/* Simple data structure utilities and helpers. Copyright (C) 2019-2025 Free Software Foundation, Inc. This file is part of libctf. libctf is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not see . */ #include #include #include "ctf-endian.h" /* Simple doubly-linked list append routine. This implementation assumes that each list element contains an embedded ctf_list_t as the first member. An additional ctf_list_t is used to store the head (l_next) and tail (l_prev) pointers. The current head and tail list elements have their previous and next pointers set to NULL, respectively. */ void ctf_list_append (ctf_list_t *lp, void *newp) { ctf_list_t *p = lp->l_prev; /* p = tail list element. */ ctf_list_t *q = newp; /* q = new list element. */ lp->l_prev = q; q->l_prev = p; q->l_next = NULL; if (p != NULL) p->l_next = q; else lp->l_next = q; } /* Prepend the specified existing element to the given ctf_list_t. The existing pointer should be pointing at a struct with embedded ctf_list_t. */ void ctf_list_prepend (ctf_list_t * lp, void *newp) { ctf_list_t *p = newp; /* p = new list element. */ ctf_list_t *q = lp->l_next; /* q = head list element. */ lp->l_next = p; p->l_prev = NULL; p->l_next = q; if (q != NULL) q->l_prev = p; else lp->l_prev = p; } /* Delete the specified existing element from the given ctf_list_t. The existing pointer should be pointing at a struct with embedded ctf_list_t. */ void ctf_list_delete (ctf_list_t *lp, void *existing) { ctf_list_t *p = existing; if (p->l_prev != NULL) p->l_prev->l_next = p->l_next; else lp->l_next = p->l_next; if (p->l_next != NULL) p->l_next->l_prev = p->l_prev; else lp->l_prev = p->l_prev; } /* Return 1 if the list is empty. */ int ctf_list_empty_p (ctf_list_t *lp) { return (lp->l_next == NULL && lp->l_prev == NULL); } /* Splice one entire list onto the end of another one. The existing list is emptied. */ void ctf_list_splice (ctf_list_t *lp, ctf_list_t *append) { if (ctf_list_empty_p (append)) return; if (lp->l_prev != NULL) lp->l_prev->l_next = append->l_next; else lp->l_next = append->l_next; append->l_next->l_prev = lp->l_prev; lp->l_prev = append->l_prev; append->l_next = NULL; append->l_prev = NULL; } /* A string appender working on dynamic strings. Returns NULL on OOM. */ char * ctf_str_append (char *s, const char *append) { size_t s_len = 0; if (append == NULL) return s; if (s != NULL) s_len = strlen (s); size_t append_len = strlen (append); if ((s = realloc (s, s_len + append_len + 1)) == NULL) return NULL; memcpy (s + s_len, append, append_len); s[s_len + append_len] = '\0'; return s; } /* A version of ctf_str_append that returns the old string on OOM. */ char * ctf_str_append_noerr (char *s, const char *append) { char *new_s; new_s = ctf_str_append (s, append); if (!new_s) return s; return new_s; } /* Initialize the ref system. */ int ctf_init_refs (ctf_dict_t *fp) { fp->ctf_movable_refs = ctf_dynhash_create (ctf_hash_integer, ctf_hash_eq_integer, NULL, NULL); if (!fp->ctf_movable_refs) return -ENOMEM; return 0; } /* Destroy the ref system. */ void ctf_free_refs (ctf_dict_t *fp) { ctf_dynhash_destroy (fp->ctf_movable_refs); } /* Allocate a ref and bind it into a ref list. Does not actually initialize anything through the ref: the caller must do that. */ ctf_ref_t * ctf_create_ref (ctf_dict_t *fp, ctf_list_t *reflist, uint32_t *ref, int movable) { ctf_ref_t *aref; aref = malloc (sizeof (struct ctf_ref)); if (!aref) return NULL; aref->cre_ref = ref; /* Movable refs get a backpointer to them in ctf_movable_refs: they can be moved later in batches via a call to ctf_move_refs. */ if (movable) { if (ctf_dynhash_insert (fp->ctf_movable_refs, ref, aref) < 0) { free (aref); return NULL; } } ctf_list_append (reflist, aref); return aref; } /* Note that refs have moved from (SRC, LEN) to DEST. We use the movable refs backpointer for this, because it is done an amortized-constant number of times during structure member and enumerand addition, and if we did a linear search this would turn such addition into an O(n^2) operation. */ int ctf_move_refs (ctf_dict_t *fp, void *src, size_t len, void *dest) { uintptr_t p; if (src == dest) return 0; for (p = (uintptr_t) src; p - (uintptr_t) src < len; p++) { ctf_ref_t *ref; if ((ref = ctf_dynhash_lookup (fp->ctf_movable_refs, (ctf_ref_t *) p)) != NULL) { int out_of_memory; ref->cre_ref = (uint32_t *) (((uintptr_t) ref->cre_ref + (uintptr_t) dest - (uintptr_t) src)); ctf_dynhash_remove (fp->ctf_movable_refs, (ctf_ref_t *) p); out_of_memory = ctf_dynhash_insert (fp->ctf_movable_refs, ref->cre_ref, ref); assert (out_of_memory == 0); } } return 0; } /* Remove a single ref. */ void ctf_remove_ref (ctf_dict_t *fp, ctf_list_t *reflist, uint32_t *ref) { ctf_ref_t *aref, *anext; for (aref = ctf_list_next (reflist); aref != NULL; aref = anext) { anext = ctf_list_next (aref); if (aref->cre_ref == ref) { ctf_list_delete (reflist, aref); ctf_dynhash_remove (fp->ctf_movable_refs, ref); free (aref); } } } /* Remove all refs to a given entity. */ void ctf_purge_ref_list (ctf_dict_t *fp, ctf_list_t *reflist) { ctf_ref_t *ref, *next; for (ref = ctf_list_next (reflist); ref != NULL; ref = next) { next = ctf_list_next (ref); ctf_list_delete (reflist, ref); ctf_dynhash_remove (fp->ctf_movable_refs, ref); free (ref); } } /* Update a list of refs to the specified value. */ void ctf_update_refs (ctf_list_t *reflist, uint32_t value) { ctf_ref_t *ref; for (ref = ctf_list_next (reflist); ref != NULL; ref = ctf_list_next (ref)) *(ref->cre_ref) = value; } /* Create a ctf_next_t. */ ctf_next_t * ctf_next_create (void) { return calloc (1, sizeof (struct ctf_next)); } /* Destroy a ctf_next_t, for early exit from iterators. */ void ctf_next_destroy (ctf_next_t *i) { if (i == NULL) return; if (i->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted) free (i->u.ctn_sorted_hkv); if (i->ctn_next) ctf_next_destroy (i->ctn_next); if (i->ctn_next_inner) ctf_next_destroy (i->ctn_next_inner); free (i); } /* Copy a ctf_next_t. */ ctf_next_t * ctf_next_copy (ctf_next_t *i) { ctf_next_t *i2; if ((i2 = ctf_next_create()) == NULL) return NULL; memcpy (i2, i, sizeof (struct ctf_next)); if (i2->ctn_next) { i2->ctn_next = ctf_next_copy (i2->ctn_next); if (i2->ctn_next == NULL) goto err_next; } if (i2->ctn_next_inner) { i2->ctn_next_inner = ctf_next_copy (i2->ctn_next_inner); if (i2->ctn_next_inner == NULL) goto err_next_inner; } if (i2->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted) { size_t els = ctf_dynhash_elements ((ctf_dynhash_t *) i->cu.ctn_h); if ((i2->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL) goto err_sorted_hkv; memcpy (i2->u.ctn_sorted_hkv, i->u.ctn_sorted_hkv, els * sizeof (ctf_next_hkv_t)); } return i2; err_sorted_hkv: ctf_next_destroy (i2->ctn_next_inner); err_next_inner: ctf_next_destroy (i2->ctn_next); err_next: ctf_next_destroy (i2); return NULL; }