forked from Imagelibrary/binutils-gdb
I (Andrew Burgess) have taken this patch from this series: https://inbox.sourceware.org/gdb-patches/20211022071933.3478427-1-m.weghorn@posteo.de/ I started off reviewing that series, but wanted to explore some alternative strategies for solving the problems this series addresses. However, this patch I think is super useful, so I've taken it mostly as it was in the original series. I have made a few minor cleanups, and I've also added some more tests. Any bugs should be considered mine (Andrew's), but I've left the original author (Michael Weghorn) in place as the GDB side changes are mostly their work. The function execv_argv::init_for_no_shell (gdb/nat/fork-inferior.c), is passed a single string ALLARGS containing all of the inferior arguments, and contains some custom code for splitting this argument string into a vector of separate arguments. This function is used when startup-with-shell is off (which is not the default). The algorithm in this function was just splitting on whitespace characters, and ignoring any quoting, so for example: (gdb) set startup-with-shell off (gdb) set args "first arg" second_arg would result in three arguments ("first), (arg"), and (second_arg) being passed to the inferior (the parenthesis are not part of the parsed arguments). This commit replaces this custom argument splitting with a use of the existing gdb_argv class (which uses the libiberty buildargv function). This does a better job of supporting quoting and escaping, so for the example given above we now pass two arguments (first arg) and (second_arg), which is certainly what I would have expected as a GDB user. This commit changes the 'execv_argv' class accordingly and drops the optimization to have all the 'char *' in 'm_argv' point to a single string rather than allocating a separate string for each arg. This is needed because we are now going to be stripping some escaping from the arguments, for example: (gdb) set startup-with-shell off (gdb) set args "literal \$" In this case we will pass the single argument (literal $) to the inferior, the escaping backslash will be removed. This might seem strange as usually the backslash would be stripped by the shell, and now we have no shell. However, I think the consistent behaviour is a good thing; whether we start with a shell or not the escaping will be removed. Using gdb_argv will mean that quote characters are also stripped. If we consider the first example again: (gdb) set startup-with-shell off (gdb) set args "first arg" second_arg This is now going to pass (first arg) and (second_arg), the quotes have been removed. If the user did want the original behaviour then they are going to have to now do this: (gdb) set startup-with-shell off (gdb) set args \"first arg\" second_arg or they could do this: (gdb) set startup-with-shell off (gdb) set args '"first' 'arg"' second_arg This commit also extends the three tests that cover inferior argument passing to cover the case where 'startup-with-shell' is off. All of these new tests pass for native targets, but there are still problems when using remote targets. The remote target problems arise because of how escaping is handled while passing arguments to remote targets. I have a larger series that aims to address this issue: https://inbox.sourceware.org/gdb-patches/cover.1730731085.git.aburgess@redhat.com This patch was originally part of that series, but getting a 14 patch series reviewed is not easy, so I've pulled this patch out on its own for now, and the new tests are (rather crudely) disabled for remote targets. My hope is to work through my 14 patch series posting all of the patches in smaller groups, which will hopefully make reviewing easier. As more of that series gets merged, the remote argument handling will improve, before, eventually, no tests will need to be disabled. Co-Authored-By: Andrew Burgess <aburgess@redhat.com> Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28392 Tested-By: Guinevere Larsen <guinevere@redhat.com> Reviewed-By: Keith Seitz <keiths@redhat.com>
544 lines
15 KiB
C
544 lines
15 KiB
C
/* Fork a Unix child process, and set up to debug it, for GDB and GDBserver.
|
|
|
|
Copyright (C) 1990-2024 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "fork-inferior.h"
|
|
#include "target/waitstatus.h"
|
|
#include "gdbsupport/filestuff.h"
|
|
#include "target/target.h"
|
|
#include "gdbsupport/common-inferior.h"
|
|
#include "gdbsupport/common-gdbthread.h"
|
|
#include "gdbsupport/pathstuff.h"
|
|
#include "gdbsupport/signals-state-save-restore.h"
|
|
#include "gdbsupport/gdb_tilde_expand.h"
|
|
#include "gdbsupport/gdb_signals.h"
|
|
#include "gdbsupport/buildargv.h"
|
|
#include "gdbsupport/gdb_argv_vec.h"
|
|
#include <vector>
|
|
|
|
extern char **environ;
|
|
|
|
/* Build the argument vector for execv(3). */
|
|
|
|
class execv_argv
|
|
{
|
|
public:
|
|
/* EXEC_FILE is the file to run. ALLARGS is a string containing the
|
|
arguments to the program. If starting with a shell, SHELL_FILE
|
|
is the shell to run. Otherwise, SHELL_FILE is NULL. */
|
|
execv_argv (const char *exec_file, const std::string &allargs,
|
|
const char *shell_file);
|
|
|
|
/* Return a pointer to the built argv, in the type expected by
|
|
execv. The result is (only) valid for as long as this execv_argv
|
|
object is live. We return a "char **" because that's the type
|
|
that the execv functions expect. Note that it is guaranteed that
|
|
the execv functions do not modify the argv[] array nor the
|
|
strings to which the array point. */
|
|
char **argv ()
|
|
{
|
|
return m_argv.argv ();
|
|
}
|
|
|
|
private:
|
|
DISABLE_COPY_AND_ASSIGN (execv_argv);
|
|
|
|
/* Helper methods for constructing the argument vector. */
|
|
|
|
/* Used when building an argv for a straight execv call, without
|
|
going via the shell. */
|
|
void init_for_no_shell (const char *exec_file,
|
|
const std::string &allargs);
|
|
|
|
/* Used when building an argv for execing a shell that execs the
|
|
child program. */
|
|
void init_for_shell (const char *exec_file,
|
|
const std::string &allargs,
|
|
const char *shell_file);
|
|
|
|
/* The argument vector. This owns the strings within it. */
|
|
gdb::argv_vec m_argv;
|
|
};
|
|
|
|
/* Create argument vector for straight call to execvp. Breaks up ALLARGS
|
|
into an argument vector suitable for passing to execvp and stores it in
|
|
M_ARGV. EXEC_FILE is the executable to be run.
|
|
|
|
E.g., if EXEC_FILE is "foo", and the user does "run a b c d" then
|
|
ALLARGS would be "a b c d", and this function would fill M_ARGV with
|
|
give arguments "foo", "a", "b", "c", and "d". */
|
|
|
|
void
|
|
execv_argv::init_for_no_shell (const char *exec_file,
|
|
const std::string &allargs)
|
|
{
|
|
m_argv.push_back (xstrdup (exec_file));
|
|
|
|
gdb_argv argv (allargs.c_str ());
|
|
|
|
for (const auto &a : argv)
|
|
m_argv.push_back (xstrdup (a));
|
|
|
|
/* NULL-terminate the vector. */
|
|
m_argv.push_back (NULL);
|
|
}
|
|
|
|
/* When executing a command under the given shell, return true if the
|
|
'!' character should be escaped when embedded in a quoted
|
|
command-line argument. */
|
|
|
|
static bool
|
|
escape_bang_in_quoted_argument (const char *shell_file)
|
|
{
|
|
size_t shell_file_len = strlen (shell_file);
|
|
|
|
/* Bang should be escaped only in C Shells. For now, simply check
|
|
that the shell name ends with 'csh', which covers at least csh
|
|
and tcsh. This should be good enough for now. */
|
|
|
|
if (shell_file_len < 3)
|
|
return false;
|
|
|
|
if (shell_file[shell_file_len - 3] == 'c'
|
|
&& shell_file[shell_file_len - 2] == 's'
|
|
&& shell_file[shell_file_len - 1] == 'h')
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* See declaration. */
|
|
|
|
execv_argv::execv_argv (const char *exec_file,
|
|
const std::string &allargs,
|
|
const char *shell_file)
|
|
{
|
|
if (shell_file == NULL)
|
|
init_for_no_shell (exec_file, allargs);
|
|
else
|
|
init_for_shell (exec_file, allargs, shell_file);
|
|
}
|
|
|
|
/* See declaration. */
|
|
|
|
void
|
|
execv_argv::init_for_shell (const char *exec_file,
|
|
const std::string &allargs,
|
|
const char *shell_file)
|
|
{
|
|
const char *exec_wrapper = get_exec_wrapper ();
|
|
|
|
/* We're going to call a shell. */
|
|
bool escape_bang = escape_bang_in_quoted_argument (shell_file);
|
|
|
|
std::string shell_command = "exec ";
|
|
|
|
/* Add any exec wrapper. That may be a program name with arguments,
|
|
so the user must handle quoting. */
|
|
if (exec_wrapper != NULL)
|
|
{
|
|
shell_command += exec_wrapper;
|
|
shell_command += ' ';
|
|
}
|
|
|
|
/* Now add exec_file, quoting as necessary. */
|
|
|
|
/* Quoting in this style is said to work with all shells. But csh
|
|
on IRIX 4.0.1 can't deal with it. So we only quote it if we need
|
|
to. */
|
|
bool need_to_quote;
|
|
const char *p = exec_file;
|
|
while (1)
|
|
{
|
|
switch (*p)
|
|
{
|
|
case '\'':
|
|
case '!':
|
|
case '"':
|
|
case '(':
|
|
case ')':
|
|
case '$':
|
|
case '&':
|
|
case ';':
|
|
case '<':
|
|
case '>':
|
|
case ' ':
|
|
case '\n':
|
|
case '\t':
|
|
need_to_quote = true;
|
|
goto end_scan;
|
|
|
|
case '\0':
|
|
need_to_quote = false;
|
|
goto end_scan;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
++p;
|
|
}
|
|
end_scan:
|
|
if (need_to_quote)
|
|
{
|
|
shell_command += '\'';
|
|
for (p = exec_file; *p != '\0'; ++p)
|
|
{
|
|
if (*p == '\'')
|
|
shell_command += "'\\''";
|
|
else if (*p == '!' && escape_bang)
|
|
shell_command += "\\!";
|
|
else
|
|
shell_command += *p;
|
|
}
|
|
shell_command += '\'';
|
|
}
|
|
else
|
|
shell_command += exec_file;
|
|
|
|
shell_command += ' ' + allargs;
|
|
|
|
/* If we decided above to start up with a shell, we exec the shell.
|
|
"-c" says to interpret the next arg as a shell command to
|
|
execute, and this command is "exec <target-program> <args>". */
|
|
m_argv.push_back (xstrdup (shell_file));
|
|
m_argv.push_back (xstrdup ("-c"));
|
|
m_argv.push_back (xstrdup (shell_command.c_str ()));
|
|
m_argv.push_back (NULL);
|
|
}
|
|
|
|
/* See nat/fork-inferior.h. */
|
|
|
|
pid_t
|
|
fork_inferior (const char *exec_file, const std::string &allargs, char **env,
|
|
traceme_ftype traceme_fun, init_trace_ftype init_trace_fun,
|
|
pre_trace_ftype pre_trace_fun, const char *shell_file_arg,
|
|
exec_ftype exec_fun)
|
|
{
|
|
pid_t pid;
|
|
/* Set debug_fork then attach to the child while it sleeps, to debug. */
|
|
int debug_fork = 0;
|
|
const char *shell_file;
|
|
char **save_our_env;
|
|
int i;
|
|
int save_errno;
|
|
|
|
gdb_assert (exec_file != nullptr);
|
|
|
|
/* 'startup_with_shell' is declared in inferior.h and bound to the
|
|
"set startup-with-shell" option. If 0, we'll just do a
|
|
fork/exec, no shell, so don't bother figuring out what shell. */
|
|
if (startup_with_shell)
|
|
{
|
|
shell_file = shell_file_arg;
|
|
|
|
/* Figure out what shell to start up the user program under. */
|
|
if (shell_file == NULL)
|
|
shell_file = get_shell ();
|
|
|
|
gdb_assert (shell_file != NULL);
|
|
}
|
|
else
|
|
shell_file = NULL;
|
|
|
|
/* Build the argument vector. */
|
|
execv_argv child_argv (exec_file, allargs, shell_file);
|
|
|
|
/* Retain a copy of our environment variables, since the child will
|
|
replace the value of environ and if we're vforked, we have to
|
|
restore it. */
|
|
save_our_env = environ;
|
|
|
|
/* Perform any necessary actions regarding to TTY before the
|
|
fork/vfork call. */
|
|
prefork_hook (allargs.c_str ());
|
|
|
|
/* It is generally good practice to flush any possible pending stdio
|
|
output prior to doing a fork, to avoid the possibility of both
|
|
the parent and child flushing the same data after the fork. */
|
|
gdb_flush_out_err ();
|
|
|
|
/* Check if the user wants to set a different working directory for
|
|
the inferior. */
|
|
std::string inferior_cwd = get_inferior_cwd ();
|
|
|
|
if (!inferior_cwd.empty ())
|
|
{
|
|
/* Expand before forking because between fork and exec, the child
|
|
process may only execute async-signal-safe operations. */
|
|
inferior_cwd = gdb_tilde_expand (inferior_cwd);
|
|
}
|
|
|
|
/* If there's any initialization of the target layers that must
|
|
happen to prepare to handle the child we're about fork, do it
|
|
now... */
|
|
if (pre_trace_fun != NULL)
|
|
pre_trace_fun ();
|
|
|
|
/* Create the child process. Since the child process is going to
|
|
exec(3) shortly afterwards, try to reduce the overhead by
|
|
calling vfork(2). However, if PRE_TRACE_FUN is non-null, it's
|
|
likely that this optimization won't work since there's too much
|
|
work to do between the vfork(2) and the exec(3). This is known
|
|
to be the case on ttrace(2)-based HP-UX, where some handshaking
|
|
between parent and child needs to happen between fork(2) and
|
|
exec(2). However, since the parent is suspended in the vforked
|
|
state, this doesn't work. Also note that the vfork(2) call might
|
|
actually be a call to fork(2) due to the fact that autoconf will
|
|
``#define vfork fork'' on certain platforms. */
|
|
#if !(defined(__UCLIBC__) && defined(HAS_NOMMU))
|
|
if (pre_trace_fun || debug_fork)
|
|
pid = fork ();
|
|
else
|
|
#endif
|
|
pid = vfork ();
|
|
|
|
if (pid < 0)
|
|
perror_with_name (("vfork"));
|
|
|
|
if (pid == 0)
|
|
{
|
|
/* Close all file descriptors except those that gdb inherited
|
|
(usually 0/1/2), so they don't leak to the inferior. Note
|
|
that this closes the file descriptors of all secondary
|
|
UIs. */
|
|
close_most_fds ();
|
|
|
|
/* Change to the requested working directory if the user
|
|
requested it. */
|
|
if (!inferior_cwd.empty ())
|
|
{
|
|
if (chdir (inferior_cwd.c_str ()) < 0)
|
|
trace_start_error_with_name (inferior_cwd.c_str ());
|
|
}
|
|
|
|
if (debug_fork)
|
|
sleep (debug_fork);
|
|
|
|
/* Execute any necessary post-fork actions before we exec. */
|
|
postfork_child_hook ();
|
|
|
|
/* Changing the signal handlers for the inferior after
|
|
a vfork can also change them for the superior, so we don't mess
|
|
with signals here. See comments in
|
|
initialize_signals for how we get the right signal handlers
|
|
for the inferior. */
|
|
|
|
/* "Trace me, Dr. Memory!" */
|
|
traceme_fun ();
|
|
|
|
/* The call above set this process (the "child") as debuggable
|
|
by the original gdb process (the "parent"). Since processes
|
|
(unlike people) can have only one parent, if you are debugging
|
|
gdb itself (and your debugger is thus _already_ the
|
|
controller/parent for this child), code from here on out is
|
|
undebuggable. Indeed, you probably got an error message
|
|
saying "not parent". Sorry; you'll have to use print
|
|
statements! */
|
|
|
|
restore_original_signals_state ();
|
|
|
|
/* There is no execlpe call, so we have to set the environment
|
|
for our child in the global variable. If we've vforked, this
|
|
clobbers the parent, but environ is restored a few lines down
|
|
in the parent. By the way, yes we do need to look down the
|
|
path to find $SHELL. Rich Pixley says so, and I agree. */
|
|
environ = env;
|
|
|
|
char **argv = child_argv.argv ();
|
|
|
|
if (exec_fun != NULL)
|
|
exec_fun (argv[0], &argv[0], env);
|
|
else
|
|
execvp (argv[0], &argv[0]);
|
|
|
|
/* If we get here, it's an error. */
|
|
save_errno = errno;
|
|
warning ("Cannot exec %s", argv[0]);
|
|
|
|
for (i = 1; argv[i] != NULL; i++)
|
|
warning (" %s", argv[i]);
|
|
|
|
warning ("Error: %s", safe_strerror (save_errno));
|
|
|
|
_exit (0177);
|
|
}
|
|
|
|
/* Restore our environment in case a vforked child clob'd it. */
|
|
environ = save_our_env;
|
|
|
|
postfork_hook (pid);
|
|
|
|
/* Now that we have a child process, make it our target, and
|
|
initialize anything target-vector-specific that needs
|
|
initializing. */
|
|
if (init_trace_fun)
|
|
init_trace_fun (pid);
|
|
|
|
/* We are now in the child process of interest, having exec'd the
|
|
correct program, and are poised at the first instruction of the
|
|
new program. */
|
|
return pid;
|
|
}
|
|
|
|
/* See nat/fork-inferior.h. */
|
|
|
|
ptid_t
|
|
startup_inferior (process_stratum_target *proc_target, pid_t pid, int ntraps,
|
|
struct target_waitstatus *last_waitstatus,
|
|
ptid_t *last_ptid)
|
|
{
|
|
int pending_execs = ntraps;
|
|
int terminal_initted = 0;
|
|
ptid_t resume_ptid;
|
|
|
|
if (startup_with_shell)
|
|
{
|
|
/* One trap extra for exec'ing the shell. */
|
|
pending_execs++;
|
|
}
|
|
|
|
if (target_supports_multi_process ())
|
|
resume_ptid = ptid_t (pid);
|
|
else
|
|
resume_ptid = minus_one_ptid;
|
|
|
|
/* The process was started by the fork that created it, but it will
|
|
have stopped one instruction after execing the shell. Here we
|
|
must get it up to actual execution of the real program. */
|
|
if (get_exec_wrapper () != NULL)
|
|
pending_execs++;
|
|
|
|
while (1)
|
|
{
|
|
enum gdb_signal resume_signal = GDB_SIGNAL_0;
|
|
ptid_t event_ptid;
|
|
|
|
struct target_waitstatus ws;
|
|
event_ptid = target_wait (resume_ptid, &ws, 0);
|
|
|
|
if (last_waitstatus != NULL)
|
|
*last_waitstatus = ws;
|
|
if (last_ptid != NULL)
|
|
*last_ptid = event_ptid;
|
|
|
|
if (ws.kind () == TARGET_WAITKIND_IGNORE)
|
|
/* The inferior didn't really stop, keep waiting. */
|
|
continue;
|
|
|
|
switch (ws.kind ())
|
|
{
|
|
case TARGET_WAITKIND_SPURIOUS:
|
|
case TARGET_WAITKIND_LOADED:
|
|
case TARGET_WAITKIND_FORKED:
|
|
case TARGET_WAITKIND_VFORKED:
|
|
case TARGET_WAITKIND_SYSCALL_ENTRY:
|
|
case TARGET_WAITKIND_SYSCALL_RETURN:
|
|
/* Ignore gracefully during startup of the inferior. */
|
|
switch_to_thread (proc_target, event_ptid);
|
|
break;
|
|
|
|
case TARGET_WAITKIND_SIGNALLED:
|
|
target_terminal::ours ();
|
|
target_mourn_inferior (event_ptid);
|
|
error (_("During startup program terminated with signal %s, %s."),
|
|
gdb_signal_to_name (ws.sig ()),
|
|
gdb_signal_to_string (ws.sig ()));
|
|
return resume_ptid;
|
|
|
|
case TARGET_WAITKIND_EXITED:
|
|
target_terminal::ours ();
|
|
target_mourn_inferior (event_ptid);
|
|
if (ws.exit_status ())
|
|
error (_("During startup program exited with code %d."),
|
|
ws.exit_status ());
|
|
else
|
|
error (_("During startup program exited normally."));
|
|
return resume_ptid;
|
|
|
|
case TARGET_WAITKIND_EXECD:
|
|
/* Handle EXEC signals as if they were SIGTRAP signals. */
|
|
resume_signal = GDB_SIGNAL_TRAP;
|
|
switch_to_thread (proc_target, event_ptid);
|
|
break;
|
|
|
|
case TARGET_WAITKIND_STOPPED:
|
|
resume_signal = ws.sig ();
|
|
switch_to_thread (proc_target, event_ptid);
|
|
break;
|
|
}
|
|
|
|
if (resume_signal != GDB_SIGNAL_TRAP)
|
|
{
|
|
/* Let shell child handle its own signals in its own way. */
|
|
target_continue (resume_ptid, resume_signal);
|
|
}
|
|
else
|
|
{
|
|
/* We handle SIGTRAP, however; it means child did an exec. */
|
|
if (!terminal_initted)
|
|
{
|
|
/* Now that the child has exec'd we know it has already
|
|
set its process group. On POSIX systems, tcsetpgrp
|
|
will fail with EPERM if we try it before the child's
|
|
setpgid. */
|
|
|
|
/* Set up the "saved terminal modes" of the inferior
|
|
based on what modes we are starting it with. */
|
|
target_terminal::init ();
|
|
|
|
/* Install inferior's terminal modes. */
|
|
target_terminal::inferior ();
|
|
|
|
terminal_initted = 1;
|
|
}
|
|
|
|
if (--pending_execs == 0)
|
|
break;
|
|
|
|
/* Just make it go on. */
|
|
target_continue_no_signal (resume_ptid);
|
|
}
|
|
}
|
|
|
|
return resume_ptid;
|
|
}
|
|
|
|
/* See nat/fork-inferior.h. */
|
|
|
|
void
|
|
trace_start_error (const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start (ap, fmt);
|
|
warning ("Could not trace the inferior process.");
|
|
vwarning (fmt, ap);
|
|
va_end (ap);
|
|
|
|
gdb_flush_out_err ();
|
|
_exit (0177);
|
|
}
|
|
|
|
/* See nat/fork-inferior.h. */
|
|
|
|
void
|
|
trace_start_error_with_name (const char *string)
|
|
{
|
|
trace_start_error ("%s: %s", string, safe_strerror (errno));
|
|
}
|