Files
binutils-gdb/gdb/testsuite/gdb.base/step-over-syscall.exp
Andrew Burgess 1d506c26d9 Update copyright year range in header of all files managed by GDB
This commit is the result of the following actions:

  - Running gdb/copyright.py to update all of the copyright headers to
    include 2024,

  - Manually updating a few files the copyright.py script told me to
    update, these files had copyright headers embedded within the
    file,

  - Regenerating gdbsupport/Makefile.in to refresh it's copyright
    date,

  - Using grep to find other files that still mentioned 2023.  If
    these files were updated last year from 2022 to 2023 then I've
    updated them this year to 2024.

I'm sure I've probably missed some dates.  Feel free to fix them up as
you spot them.
2024-01-12 15:49:57 +00:00

388 lines
12 KiB
Plaintext

# This testcase is part of GDB, the GNU debugger.
# Copyright 2011-2024 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
set syscall_insn ""
set syscall_register ""
array set syscall_number {}
# Define the syscall instructions, registers and numbers for each target.
if { [istarget "i\[34567\]86-*-linux*"] || [istarget "x86_64-*-linux*"] } {
set syscall_insn "\[ \t\](int|syscall|sysenter)\[ \t\]*"
set syscall_register "eax"
array set syscall_number {fork "(56|120)" vfork "(58|190)" \
clone "(56|120)"}
} elseif { [istarget "aarch64*-*-linux*"] || [istarget "arm*-*-linux*"] } {
set syscall_insn "\[ \t\](swi|svc)\[ \t\]"
if { [istarget "aarch64*-*-linux*"] } {
set syscall_register "x8"
} else {
set syscall_register "r7"
}
array set syscall_number {fork "(120|220)" vfork "(190|220)" \
clone "(120|220)"}
} else {
return -1
}
proc_with_prefix check_pc_after_cross_syscall { displaced syscall syscall_insn_next_addr } {
set syscall_insn_next_addr_found [get_hexadecimal_valueof "\$pc" "0"]
# After the 'stepi' we expect thread 1 to still be selected.
set curr_thread "unknown"
gdb_test_multiple "thread" "" {
-re -wrap "Current thread is (\\d+) .*" {
set curr_thread $expect_out(1,string)
pass $gdb_test_name
}
}
gdb_assert {$syscall_insn_next_addr != 0 \
&& $syscall_insn_next_addr == $syscall_insn_next_addr_found \
&& $curr_thread == 1} \
"single step over $syscall final pc"
}
# Verify the syscall number is the correct one.
proc syscall_number_matches { syscall } {
global syscall_register syscall_number
if {[gdb_test "p \$$syscall_register" ".*= $syscall_number($syscall)" \
"syscall number matches"] != 0} {
return 0
}
return 1
}
# Restart GDB and set up the test. Return a list in which the first one
# is the address of syscall instruction and the second one is the address
# of the next instruction address of syscall instruction. If anything
# wrong, the two elements of list are -1.
proc setup { syscall } {
global gdb_prompt syscall_insn
global hex
set next_insn_addr -1
set testfile "step-over-$syscall"
clean_restart $testfile
if {![runto_main]} {
return -1
}
# Delete the breakpoint on main.
gdb_test_no_output "delete break 1"
gdb_test_no_output "set displaced-stepping off" \
"set displaced-stepping off during test setup"
gdb_test "break \*$syscall" "Breakpoint \[0-9\]* at .*"
gdb_test "continue" "Continuing\\..*Breakpoint \[0-9\]+, (.* in )?(__libc_)?$syscall \\(\\).*" \
"continue to $syscall (1st time)"
# Hit the breakpoint on $syscall for the first time. In this time,
# we will let PLT resolution done, and the number single steps we will
# do later will be reduced.
gdb_test "continue" "Continuing\\..*Breakpoint \[0-9\]+, (.* in )?(__libc_)?$syscall \\(\\).*" \
"continue to $syscall (2nd time)"
# Hit the breakpoint on $syscall for the second time. In this time,
# the address of syscall insn and next insn of syscall are recorded.
# Check if the first instruction we stopped at is the syscall one.
set syscall_insn_addr -1
gdb_test_multiple "display/i \$pc" "fetch first stop pc" {
-re "display/i .*: x/i .*=> ($hex) .*:.*$syscall_insn.*$gdb_prompt $" {
set insn_addr $expect_out(1,string)
# Is the syscall number the correct one?
if {[syscall_number_matches $syscall]} {
set syscall_insn_addr $insn_addr
}
pass $gdb_test_name
}
-re ".*$gdb_prompt $" {
pass $gdb_test_name
}
}
# If we are not at the syscall instruction yet, keep looking for it with
# stepi commands.
if {$syscall_insn_addr == -1} {
# Single step until we see a syscall insn or we reach the
# upper bound of loop iterations.
set steps 0
set max_steps 1000
gdb_test_multiple "stepi" "find syscall insn in $syscall" {
-re ".*$syscall_insn.*$gdb_prompt $" {
# Is the syscall number the correct one?
if {[syscall_number_matches $syscall]} {
pass $gdb_test_name
} else {
exp_continue
}
}
-re "x/i .*=>.*\r\n$gdb_prompt $" {
incr steps
if {$steps == $max_steps} {
fail $gdb_test_name
} else {
send_gdb "stepi\n"
exp_continue
}
}
}
if {$steps == $max_steps} {
return { -1, -1 }
}
}
# We have found the syscall instruction. Now record the next instruction.
# Use the X command instead of stepi since we can't guarantee
# stepi is working properly.
gdb_test_multiple "x/2i \$pc" "pc before/after syscall instruction" {
-re "x/2i .*=> ($hex) .*:.*$syscall_insn.* ($hex) .*:.*$gdb_prompt $" {
set syscall_insn_addr $expect_out(1,string)
set actual_syscall_insn $expect_out(2,string)
set next_insn_addr $expect_out(3,string)
pass $gdb_test_name
}
}
# If we encounter a sequence:
# 0xf7fd5155 <__kernel_vsyscall+5>: sysenter
# 0xf7fd5157 <__kernel_vsyscall+7>: int $0x80
# 0xf7fd5159 <__kernel_vsyscall+9>: pop %ebp
# then a stepi at sysenter will step over the int insn, so make sure
# next_insn_addr points after the int insn.
if { $actual_syscall_insn == "sysenter" } {
set test "pc after sysenter instruction"
set re_int_insn "\[ \t\]*int\[ \t\]\[^\r\n\]*"
set re [multi_line \
"x/2i $hex" \
"\[^\r\n\]* $hex \[^\r\n\]*:$re_int_insn" \
"\[^\r\n\]* ($hex) \[^\r\n\]*:\[^\r\n\]*"]
gdb_test_multiple "x/2i $next_insn_addr" $test {
-re -wrap $re {
set next_insn_addr $expect_out(1,string)
}
-re -wrap "" {
}
}
}
if {[gdb_test "stepi" "x/i .*=>.*" "stepi $syscall insn"] != 0} {
return { -1, -1 }
}
set pc_after_stepi [get_hexadecimal_valueof "\$pc" "0" \
"pc after stepi"]
gdb_assert {$next_insn_addr == $pc_after_stepi} \
"pc after stepi matches insn addr after syscall"
return [list $syscall_insn_addr $pc_after_stepi]
}
proc step_over_syscall { syscall } {
with_test_prefix "$syscall" {
global syscall_insn
global gdb_prompt
set testfile "step-over-$syscall"
set options [list debug]
if { $syscall == "clone" } {
lappend options "pthreads"
}
if [build_executable ${testfile}.exp ${testfile} ${testfile}.c $options] {
untested "failed to compile"
return -1
}
foreach_with_prefix displaced {"off" "on"} {
if {$displaced == "on" && ![support_displaced_stepping]} {
continue
}
set ret [setup $syscall]
set syscall_insn_addr [lindex $ret 0]
set syscall_insn_next_addr [lindex $ret 1]
if { $syscall_insn_addr == -1 } {
return -1
}
gdb_test "continue" "Continuing\\..*Breakpoint \[0-9\]+, (.* in )?(__libc_)?$syscall \\(\\).*" \
"continue to $syscall (3rd time)"
# Hit the breakpoint on $syscall for the third time. In this time, we'll set
# breakpoint on the syscall insn we recorded previously, and single step over it.
set syscall_insn_bp 0
gdb_test_multiple "break \*$syscall_insn_addr" "break on syscall insn" {
-re "Breakpoint (\[0-9\]*) at .*$gdb_prompt $" {
set syscall_insn_bp $expect_out(1,string)
pass "break on syscall insns"
}
}
# Check if the syscall breakpoint is at the syscall instruction
# address. If so, no need to continue, otherwise we will run the
# inferior to completion.
if {$syscall_insn_addr != [get_hexadecimal_valueof "\$pc" "0"]} {
gdb_test "continue" "Continuing\\..*Breakpoint \[0-9\]+, .*" \
"continue to syscall insn $syscall"
}
gdb_test_no_output "set displaced-stepping $displaced"
# Check the address of next instruction of syscall.
if {[gdb_test "stepi" "x/i .*=>.*" "single step over $syscall"] != 0} {
return -1
}
check_pc_after_cross_syscall $displaced $syscall $syscall_insn_next_addr
# Delete breakpoint syscall insns to avoid interference to other syscalls.
delete_breakpoints
gdb_test "break marker" "Breakpoint.*at.* file .*${testfile}.c, line.*"
gdb_test "continue" "Continuing\\..*Breakpoint \[0-9\]+, marker \\(\\) at.*" \
"continue to marker ($syscall)"
}
}
}
# Set a breakpoint with a condition that evals false on syscall
# instruction. In fact, it tests GDBserver steps over syscall
# instruction. SYSCALL is the syscall the program calls.
# FOLLOW_FORK is either "parent" or "child". DETACH_ON_FORK is
# "on" or "off".
proc break_cond_on_syscall { syscall follow_fork detach_on_fork } {
with_test_prefix "break cond on target : $syscall" {
set testfile "step-over-$syscall"
set ret [setup $syscall]
set syscall_insn_addr [lindex $ret 0]
set syscall_insn_next_addr [lindex $ret 1]
if { $syscall_insn_addr == -1 } {
return -1
}
gdb_test "continue" "Continuing\\..*Breakpoint \[0-9\]+, (.* in )?(__libc_)?$syscall \\(\\).*" \
"continue to $syscall"
# Delete breakpoint syscall insns to avoid interference with other syscalls.
delete_breakpoints
gdb_test "set follow-fork-mode $follow_fork"
gdb_test "set detach-on-fork $detach_on_fork"
# Create a breakpoint with a condition that evals false.
gdb_test "break \*$syscall_insn_addr if main == 0" \
"Breakpoint \[0-9\]* at .*"
if { $syscall == "clone" } {
# Create a breakpoint in the child with the condition that
# evals false, so that GDBserver can get the event from the
# child but GDB doesn't see it. In this way, we don't have
# to adjust the test flow for "clone".
# This is a regression test for PR server/19736. In this way,
# we can test that GDBserver gets an event from the child and
# set suspend count correctly while the parent is stepping over
# the breakpoint.
gdb_test "break clone_fn if main == 0"
}
if { $syscall == "clone" } {
# follow-fork and detach-on-fork only make sense to
# fork and vfork.
gdb_test "break marker" "Breakpoint.*at.* file .*${testfile}.c, line.*"
gdb_test "continue" "Continuing\\..*Breakpoint \[0-9\]+, marker \\(\\) at.*" \
"continue to marker"
} else {
if { $follow_fork == "child" } {
gdb_test "continue" "exited normally.*" "continue to end of inf 2"
if { $detach_on_fork == "off" } {
gdb_test "inferior 1"
gdb_test "break marker" "Breakpoint.*at.*"
gdb_test "continue" "Continuing\\..*Breakpoint $::bkptno_numopt_re, marker \\(\\) at.*" \
"continue to marker"
}
} else {
gdb_test "break marker" "Breakpoint.*at.* file .*${testfile}.c, line.*"
gdb_test "continue" "Continuing\\..*Breakpoint $::bkptno_numopt_re, marker \\(\\) at.*" \
"continue to marker"
}
}
}
}
step_over_syscall "fork"
step_over_syscall "vfork"
step_over_syscall "clone"
set testfile "step-over-fork"
clean_restart $testfile
if {![runto_main]} {
return -1
}
set cond_bp_target 1
set test "set breakpoint condition-evaluation target"
gdb_test_multiple $test $test {
-re "warning: Target does not support breakpoint condition evaluation.\r\nUsing host evaluation mode instead.\r\n$gdb_prompt $" {
# Target doesn't support breakpoint condition
# evaluation on its side.
set cond_bp_target 0
}
-re "^$test\r\n$gdb_prompt $" {
}
}
if { $cond_bp_target } {
foreach_with_prefix detach-on-fork {"on" "off"} {
foreach_with_prefix follow-fork {"parent" "child"} {
foreach syscall { "fork" "vfork" "clone" } {
if { $syscall == "vfork"
&& ${follow-fork} == "parent"
&& ${detach-on-fork} == "off" } {
# Both vforked child process and parent process are
# under GDB's control, but GDB follows the parent
# process only, which can't be run until vforked child
# finishes. Skip the test in this scenario.
continue
}
break_cond_on_syscall $syscall ${follow-fork} ${detach-on-fork}
}
}
}
}