "error") == 0)
|
||
operand_check = check_error;
|
||
else if (strcasecmp (arg, "warning") == 0)
|
||
operand_check = check_warning;
|
||
else if (strcasecmp (arg, "none") == 0)
|
||
operand_check = check_none;
|
||
else
|
||
as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MAVXSCALAR:
|
||
if (strcasecmp (arg, "128") == 0)
|
||
avxscalar = vex128;
|
||
else if (strcasecmp (arg, "256") == 0)
|
||
avxscalar = vex256;
|
||
else
|
||
as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MVEXWIG:
|
||
if (strcmp (arg, "0") == 0)
|
||
vexwig = vexw0;
|
||
else if (strcmp (arg, "1") == 0)
|
||
vexwig = vexw1;
|
||
else
|
||
as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MADD_BND_PREFIX:
|
||
add_bnd_prefix = 1;
|
||
break;
|
||
|
||
case OPTION_MEVEXLIG:
|
||
if (strcmp (arg, "128") == 0)
|
||
evexlig = evexl128;
|
||
else if (strcmp (arg, "256") == 0)
|
||
evexlig = evexl256;
|
||
else if (strcmp (arg, "512") == 0)
|
||
evexlig = evexl512;
|
||
else
|
||
as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MEVEXRCIG:
|
||
if (strcmp (arg, "rne") == 0)
|
||
evexrcig = rne;
|
||
else if (strcmp (arg, "rd") == 0)
|
||
evexrcig = rd;
|
||
else if (strcmp (arg, "ru") == 0)
|
||
evexrcig = ru;
|
||
else if (strcmp (arg, "rz") == 0)
|
||
evexrcig = rz;
|
||
else
|
||
as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MEVEXWIG:
|
||
if (strcmp (arg, "0") == 0)
|
||
evexwig = evexw0;
|
||
else if (strcmp (arg, "1") == 0)
|
||
evexwig = evexw1;
|
||
else
|
||
as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
|
||
break;
|
||
|
||
# if defined (TE_PE) || defined (TE_PEP)
|
||
case OPTION_MBIG_OBJ:
|
||
use_big_obj = 1;
|
||
break;
|
||
#endif
|
||
|
||
case OPTION_MOMIT_LOCK_PREFIX:
|
||
if (strcasecmp (arg, "yes") == 0)
|
||
omit_lock_prefix = 1;
|
||
else if (strcasecmp (arg, "no") == 0)
|
||
omit_lock_prefix = 0;
|
||
else
|
||
as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MFENCE_AS_LOCK_ADD:
|
||
if (strcasecmp (arg, "yes") == 0)
|
||
avoid_fence = 1;
|
||
else if (strcasecmp (arg, "no") == 0)
|
||
avoid_fence = 0;
|
||
else
|
||
as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MLFENCE_AFTER_LOAD:
|
||
if (strcasecmp (arg, "yes") == 0)
|
||
lfence_after_load = 1;
|
||
else if (strcasecmp (arg, "no") == 0)
|
||
lfence_after_load = 0;
|
||
else
|
||
as_fatal (_("invalid -mlfence-after-load= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH:
|
||
if (strcasecmp (arg, "all") == 0)
|
||
{
|
||
lfence_before_indirect_branch = lfence_branch_all;
|
||
if (lfence_before_ret == lfence_before_ret_none)
|
||
lfence_before_ret = lfence_before_ret_shl;
|
||
}
|
||
else if (strcasecmp (arg, "memory") == 0)
|
||
lfence_before_indirect_branch = lfence_branch_memory;
|
||
else if (strcasecmp (arg, "register") == 0)
|
||
lfence_before_indirect_branch = lfence_branch_register;
|
||
else if (strcasecmp (arg, "none") == 0)
|
||
lfence_before_indirect_branch = lfence_branch_none;
|
||
else
|
||
as_fatal (_("invalid -mlfence-before-indirect-branch= option: `%s'"),
|
||
arg);
|
||
break;
|
||
|
||
case OPTION_MLFENCE_BEFORE_RET:
|
||
if (strcasecmp (arg, "or") == 0)
|
||
lfence_before_ret = lfence_before_ret_or;
|
||
else if (strcasecmp (arg, "not") == 0)
|
||
lfence_before_ret = lfence_before_ret_not;
|
||
else if (strcasecmp (arg, "shl") == 0 || strcasecmp (arg, "yes") == 0)
|
||
lfence_before_ret = lfence_before_ret_shl;
|
||
else if (strcasecmp (arg, "none") == 0)
|
||
lfence_before_ret = lfence_before_ret_none;
|
||
else
|
||
as_fatal (_("invalid -mlfence-before-ret= option: `%s'"),
|
||
arg);
|
||
break;
|
||
|
||
case OPTION_MRELAX_RELOCATIONS:
|
||
if (strcasecmp (arg, "yes") == 0)
|
||
generate_relax_relocations = 1;
|
||
else if (strcasecmp (arg, "no") == 0)
|
||
generate_relax_relocations = 0;
|
||
else
|
||
as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
|
||
break;
|
||
|
||
case OPTION_MALIGN_BRANCH_BOUNDARY:
|
||
{
|
||
char *end;
|
||
long int align = strtoul (arg, &end, 0);
|
||
if (*end == '\0')
|
||
{
|
||
if (align == 0)
|
||
{
|
||
align_branch_power = 0;
|
||
break;
|
||
}
|
||
else if (align >= 16)
|
||
{
|
||
int align_power;
|
||
for (align_power = 0;
|
||
(align & 1) == 0;
|
||
align >>= 1, align_power++)
|
||
continue;
|
||
/* Limit alignment power to 31. */
|
||
if (align == 1 && align_power < 32)
|
||
{
|
||
align_branch_power = align_power;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
|
||
}
|
||
break;
|
||
|
||
case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
|
||
{
|
||
char *end;
|
||
int align = strtoul (arg, &end, 0);
|
||
/* Some processors only support 5 prefixes. */
|
||
if (*end == '\0' && align >= 0 && align < 6)
|
||
{
|
||
align_branch_prefix_size = align;
|
||
break;
|
||
}
|
||
as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
|
||
arg);
|
||
}
|
||
break;
|
||
|
||
case OPTION_MALIGN_BRANCH:
|
||
align_branch = 0;
|
||
saved = xstrdup (arg);
|
||
type = saved;
|
||
do
|
||
{
|
||
next = strchr (type, '+');
|
||
if (next)
|
||
*next++ = '\0';
|
||
if (strcasecmp (type, "jcc") == 0)
|
||
align_branch |= align_branch_jcc_bit;
|
||
else if (strcasecmp (type, "fused") == 0)
|
||
align_branch |= align_branch_fused_bit;
|
||
else if (strcasecmp (type, "jmp") == 0)
|
||
align_branch |= align_branch_jmp_bit;
|
||
else if (strcasecmp (type, "call") == 0)
|
||
align_branch |= align_branch_call_bit;
|
||
else if (strcasecmp (type, "ret") == 0)
|
||
align_branch |= align_branch_ret_bit;
|
||
else if (strcasecmp (type, "indirect") == 0)
|
||
align_branch |= align_branch_indirect_bit;
|
||
else
|
||
as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
|
||
type = next;
|
||
}
|
||
while (next != NULL);
|
||
free (saved);
|
||
break;
|
||
|
||
case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
|
||
align_branch_power = 5;
|
||
align_branch_prefix_size = 5;
|
||
align_branch = (align_branch_jcc_bit
|
||
| align_branch_fused_bit
|
||
| align_branch_jmp_bit);
|
||
break;
|
||
|
||
case OPTION_MAMD64:
|
||
isa64 = amd64;
|
||
break;
|
||
|
||
case OPTION_MINTEL64:
|
||
isa64 = intel64;
|
||
break;
|
||
|
||
case 'O':
|
||
if (arg == NULL)
|
||
{
|
||
optimize = 1;
|
||
/* Turn off -Os. */
|
||
optimize_for_space = 0;
|
||
}
|
||
else if (*arg == 's')
|
||
{
|
||
optimize_for_space = 1;
|
||
/* Turn on all encoding optimizations. */
|
||
optimize = INT_MAX;
|
||
}
|
||
else
|
||
{
|
||
optimize = atoi (arg);
|
||
/* Turn off -Os. */
|
||
optimize_for_space = 0;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
#define MESSAGE_TEMPLATE \
|
||
" "
|
||
|
||
static char *
|
||
output_message (FILE *stream, char *p, char *message, char *start,
|
||
int *left_p, const char *name, int len)
|
||
{
|
||
int size = sizeof (MESSAGE_TEMPLATE);
|
||
int left = *left_p;
|
||
|
||
/* Reserve 2 spaces for ", " or ",\0" */
|
||
left -= len + 2;
|
||
|
||
/* Check if there is any room. */
|
||
if (left >= 0)
|
||
{
|
||
if (p != start)
|
||
{
|
||
*p++ = ',';
|
||
*p++ = ' ';
|
||
}
|
||
p = mempcpy (p, name, len);
|
||
}
|
||
else
|
||
{
|
||
/* Output the current message now and start a new one. */
|
||
*p++ = ',';
|
||
*p = '\0';
|
||
fprintf (stream, "%s\n", message);
|
||
p = start;
|
||
left = size - (start - message) - len - 2;
|
||
|
||
gas_assert (left >= 0);
|
||
|
||
p = mempcpy (p, name, len);
|
||
}
|
||
|
||
*left_p = left;
|
||
return p;
|
||
}
|
||
|
||
static void
|
||
show_arch (FILE *stream, int ext, int check)
|
||
{
|
||
static char message[] = MESSAGE_TEMPLATE;
|
||
char *start = message + 27;
|
||
char *p;
|
||
int size = sizeof (MESSAGE_TEMPLATE);
|
||
int left;
|
||
const char *name;
|
||
int len;
|
||
unsigned int j;
|
||
|
||
p = start;
|
||
left = size - (start - message);
|
||
|
||
if (!ext && check)
|
||
{
|
||
p = output_message (stream, p, message, start, &left,
|
||
STRING_COMMA_LEN ("default"));
|
||
p = output_message (stream, p, message, start, &left,
|
||
STRING_COMMA_LEN ("push"));
|
||
p = output_message (stream, p, message, start, &left,
|
||
STRING_COMMA_LEN ("pop"));
|
||
}
|
||
|
||
for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
|
||
{
|
||
/* Should it be skipped? */
|
||
if (cpu_arch [j].skip)
|
||
continue;
|
||
|
||
name = cpu_arch [j].name;
|
||
len = cpu_arch [j].len;
|
||
if (cpu_arch[j].type == PROCESSOR_NONE)
|
||
{
|
||
/* It is an extension. Skip if we aren't asked to show it. */
|
||
if (!ext || cpu_flags_all_zero (&cpu_arch[j].enable))
|
||
continue;
|
||
}
|
||
else if (ext)
|
||
{
|
||
/* It is an processor. Skip if we show only extension. */
|
||
continue;
|
||
}
|
||
else if (check && ! cpu_arch[j].enable.bitfield.cpui386)
|
||
{
|
||
/* It is an impossible processor - skip. */
|
||
continue;
|
||
}
|
||
|
||
p = output_message (stream, p, message, start, &left, name, len);
|
||
}
|
||
|
||
/* Display disabled extensions. */
|
||
if (ext)
|
||
for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
|
||
{
|
||
char *str;
|
||
|
||
if (cpu_arch[j].type != PROCESSOR_NONE
|
||
|| !cpu_flags_all_zero (&cpu_arch[j].enable))
|
||
continue;
|
||
str = xasprintf ("no%s", cpu_arch[j].name);
|
||
p = output_message (stream, p, message, start, &left, str,
|
||
strlen (str));
|
||
free (str);
|
||
}
|
||
|
||
*p = '\0';
|
||
fprintf (stream, "%s\n", message);
|
||
}
|
||
|
||
void
|
||
md_show_usage (FILE *stream)
|
||
{
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
fprintf (stream, _("\
|
||
-Qy, -Qn ignored\n\
|
||
-V print assembler version number\n\
|
||
-k ignored\n"));
|
||
#endif
|
||
fprintf (stream, _("\
|
||
-n do not optimize code alignment\n\
|
||
-O{012s} attempt some code optimizations\n\
|
||
-q quieten some warnings\n"));
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
fprintf (stream, _("\
|
||
-s ignored\n"));
|
||
#endif
|
||
#ifdef BFD64
|
||
# if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
fprintf (stream, _("\
|
||
--32/--64/--x32 generate 32bit/64bit/x32 object\n"));
|
||
# elif defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O)
|
||
fprintf (stream, _("\
|
||
--32/--64 generate 32bit/64bit object\n"));
|
||
# endif
|
||
#endif
|
||
#ifdef SVR4_COMMENT_CHARS
|
||
fprintf (stream, _("\
|
||
--divide do not treat `/' as a comment character\n"));
|
||
#else
|
||
fprintf (stream, _("\
|
||
--divide ignored\n"));
|
||
#endif
|
||
fprintf (stream, _("\
|
||
-march=CPU[,+EXTENSION...]\n\
|
||
generate code for CPU and EXTENSION, CPU is one of:\n"));
|
||
show_arch (stream, 0, 1);
|
||
fprintf (stream, _("\
|
||
EXTENSION is combination of (possibly \"no\"-prefixed):\n"));
|
||
show_arch (stream, 1, 0);
|
||
fprintf (stream, _("\
|
||
-mtune=CPU optimize for CPU, CPU is one of:\n"));
|
||
show_arch (stream, 0, 0);
|
||
fprintf (stream, _("\
|
||
-msse2avx encode SSE instructions with VEX prefix\n"));
|
||
fprintf (stream, _("\
|
||
-muse-unaligned-vector-move\n\
|
||
encode aligned vector move as unaligned vector move\n"));
|
||
fprintf (stream, _("\
|
||
-msse-check=[none|error|warning] (default: warning)\n\
|
||
check SSE instructions\n"));
|
||
fprintf (stream, _("\
|
||
-moperand-check=[none|error|warning] (default: warning)\n\
|
||
check operand combinations for validity\n"));
|
||
fprintf (stream, _("\
|
||
-mavxscalar=[128|256] (default: 128)\n\
|
||
encode scalar AVX instructions with specific vector\n\
|
||
length\n"));
|
||
fprintf (stream, _("\
|
||
-mvexwig=[0|1] (default: 0)\n\
|
||
encode VEX instructions with specific VEX.W value\n\
|
||
for VEX.W bit ignored instructions\n"));
|
||
fprintf (stream, _("\
|
||
-mevexlig=[128|256|512] (default: 128)\n\
|
||
encode scalar EVEX instructions with specific vector\n\
|
||
length\n"));
|
||
fprintf (stream, _("\
|
||
-mevexwig=[0|1] (default: 0)\n\
|
||
encode EVEX instructions with specific EVEX.W value\n\
|
||
for EVEX.W bit ignored instructions\n"));
|
||
fprintf (stream, _("\
|
||
-mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
|
||
encode EVEX instructions with specific EVEX.RC value\n\
|
||
for SAE-only ignored instructions\n"));
|
||
fprintf (stream, _("\
|
||
-mmnemonic=[att|intel] "));
|
||
if (SYSV386_COMPAT)
|
||
fprintf (stream, _("(default: att)\n"));
|
||
else
|
||
fprintf (stream, _("(default: intel)\n"));
|
||
fprintf (stream, _("\
|
||
use AT&T/Intel mnemonic\n"));
|
||
fprintf (stream, _("\
|
||
-msyntax=[att|intel] (default: att)\n\
|
||
use AT&T/Intel syntax\n"));
|
||
fprintf (stream, _("\
|
||
-mindex-reg support pseudo index registers\n"));
|
||
fprintf (stream, _("\
|
||
-mnaked-reg don't require `%%' prefix for registers\n"));
|
||
fprintf (stream, _("\
|
||
-madd-bnd-prefix add BND prefix for all valid branches\n"));
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
fprintf (stream, _("\
|
||
-mshared disable branch optimization for shared code\n"));
|
||
fprintf (stream, _("\
|
||
-mx86-used-note=[no|yes] "));
|
||
if (DEFAULT_X86_USED_NOTE)
|
||
fprintf (stream, _("(default: yes)\n"));
|
||
else
|
||
fprintf (stream, _("(default: no)\n"));
|
||
fprintf (stream, _("\
|
||
generate x86 used ISA and feature properties\n"));
|
||
#endif
|
||
#if defined (TE_PE) || defined (TE_PEP)
|
||
fprintf (stream, _("\
|
||
-mbig-obj generate big object files\n"));
|
||
#endif
|
||
fprintf (stream, _("\
|
||
-momit-lock-prefix=[no|yes] (default: no)\n\
|
||
strip all lock prefixes\n"));
|
||
fprintf (stream, _("\
|
||
-mfence-as-lock-add=[no|yes] (default: no)\n\
|
||
encode lfence, mfence and sfence as\n\
|
||
lock addl $0x0, (%%{re}sp)\n"));
|
||
fprintf (stream, _("\
|
||
-mrelax-relocations=[no|yes] "));
|
||
if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
|
||
fprintf (stream, _("(default: yes)\n"));
|
||
else
|
||
fprintf (stream, _("(default: no)\n"));
|
||
fprintf (stream, _("\
|
||
generate relax relocations\n"));
|
||
fprintf (stream, _("\
|
||
-malign-branch-boundary=NUM (default: 0)\n\
|
||
align branches within NUM byte boundary\n"));
|
||
fprintf (stream, _("\
|
||
-malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
|
||
TYPE is combination of jcc, fused, jmp, call, ret,\n\
|
||
indirect\n\
|
||
specify types of branches to align\n"));
|
||
fprintf (stream, _("\
|
||
-malign-branch-prefix-size=NUM (default: 5)\n\
|
||
align branches with NUM prefixes per instruction\n"));
|
||
fprintf (stream, _("\
|
||
-mbranches-within-32B-boundaries\n\
|
||
align branches within 32 byte boundary\n"));
|
||
fprintf (stream, _("\
|
||
-mlfence-after-load=[no|yes] (default: no)\n\
|
||
generate lfence after load\n"));
|
||
fprintf (stream, _("\
|
||
-mlfence-before-indirect-branch=[none|all|register|memory] (default: none)\n\
|
||
generate lfence before indirect near branch\n"));
|
||
fprintf (stream, _("\
|
||
-mlfence-before-ret=[none|or|not|shl|yes] (default: none)\n\
|
||
generate lfence before ret\n"));
|
||
fprintf (stream, _("\
|
||
-mamd64 accept only AMD64 ISA [default]\n"));
|
||
fprintf (stream, _("\
|
||
-mintel64 accept only Intel64 ISA\n"));
|
||
}
|
||
|
||
#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
|
||
|| defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
|
||
|| defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
|
||
|
||
/* Pick the target format to use. */
|
||
|
||
const char *
|
||
i386_target_format (void)
|
||
{
|
||
if (startswith (default_arch, "x86_64"))
|
||
{
|
||
update_code_flag (CODE_64BIT, 1);
|
||
if (default_arch[6] == '\0')
|
||
x86_elf_abi = X86_64_ABI;
|
||
else
|
||
x86_elf_abi = X86_64_X32_ABI;
|
||
}
|
||
else if (!strcmp (default_arch, "i386"))
|
||
update_code_flag (CODE_32BIT, 1);
|
||
else if (!strcmp (default_arch, "iamcu"))
|
||
{
|
||
update_code_flag (CODE_32BIT, 1);
|
||
if (cpu_arch_isa == PROCESSOR_UNKNOWN)
|
||
{
|
||
static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
|
||
cpu_arch_name = "iamcu";
|
||
free (cpu_sub_arch_name);
|
||
cpu_sub_arch_name = NULL;
|
||
cpu_arch_flags = iamcu_flags;
|
||
cpu_arch_isa = PROCESSOR_IAMCU;
|
||
cpu_arch_isa_flags = iamcu_flags;
|
||
if (!cpu_arch_tune_set)
|
||
{
|
||
cpu_arch_tune = cpu_arch_isa;
|
||
cpu_arch_tune_flags = cpu_arch_isa_flags;
|
||
}
|
||
}
|
||
else if (cpu_arch_isa != PROCESSOR_IAMCU)
|
||
as_fatal (_("Intel MCU doesn't support `%s' architecture"),
|
||
cpu_arch_name);
|
||
}
|
||
else
|
||
as_fatal (_("unknown architecture"));
|
||
|
||
if (cpu_flags_all_zero (&cpu_arch_isa_flags))
|
||
cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].enable;
|
||
if (cpu_flags_all_zero (&cpu_arch_tune_flags))
|
||
cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].enable;
|
||
|
||
switch (OUTPUT_FLAVOR)
|
||
{
|
||
#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
|
||
case bfd_target_aout_flavour:
|
||
return AOUT_TARGET_FORMAT;
|
||
#endif
|
||
#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
|
||
# if defined (TE_PE) || defined (TE_PEP)
|
||
case bfd_target_coff_flavour:
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
object_64bit = 1;
|
||
return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
|
||
}
|
||
return use_big_obj ? "pe-bigobj-i386" : "pe-i386";
|
||
# elif defined (TE_GO32)
|
||
case bfd_target_coff_flavour:
|
||
return "coff-go32";
|
||
# else
|
||
case bfd_target_coff_flavour:
|
||
return "coff-i386";
|
||
# endif
|
||
#endif
|
||
#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
|
||
case bfd_target_elf_flavour:
|
||
{
|
||
const char *format;
|
||
|
||
switch (x86_elf_abi)
|
||
{
|
||
default:
|
||
format = ELF_TARGET_FORMAT;
|
||
#ifndef TE_SOLARIS
|
||
tls_get_addr = "___tls_get_addr";
|
||
#endif
|
||
break;
|
||
case X86_64_ABI:
|
||
use_rela_relocations = 1;
|
||
object_64bit = 1;
|
||
#ifndef TE_SOLARIS
|
||
tls_get_addr = "__tls_get_addr";
|
||
#endif
|
||
format = ELF_TARGET_FORMAT64;
|
||
break;
|
||
case X86_64_X32_ABI:
|
||
use_rela_relocations = 1;
|
||
object_64bit = 1;
|
||
#ifndef TE_SOLARIS
|
||
tls_get_addr = "__tls_get_addr";
|
||
#endif
|
||
disallow_64bit_reloc = 1;
|
||
format = ELF_TARGET_FORMAT32;
|
||
break;
|
||
}
|
||
if (cpu_arch_isa == PROCESSOR_IAMCU)
|
||
{
|
||
if (x86_elf_abi != I386_ABI)
|
||
as_fatal (_("Intel MCU is 32bit only"));
|
||
return ELF_TARGET_IAMCU_FORMAT;
|
||
}
|
||
else
|
||
return format;
|
||
}
|
||
#endif
|
||
#if defined (OBJ_MACH_O)
|
||
case bfd_target_mach_o_flavour:
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
use_rela_relocations = 1;
|
||
object_64bit = 1;
|
||
return "mach-o-x86-64";
|
||
}
|
||
else
|
||
return "mach-o-i386";
|
||
#endif
|
||
default:
|
||
abort ();
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
#endif /* OBJ_MAYBE_ more than one */
|
||
|
||
symbolS *
|
||
md_undefined_symbol (char *name)
|
||
{
|
||
if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
|
||
&& name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
|
||
&& name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
|
||
&& strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
|
||
{
|
||
if (!GOT_symbol)
|
||
{
|
||
if (symbol_find (name))
|
||
as_bad (_("GOT already in symbol table"));
|
||
GOT_symbol = symbol_new (name, undefined_section,
|
||
&zero_address_frag, 0);
|
||
};
|
||
return GOT_symbol;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Round up a section size to the appropriate boundary. */
|
||
|
||
valueT
|
||
md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
|
||
{
|
||
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
|
||
if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
|
||
{
|
||
/* For a.out, force the section size to be aligned. If we don't do
|
||
this, BFD will align it for us, but it will not write out the
|
||
final bytes of the section. This may be a bug in BFD, but it is
|
||
easier to fix it here since that is how the other a.out targets
|
||
work. */
|
||
int align;
|
||
|
||
align = bfd_section_alignment (segment);
|
||
size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
|
||
}
|
||
#endif
|
||
|
||
return size;
|
||
}
|
||
|
||
/* On the i386, PC-relative offsets are relative to the start of the
|
||
next instruction. That is, the address of the offset, plus its
|
||
size, since the offset is always the last part of the insn. */
|
||
|
||
long
|
||
md_pcrel_from (fixS *fixP)
|
||
{
|
||
return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
|
||
}
|
||
|
||
#ifndef I386COFF
|
||
|
||
static void
|
||
s_bss (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
int temp;
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (IS_ELF)
|
||
obj_elf_section_change_hook ();
|
||
#endif
|
||
temp = get_absolute_expression ();
|
||
subseg_set (bss_section, (subsegT) temp);
|
||
demand_empty_rest_of_line ();
|
||
}
|
||
|
||
#endif
|
||
|
||
/* Remember constant directive. */
|
||
|
||
void
|
||
i386_cons_align (int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
if (last_insn.kind != last_insn_directive
|
||
&& (bfd_section_flags (now_seg) & SEC_CODE))
|
||
{
|
||
last_insn.seg = now_seg;
|
||
last_insn.kind = last_insn_directive;
|
||
last_insn.name = "constant directive";
|
||
last_insn.file = as_where (&last_insn.line);
|
||
if (lfence_before_ret != lfence_before_ret_none)
|
||
{
|
||
if (lfence_before_indirect_branch != lfence_branch_none)
|
||
as_warn (_("constant directive skips -mlfence-before-ret "
|
||
"and -mlfence-before-indirect-branch"));
|
||
else
|
||
as_warn (_("constant directive skips -mlfence-before-ret"));
|
||
}
|
||
else if (lfence_before_indirect_branch != lfence_branch_none)
|
||
as_warn (_("constant directive skips -mlfence-before-indirect-branch"));
|
||
}
|
||
}
|
||
|
||
int
|
||
i386_validate_fix (fixS *fixp)
|
||
{
|
||
if (fixp->fx_addsy && S_GET_SEGMENT(fixp->fx_addsy) == reg_section)
|
||
{
|
||
reloc_howto_type *howto;
|
||
|
||
howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("invalid %s relocation against register"),
|
||
howto ? howto->name : "<unknown>");
|
||
return 0;
|
||
}
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (fixp->fx_r_type == BFD_RELOC_SIZE32
|
||
|| fixp->fx_r_type == BFD_RELOC_SIZE64)
|
||
return IS_ELF && fixp->fx_addsy
|
||
&& (!S_IS_DEFINED (fixp->fx_addsy)
|
||
|| S_IS_EXTERNAL (fixp->fx_addsy));
|
||
#endif
|
||
|
||
if (fixp->fx_subsy)
|
||
{
|
||
if (fixp->fx_subsy == GOT_symbol)
|
||
{
|
||
if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
|
||
{
|
||
if (!object_64bit)
|
||
abort ();
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
if (fixp->fx_tcbit2)
|
||
fixp->fx_r_type = (fixp->fx_tcbit
|
||
? BFD_RELOC_X86_64_REX_GOTPCRELX
|
||
: BFD_RELOC_X86_64_GOTPCRELX);
|
||
else
|
||
#endif
|
||
fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
|
||
}
|
||
else
|
||
{
|
||
if (!object_64bit)
|
||
fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
|
||
else
|
||
fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
|
||
}
|
||
fixp->fx_subsy = 0;
|
||
}
|
||
}
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
else
|
||
{
|
||
/* NB: Commit 292676c1 resolved PLT32 reloc aganst local symbol
|
||
to section. Since PLT32 relocation must be against symbols,
|
||
turn such PLT32 relocation into PC32 relocation. */
|
||
if (fixp->fx_addsy
|
||
&& (fixp->fx_r_type == BFD_RELOC_386_PLT32
|
||
|| fixp->fx_r_type == BFD_RELOC_X86_64_PLT32)
|
||
&& symbol_section_p (fixp->fx_addsy))
|
||
fixp->fx_r_type = BFD_RELOC_32_PCREL;
|
||
if (!object_64bit)
|
||
{
|
||
if (fixp->fx_r_type == BFD_RELOC_386_GOT32
|
||
&& fixp->fx_tcbit2)
|
||
fixp->fx_r_type = BFD_RELOC_386_GOT32X;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
return 1;
|
||
}
|
||
|
||
arelent *
|
||
tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
|
||
{
|
||
arelent *rel;
|
||
bfd_reloc_code_real_type code;
|
||
|
||
switch (fixp->fx_r_type)
|
||
{
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
symbolS *sym;
|
||
|
||
case BFD_RELOC_SIZE32:
|
||
case BFD_RELOC_SIZE64:
|
||
if (fixp->fx_addsy
|
||
&& !bfd_is_abs_section (S_GET_SEGMENT (fixp->fx_addsy))
|
||
&& (!fixp->fx_subsy
|
||
|| bfd_is_abs_section (S_GET_SEGMENT (fixp->fx_subsy))))
|
||
sym = fixp->fx_addsy;
|
||
else if (fixp->fx_subsy
|
||
&& !bfd_is_abs_section (S_GET_SEGMENT (fixp->fx_subsy))
|
||
&& (!fixp->fx_addsy
|
||
|| bfd_is_abs_section (S_GET_SEGMENT (fixp->fx_addsy))))
|
||
sym = fixp->fx_subsy;
|
||
else
|
||
sym = NULL;
|
||
if (IS_ELF && sym && S_IS_DEFINED (sym) && !S_IS_EXTERNAL (sym))
|
||
{
|
||
/* Resolve size relocation against local symbol to size of
|
||
the symbol plus addend. */
|
||
valueT value = S_GET_SIZE (sym);
|
||
|
||
if (symbol_get_bfdsym (sym)->flags & BSF_SECTION_SYM)
|
||
value = bfd_section_size (S_GET_SEGMENT (sym));
|
||
if (sym == fixp->fx_subsy)
|
||
{
|
||
value = -value;
|
||
if (fixp->fx_addsy)
|
||
value += S_GET_VALUE (fixp->fx_addsy);
|
||
}
|
||
else if (fixp->fx_subsy)
|
||
value -= S_GET_VALUE (fixp->fx_subsy);
|
||
value += fixp->fx_offset;
|
||
if (fixp->fx_r_type == BFD_RELOC_SIZE32
|
||
&& object_64bit
|
||
&& !fits_in_unsigned_long (value))
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("symbol size computation overflow"));
|
||
fixp->fx_addsy = NULL;
|
||
fixp->fx_subsy = NULL;
|
||
md_apply_fix (fixp, (valueT *) &value, NULL);
|
||
return NULL;
|
||
}
|
||
if (!fixp->fx_addsy || fixp->fx_subsy)
|
||
{
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
"unsupported expression involving @size");
|
||
return NULL;
|
||
}
|
||
#endif
|
||
/* Fall through. */
|
||
|
||
case BFD_RELOC_X86_64_PLT32:
|
||
case BFD_RELOC_X86_64_GOT32:
|
||
case BFD_RELOC_X86_64_GOTPCREL:
|
||
case BFD_RELOC_X86_64_GOTPCRELX:
|
||
case BFD_RELOC_X86_64_REX_GOTPCRELX:
|
||
case BFD_RELOC_386_PLT32:
|
||
case BFD_RELOC_386_GOT32:
|
||
case BFD_RELOC_386_GOT32X:
|
||
case BFD_RELOC_386_GOTOFF:
|
||
case BFD_RELOC_386_GOTPC:
|
||
case BFD_RELOC_386_TLS_GD:
|
||
case BFD_RELOC_386_TLS_LDM:
|
||
case BFD_RELOC_386_TLS_LDO_32:
|
||
case BFD_RELOC_386_TLS_IE_32:
|
||
case BFD_RELOC_386_TLS_IE:
|
||
case BFD_RELOC_386_TLS_GOTIE:
|
||
case BFD_RELOC_386_TLS_LE_32:
|
||
case BFD_RELOC_386_TLS_LE:
|
||
case BFD_RELOC_386_TLS_GOTDESC:
|
||
case BFD_RELOC_386_TLS_DESC_CALL:
|
||
case BFD_RELOC_X86_64_TLSGD:
|
||
case BFD_RELOC_X86_64_TLSLD:
|
||
case BFD_RELOC_X86_64_DTPOFF32:
|
||
case BFD_RELOC_X86_64_DTPOFF64:
|
||
case BFD_RELOC_X86_64_GOTTPOFF:
|
||
case BFD_RELOC_X86_64_TPOFF32:
|
||
case BFD_RELOC_X86_64_TPOFF64:
|
||
case BFD_RELOC_X86_64_GOTOFF64:
|
||
case BFD_RELOC_X86_64_GOTPC32:
|
||
case BFD_RELOC_X86_64_GOT64:
|
||
case BFD_RELOC_X86_64_GOTPCREL64:
|
||
case BFD_RELOC_X86_64_GOTPC64:
|
||
case BFD_RELOC_X86_64_GOTPLT64:
|
||
case BFD_RELOC_X86_64_PLTOFF64:
|
||
case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
|
||
case BFD_RELOC_X86_64_TLSDESC_CALL:
|
||
case BFD_RELOC_RVA:
|
||
case BFD_RELOC_VTABLE_ENTRY:
|
||
case BFD_RELOC_VTABLE_INHERIT:
|
||
#ifdef TE_PE
|
||
case BFD_RELOC_32_SECREL:
|
||
case BFD_RELOC_16_SECIDX:
|
||
#endif
|
||
code = fixp->fx_r_type;
|
||
break;
|
||
case BFD_RELOC_X86_64_32S:
|
||
if (!fixp->fx_pcrel)
|
||
{
|
||
/* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
|
||
code = fixp->fx_r_type;
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
default:
|
||
if (fixp->fx_pcrel)
|
||
{
|
||
switch (fixp->fx_size)
|
||
{
|
||
default:
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("can not do %d byte pc-relative relocation"),
|
||
fixp->fx_size);
|
||
code = BFD_RELOC_32_PCREL;
|
||
break;
|
||
case 1: code = BFD_RELOC_8_PCREL; break;
|
||
case 2: code = BFD_RELOC_16_PCREL; break;
|
||
case 4: code = BFD_RELOC_32_PCREL; break;
|
||
#ifdef BFD64
|
||
case 8: code = BFD_RELOC_64_PCREL; break;
|
||
#endif
|
||
}
|
||
}
|
||
else
|
||
{
|
||
switch (fixp->fx_size)
|
||
{
|
||
default:
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("can not do %d byte relocation"),
|
||
fixp->fx_size);
|
||
code = BFD_RELOC_32;
|
||
break;
|
||
case 1: code = BFD_RELOC_8; break;
|
||
case 2: code = BFD_RELOC_16; break;
|
||
case 4: code = BFD_RELOC_32; break;
|
||
#ifdef BFD64
|
||
case 8: code = BFD_RELOC_64; break;
|
||
#endif
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
if ((code == BFD_RELOC_32
|
||
|| code == BFD_RELOC_32_PCREL
|
||
|| code == BFD_RELOC_X86_64_32S)
|
||
&& GOT_symbol
|
||
&& fixp->fx_addsy == GOT_symbol)
|
||
{
|
||
if (!object_64bit)
|
||
code = BFD_RELOC_386_GOTPC;
|
||
else
|
||
code = BFD_RELOC_X86_64_GOTPC32;
|
||
}
|
||
if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
|
||
&& GOT_symbol
|
||
&& fixp->fx_addsy == GOT_symbol)
|
||
{
|
||
code = BFD_RELOC_X86_64_GOTPC64;
|
||
}
|
||
|
||
rel = XNEW (arelent);
|
||
rel->sym_ptr_ptr = XNEW (asymbol *);
|
||
*rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
|
||
|
||
rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
|
||
|
||
if (!use_rela_relocations)
|
||
{
|
||
/* HACK: Since i386 ELF uses Rel instead of Rela, encode the
|
||
vtable entry to be used in the relocation's section offset. */
|
||
if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
|
||
rel->address = fixp->fx_offset;
|
||
#if defined (OBJ_COFF) && defined (TE_PE)
|
||
else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
|
||
rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
|
||
else
|
||
#endif
|
||
rel->addend = 0;
|
||
}
|
||
/* Use the rela in 64bit mode. */
|
||
else
|
||
{
|
||
if (disallow_64bit_reloc)
|
||
switch (code)
|
||
{
|
||
case BFD_RELOC_X86_64_DTPOFF64:
|
||
case BFD_RELOC_X86_64_TPOFF64:
|
||
case BFD_RELOC_64_PCREL:
|
||
case BFD_RELOC_X86_64_GOTOFF64:
|
||
case BFD_RELOC_X86_64_GOT64:
|
||
case BFD_RELOC_X86_64_GOTPCREL64:
|
||
case BFD_RELOC_X86_64_GOTPC64:
|
||
case BFD_RELOC_X86_64_GOTPLT64:
|
||
case BFD_RELOC_X86_64_PLTOFF64:
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("cannot represent relocation type %s in x32 mode"),
|
||
bfd_get_reloc_code_name (code));
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (!fixp->fx_pcrel)
|
||
rel->addend = fixp->fx_offset;
|
||
else
|
||
switch (code)
|
||
{
|
||
case BFD_RELOC_X86_64_PLT32:
|
||
case BFD_RELOC_X86_64_GOT32:
|
||
case BFD_RELOC_X86_64_GOTPCREL:
|
||
case BFD_RELOC_X86_64_GOTPCRELX:
|
||
case BFD_RELOC_X86_64_REX_GOTPCRELX:
|
||
case BFD_RELOC_X86_64_TLSGD:
|
||
case BFD_RELOC_X86_64_TLSLD:
|
||
case BFD_RELOC_X86_64_GOTTPOFF:
|
||
case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
|
||
case BFD_RELOC_X86_64_TLSDESC_CALL:
|
||
rel->addend = fixp->fx_offset - fixp->fx_size;
|
||
break;
|
||
default:
|
||
rel->addend = (section->vma
|
||
- fixp->fx_size
|
||
+ fixp->fx_addnumber
|
||
+ md_pcrel_from (fixp));
|
||
break;
|
||
}
|
||
}
|
||
|
||
rel->howto = bfd_reloc_type_lookup (stdoutput, code);
|
||
if (rel->howto == NULL)
|
||
{
|
||
as_bad_where (fixp->fx_file, fixp->fx_line,
|
||
_("cannot represent relocation type %s"),
|
||
bfd_get_reloc_code_name (code));
|
||
/* Set howto to a garbage value so that we can keep going. */
|
||
rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
|
||
gas_assert (rel->howto != NULL);
|
||
}
|
||
|
||
return rel;
|
||
}
|
||
|
||
#include "tc-i386-intel.c"
|
||
|
||
void
|
||
tc_x86_parse_to_dw2regnum (expressionS *exp)
|
||
{
|
||
int saved_naked_reg;
|
||
char saved_register_dot;
|
||
|
||
saved_naked_reg = allow_naked_reg;
|
||
allow_naked_reg = 1;
|
||
saved_register_dot = register_chars['.'];
|
||
register_chars['.'] = '.';
|
||
allow_pseudo_reg = 1;
|
||
expression_and_evaluate (exp);
|
||
allow_pseudo_reg = 0;
|
||
register_chars['.'] = saved_register_dot;
|
||
allow_naked_reg = saved_naked_reg;
|
||
|
||
if (exp->X_op == O_register && exp->X_add_number >= 0)
|
||
{
|
||
if ((addressT) exp->X_add_number < i386_regtab_size)
|
||
{
|
||
exp->X_op = O_constant;
|
||
exp->X_add_number = i386_regtab[exp->X_add_number]
|
||
.dw2_regnum[flag_code >> 1];
|
||
}
|
||
else
|
||
exp->X_op = O_illegal;
|
||
}
|
||
}
|
||
|
||
void
|
||
tc_x86_frame_initial_instructions (void)
|
||
{
|
||
static unsigned int sp_regno[2];
|
||
|
||
if (!sp_regno[flag_code >> 1])
|
||
{
|
||
char *saved_input = input_line_pointer;
|
||
char sp[][4] = {"esp", "rsp"};
|
||
expressionS exp;
|
||
|
||
input_line_pointer = sp[flag_code >> 1];
|
||
tc_x86_parse_to_dw2regnum (&exp);
|
||
gas_assert (exp.X_op == O_constant);
|
||
sp_regno[flag_code >> 1] = exp.X_add_number;
|
||
input_line_pointer = saved_input;
|
||
}
|
||
|
||
cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
|
||
cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
|
||
}
|
||
|
||
int
|
||
x86_dwarf2_addr_size (void)
|
||
{
|
||
#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
|
||
if (x86_elf_abi == X86_64_X32_ABI)
|
||
return 4;
|
||
#endif
|
||
return bfd_arch_bits_per_address (stdoutput) / 8;
|
||
}
|
||
|
||
int
|
||
i386_elf_section_type (const char *str, size_t len)
|
||
{
|
||
if (flag_code == CODE_64BIT
|
||
&& len == sizeof ("unwind") - 1
|
||
&& startswith (str, "unwind"))
|
||
return SHT_X86_64_UNWIND;
|
||
|
||
return -1;
|
||
}
|
||
|
||
#ifdef TE_SOLARIS
|
||
void
|
||
i386_solaris_fix_up_eh_frame (segT sec)
|
||
{
|
||
if (flag_code == CODE_64BIT)
|
||
elf_section_type (sec) = SHT_X86_64_UNWIND;
|
||
}
|
||
#endif
|
||
|
||
#ifdef TE_PE
|
||
void
|
||
tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
|
||
{
|
||
expressionS exp;
|
||
|
||
exp.X_op = O_secrel;
|
||
exp.X_add_symbol = symbol;
|
||
exp.X_add_number = 0;
|
||
emit_expr (&exp, size);
|
||
}
|
||
#endif
|
||
|
||
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
|
||
/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
|
||
|
||
bfd_vma
|
||
x86_64_section_letter (int letter, const char **ptr_msg)
|
||
{
|
||
if (flag_code == CODE_64BIT)
|
||
{
|
||
if (letter == 'l')
|
||
return SHF_X86_64_LARGE;
|
||
|
||
*ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
|
||
}
|
||
else
|
||
*ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
|
||
return -1;
|
||
}
|
||
|
||
bfd_vma
|
||
x86_64_section_word (char *str, size_t len)
|
||
{
|
||
if (len == 5 && flag_code == CODE_64BIT && startswith (str, "large"))
|
||
return SHF_X86_64_LARGE;
|
||
|
||
return -1;
|
||
}
|
||
|
||
static void
|
||
handle_large_common (int small ATTRIBUTE_UNUSED)
|
||
{
|
||
if (flag_code != CODE_64BIT)
|
||
{
|
||
s_comm_internal (0, elf_common_parse);
|
||
as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
|
||
}
|
||
else
|
||
{
|
||
static segT lbss_section;
|
||
asection *saved_com_section_ptr = elf_com_section_ptr;
|
||
asection *saved_bss_section = bss_section;
|
||
|
||
if (lbss_section == NULL)
|
||
{
|
||
flagword applicable;
|
||
segT seg = now_seg;
|
||
subsegT subseg = now_subseg;
|
||
|
||
/* The .lbss section is for local .largecomm symbols. */
|
||
lbss_section = subseg_new (".lbss", 0);
|
||
applicable = bfd_applicable_section_flags (stdoutput);
|
||
bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
|
||
seg_info (lbss_section)->bss = 1;
|
||
|
||
subseg_set (seg, subseg);
|
||
}
|
||
|
||
elf_com_section_ptr = &_bfd_elf_large_com_section;
|
||
bss_section = lbss_section;
|
||
|
||
s_comm_internal (0, elf_common_parse);
|
||
|
||
elf_com_section_ptr = saved_com_section_ptr;
|
||
bss_section = saved_bss_section;
|
||
}
|
||
}
|
||
#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
|