Files
binutils-gdb/libctf/ctf-string.c
Nick Alcock 149ce5c263 libctf: replace 'pending refs' abstraction
A few years ago we introduced a 'pending refs' abstraction to fix one
problem: serializing a dict, then changing it would tend to corrupt the dict
because the strtab sort we do on strtab writeout (to improve compression
efficiency) would modify the offset of any strings that sorted
lexicographically earlier in the strtab: so we added a new restriction that
all strings are added only at serialization time, and maintained a set of
'pending' refs that were added earlier, whose offsets we could update (like
other refs) at writeout time.

This was in hindsight seriously problematic for maintenance (because
serialization has to traverse all strings in all datatypes in the entire
dict), and has become impossible to sustain now that we can read in existing
dicts, modify them, and reserialize them again.  We really don't want to
have to dig through the entire dict we jut read in just in order to dig out
all its strtab offsets, then *change* it, just for the sake of a sort that
adds a frankly trivial amount of compression efficiency.

Sorting *is* still worthwhile -- but it sacrifices very little to only sort
newly-added portions of the strtab, reusing older portions as necessary.
As a first stage in this, discard the whole "pending refs" abstraction and
replace it with "movable" refs, which are exactly like all other refs
(addresses containing the strtab offset of some string, which are updated
wiht the final strtab offset on serialization) except that we track them in
a reverse dict so that we can move the refs around (which we do whenever we
realloc() a buffer containing a bunch of structure members or something when
we add members to the structure).

libctf/

	* ctf-create.c (ctf_add_enumerator): Call ctf_str_move_refs; add
        a movable ref.
	(ctf_add_member_offset): Likewise.
	* ctf-util.c (ctf_realloc): Delete.
	* ctf-serialize.c (ctf_serialize): No longer use it.  Adjust to
	new fields.
	* ctf-string.c (ctf_str_purge_atom_refs): Purge movable refs.
	(ctf_str_free_atom): Free freeable atoms' strings.
	(ctf_str_create_atoms): Create the movable refs dynhash if needed.
	(ctf_str_free_atoms): Destroy it.
	(CTF_STR_MOVABLE): Switch (back) from ints to flags (see previous
	reversion).  Add new flag.
	(aref_create):  New, populate movable refs if need be.
	(ctf_str_add_ref_internal): Switch back to flags, update refs
	directly for nonprovisional strings (with already-known fixed offsets);
	create refs via aref_create.  Allocate strings only if not within an
	mmapped strtab.
	(ctf_str_add_movable_ref): New.
	(ctf_str_add): Adjust to CTF_STR_* reintroduction.
	(ctf_str_add_external): LIkewise.
	(ctf_str_move_refs): New, move refs via ctf_str_movable_refs
	backpointer.
	(ctf_str_purge_refs): Drop ctf_str_num_refs.
	(ctf_str_update_refs): Fix indentation.
	* ctf-impl.h (struct ctf_str_atom_movable): New.
	(struct ctf_dict.ctf_str_num_refs): Drop.
	(struct ctf_dict.ctf_str_movable_refs): New.
	(ctf_str_add_movable_ref): Declare.
	(ctf_str_move_refs): Likewise.
	(ctf_realloc): Drop.
2024-04-19 16:14:46 +01:00

708 lines
19 KiB
C

/* CTF string table management.
Copyright (C) 2019-2024 Free Software Foundation, Inc.
This file is part of libctf.
libctf is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not see
<http://www.gnu.org/licenses/>. */
#include <assert.h>
#include <ctf-impl.h>
#include <string.h>
#include <assert.h>
/* Convert an encoded CTF string name into a pointer to a C string, using an
explicit internal strtab rather than the fp-based one. */
const char *
ctf_strraw_explicit (ctf_dict_t *fp, uint32_t name, ctf_strs_t *strtab)
{
ctf_strs_t *ctsp = &fp->ctf_str[CTF_NAME_STID (name)];
if ((CTF_NAME_STID (name) == CTF_STRTAB_0) && (strtab != NULL))
ctsp = strtab;
/* If this name is in the external strtab, and there is a synthetic strtab,
use it in preference. */
if (CTF_NAME_STID (name) == CTF_STRTAB_1
&& fp->ctf_syn_ext_strtab != NULL)
return ctf_dynhash_lookup (fp->ctf_syn_ext_strtab,
(void *) (uintptr_t) name);
/* If the name is in the internal strtab, and the offset is beyond the end of
the ctsp->cts_len but below the ctf_str_prov_offset, this is a provisional
string added by ctf_str_add*() but not yet built into a real strtab: get
the value out of the ctf_prov_strtab. */
if (CTF_NAME_STID (name) == CTF_STRTAB_0
&& name >= ctsp->cts_len && name < fp->ctf_str_prov_offset)
return ctf_dynhash_lookup (fp->ctf_prov_strtab,
(void *) (uintptr_t) name);
if (ctsp->cts_strs != NULL && CTF_NAME_OFFSET (name) < ctsp->cts_len)
return (ctsp->cts_strs + CTF_NAME_OFFSET (name));
/* String table not loaded or corrupt offset. */
return NULL;
}
/* Convert an encoded CTF string name into a pointer to a C string by looking
up the appropriate string table buffer and then adding the offset. */
const char *
ctf_strraw (ctf_dict_t *fp, uint32_t name)
{
return ctf_strraw_explicit (fp, name, NULL);
}
/* Return a guaranteed-non-NULL pointer to the string with the given CTF
name. */
const char *
ctf_strptr (ctf_dict_t *fp, uint32_t name)
{
const char *s = ctf_strraw (fp, name);
return (s != NULL ? s : "(?)");
}
/* As above, but return info on what is wrong in more detail.
(Used for type lookups.) */
const char *
ctf_strptr_validate (ctf_dict_t *fp, uint32_t name)
{
const char *str = ctf_strraw (fp, name);
if (str == NULL)
{
if (CTF_NAME_STID (name) == CTF_STRTAB_1
&& fp->ctf_syn_ext_strtab == NULL
&& fp->ctf_str[CTF_NAME_STID (name)].cts_strs == NULL)
{
ctf_set_errno (fp, ECTF_STRTAB);
return NULL;
}
ctf_set_errno (fp, ECTF_BADNAME);
return NULL;
}
return str;
}
/* Remove all refs to a given atom. */
static void
ctf_str_purge_atom_refs (ctf_str_atom_t *atom)
{
ctf_str_atom_ref_t *ref, *next;
for (ref = ctf_list_next (&atom->csa_refs); ref != NULL; ref = next)
{
next = ctf_list_next (ref);
ctf_list_delete (&atom->csa_refs, ref);
if (atom->csa_flags & CTF_STR_ATOM_MOVABLE)
{
ctf_str_atom_ref_movable_t *movref;
movref = (ctf_str_atom_ref_movable_t *) ref;
ctf_dynhash_remove (movref->caf_movable_refs, ref);
}
free (ref);
}
}
/* Free an atom. */
static void
ctf_str_free_atom (void *a)
{
ctf_str_atom_t *atom = a;
ctf_str_purge_atom_refs (atom);
if (atom->csa_flags & CTF_STR_ATOM_FREEABLE)
free (atom->csa_str);
free (atom);
}
/* Create the atoms table. There is always at least one atom in it, the null
string. */
int
ctf_str_create_atoms (ctf_dict_t *fp)
{
fp->ctf_str_atoms = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
free, ctf_str_free_atom);
if (fp->ctf_str_atoms == NULL)
return -ENOMEM;
if (!fp->ctf_prov_strtab)
fp->ctf_prov_strtab = ctf_dynhash_create (ctf_hash_integer,
ctf_hash_eq_integer,
NULL, NULL);
if (!fp->ctf_prov_strtab)
goto oom_prov_strtab;
fp->ctf_str_movable_refs = ctf_dynhash_create (ctf_hash_integer,
ctf_hash_eq_integer,
NULL, NULL);
if (!fp->ctf_str_movable_refs)
goto oom_movable_refs;
errno = 0;
ctf_str_add (fp, "");
if (errno == ENOMEM)
goto oom_str_add;
return 0;
oom_str_add:
ctf_dynhash_destroy (fp->ctf_str_movable_refs);
fp->ctf_str_movable_refs = NULL;
oom_movable_refs:
ctf_dynhash_destroy (fp->ctf_prov_strtab);
fp->ctf_prov_strtab = NULL;
oom_prov_strtab:
ctf_dynhash_destroy (fp->ctf_str_atoms);
fp->ctf_str_atoms = NULL;
return -ENOMEM;
}
/* Destroy the atoms table and associated refs. */
void
ctf_str_free_atoms (ctf_dict_t *fp)
{
ctf_dynhash_destroy (fp->ctf_prov_strtab);
ctf_dynhash_destroy (fp->ctf_str_atoms);
ctf_dynhash_destroy (fp->ctf_str_movable_refs);
}
#define CTF_STR_ADD_REF 0x1
#define CTF_STR_PROVISIONAL 0x2
#define CTF_STR_MOVABLE 0x4
/* Allocate a ref and bind it into a ref list. */
static ctf_str_atom_ref_t *
aref_create (ctf_dict_t *fp, ctf_str_atom_t *atom, uint32_t *ref, int flags)
{
ctf_str_atom_ref_t *aref;
size_t s = sizeof (struct ctf_str_atom_ref);
if (flags & CTF_STR_MOVABLE)
s = sizeof (struct ctf_str_atom_ref_movable);
aref = malloc (s);
if (!aref)
return NULL;
aref->caf_ref = ref;
/* Movable refs get a backpointer to them in ctf_str_movable_refs, and a
pointer to ctf_str_movable_refs itself in the ref, for use when freeing
refs: they can be moved later in batches via a call to
ctf_str_move_refs. */
if (flags & CTF_STR_MOVABLE)
{
ctf_str_atom_ref_movable_t *movref = (ctf_str_atom_ref_movable_t *) aref;
movref->caf_movable_refs = fp->ctf_str_movable_refs;
if (ctf_dynhash_insert (fp->ctf_str_movable_refs, ref, aref) < 0)
{
free (aref);
return NULL;
}
}
ctf_list_append (&atom->csa_refs, aref);
return aref;
}
/* Add a string to the atoms table, copying the passed-in string if
necessary. Return the atom added. Return NULL only when out of memory
(and do not touch the passed-in string in that case).
Possibly add a provisional entry for this string to the provisional
strtab. If the string is in the provisional strtab, update its ref list
with the passed-in ref, causing the ref to be updated when the strtab is
written out. */
static ctf_str_atom_t *
ctf_str_add_ref_internal (ctf_dict_t *fp, const char *str,
int flags, uint32_t *ref)
{
char *newstr = NULL;
ctf_str_atom_t *atom = NULL;
int added = 0;
atom = ctf_dynhash_lookup (fp->ctf_str_atoms, str);
/* Existing atoms get refs added only if they are provisional:
non-provisional strings already have a fixed strtab offset, and just
get their ref updated immediately, since its value cannot change. */
if (atom)
{
if (!ctf_dynhash_lookup (fp->ctf_prov_strtab, (void *) (uintptr_t)
atom->csa_offset))
{
if (flags & CTF_STR_ADD_REF)
{
if (atom->csa_external_offset)
*ref = atom->csa_external_offset;
else
*ref = atom->csa_offset;
}
return atom;
}
if (flags & CTF_STR_ADD_REF)
{
if (!aref_create (fp, atom, ref, flags))
{
ctf_set_errno (fp, ENOMEM);
return NULL;
}
}
return atom;
}
/* New atom. */
if ((atom = malloc (sizeof (struct ctf_str_atom))) == NULL)
goto oom;
memset (atom, 0, sizeof (struct ctf_str_atom));
/* Don't allocate new strings if this string is within an mmapped
strtab. */
if ((unsigned char *) str < (unsigned char *) fp->ctf_data_mmapped
|| (unsigned char *) str > (unsigned char *) fp->ctf_data_mmapped + fp->ctf_data_mmapped_len)
{
if ((newstr = strdup (str)) == NULL)
goto oom;
atom->csa_flags |= CTF_STR_ATOM_FREEABLE;
atom->csa_str = newstr;
}
else
atom->csa_str = (char *) str;
if (ctf_dynhash_insert (fp->ctf_str_atoms, atom->csa_str, atom) < 0)
goto oom;
added = 1;
atom->csa_snapshot_id = fp->ctf_snapshots;
/* New atoms marked provisional go into the provisional strtab, and get a
ref added. */
if (flags & CTF_STR_PROVISIONAL)
{
atom->csa_offset = fp->ctf_str_prov_offset;
if (ctf_dynhash_insert (fp->ctf_prov_strtab, (void *) (uintptr_t)
atom->csa_offset, (void *) atom->csa_str) < 0)
goto oom;
fp->ctf_str_prov_offset += strlen (atom->csa_str) + 1;
if (flags & CTF_STR_ADD_REF)
{
if (!aref_create (fp, atom, ref, flags))
goto oom;
}
}
return atom;
oom:
if (added)
ctf_dynhash_remove (fp->ctf_str_atoms, atom->csa_str);
free (atom);
free (newstr);
ctf_set_errno (fp, ENOMEM);
return NULL;
}
/* Add a string to the atoms table, without augmenting the ref list for this
string: return a 'provisional offset' which can be used to return this string
until ctf_str_write_strtab is called, or 0 on failure. (Everywhere the
provisional offset is assigned to should be added as a ref using
ctf_str_add_ref() as well.) */
uint32_t
ctf_str_add (ctf_dict_t *fp, const char *str)
{
ctf_str_atom_t *atom;
if (!str)
str = "";
atom = ctf_str_add_ref_internal (fp, str, CTF_STR_PROVISIONAL, 0);
if (!atom)
return 0;
return atom->csa_offset;
}
/* Like ctf_str_add(), but additionally augment the atom's refs list with the
passed-in ref, whether or not the string is already present. There is no
attempt to deduplicate the refs list (but duplicates are harmless). */
uint32_t
ctf_str_add_ref (ctf_dict_t *fp, const char *str, uint32_t *ref)
{
ctf_str_atom_t *atom;
if (!str)
str = "";
atom = ctf_str_add_ref_internal (fp, str, CTF_STR_ADD_REF
| CTF_STR_PROVISIONAL, ref);
if (!atom)
return 0;
return atom->csa_offset;
}
/* Like ctf_str_add_ref(), but note that the ref may be moved later on. */
uint32_t
ctf_str_add_movable_ref (ctf_dict_t *fp, const char *str, uint32_t *ref)
{
ctf_str_atom_t *atom;
if (!str)
str = "";
atom = ctf_str_add_ref_internal (fp, str, CTF_STR_ADD_REF
| CTF_STR_PROVISIONAL
| CTF_STR_MOVABLE, ref);
if (!atom)
return 0;
return atom->csa_offset;
}
/* Add an external strtab reference at OFFSET. Returns zero if the addition
failed, nonzero otherwise. */
int
ctf_str_add_external (ctf_dict_t *fp, const char *str, uint32_t offset)
{
ctf_str_atom_t *atom;
if (!str)
str = "";
atom = ctf_str_add_ref_internal (fp, str, 0, 0);
if (!atom)
return 0;
atom->csa_external_offset = CTF_SET_STID (offset, CTF_STRTAB_1);
if (!fp->ctf_syn_ext_strtab)
fp->ctf_syn_ext_strtab = ctf_dynhash_create (ctf_hash_integer,
ctf_hash_eq_integer,
NULL, NULL);
if (!fp->ctf_syn_ext_strtab)
{
ctf_set_errno (fp, ENOMEM);
return 0;
}
if (ctf_dynhash_insert (fp->ctf_syn_ext_strtab,
(void *) (uintptr_t)
atom->csa_external_offset,
(void *) atom->csa_str) < 0)
{
/* No need to bother freeing the syn_ext_strtab: it will get freed at
ctf_str_write_strtab time if unreferenced. */
ctf_set_errno (fp, ENOMEM);
return 0;
}
return 1;
}
/* Note that refs have moved from (SRC, LEN) to DEST. We use the movable
refs backpointer for this, because it is done an amortized-constant
number of times during structure member and enumerand addition, and if we
did a linear search this would turn such addition into an O(n^2)
operation. Even this is not linear, but it's better than that. */
int
ctf_str_move_refs (ctf_dict_t *fp, void *src, size_t len, void *dest)
{
uintptr_t p;
if (src == dest)
return 0;
for (p = (uintptr_t) src; p - (uintptr_t) src < len; p++)
{
ctf_str_atom_ref_t *ref;
if ((ref = ctf_dynhash_lookup (fp->ctf_str_movable_refs,
(ctf_str_atom_ref_t *) p)) != NULL)
{
int out_of_memory;
ref->caf_ref = (uint32_t *) (((uintptr_t) ref->caf_ref +
(uintptr_t) dest - (uintptr_t) src));
ctf_dynhash_remove (fp->ctf_str_movable_refs,
(ctf_str_atom_ref_t *) p);
out_of_memory = ctf_dynhash_insert (fp->ctf_str_movable_refs,
ref->caf_ref, ref);
assert (out_of_memory == 0);
}
}
return 0;
}
/* Remove a single ref. */
void
ctf_str_remove_ref (ctf_dict_t *fp, const char *str, uint32_t *ref)
{
ctf_str_atom_ref_t *aref, *anext;
ctf_str_atom_t *atom = NULL;
atom = ctf_dynhash_lookup (fp->ctf_str_atoms, str);
if (!atom)
return;
for (aref = ctf_list_next (&atom->csa_refs); aref != NULL; aref = anext)
{
anext = ctf_list_next (aref);
if (aref->caf_ref == ref)
{
ctf_list_delete (&atom->csa_refs, aref);
free (aref);
}
}
}
/* A ctf_dynhash_iter_remove() callback that removes atoms later than a given
snapshot ID. External atoms are never removed, because they came from the
linker string table and are still present even if you roll back type
additions. */
static int
ctf_str_rollback_atom (void *key _libctf_unused_, void *value, void *arg)
{
ctf_str_atom_t *atom = (ctf_str_atom_t *) value;
ctf_snapshot_id_t *id = (ctf_snapshot_id_t *) arg;
return (atom->csa_snapshot_id > id->snapshot_id)
&& (atom->csa_external_offset == 0);
}
/* Roll back, deleting all (internal) atoms created after a particular ID. */
void
ctf_str_rollback (ctf_dict_t *fp, ctf_snapshot_id_t id)
{
ctf_dynhash_iter_remove (fp->ctf_str_atoms, ctf_str_rollback_atom, &id);
}
/* An adaptor around ctf_purge_atom_refs. */
static void
ctf_str_purge_one_atom_refs (void *key _libctf_unused_, void *value,
void *arg _libctf_unused_)
{
ctf_str_atom_t *atom = (ctf_str_atom_t *) value;
ctf_str_purge_atom_refs (atom);
}
/* Remove all the recorded refs from the atoms table. */
void
ctf_str_purge_refs (ctf_dict_t *fp)
{
ctf_dynhash_iter (fp->ctf_str_atoms, ctf_str_purge_one_atom_refs, NULL);
}
/* Update a list of refs to the specified value. */
static void
ctf_str_update_refs (ctf_str_atom_t *refs, uint32_t value)
{
ctf_str_atom_ref_t *ref;
for (ref = ctf_list_next (&refs->csa_refs); ref != NULL;
ref = ctf_list_next (ref))
*(ref->caf_ref) = value;
}
/* State shared across the strtab write process. */
typedef struct ctf_strtab_write_state
{
/* Strtab we are writing, and the number of strings in it. */
ctf_strs_writable_t *strtab;
size_t strtab_count;
/* Pointers to (existing) atoms in the atoms table, for qsorting. */
ctf_str_atom_t **sorttab;
/* Loop counter for sorttab population. */
size_t i;
/* The null-string atom (skipped during population). */
ctf_str_atom_t *nullstr;
} ctf_strtab_write_state_t;
/* Count the number of entries in the strtab, and its length. */
static void
ctf_str_count_strtab (void *key _libctf_unused_, void *value,
void *arg)
{
ctf_str_atom_t *atom = (ctf_str_atom_t *) value;
ctf_strtab_write_state_t *s = (ctf_strtab_write_state_t *) arg;
/* We only factor in the length of items that have no offset and have refs:
other items are in the external strtab, or will simply not be written out
at all. They still contribute to the total count, though, because we still
have to sort them. We add in the null string's length explicitly, outside
this function, since it is explicitly written out even if it has no refs at
all. */
if (s->nullstr == atom)
{
s->strtab_count++;
return;
}
if (!ctf_list_empty_p (&atom->csa_refs))
{
if (!atom->csa_external_offset)
s->strtab->cts_len += strlen (atom->csa_str) + 1;
s->strtab_count++;
}
}
/* Populate the sorttab with pointers to the strtab atoms. */
static void
ctf_str_populate_sorttab (void *key _libctf_unused_, void *value,
void *arg)
{
ctf_str_atom_t *atom = (ctf_str_atom_t *) value;
ctf_strtab_write_state_t *s = (ctf_strtab_write_state_t *) arg;
/* Skip the null string. */
if (s->nullstr == atom)
return;
/* Skip atoms with no refs. */
if (!ctf_list_empty_p (&atom->csa_refs))
s->sorttab[s->i++] = atom;
}
/* Sort the strtab. */
static int
ctf_str_sort_strtab (const void *a, const void *b)
{
ctf_str_atom_t **one = (ctf_str_atom_t **) a;
ctf_str_atom_t **two = (ctf_str_atom_t **) b;
return (strcmp ((*one)->csa_str, (*two)->csa_str));
}
/* Write out and return a strtab containing all strings with recorded refs,
adjusting the refs to refer to the corresponding string. The returned strtab
may be NULL on error. Also populate the synthetic strtab with mappings from
external strtab offsets to names, so we can look them up with ctf_strptr().
Only external strtab offsets with references are added. */
ctf_strs_writable_t
ctf_str_write_strtab (ctf_dict_t *fp)
{
ctf_strs_writable_t strtab;
ctf_str_atom_t *nullstr;
uint32_t cur_stroff = 0;
ctf_strtab_write_state_t s;
ctf_str_atom_t **sorttab;
size_t i;
int any_external = 0;
memset (&strtab, 0, sizeof (struct ctf_strs_writable));
memset (&s, 0, sizeof (struct ctf_strtab_write_state));
s.strtab = &strtab;
nullstr = ctf_dynhash_lookup (fp->ctf_str_atoms, "");
if (!nullstr)
{
ctf_err_warn (fp, 0, ECTF_INTERNAL, _("null string not found in strtab"));
strtab.cts_strs = NULL;
return strtab;
}
s.nullstr = nullstr;
ctf_dynhash_iter (fp->ctf_str_atoms, ctf_str_count_strtab, &s);
strtab.cts_len++; /* For the null string. */
ctf_dprintf ("%lu bytes of strings in strtab.\n",
(unsigned long) strtab.cts_len);
/* Sort the strtab. Force the null string to be first. */
sorttab = calloc (s.strtab_count, sizeof (ctf_str_atom_t *));
if (!sorttab)
goto oom;
sorttab[0] = nullstr;
s.i = 1;
s.sorttab = sorttab;
ctf_dynhash_iter (fp->ctf_str_atoms, ctf_str_populate_sorttab, &s);
qsort (&sorttab[1], s.strtab_count - 1, sizeof (ctf_str_atom_t *),
ctf_str_sort_strtab);
if ((strtab.cts_strs = malloc (strtab.cts_len)) == NULL)
goto oom_sorttab;
/* Update all refs: also update the strtab appropriately. */
for (i = 0; i < s.strtab_count; i++)
{
if (sorttab[i]->csa_external_offset)
{
/* External strtab entry. */
any_external = 1;
ctf_str_update_refs (sorttab[i], sorttab[i]->csa_external_offset);
sorttab[i]->csa_offset = sorttab[i]->csa_external_offset;
}
else
{
/* Internal strtab entry with refs: actually add to the string
table. */
ctf_str_update_refs (sorttab[i], cur_stroff);
sorttab[i]->csa_offset = cur_stroff;
strcpy (&strtab.cts_strs[cur_stroff], sorttab[i]->csa_str);
cur_stroff += strlen (sorttab[i]->csa_str) + 1;
}
}
free (sorttab);
if (!any_external)
{
ctf_dynhash_destroy (fp->ctf_syn_ext_strtab);
fp->ctf_syn_ext_strtab = NULL;
}
/* All the provisional strtab entries are now real strtab entries, and
ctf_strptr() will find them there. The provisional offset now starts right
beyond the new end of the strtab. */
ctf_dynhash_empty (fp->ctf_prov_strtab);
fp->ctf_str_prov_offset = strtab.cts_len + 1;
return strtab;
oom_sorttab:
free (sorttab);
oom:
return strtab;
}