forked from Imagelibrary/binutils-gdb
At Red Hat we have an out of tree AArch64 watchpoint test which broke
after this commit:
commit cf16ab724a
Date: Tue Mar 12 17:08:18 2024 +0100
[gdb/tdep] Fix gdb.base/watch-bitfields.exp on aarch64
The problem with AArch64 hardware watchpoints is that they (as I
understand it) are restricted to a minimum of 8 bytes. This means
that, if the thing you are watching is less than 8-bytes, then there
is always scope for invalid watchpoint triggers caused by activity in
the part of the 8-bytes that are not being watched.
Or, as is the case in this RH test, multiple watchpoint are created
within an 8-byte region, and GDB can miss-identify which watchpoint
actually triggered.
Prior to the above commit the RH test was passing. However, the test
was relying on, in the case of ambiguity, GDB selecting the first
created watchpoint. That behaviour changed with the above commit.
Now GDB favours reporting non write breakpoints, and will only report
a write breakpoint if no non-write breakpoint exists in the same
region.
I originally posted a patch to try and tweak the existing logic to
restore enough of the original behaviour that the RH test would pass,
this can be found here (2 iterations):
https://inbox.sourceware.org/gdb-patches/65e746b6394f04faa027e778f733eda95d20f368.1753115072.git.aburgess@redhat.com
https://inbox.sourceware.org/gdb-patches/638cbe9b738c0c529f6370f90ba4a395711f63ae.1753971315.git.aburgess@redhat.com
Neither of these really resolved the problem, they fixed some cases,
but broke others.
Ultimately, the problem on AArch64 is that for a single watchpoint
trap, there could be multiple watchpoints that are potentially
responsible. The existing API defined by the target_ops methods
stopped_by_watchpoint() and stopped_data_address() only allow for two
possible options:
1. If stopped_by_watchpoint() is true then stopped_data_address()
can return true and a single address which identifies all
watchpoints at that single address, or
2. If stopped_by_watchpoint() is true then stopped_data_address()
can return false, in which case GDB will check all write
watchpoints to see if any have changed, if they have, then GDB
tells the user that that was the triggering watchpoint.
If we are in a situation where we have to choose between multiple
write and read watchpoints then the current API doesn't allow the
architecture specific code to tell GDB core about this case.
In this commit I propose that we change the target_ops API,
specifically, the method:
bool target_ops::stopped_data_address (CORE_ADDR *);
will change to:
std::vector<CORE_ADDR> target_ops::stopped_data_addresses ();
The architecture specific code can now return a set of watchpoint
addresses, allowing GDB to identify a set of watchpoints that might
have triggered. GDB core can then select the most likely watchpoint,
and present that to the user.
As with the old API, target_ops::stopped_data_addresses should only be
called when target_ops::stopped_by_watchpoint is true, in which case
it's return values can be interpreted like this:
a. An empty vector; this replaces the old case where false was
returned. GDB should check all the write watchpoints and select
the one that changed as the responsible watchpoint.
b. A single entry vector; all targets except AArch64 currently
return at most a single entry vector. The single address
indicates the watchpoint(s) that triggered.
c. A multi-entry vector; currently AArch64 only. These addresses
indicate the set of watchpoints that might have triggered. GDB
will check the write watchpoints to see which (if any) changed,
and if no write watchpoints changed, GDB will present the first
access watchpoint.
In the future, we might want to improve the handling of (c) so that
GDB tells the user that multiple access watchpoints might have
triggered, and then list all of them. This might clear up some
confusion. But I think that can be done in the future (I don't have
an immediate plan to work on this). I think this change is already a
good improvement.
The changes for this are pretty extensive, but here's a basic summary:
* Within gdb/ changing the API name from stopped_data_address to
stopped_data_addresses throughout. Comments are updated too where
needed.
* For targets other than AArch64, the existing code is retained with
as few changes as possible, we only allow for a single address to
be returned, the address is now wrapped in a vector. Where we
used to return false, we now return the empty vector.
* For AArch64, the return a vector logic is pushed through to
gdb/nat/aarch64-hw-point.{c,h}, and aarch64_stopped_data_address
changes to aarch64_stopped_data_addresses, and is updated to
return a vector of addresses.
* In infrun.c there's some updates to some debug output.
* In breakpoint.c the interesting changes are in
watchpoints_triggered. The existing code has three cases to
handle:
(i) target_stopped_by_watchpoint returns false. This case is
unchanged.
(ii) target_stopped_data_address returns false. This case is now
calling target_stopped_data_addresses, and checks for the
empty vector, but otherwise is unchanged.
(iii) target_stopped_data_address returns true, and a single
address. This code calls target_stopped_data_addresses, and
now handles the possibility of a vector containing multiple
entries. We need to first loop over every watchpoint
setting its triggered status to 'no', then we check every
address in the vector setting matching watchpoint's
triggered status to 'yes'. But the actual logic for if a
watchpoint matches an address or not is unchanged.
The important thing to notice here is that in case (iii), before
this patch, GDB could already set _multiple_ watchpoints to
triggered. For example, setting a read and write watchpoint on
the same address would result in multiple watchpoints being marked
as triggered. This patch just extends this so that multiple
watchpoints, at multiple addresses, can now be marked as
triggered.
* In remote.c there is an interesting change. We need to allow
gdbserver to pass the multiple addresses back to GDB. To achieve
this, I now allow multiple 'watch', 'rwatch', and 'awatch' tokens
in a 'T' stop reply packet. This change is largely backward
compatible. For old versions of GDB, GDB will just use the last
such token as the watchpoint stop address. For new GDBs, all of
the addresses are collected and returned from the
target_ops::stopped_data_addresses call. If a new GDB connects to
an old gdbserver then it'll only get a single watchpoint address
in the 'T' packet, but that's no worse than we are now, and will
not cause a GDB crash, GDB will just end up checking a restricted
set of watchpoints (which is where we are right now).
* In gdbserver/ the changes are pretty similar. The API is renamed
from ::stopped_data_address to ::stopped_data_addresses, and
::low_stopped_data_address to ::low_stopped_data_addresses.
* For all targets except AArch64, the existing code is retained, we
just wrap the single address into a vector.
* For AArch64, we call aarch64_stopped_data_addresses, which returns
the required vector.
For testing, I've built GDB on GNU/Linux for i386, x86-64, PPC64le,
ARM, and AArch64. That still leaves a lot of targets possibly
impacted by this change as untested. Which is a risk. I certainly
wouldn't want to push this patch until after GDB 17 branches so we
have time to find and fix any regressions that are introduced.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=33240
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=33252
948 lines
29 KiB
C
948 lines
29 KiB
C
/* Ada Ravenscar thread support.
|
|
|
|
Copyright (C) 2004-2025 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "extract-store-integer.h"
|
|
#include "gdbcore.h"
|
|
#include "gdbthread.h"
|
|
#include "ada-lang.h"
|
|
#include "target.h"
|
|
#include "inferior.h"
|
|
#include "command.h"
|
|
#include "ravenscar-thread.h"
|
|
#include "observable.h"
|
|
#include "cli/cli-cmds.h"
|
|
#include "top.h"
|
|
#include "regcache.h"
|
|
#include "objfiles.h"
|
|
#include "gdbsupport/unordered_map.h"
|
|
|
|
/* This module provides support for "Ravenscar" tasks (Ada) when
|
|
debugging on bare-metal targets.
|
|
|
|
The typical situation is when debugging a bare-metal target over
|
|
the remote protocol. In that situation, the system does not know
|
|
about high-level concepts such as threads, only about some code
|
|
running on one or more CPUs. And since the remote protocol does not
|
|
provide any handling for CPUs, the de facto standard for handling
|
|
them is to have one thread per CPU, where the thread's ptid has
|
|
its lwp field set to the CPU number (eg: 1 for the first CPU,
|
|
2 for the second one, etc). This module will make that assumption.
|
|
|
|
This module then creates and maintains the list of threads based
|
|
on the list of Ada tasks, with one thread per Ada task. The convention
|
|
is that threads corresponding to the CPUs (see assumption above)
|
|
have a ptid_t of the form (PID, LWP, 0), while threads corresponding
|
|
to our Ada tasks have a ptid_t of the form (PID, 0, TID) where TID
|
|
is the Ada task's ID as extracted from Ada runtime information.
|
|
|
|
Switching to a given Ada task (or its underlying thread) is performed
|
|
by fetching the registers of that task from the memory area where
|
|
the registers were saved. For any of the other operations, the
|
|
operation is performed by first finding the CPU on which the task
|
|
is running, switching to its corresponding ptid, and then performing
|
|
the operation on that ptid using the target beneath us. */
|
|
|
|
/* If true, ravenscar task support is enabled. */
|
|
static bool ravenscar_task_support = true;
|
|
|
|
static const char running_thread_name[] = "__gnat_running_thread_table";
|
|
|
|
static const char known_tasks_name[] = "system__tasking__debug__known_tasks";
|
|
static const char first_task_name[] = "system__tasking__debug__first_task";
|
|
|
|
static const char ravenscar_runtime_initializer[]
|
|
= "system__bb__threads__initialize";
|
|
|
|
static const target_info ravenscar_target_info = {
|
|
"ravenscar",
|
|
N_("Ravenscar tasks."),
|
|
N_("Ravenscar tasks support.")
|
|
};
|
|
|
|
struct ravenscar_thread_target final : public target_ops
|
|
{
|
|
ravenscar_thread_target ()
|
|
: m_base_ptid (inferior_ptid)
|
|
{
|
|
}
|
|
|
|
const target_info &info () const override
|
|
{ return ravenscar_target_info; }
|
|
|
|
strata stratum () const override { return thread_stratum; }
|
|
|
|
ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
|
|
void resume (ptid_t, int, enum gdb_signal) override;
|
|
|
|
void fetch_registers (struct regcache *, int) override;
|
|
void store_registers (struct regcache *, int) override;
|
|
|
|
void prepare_to_store (struct regcache *) override;
|
|
|
|
bool stopped_by_sw_breakpoint () override;
|
|
|
|
bool stopped_by_hw_breakpoint () override;
|
|
|
|
bool stopped_by_watchpoint () override;
|
|
|
|
std::vector<CORE_ADDR> stopped_data_addresses () override;
|
|
|
|
enum target_xfer_status xfer_partial (enum target_object object,
|
|
const char *annex,
|
|
gdb_byte *readbuf,
|
|
const gdb_byte *writebuf,
|
|
ULONGEST offset, ULONGEST len,
|
|
ULONGEST *xfered_len) override;
|
|
|
|
bool thread_alive (ptid_t ptid) override;
|
|
|
|
int core_of_thread (ptid_t ptid) override;
|
|
|
|
void update_thread_list () override;
|
|
|
|
std::string pid_to_str (ptid_t) override;
|
|
|
|
ptid_t get_ada_task_ptid (long lwp, ULONGEST thread) override;
|
|
|
|
struct btrace_target_info *enable_btrace (thread_info *tp,
|
|
const struct btrace_config *conf)
|
|
override
|
|
{
|
|
process_stratum_target *proc_target
|
|
= as_process_stratum_target (this->beneath ());
|
|
ptid_t underlying = get_base_thread_from_ravenscar_task (tp->ptid);
|
|
tp = proc_target->find_thread (underlying);
|
|
|
|
return beneath ()->enable_btrace (tp, conf);
|
|
}
|
|
|
|
void mourn_inferior () override;
|
|
|
|
void close () override
|
|
{
|
|
delete this;
|
|
}
|
|
|
|
thread_info *add_active_thread ();
|
|
|
|
private:
|
|
|
|
/* PTID of the last thread that received an event.
|
|
This can be useful to determine the associated task that received
|
|
the event, to make it the current task. */
|
|
ptid_t m_base_ptid;
|
|
|
|
ptid_t active_task (int cpu);
|
|
bool task_is_currently_active (ptid_t ptid);
|
|
bool runtime_initialized ();
|
|
int get_thread_base_cpu (ptid_t ptid);
|
|
ptid_t get_base_thread_from_ravenscar_task (ptid_t ptid);
|
|
void add_thread (struct ada_task_info *task);
|
|
|
|
/* Like switch_to_thread, but uses the base ptid for the thread. */
|
|
void set_base_thread_from_ravenscar_task (ptid_t ptid)
|
|
{
|
|
process_stratum_target *proc_target
|
|
= as_process_stratum_target (this->beneath ());
|
|
ptid_t underlying = get_base_thread_from_ravenscar_task (ptid);
|
|
switch_to_thread (proc_target->find_thread (underlying));
|
|
}
|
|
|
|
/* Some targets use lazy FPU initialization. On these, the FP
|
|
registers for a given task might be uninitialized, or stored in
|
|
the per-task context, or simply be the live registers on the CPU.
|
|
This enum is used to encode this information. */
|
|
enum fpu_state
|
|
{
|
|
/* This target doesn't do anything special for FP registers -- if
|
|
any exist, they are treated just identical to non-FP
|
|
registers. */
|
|
NOTHING_SPECIAL,
|
|
/* This target uses the lazy FP scheme, and the FP registers are
|
|
taken from the CPU. This can happen for any task, because if a
|
|
task switch occurs, the registers aren't immediately written to
|
|
the per-task context -- this is deferred until the current task
|
|
causes an FPU trap. */
|
|
LIVE_FP_REGISTERS,
|
|
/* This target uses the lazy FP scheme, and the FP registers are
|
|
not available. Maybe this task never initialized the FPU, or
|
|
maybe GDB couldn't find the required symbol. */
|
|
NO_FP_REGISTERS
|
|
};
|
|
|
|
/* Return the FPU state. */
|
|
fpu_state get_fpu_state (struct regcache *regcache,
|
|
const ravenscar_arch_ops *arch_ops);
|
|
|
|
/* This maps a TID to the CPU on which it was running. This is
|
|
needed because sometimes the runtime will report an active task
|
|
that hasn't yet been put on the list of tasks that is read by
|
|
ada-tasks.c. */
|
|
gdb::unordered_map<ULONGEST, int> m_cpu_map;
|
|
};
|
|
|
|
/* Return true iff PTID corresponds to a ravenscar task. */
|
|
|
|
static bool
|
|
is_ravenscar_task (ptid_t ptid)
|
|
{
|
|
/* By construction, ravenscar tasks have their LWP set to zero.
|
|
Also make sure that the TID is nonzero, as some remotes, when
|
|
asked for the list of threads, will return the first thread
|
|
as having its TID set to zero. For instance, TSIM version
|
|
2.0.48 for LEON3 sends 'm0' as a reply to the 'qfThreadInfo'
|
|
query, which the remote protocol layer then treats as a thread
|
|
whose TID is 0. This is obviously not a ravenscar task. */
|
|
return ptid.lwp () == 0 && ptid.tid () != 0;
|
|
}
|
|
|
|
/* Given PTID, which can be either a ravenscar task or a CPU thread,
|
|
return which CPU that ptid is running on.
|
|
|
|
This assume that PTID is a valid ptid_t. Otherwise, a gdb_assert
|
|
will be triggered. */
|
|
|
|
int
|
|
ravenscar_thread_target::get_thread_base_cpu (ptid_t ptid)
|
|
{
|
|
int base_cpu;
|
|
|
|
if (is_ravenscar_task (ptid))
|
|
{
|
|
/* Prefer to not read inferior memory if possible, to avoid
|
|
reentrancy problems with xfer_partial. */
|
|
auto iter = m_cpu_map.find (ptid.tid ());
|
|
|
|
if (iter != m_cpu_map.end ())
|
|
base_cpu = iter->second;
|
|
else
|
|
{
|
|
struct ada_task_info *task_info = ada_get_task_info_from_ptid (ptid);
|
|
|
|
gdb_assert (task_info != NULL);
|
|
base_cpu = task_info->base_cpu;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We assume that the LWP of the PTID is equal to the CPU number. */
|
|
base_cpu = ptid.lwp ();
|
|
}
|
|
|
|
return base_cpu;
|
|
}
|
|
|
|
/* Given a ravenscar task (identified by its ptid_t PTID), return true
|
|
if this task is the currently active task on the cpu that task is
|
|
running on.
|
|
|
|
In other words, this function determine which CPU this task is
|
|
currently running on, and then return nonzero if the CPU in question
|
|
is executing the code for that task. If that's the case, then
|
|
that task's registers are in the CPU bank. Otherwise, the task
|
|
is currently suspended, and its registers have been saved in memory. */
|
|
|
|
bool
|
|
ravenscar_thread_target::task_is_currently_active (ptid_t ptid)
|
|
{
|
|
ptid_t active_task_ptid = active_task (get_thread_base_cpu (ptid));
|
|
|
|
return ptid == active_task_ptid;
|
|
}
|
|
|
|
/* Return the CPU thread (as a ptid_t) on which the given ravenscar
|
|
task is running.
|
|
|
|
This is the thread that corresponds to the CPU on which the task
|
|
is running. */
|
|
|
|
ptid_t
|
|
ravenscar_thread_target::get_base_thread_from_ravenscar_task (ptid_t ptid)
|
|
{
|
|
int base_cpu;
|
|
|
|
if (!is_ravenscar_task (ptid))
|
|
return ptid;
|
|
|
|
base_cpu = get_thread_base_cpu (ptid);
|
|
return ptid_t (ptid.pid (), base_cpu);
|
|
}
|
|
|
|
/* Fetch the ravenscar running thread from target memory, make sure
|
|
there's a corresponding thread in the thread list, and return it.
|
|
If the runtime is not initialized, return NULL. */
|
|
|
|
thread_info *
|
|
ravenscar_thread_target::add_active_thread ()
|
|
{
|
|
process_stratum_target *proc_target
|
|
= as_process_stratum_target (this->beneath ());
|
|
|
|
int base_cpu;
|
|
|
|
gdb_assert (!is_ravenscar_task (m_base_ptid));
|
|
base_cpu = get_thread_base_cpu (m_base_ptid);
|
|
|
|
if (!runtime_initialized ())
|
|
return nullptr;
|
|
|
|
/* It's possible for runtime_initialized to return true but for it
|
|
not to be fully initialized. For example, this can happen for a
|
|
breakpoint placed at the task's beginning. */
|
|
ptid_t active_ptid = active_task (base_cpu);
|
|
if (active_ptid == null_ptid)
|
|
return nullptr;
|
|
|
|
/* The running thread may not have been added to
|
|
system.tasking.debug's list yet; so ravenscar_update_thread_list
|
|
may not always add it to the thread list. Add it here. */
|
|
thread_info *active_thr = proc_target->find_thread (active_ptid);
|
|
if (active_thr == nullptr)
|
|
{
|
|
active_thr = ::add_thread (proc_target, active_ptid);
|
|
m_cpu_map[active_ptid.tid ()] = base_cpu;
|
|
}
|
|
return active_thr;
|
|
}
|
|
|
|
/* The Ravenscar Runtime exports a symbol which contains the ID of
|
|
the thread that is currently running. Try to locate that symbol
|
|
and return its associated minimal symbol.
|
|
Return NULL if not found. */
|
|
|
|
static bound_minimal_symbol
|
|
get_running_thread_msymbol ()
|
|
{
|
|
bound_minimal_symbol msym
|
|
= lookup_minimal_symbol (current_program_space, running_thread_name);
|
|
if (!msym.minsym)
|
|
/* Older versions of the GNAT runtime were using a different
|
|
(less ideal) name for the symbol where the active thread ID
|
|
is stored. If we couldn't find the symbol using the latest
|
|
name, then try the old one. */
|
|
msym = lookup_minimal_symbol (current_program_space, "running_thread");
|
|
|
|
return msym;
|
|
}
|
|
|
|
/* Return True if the Ada Ravenscar run-time can be found in the
|
|
application. */
|
|
|
|
static bool
|
|
has_ravenscar_runtime ()
|
|
{
|
|
bound_minimal_symbol msym_ravenscar_runtime_initializer
|
|
= lookup_minimal_symbol (current_program_space,
|
|
ravenscar_runtime_initializer);
|
|
bound_minimal_symbol msym_known_tasks
|
|
= lookup_minimal_symbol (current_program_space, known_tasks_name);
|
|
bound_minimal_symbol msym_first_task
|
|
= lookup_minimal_symbol (current_program_space, first_task_name);
|
|
bound_minimal_symbol msym_running_thread = get_running_thread_msymbol ();
|
|
|
|
return (msym_ravenscar_runtime_initializer.minsym
|
|
&& (msym_known_tasks.minsym || msym_first_task.minsym)
|
|
&& msym_running_thread.minsym);
|
|
}
|
|
|
|
/* Return True if the Ada Ravenscar run-time can be found in the
|
|
application, and if it has been initialized on target. */
|
|
|
|
bool
|
|
ravenscar_thread_target::runtime_initialized ()
|
|
{
|
|
return active_task (1) != null_ptid;
|
|
}
|
|
|
|
/* Return the ID of the thread that is currently running.
|
|
Return 0 if the ID could not be determined. */
|
|
|
|
static CORE_ADDR
|
|
get_running_thread_id (int cpu)
|
|
{
|
|
bound_minimal_symbol object_msym = get_running_thread_msymbol ();
|
|
int object_size;
|
|
int buf_size;
|
|
gdb_byte *buf;
|
|
CORE_ADDR object_addr;
|
|
struct type *builtin_type_void_data_ptr
|
|
= builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
|
|
|
|
if (!object_msym.minsym)
|
|
return 0;
|
|
|
|
object_size = builtin_type_void_data_ptr->length ();
|
|
object_addr = (object_msym.value_address ()
|
|
+ (cpu - 1) * object_size);
|
|
buf_size = object_size;
|
|
buf = (gdb_byte *) alloca (buf_size);
|
|
read_memory (object_addr, buf, buf_size);
|
|
return extract_typed_address (buf, builtin_type_void_data_ptr);
|
|
}
|
|
|
|
void
|
|
ravenscar_thread_target::resume (ptid_t ptid, int step,
|
|
enum gdb_signal siggnal)
|
|
{
|
|
/* If we see a wildcard resume, we simply pass that on. Otherwise,
|
|
arrange to resume the base ptid. */
|
|
inferior_ptid = m_base_ptid;
|
|
if (ptid.is_pid ())
|
|
{
|
|
/* We only have one process, so resume all threads of it. */
|
|
ptid = minus_one_ptid;
|
|
}
|
|
else if (ptid != minus_one_ptid)
|
|
ptid = m_base_ptid;
|
|
beneath ()->resume (ptid, step, siggnal);
|
|
}
|
|
|
|
ptid_t
|
|
ravenscar_thread_target::wait (ptid_t ptid,
|
|
struct target_waitstatus *status,
|
|
target_wait_flags options)
|
|
{
|
|
process_stratum_target *beneath
|
|
= as_process_stratum_target (this->beneath ());
|
|
ptid_t event_ptid;
|
|
|
|
if (ptid != minus_one_ptid)
|
|
ptid = m_base_ptid;
|
|
event_ptid = beneath->wait (ptid, status, 0);
|
|
/* Find any new threads that might have been created, and return the
|
|
active thread.
|
|
|
|
Only do it if the program is still alive, though. Otherwise,
|
|
this causes problems when debugging through the remote protocol,
|
|
because we might try switching threads (and thus sending packets)
|
|
after the remote has disconnected. */
|
|
if (status->kind () != TARGET_WAITKIND_EXITED
|
|
&& status->kind () != TARGET_WAITKIND_SIGNALLED
|
|
&& runtime_initialized ())
|
|
{
|
|
m_base_ptid = event_ptid;
|
|
this->update_thread_list ();
|
|
thread_info *thr = this->add_active_thread ();
|
|
if (thr != nullptr)
|
|
return thr->ptid;
|
|
}
|
|
return event_ptid;
|
|
}
|
|
|
|
/* Add the thread associated to the given TASK to the thread list
|
|
(if the thread has already been added, this is a no-op). */
|
|
|
|
void
|
|
ravenscar_thread_target::add_thread (struct ada_task_info *task)
|
|
{
|
|
if (current_inferior ()->find_thread (task->ptid) == NULL)
|
|
{
|
|
::add_thread (current_inferior ()->process_target (), task->ptid);
|
|
m_cpu_map[task->ptid.tid ()] = task->base_cpu;
|
|
}
|
|
}
|
|
|
|
void
|
|
ravenscar_thread_target::update_thread_list ()
|
|
{
|
|
/* iterate_over_live_ada_tasks requires that inferior_ptid be set,
|
|
but this isn't always the case in target methods. So, we ensure
|
|
it here. */
|
|
scoped_restore save_ptid = make_scoped_restore (&inferior_ptid,
|
|
m_base_ptid);
|
|
|
|
/* Do not clear the thread list before adding the Ada task, to keep
|
|
the thread that the process stratum has included into it
|
|
(m_base_ptid) and the running thread, that may not have been included
|
|
to system.tasking.debug's list yet. */
|
|
|
|
iterate_over_live_ada_tasks ([this] (struct ada_task_info *task)
|
|
{
|
|
this->add_thread (task);
|
|
});
|
|
}
|
|
|
|
ptid_t
|
|
ravenscar_thread_target::active_task (int cpu)
|
|
{
|
|
CORE_ADDR tid = get_running_thread_id (cpu);
|
|
|
|
if (tid == 0)
|
|
return null_ptid;
|
|
else
|
|
return ptid_t (m_base_ptid.pid (), 0, tid);
|
|
}
|
|
|
|
bool
|
|
ravenscar_thread_target::thread_alive (ptid_t ptid)
|
|
{
|
|
/* Ravenscar tasks are non-terminating. */
|
|
return true;
|
|
}
|
|
|
|
std::string
|
|
ravenscar_thread_target::pid_to_str (ptid_t ptid)
|
|
{
|
|
if (!is_ravenscar_task (ptid))
|
|
return beneath ()->pid_to_str (ptid);
|
|
|
|
return string_printf ("Ravenscar Thread 0x%s",
|
|
phex_nz (ptid.tid ()));
|
|
}
|
|
|
|
CORE_ADDR
|
|
ravenscar_arch_ops::get_stack_base (struct regcache *regcache) const
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
const int sp_regnum = gdbarch_sp_regnum (gdbarch);
|
|
ULONGEST stack_address;
|
|
regcache_cooked_read_unsigned (regcache, sp_regnum, &stack_address);
|
|
return (CORE_ADDR) stack_address;
|
|
}
|
|
|
|
void
|
|
ravenscar_arch_ops::supply_one_register (struct regcache *regcache,
|
|
int regnum,
|
|
CORE_ADDR descriptor,
|
|
CORE_ADDR stack_base) const
|
|
{
|
|
CORE_ADDR addr;
|
|
if (regnum >= first_stack_register && regnum <= last_stack_register)
|
|
addr = stack_base;
|
|
else
|
|
addr = descriptor;
|
|
addr += offsets[regnum];
|
|
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
int size = register_size (gdbarch, regnum);
|
|
gdb_byte *buf = (gdb_byte *) alloca (size);
|
|
read_memory (addr, buf, size);
|
|
regcache->raw_supply (regnum, buf);
|
|
}
|
|
|
|
void
|
|
ravenscar_arch_ops::fetch_register (struct regcache *regcache,
|
|
int regnum) const
|
|
{
|
|
gdb_assert (regnum != -1);
|
|
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
/* The tid is the thread_id field, which is a pointer to the thread. */
|
|
CORE_ADDR thread_descriptor_address
|
|
= (CORE_ADDR) regcache->ptid ().tid ();
|
|
|
|
int sp_regno = -1;
|
|
CORE_ADDR stack_address = 0;
|
|
if (regnum >= first_stack_register && regnum <= last_stack_register)
|
|
{
|
|
/* We must supply SP for get_stack_base, so recurse. */
|
|
sp_regno = gdbarch_sp_regnum (gdbarch);
|
|
gdb_assert (!(sp_regno >= first_stack_register
|
|
&& sp_regno <= last_stack_register));
|
|
fetch_register (regcache, sp_regno);
|
|
stack_address = get_stack_base (regcache);
|
|
}
|
|
|
|
if (regnum < offsets.size () && offsets[regnum] != -1)
|
|
supply_one_register (regcache, regnum, thread_descriptor_address,
|
|
stack_address);
|
|
}
|
|
|
|
void
|
|
ravenscar_arch_ops::store_one_register (struct regcache *regcache, int regnum,
|
|
CORE_ADDR descriptor,
|
|
CORE_ADDR stack_base) const
|
|
{
|
|
CORE_ADDR addr;
|
|
if (regnum >= first_stack_register && regnum <= last_stack_register)
|
|
addr = stack_base;
|
|
else
|
|
addr = descriptor;
|
|
addr += offsets[regnum];
|
|
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
int size = register_size (gdbarch, regnum);
|
|
gdb_byte *buf = (gdb_byte *) alloca (size);
|
|
regcache->raw_collect (regnum, buf);
|
|
write_memory (addr, buf, size);
|
|
}
|
|
|
|
void
|
|
ravenscar_arch_ops::store_register (struct regcache *regcache,
|
|
int regnum) const
|
|
{
|
|
gdb_assert (regnum != -1);
|
|
|
|
/* The tid is the thread_id field, which is a pointer to the thread. */
|
|
CORE_ADDR thread_descriptor_address
|
|
= (CORE_ADDR) regcache->ptid ().tid ();
|
|
|
|
CORE_ADDR stack_address = 0;
|
|
if (regnum >= first_stack_register && regnum <= last_stack_register)
|
|
stack_address = get_stack_base (regcache);
|
|
|
|
if (regnum < offsets.size () && offsets[regnum] != -1)
|
|
store_one_register (regcache, regnum, thread_descriptor_address,
|
|
stack_address);
|
|
}
|
|
|
|
/* Temporarily set the ptid of a regcache to some other value. When
|
|
this object is destroyed, the regcache's original ptid is
|
|
restored. */
|
|
|
|
class temporarily_change_regcache_ptid
|
|
{
|
|
public:
|
|
|
|
temporarily_change_regcache_ptid (struct regcache *regcache, ptid_t new_ptid)
|
|
: m_regcache (regcache),
|
|
m_save_ptid (regcache->ptid ())
|
|
{
|
|
m_regcache->set_ptid (new_ptid);
|
|
}
|
|
|
|
~temporarily_change_regcache_ptid ()
|
|
{
|
|
m_regcache->set_ptid (m_save_ptid);
|
|
}
|
|
|
|
private:
|
|
|
|
/* The regcache. */
|
|
struct regcache *m_regcache;
|
|
/* The saved ptid. */
|
|
ptid_t m_save_ptid;
|
|
};
|
|
|
|
ravenscar_thread_target::fpu_state
|
|
ravenscar_thread_target::get_fpu_state (struct regcache *regcache,
|
|
const ravenscar_arch_ops *arch_ops)
|
|
{
|
|
/* We want to return true if the special FP register handling is
|
|
needed. If this target doesn't have lazy FP, then no special
|
|
treatment is ever needed. */
|
|
if (!arch_ops->on_demand_fp ())
|
|
return NOTHING_SPECIAL;
|
|
|
|
bound_minimal_symbol fpu_context
|
|
= lookup_minimal_symbol (current_program_space,
|
|
"system__bb__cpu_primitives__current_fpu_context",
|
|
nullptr, nullptr);
|
|
/* If the symbol can't be found, just fall back. */
|
|
if (fpu_context.minsym == nullptr)
|
|
return NO_FP_REGISTERS;
|
|
|
|
type *ptr_type
|
|
= builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
|
|
ptr_type = lookup_pointer_type (ptr_type);
|
|
value *val = value_from_pointer (ptr_type, fpu_context.value_address ());
|
|
|
|
int cpu = get_thread_base_cpu (regcache->ptid ());
|
|
/* The array index type has a lower bound of 1 -- it is Ada code --
|
|
so subtract 1 here. */
|
|
val = value_ptradd (val, cpu - 1);
|
|
|
|
val = value_ind (val);
|
|
CORE_ADDR fpu_task = value_as_long (val);
|
|
|
|
/* The tid is the thread_id field, which is a pointer to the thread. */
|
|
CORE_ADDR thread_descriptor_address
|
|
= (CORE_ADDR) regcache->ptid ().tid ();
|
|
if (fpu_task == (thread_descriptor_address
|
|
+ arch_ops->get_fpu_context_offset ()))
|
|
return LIVE_FP_REGISTERS;
|
|
|
|
int v_init_offset = arch_ops->get_v_init_offset ();
|
|
gdb_byte init = 0;
|
|
read_memory (thread_descriptor_address + v_init_offset, &init, 1);
|
|
return init ? NOTHING_SPECIAL : NO_FP_REGISTERS;
|
|
}
|
|
|
|
void
|
|
ravenscar_thread_target::fetch_registers (struct regcache *regcache,
|
|
int regnum)
|
|
{
|
|
ptid_t ptid = regcache->ptid ();
|
|
|
|
if (runtime_initialized () && is_ravenscar_task (ptid))
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
bool is_active = task_is_currently_active (ptid);
|
|
struct ravenscar_arch_ops *arch_ops = gdbarch_ravenscar_ops (gdbarch);
|
|
std::optional<fpu_state> fp_state;
|
|
|
|
int low_reg = regnum == -1 ? 0 : regnum;
|
|
int high_reg = regnum == -1 ? gdbarch_num_regs (gdbarch) : regnum + 1;
|
|
|
|
ptid_t base = get_base_thread_from_ravenscar_task (ptid);
|
|
for (int i = low_reg; i < high_reg; ++i)
|
|
{
|
|
bool use_beneath = false;
|
|
if (arch_ops->is_fp_register (i))
|
|
{
|
|
if (!fp_state.has_value ())
|
|
fp_state = get_fpu_state (regcache, arch_ops);
|
|
if (*fp_state == NO_FP_REGISTERS)
|
|
continue;
|
|
if (*fp_state == LIVE_FP_REGISTERS
|
|
|| (is_active && *fp_state == NOTHING_SPECIAL))
|
|
use_beneath = true;
|
|
}
|
|
else
|
|
use_beneath = is_active;
|
|
|
|
if (use_beneath)
|
|
{
|
|
temporarily_change_regcache_ptid changer (regcache, base);
|
|
beneath ()->fetch_registers (regcache, i);
|
|
}
|
|
else
|
|
arch_ops->fetch_register (regcache, i);
|
|
}
|
|
}
|
|
else
|
|
beneath ()->fetch_registers (regcache, regnum);
|
|
}
|
|
|
|
void
|
|
ravenscar_thread_target::store_registers (struct regcache *regcache,
|
|
int regnum)
|
|
{
|
|
ptid_t ptid = regcache->ptid ();
|
|
|
|
if (runtime_initialized () && is_ravenscar_task (ptid))
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
bool is_active = task_is_currently_active (ptid);
|
|
struct ravenscar_arch_ops *arch_ops = gdbarch_ravenscar_ops (gdbarch);
|
|
std::optional<fpu_state> fp_state;
|
|
|
|
int low_reg = regnum == -1 ? 0 : regnum;
|
|
int high_reg = regnum == -1 ? gdbarch_num_regs (gdbarch) : regnum + 1;
|
|
|
|
ptid_t base = get_base_thread_from_ravenscar_task (ptid);
|
|
for (int i = low_reg; i < high_reg; ++i)
|
|
{
|
|
bool use_beneath = false;
|
|
if (arch_ops->is_fp_register (i))
|
|
{
|
|
if (!fp_state.has_value ())
|
|
fp_state = get_fpu_state (regcache, arch_ops);
|
|
if (*fp_state == NO_FP_REGISTERS)
|
|
continue;
|
|
if (*fp_state == LIVE_FP_REGISTERS
|
|
|| (is_active && *fp_state == NOTHING_SPECIAL))
|
|
use_beneath = true;
|
|
}
|
|
else
|
|
use_beneath = is_active;
|
|
|
|
if (use_beneath)
|
|
{
|
|
temporarily_change_regcache_ptid changer (regcache, base);
|
|
beneath ()->store_registers (regcache, i);
|
|
}
|
|
else
|
|
arch_ops->store_register (regcache, i);
|
|
}
|
|
}
|
|
else
|
|
beneath ()->store_registers (regcache, regnum);
|
|
}
|
|
|
|
void
|
|
ravenscar_thread_target::prepare_to_store (struct regcache *regcache)
|
|
{
|
|
ptid_t ptid = regcache->ptid ();
|
|
|
|
if (runtime_initialized () && is_ravenscar_task (ptid))
|
|
{
|
|
if (task_is_currently_active (ptid))
|
|
{
|
|
ptid_t base = get_base_thread_from_ravenscar_task (ptid);
|
|
temporarily_change_regcache_ptid changer (regcache, base);
|
|
beneath ()->prepare_to_store (regcache);
|
|
}
|
|
else
|
|
{
|
|
/* Nothing. */
|
|
}
|
|
}
|
|
else
|
|
beneath ()->prepare_to_store (regcache);
|
|
}
|
|
|
|
/* Implement the to_stopped_by_sw_breakpoint target_ops "method". */
|
|
|
|
bool
|
|
ravenscar_thread_target::stopped_by_sw_breakpoint ()
|
|
{
|
|
scoped_restore_current_thread saver;
|
|
set_base_thread_from_ravenscar_task (inferior_ptid);
|
|
return beneath ()->stopped_by_sw_breakpoint ();
|
|
}
|
|
|
|
/* Implement the to_stopped_by_hw_breakpoint target_ops "method". */
|
|
|
|
bool
|
|
ravenscar_thread_target::stopped_by_hw_breakpoint ()
|
|
{
|
|
scoped_restore_current_thread saver;
|
|
set_base_thread_from_ravenscar_task (inferior_ptid);
|
|
return beneath ()->stopped_by_hw_breakpoint ();
|
|
}
|
|
|
|
/* Implement the to_stopped_by_watchpoint target_ops "method". */
|
|
|
|
bool
|
|
ravenscar_thread_target::stopped_by_watchpoint ()
|
|
{
|
|
scoped_restore_current_thread saver;
|
|
set_base_thread_from_ravenscar_task (inferior_ptid);
|
|
return beneath ()->stopped_by_watchpoint ();
|
|
}
|
|
|
|
/* Implement the to_stopped_data_addresses target_ops "method". */
|
|
|
|
std::vector<CORE_ADDR>
|
|
ravenscar_thread_target::stopped_data_addresses ()
|
|
{
|
|
scoped_restore_current_thread saver;
|
|
set_base_thread_from_ravenscar_task (inferior_ptid);
|
|
return beneath ()->stopped_data_addresses ();
|
|
}
|
|
|
|
void
|
|
ravenscar_thread_target::mourn_inferior ()
|
|
{
|
|
m_base_ptid = null_ptid;
|
|
target_ops *beneath = this->beneath ();
|
|
current_inferior ()->unpush_target (this);
|
|
beneath->mourn_inferior ();
|
|
}
|
|
|
|
/* Implement the to_core_of_thread target_ops "method". */
|
|
|
|
int
|
|
ravenscar_thread_target::core_of_thread (ptid_t ptid)
|
|
{
|
|
scoped_restore_current_thread saver;
|
|
set_base_thread_from_ravenscar_task (inferior_ptid);
|
|
return beneath ()->core_of_thread (inferior_ptid);
|
|
}
|
|
|
|
/* Implement the target xfer_partial method. */
|
|
|
|
enum target_xfer_status
|
|
ravenscar_thread_target::xfer_partial (enum target_object object,
|
|
const char *annex,
|
|
gdb_byte *readbuf,
|
|
const gdb_byte *writebuf,
|
|
ULONGEST offset, ULONGEST len,
|
|
ULONGEST *xfered_len)
|
|
{
|
|
scoped_restore save_ptid = make_scoped_restore (&inferior_ptid);
|
|
/* Calling get_base_thread_from_ravenscar_task can read memory from
|
|
the inferior. However, that function is written to prefer our
|
|
internal map, so it should not result in recursive calls in
|
|
practice. */
|
|
inferior_ptid = get_base_thread_from_ravenscar_task (inferior_ptid);
|
|
return beneath ()->xfer_partial (object, annex, readbuf, writebuf,
|
|
offset, len, xfered_len);
|
|
}
|
|
|
|
/* Observer on inferior_created: push ravenscar thread stratum if needed. */
|
|
|
|
static void
|
|
ravenscar_inferior_created (inferior *inf)
|
|
{
|
|
const char *err_msg;
|
|
|
|
if (!ravenscar_task_support
|
|
|| gdbarch_ravenscar_ops (current_inferior ()->arch ()) == NULL
|
|
|| !has_ravenscar_runtime ())
|
|
return;
|
|
|
|
err_msg = ada_get_tcb_types_info ();
|
|
if (err_msg != NULL)
|
|
{
|
|
warning (_("%s. Task/thread support disabled."), err_msg);
|
|
return;
|
|
}
|
|
|
|
ravenscar_thread_target *rtarget = new ravenscar_thread_target ();
|
|
inf->push_target (target_ops_up (rtarget));
|
|
thread_info *thr = rtarget->add_active_thread ();
|
|
if (thr != nullptr)
|
|
switch_to_thread (thr);
|
|
}
|
|
|
|
ptid_t
|
|
ravenscar_thread_target::get_ada_task_ptid (long lwp, ULONGEST thread)
|
|
{
|
|
return ptid_t (m_base_ptid.pid (), 0, thread);
|
|
}
|
|
|
|
/* Command-list for the "set/show ravenscar" prefix command. */
|
|
static struct cmd_list_element *set_ravenscar_list;
|
|
static struct cmd_list_element *show_ravenscar_list;
|
|
|
|
/* Implement the "show ravenscar task-switching" command. */
|
|
|
|
static void
|
|
show_ravenscar_task_switching_command (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c,
|
|
const char *value)
|
|
{
|
|
if (ravenscar_task_support)
|
|
gdb_printf (file, _("\
|
|
Support for Ravenscar task/thread switching is enabled\n"));
|
|
else
|
|
gdb_printf (file, _("\
|
|
Support for Ravenscar task/thread switching is disabled\n"));
|
|
}
|
|
|
|
/* Module startup initialization function, automagically called by
|
|
init.c. */
|
|
|
|
INIT_GDB_FILE (ravenscar)
|
|
{
|
|
/* Notice when the inferior is created in order to push the
|
|
ravenscar ops if needed. */
|
|
gdb::observers::inferior_created.attach (ravenscar_inferior_created,
|
|
"ravenscar-thread");
|
|
|
|
add_setshow_prefix_cmd
|
|
("ravenscar", no_class,
|
|
_("Prefix command for changing Ravenscar-specific settings."),
|
|
_("Prefix command for showing Ravenscar-specific settings."),
|
|
&set_ravenscar_list, &show_ravenscar_list,
|
|
&setlist, &showlist);
|
|
|
|
add_setshow_boolean_cmd ("task-switching", class_obscure,
|
|
&ravenscar_task_support, _("\
|
|
Enable or disable support for GNAT Ravenscar tasks."), _("\
|
|
Show whether support for GNAT Ravenscar tasks is enabled."),
|
|
_("\
|
|
Enable or disable support for task/thread switching with the GNAT\n\
|
|
Ravenscar run-time library for bareboard configuration."),
|
|
NULL, show_ravenscar_task_switching_command,
|
|
&set_ravenscar_list, &show_ravenscar_list);
|
|
}
|