forked from Imagelibrary/binutils-gdb
I think there is a problem with the disable_breakpoints_in_shlibs
function: it can disable breakpoint locations without calling
notify_breakpoint_modified. This means that the Python API's
breakpoint_modified event will not trigger, nor will the MI send a
breakpoint modified event.
I started looking at disable_breakpoints_in_shlibs because of an
earlier commit:
commit 8c48ec7a61
Date: Thu Aug 29 12:34:15 2024 +0100
gdb: handle dprintf breakpoints when unloading a shared library
Currently disable_breakpoints_in_shlibs is only called from one
location, clear_solib in solib.c. clear_solib also calls
notify_solib_unloaded for every solib in the program_space of
interest, and notify_solib_unloaded will call
disable_breakpoints_in_unloaded_shlib via the solib_unloaded
observer. These two function, disable_breakpoints_in_shlibs and
disable_breakpoints_in_unloaded_shlib are very similar in what they
do.
I think that we can remove the disable_breakpoints_in_shlibs call, and
instead, tweak how we call disable_breakpoints_in_unloaded_shlib in
order to get the same end result, except that, after this change, we
will call notify_breakpoint_modified, which means the Python API event
will trigger, and the MI events will be emitted.
All that disable_breakpoints_in_shlibs does is disable some
breakpoints.
Meanwhile, disable_breakpoints_in_unloaded_shlib, will disable the
same set of breakpoints, call notify_breakpoint_modified, and
then (for some breakpoint types) print a message telling the user that
the breakpoint has been disabled. However, this function will ignore
any breakpoints that are already disabled.
As disable_breakpoints_in_shlibs disables the same set of breakpoints,
the result of the current code is that disable_breakpoints_in_shlibs
serves only to prevent the notify_breakpoint_modified call, which I
think is wrong, and to prevent the user message being printed, which I
think is reasonable.
If we remove the disable_breakpoints_in_shlibs call without making any
additional changes, then we start to see some message printed in cases
like this:
(gdb) start
The program being debugged has been started already.
Start it from the beginning? (y or n) y
warning: Temporarily disabling breakpoints for unloaded shared library "/tmp/shared-lib-test/libfoo.so"
Temporary breakpoint 3 at 0x40113e: file test.c, line 9.
Starting program: /tmp/shared-lib-test/test.x
Notice the 'warning:' line, which is new. I think this is confusing
because, in most cases the breakpoint will be enabled again by the
time the inferior reaches `main` and stops.
In the future I'm interested in exploring if GDB could be smarter
about when to print these 'Temporarily disabling breakpoints ...'
messages so that if the 'start' command does mean a breakpoint is left
disabled, then the user would be informed. However, I don't propose
doing that work immediately, and certainly not in this commit. For
now, my intention is to leave things as they are right now, GDB
doesn't warn about disabling breakpoints during an inferior re-start.
To achieve this I think we need to pass a new argument to
disable_breakpoints_in_unloaded_shlib which controls whether we should
print a message about the breakpoint being disabled or not. With this
added we can now silence the warning when the inferior is
restarted (i.e. when disable_breakpoints_in_unloaded_shlib is called
from clear_solib), but keep the warning for cases like stepping over a
dlclose() call in the inferior.
After this commit, GDB now emits breakpoint modified events (in Python
and/or MI) when a breakpoint is disabled as a result of all shared
libraries being unloaded. This will be visible in two places that I
can thing of, the 'nosharedlibrary' command, and when an inferior is
restarted.
555 lines
15 KiB
C
555 lines
15 KiB
C
/* BSD user-level threads support.
|
||
|
||
Copyright (C) 2005-2024 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "extract-store-integer.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbthread.h"
|
||
#include "inferior.h"
|
||
#include "objfiles.h"
|
||
#include "observable.h"
|
||
#include "regcache.h"
|
||
#include "solib.h"
|
||
#include "solist.h"
|
||
#include "symfile.h"
|
||
#include "target.h"
|
||
|
||
#include "gdbsupport/gdb_obstack.h"
|
||
|
||
#include "bsd-uthread.h"
|
||
|
||
static const target_info bsd_uthread_target_info = {
|
||
"bsd-uthreads",
|
||
N_("BSD user-level threads"),
|
||
N_("BSD user-level threads")
|
||
};
|
||
|
||
struct bsd_uthread_target final : public target_ops
|
||
{
|
||
const target_info &info () const override
|
||
{ return bsd_uthread_target_info; }
|
||
|
||
strata stratum () const override { return thread_stratum; }
|
||
|
||
void close () override;
|
||
|
||
void mourn_inferior () override;
|
||
|
||
void fetch_registers (struct regcache *, int) override;
|
||
void store_registers (struct regcache *, int) override;
|
||
|
||
ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
|
||
void resume (ptid_t, int, enum gdb_signal) override;
|
||
|
||
bool thread_alive (ptid_t ptid) override;
|
||
|
||
void update_thread_list () override;
|
||
|
||
const char *extra_thread_info (struct thread_info *) override;
|
||
|
||
std::string pid_to_str (ptid_t) override;
|
||
};
|
||
|
||
static bsd_uthread_target bsd_uthread_ops;
|
||
|
||
|
||
/* Architecture-specific operations. */
|
||
|
||
struct bsd_uthread_ops
|
||
{
|
||
/* Supply registers for an inactive thread to a register cache. */
|
||
void (*supply_uthread)(struct regcache *, int, CORE_ADDR) = nullptr;
|
||
|
||
/* Collect registers for an inactive thread from a register cache. */
|
||
void (*collect_uthread)(const struct regcache *, int, CORE_ADDR) = nullptr;
|
||
};
|
||
|
||
/* Per-architecture data key. */
|
||
static const registry<gdbarch>::key<struct bsd_uthread_ops> bsd_uthread_data;
|
||
|
||
static struct bsd_uthread_ops *
|
||
get_bsd_uthread (struct gdbarch *gdbarch)
|
||
{
|
||
struct bsd_uthread_ops *ops = bsd_uthread_data.get (gdbarch);
|
||
if (ops == nullptr)
|
||
ops = bsd_uthread_data.emplace (gdbarch);
|
||
return ops;
|
||
}
|
||
|
||
/* Set the function that supplies registers from an inactive thread
|
||
for architecture GDBARCH to SUPPLY_UTHREAD. */
|
||
|
||
void
|
||
bsd_uthread_set_supply_uthread (struct gdbarch *gdbarch,
|
||
void (*supply_uthread) (struct regcache *,
|
||
int, CORE_ADDR))
|
||
{
|
||
struct bsd_uthread_ops *ops = get_bsd_uthread (gdbarch);
|
||
|
||
ops->supply_uthread = supply_uthread;
|
||
}
|
||
|
||
/* Set the function that collects registers for an inactive thread for
|
||
architecture GDBARCH to SUPPLY_UTHREAD. */
|
||
|
||
void
|
||
bsd_uthread_set_collect_uthread (struct gdbarch *gdbarch,
|
||
void (*collect_uthread) (const struct regcache *,
|
||
int, CORE_ADDR))
|
||
{
|
||
struct bsd_uthread_ops *ops = get_bsd_uthread (gdbarch);
|
||
|
||
ops->collect_uthread = collect_uthread;
|
||
}
|
||
|
||
/* Magic number to help recognize a valid thread structure. */
|
||
#define BSD_UTHREAD_PTHREAD_MAGIC 0xd09ba115
|
||
|
||
/* Check whether the thread structure at ADDR is valid. */
|
||
|
||
static void
|
||
bsd_uthread_check_magic (CORE_ADDR addr)
|
||
{
|
||
bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
|
||
ULONGEST magic = read_memory_unsigned_integer (addr, 4, byte_order);
|
||
|
||
if (magic != BSD_UTHREAD_PTHREAD_MAGIC)
|
||
error (_("Bad magic"));
|
||
}
|
||
|
||
/* Thread states. */
|
||
#define BSD_UTHREAD_PS_RUNNING 0
|
||
#define BSD_UTHREAD_PS_DEAD 18
|
||
|
||
/* Address of the pointer to the thread structure for the running
|
||
thread. */
|
||
static CORE_ADDR bsd_uthread_thread_run_addr;
|
||
|
||
/* Address of the list of all threads. */
|
||
static CORE_ADDR bsd_uthread_thread_list_addr;
|
||
|
||
/* Offsets of various "interesting" bits in the thread structure. */
|
||
static int bsd_uthread_thread_state_offset = -1;
|
||
static int bsd_uthread_thread_next_offset = -1;
|
||
static int bsd_uthread_thread_ctx_offset;
|
||
|
||
/* Name of shared threads library. */
|
||
static std::string bsd_uthread_solib_name;
|
||
|
||
/* Non-zero if the thread stratum implemented by this module is active. */
|
||
static int bsd_uthread_active;
|
||
|
||
static CORE_ADDR
|
||
bsd_uthread_lookup_address (const char *name, struct objfile *objfile)
|
||
{
|
||
bound_minimal_symbol sym
|
||
= lookup_minimal_symbol (current_program_space, name, objfile);
|
||
if (sym.minsym)
|
||
return sym.value_address ();
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
bsd_uthread_lookup_offset (const char *name, struct objfile *objfile)
|
||
{
|
||
bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
|
||
CORE_ADDR addr;
|
||
|
||
addr = bsd_uthread_lookup_address (name, objfile);
|
||
if (addr == 0)
|
||
return 0;
|
||
|
||
return read_memory_unsigned_integer (addr, 4, byte_order);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
bsd_uthread_read_memory_address (CORE_ADDR addr)
|
||
{
|
||
type *ptr_type
|
||
= builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
|
||
return read_memory_typed_address (addr, ptr_type);
|
||
}
|
||
|
||
/* If OBJFILE contains the symbols corresponding to one of the
|
||
supported user-level threads libraries, activate the thread stratum
|
||
implemented by this module. */
|
||
|
||
static int
|
||
bsd_uthread_activate (struct objfile *objfile)
|
||
{
|
||
gdbarch *gdbarch = current_inferior ()->arch ();
|
||
struct bsd_uthread_ops *ops = get_bsd_uthread (gdbarch);
|
||
|
||
/* Skip if the thread stratum has already been activated. */
|
||
if (bsd_uthread_active)
|
||
return 0;
|
||
|
||
/* There's no point in enabling this module if no
|
||
architecture-specific operations are provided. */
|
||
if (!ops->supply_uthread)
|
||
return 0;
|
||
|
||
bsd_uthread_thread_run_addr =
|
||
bsd_uthread_lookup_address ("_thread_run", objfile);
|
||
if (bsd_uthread_thread_run_addr == 0)
|
||
return 0;
|
||
|
||
bsd_uthread_thread_list_addr =
|
||
bsd_uthread_lookup_address ("_thread_list", objfile);
|
||
if (bsd_uthread_thread_list_addr == 0)
|
||
return 0;
|
||
|
||
bsd_uthread_thread_state_offset =
|
||
bsd_uthread_lookup_offset ("_thread_state_offset", objfile);
|
||
if (bsd_uthread_thread_state_offset == 0)
|
||
return 0;
|
||
|
||
bsd_uthread_thread_next_offset =
|
||
bsd_uthread_lookup_offset ("_thread_next_offset", objfile);
|
||
if (bsd_uthread_thread_next_offset == 0)
|
||
return 0;
|
||
|
||
bsd_uthread_thread_ctx_offset =
|
||
bsd_uthread_lookup_offset ("_thread_ctx_offset", objfile);
|
||
|
||
current_inferior ()->push_target (&bsd_uthread_ops);
|
||
bsd_uthread_active = 1;
|
||
return 1;
|
||
}
|
||
|
||
/* Cleanup due to deactivation. */
|
||
|
||
void
|
||
bsd_uthread_target::close ()
|
||
{
|
||
bsd_uthread_active = 0;
|
||
bsd_uthread_thread_run_addr = 0;
|
||
bsd_uthread_thread_list_addr = 0;
|
||
bsd_uthread_thread_state_offset = 0;
|
||
bsd_uthread_thread_next_offset = 0;
|
||
bsd_uthread_thread_ctx_offset = 0;
|
||
bsd_uthread_solib_name.clear ();
|
||
}
|
||
|
||
/* Deactivate the thread stratum implemented by this module. */
|
||
|
||
static void
|
||
bsd_uthread_deactivate (void)
|
||
{
|
||
/* Skip if the thread stratum has already been deactivated. */
|
||
if (!bsd_uthread_active)
|
||
return;
|
||
|
||
current_inferior ()->unpush_target (&bsd_uthread_ops);
|
||
}
|
||
|
||
static void
|
||
bsd_uthread_inferior_created (inferior *inf)
|
||
{
|
||
bsd_uthread_activate (NULL);
|
||
}
|
||
|
||
/* Likely candidates for the threads library. */
|
||
static const char * const bsd_uthread_solib_names[] =
|
||
{
|
||
"/usr/lib/libc_r.so", /* FreeBSD */
|
||
"/usr/lib/libpthread.so", /* OpenBSD */
|
||
NULL
|
||
};
|
||
|
||
static void
|
||
bsd_uthread_solib_loaded (solib &so)
|
||
{
|
||
const char * const *names = bsd_uthread_solib_names;
|
||
|
||
for (names = bsd_uthread_solib_names; *names; names++)
|
||
{
|
||
if (startswith (so.so_original_name, *names))
|
||
{
|
||
solib_read_symbols (so, 0);
|
||
|
||
if (bsd_uthread_activate (so.objfile))
|
||
{
|
||
bsd_uthread_solib_name = so.so_original_name;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
bsd_uthread_solib_unloaded (program_space *pspace, const solib &so,
|
||
bool still_in_use, bool /* silent */)
|
||
{
|
||
if (bsd_uthread_solib_name.empty () || still_in_use)
|
||
return;
|
||
|
||
if (so.so_original_name == bsd_uthread_solib_name)
|
||
bsd_uthread_deactivate ();
|
||
}
|
||
|
||
void
|
||
bsd_uthread_target::mourn_inferior ()
|
||
{
|
||
beneath ()->mourn_inferior ();
|
||
bsd_uthread_deactivate ();
|
||
}
|
||
|
||
void
|
||
bsd_uthread_target::fetch_registers (struct regcache *regcache, int regnum)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
struct bsd_uthread_ops *uthread_ops = get_bsd_uthread (gdbarch);
|
||
ptid_t ptid = regcache->ptid ();
|
||
CORE_ADDR addr = ptid.tid ();
|
||
CORE_ADDR active_addr;
|
||
scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
|
||
|
||
/* We are doing operations (e.g. reading memory) that rely on
|
||
inferior_ptid. */
|
||
inferior_ptid = ptid;
|
||
|
||
/* Always fetch the appropriate registers from the layer beneath. */
|
||
beneath ()->fetch_registers (regcache, regnum);
|
||
|
||
/* FIXME: That might have gotten us more than we asked for. Make
|
||
sure we overwrite all relevant registers with values from the
|
||
thread structure. This can go once we fix the underlying target. */
|
||
regnum = -1;
|
||
|
||
active_addr = bsd_uthread_read_memory_address (bsd_uthread_thread_run_addr);
|
||
if (addr != 0 && addr != active_addr)
|
||
{
|
||
bsd_uthread_check_magic (addr);
|
||
uthread_ops->supply_uthread (regcache, regnum,
|
||
addr + bsd_uthread_thread_ctx_offset);
|
||
}
|
||
}
|
||
|
||
void
|
||
bsd_uthread_target::store_registers (struct regcache *regcache, int regnum)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
struct bsd_uthread_ops *uthread_ops = get_bsd_uthread (gdbarch);
|
||
ptid_t ptid = regcache->ptid ();
|
||
CORE_ADDR addr = ptid.tid ();
|
||
CORE_ADDR active_addr;
|
||
scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
|
||
|
||
/* We are doing operations (e.g. reading memory) that rely on
|
||
inferior_ptid. */
|
||
inferior_ptid = ptid;
|
||
|
||
active_addr = bsd_uthread_read_memory_address (bsd_uthread_thread_run_addr);
|
||
if (addr != 0 && addr != active_addr)
|
||
{
|
||
bsd_uthread_check_magic (addr);
|
||
uthread_ops->collect_uthread (regcache, regnum,
|
||
addr + bsd_uthread_thread_ctx_offset);
|
||
}
|
||
else
|
||
{
|
||
/* Updating the thread that is currently running; pass the
|
||
request to the layer beneath. */
|
||
beneath ()->store_registers (regcache, regnum);
|
||
}
|
||
}
|
||
|
||
ptid_t
|
||
bsd_uthread_target::wait (ptid_t ptid, struct target_waitstatus *status,
|
||
target_wait_flags options)
|
||
{
|
||
bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
|
||
CORE_ADDR addr;
|
||
process_stratum_target *beneath
|
||
= as_process_stratum_target (this->beneath ());
|
||
|
||
/* Pass the request to the layer beneath. */
|
||
ptid = beneath->wait (ptid, status, options);
|
||
|
||
/* If the process is no longer alive, there's no point in figuring
|
||
out the thread ID. It will fail anyway. */
|
||
if (status->kind () == TARGET_WAITKIND_SIGNALLED
|
||
|| status->kind () == TARGET_WAITKIND_EXITED)
|
||
return ptid;
|
||
|
||
/* Fetch the corresponding thread ID, and augment the returned
|
||
process ID with it. */
|
||
addr = bsd_uthread_read_memory_address (bsd_uthread_thread_run_addr);
|
||
if (addr != 0)
|
||
{
|
||
gdb_byte buf[4];
|
||
|
||
/* FIXME: For executables linked statically with the threads
|
||
library, we end up here before the program has actually been
|
||
executed. In that case ADDR will be garbage since it has
|
||
been read from the wrong virtual memory image. */
|
||
if (target_read_memory (addr, buf, 4) == 0)
|
||
{
|
||
ULONGEST magic = extract_unsigned_integer (buf, 4, byte_order);
|
||
if (magic == BSD_UTHREAD_PTHREAD_MAGIC)
|
||
ptid = ptid_t (ptid.pid (), 0, addr);
|
||
}
|
||
}
|
||
|
||
/* If INFERIOR_PTID doesn't have a tid member yet, and we now have a
|
||
ptid with tid set, then ptid is still the initial thread of
|
||
the process. Notify GDB core about it. */
|
||
if (inferior_ptid.tid () == 0
|
||
&& ptid.tid () != 0 && !in_thread_list (beneath, ptid))
|
||
thread_change_ptid (beneath, inferior_ptid, ptid);
|
||
|
||
/* Don't let the core see a ptid without a corresponding thread. */
|
||
thread_info *thread = beneath->find_thread (ptid);
|
||
if (thread == NULL || thread->state == THREAD_EXITED)
|
||
add_thread (beneath, ptid);
|
||
|
||
return ptid;
|
||
}
|
||
|
||
void
|
||
bsd_uthread_target::resume (ptid_t ptid, int step, enum gdb_signal sig)
|
||
{
|
||
/* Pass the request to the layer beneath. */
|
||
beneath ()->resume (ptid, step, sig);
|
||
}
|
||
|
||
bool
|
||
bsd_uthread_target::thread_alive (ptid_t ptid)
|
||
{
|
||
bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
|
||
CORE_ADDR addr = ptid.tid ();
|
||
|
||
if (addr != 0)
|
||
{
|
||
int offset = bsd_uthread_thread_state_offset;
|
||
ULONGEST state;
|
||
|
||
bsd_uthread_check_magic (addr);
|
||
|
||
state = read_memory_unsigned_integer (addr + offset, 4, byte_order);
|
||
if (state == BSD_UTHREAD_PS_DEAD)
|
||
return false;
|
||
}
|
||
|
||
return beneath ()->thread_alive (ptid);
|
||
}
|
||
|
||
void
|
||
bsd_uthread_target::update_thread_list ()
|
||
{
|
||
pid_t pid = inferior_ptid.pid ();
|
||
int offset = bsd_uthread_thread_next_offset;
|
||
CORE_ADDR addr;
|
||
|
||
prune_threads ();
|
||
|
||
addr = bsd_uthread_read_memory_address (bsd_uthread_thread_list_addr);
|
||
while (addr != 0)
|
||
{
|
||
ptid_t ptid = ptid_t (pid, 0, addr);
|
||
|
||
process_stratum_target *proc_target
|
||
= as_process_stratum_target (this->beneath ());
|
||
thread_info *thread = proc_target->find_thread (ptid);
|
||
if (thread == nullptr || thread->state == THREAD_EXITED)
|
||
{
|
||
/* If INFERIOR_PTID doesn't have a tid member yet, then ptid
|
||
is still the initial thread of the process. Notify GDB
|
||
core about it. */
|
||
if (inferior_ptid.tid () == 0)
|
||
thread_change_ptid (proc_target, inferior_ptid, ptid);
|
||
else
|
||
add_thread (proc_target, ptid);
|
||
}
|
||
|
||
addr = bsd_uthread_read_memory_address (addr + offset);
|
||
}
|
||
}
|
||
|
||
/* Possible states a thread can be in. */
|
||
static const char * const bsd_uthread_state[] =
|
||
{
|
||
"RUNNING",
|
||
"SIGTHREAD",
|
||
"MUTEX_WAIT",
|
||
"COND_WAIT",
|
||
"FDLR_WAIT",
|
||
"FDLW_WAIT",
|
||
"FDR_WAIT",
|
||
"FDW_WAIT",
|
||
"FILE_WAIT",
|
||
"POLL_WAIT",
|
||
"SELECT_WAIT",
|
||
"SLEEP_WAIT",
|
||
"WAIT_WAIT",
|
||
"SIGSUSPEND",
|
||
"SIGWAIT",
|
||
"SPINBLOCK",
|
||
"JOIN",
|
||
"SUSPENDED",
|
||
"DEAD",
|
||
"DEADLOCK"
|
||
};
|
||
|
||
/* Return a string describing th state of the thread specified by
|
||
INFO. */
|
||
|
||
const char *
|
||
bsd_uthread_target::extra_thread_info (thread_info *info)
|
||
{
|
||
bfd_endian byte_order = gdbarch_byte_order (current_inferior ()->arch ());
|
||
CORE_ADDR addr = info->ptid.tid ();
|
||
|
||
if (addr != 0)
|
||
{
|
||
int offset = bsd_uthread_thread_state_offset;
|
||
ULONGEST state;
|
||
|
||
state = read_memory_unsigned_integer (addr + offset, 4, byte_order);
|
||
if (state < ARRAY_SIZE (bsd_uthread_state))
|
||
return bsd_uthread_state[state];
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
std::string
|
||
bsd_uthread_target::pid_to_str (ptid_t ptid)
|
||
{
|
||
if (ptid.tid () != 0)
|
||
return string_printf ("process %d, thread 0x%s",
|
||
ptid.pid (),
|
||
phex_nz (ptid.tid (), sizeof (ULONGEST)));
|
||
|
||
return normal_pid_to_str (ptid);
|
||
}
|
||
|
||
void _initialize_bsd_uthread ();
|
||
void
|
||
_initialize_bsd_uthread ()
|
||
{
|
||
gdb::observers::inferior_created.attach (bsd_uthread_inferior_created,
|
||
"bsd-uthread");
|
||
gdb::observers::solib_loaded.attach (bsd_uthread_solib_loaded,
|
||
"bsd-uthread");
|
||
gdb::observers::solib_unloaded.attach (bsd_uthread_solib_unloaded,
|
||
"bsd-uthread");
|
||
}
|