Move some declarations related to the "quit" machinery from defs.h to
event-top.h. Most of the definitions associated to these declarations
are in event-top.c. The exceptions are `quit()` and `maybe_quit()`,
that are defined in utils.c. For consistency, move these two
definitions to event-top.c.
Include "event-top.h" in many files that use these things.
Change-Id: I6594f6df9047a9a480e7b9934275d186afb14378
Approved-By: Tom Tromey <tom@tromey.com>
Now that defs.h, server.h and common-defs.h are included via the
`-include` option, it is no longer necessary for source files to include
them. Remove all the inclusions of these files I could find. Update
the generation scripts where relevant.
Change-Id: Ia026cff269c1b7ae7386dd3619bc9bb6a5332837
Approved-By: Pedro Alves <pedro@palves.net>
We currently pass frames to function by value, as `frame_info_ptr`.
This is somewhat expensive:
- the size of `frame_info_ptr` is 64 bytes, which is a bit big to pass
by value
- the constructors and destructor link/unlink the object in the global
`frame_info_ptr::frame_list` list. This is an `intrusive_list`, so
it's not so bad: it's just assigning a few points, there's no memory
allocation as if it was `std::list`, but still it's useless to do
that over and over.
As suggested by Tom Tromey, change many function signatures to accept
`const frame_info_ptr &` instead of `frame_info_ptr`.
Some functions reassign their `frame_info_ptr` parameter, like:
void
the_func (frame_info_ptr frame)
{
for (; frame != nullptr; frame = get_prev_frame (frame))
{
...
}
}
I wondered what to do about them, do I leave them as-is or change them
(and need to introduce a separate local variable that can be
re-assigned). I opted for the later for consistency. It might not be
clear why some functions take `const frame_info_ptr &` while others take
`frame_info_ptr`. Also, if a function took a `frame_info_ptr` because
it did re-assign its parameter, I doubt that we would think to change it
to `const frame_info_ptr &` should the implementation change such that
it doesn't need to take `frame_info_ptr` anymore. It seems better to
have a simple rule and apply it everywhere.
Change-Id: I59d10addef687d157f82ccf4d54f5dde9a963fd0
Approved-By: Andrew Burgess <aburgess@redhat.com>
Starting with C++17, emplace_back returns a reference to the new
object. This patch changes code that uses emplace_back followed by a
call to back() to simply use this reference instead.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
This commit is the result of the following actions:
- Running gdb/copyright.py to update all of the copyright headers to
include 2024,
- Manually updating a few files the copyright.py script told me to
update, these files had copyright headers embedded within the
file,
- Regenerating gdbsupport/Makefile.in to refresh it's copyright
date,
- Using grep to find other files that still mentioned 2023. If
these files were updated last year from 2022 to 2023 then I've
updated them this year to 2024.
I'm sure I've probably missed some dates. Feel free to fix them up as
you spot them.
Similar to the previous patches, change get_frame_register_bytes to take
the "next frame" instead of "this frame".
Change-Id: Ie8f35042bfa6e93565fcefaee71b6b3903f0fe9f
Reviewed-By: John Baldwin <jhb@FreeBSD.org>
Similar to the previous patches, change put_frame_register_bytes to take
the "next frame" instead of "this frame".
Change-Id: I27bcb26573686d99b231230823cff8db6405a788
Reviewed-By: John Baldwin <jhb@FreeBSD.org>
Tom Tromey pointed out that the test and call to error() for the
DW_OP_GNU_uninit case in dwarf_expr_context::execute_stack_op (in
gdb/dwarf2/expr.c)...
if (op_ptr != op_end && *op_ptr != DW_OP_piece
&& *op_ptr != DW_OP_bit_piece)
error (_("DWARF-2 expression error: DW_OP_GNU_uninit must always "
"be the very last op in a DWARF expression or "
"DW_OP_piece/DW_OP_bit_piece piece."));
...could be replaced by a call to dwarf_expr_require_composition which
performs a similar check and outputs a suitable error message.
This commit implements a fix for a bug reported against GDB on
Fedora bugzilla...
https://bugzilla.redhat.com/show_bug.cgi?id=2166796
The test case in that bug report involved running gdb against the 'jq'
program (which is a command-line JSON processor) on Fedora 37. Since
the debug info is compiler (and compile-time option) dependent, it
won't necessarily show up in other distributions or even past or
future versions of Fedora. (E.g. when trying the example shown below
on Fedora 38, GDB says that the value of 'value' has been optimized
out. I.e. it does not demonstrate the same DWARF error that can be
see when using Fedora 37.)
That said, on Fedora 37, the bug could be reproduced as follows:
[kev@f37-1 ~]$ gdb jq -q -ex 'b src/util.c:415' -ex 'r </dev/null'
Reading symbols from jq...
This GDB supports auto-downloading debuginfo from the following URLs:
<https://debuginfod.fedoraproject.org/>
Enable debuginfod for this session? (y or [n]) y
Debuginfod has been enabled.
To make this setting permanent, add 'set debuginfod enabled on' to .gdbinit.
Reading symbols from /home/kev/.cache/debuginfod_client/9d3c8b4197350a190a74972d481de32abf641aa4/debuginfo...
No source file named src/util.c.
Make breakpoint pending on future shared library load? (y or [n]) y
Breakpoint 1 (src/util.c:415) pending.
Starting program: /usr/bin/jq </dev/null
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib64/libthread_db.so.1".
Breakpoint 1, jq_util_input_next_input (state=0x55555555d7f0) at src/util.c:416
416 if (state->parser == NULL) {
(gdb) p value
DWARF-2 expression error: DW_OP_GNU_uninit must always be the very last op.
This is undesirable - rather than output an error about the DWARF
info, we'd prefer to see a value, even if it is uninitialized.
Examination of the debuginfo showed the following:
<1><468f1>: Abbrev Number: 112 (DW_TAG_subprogram)
<468f2> DW_AT_external : 1
<468f2> DW_AT_name : (indirect string, offset: 0x4781): jq_util_input_next_input
<468f6> DW_AT_decl_file : 10
<468f6> DW_AT_decl_line : 411
<468f8> DW_AT_decl_column : 4
<468f9> DW_AT_prototyped : 1
<468f9> DW_AT_type : <0x3f2>
<468fd> DW_AT_sibling : <0x4692e>
...
<2><46921>: Abbrev Number: 102 (DW_TAG_variable)
<46922> DW_AT_name : (indirect string, offset: 0x8cb): value
<46926> DW_AT_decl_file : 10
<46926> DW_AT_decl_line : 414
<46928> DW_AT_decl_column : 6
<46929> DW_AT_type : <0x3f2>
Note that there's no DW_AT_location, so I looked for an abstract origin entry:
<2><2dfa0>: Abbrev Number: 90 (DW_TAG_variable)
<2dfa1> DW_AT_abstract_origin: <0x46921>
<2dfa5> DW_AT_location : 0x27cf1 (location list)
<2dfa9> DW_AT_GNU_locviews: 0x27ce1
(Note that the DW_AT_abstract_origin attribute's value is 0x46921 which
is the DIE for the local variable "value".)
Looking at the location list, I see:
00027cf1 v000000000000000 v000000000000000 views at 00027ce1 for:
000000000002f8fe 000000000002f92e (DW_OP_reg13 (r13); DW_OP_GNU_uninit; DW_OP_piece: 8; DW_OP_reg12 (r12); DW_OP_GNU_uninit; DW_OP_piece: 8)
While DW_OP_GNU_uninit is not the very last op, it is the last op
prior to DW_OP_piece. The fix involved changing the DW_OP_GNU_uninit
case in dwarf_expr_context::execute_stack_op in gdb/dwarf2/expr.c so
that DW_OP_GNU_uninit may appear just before DW_OP_piece.
With the fix in place, attempting to print 'value' now looks like
this:
(gdb) p value
$1 = [uninitialized] {kind_flags = 0 '\000', pad_ = 0 '\000', offset = 0,
size = 0, u = {ptr = 0x0, number = 0}}
Note that "[uninitialized]" is part of the output. (But also note
that there's an extra space character.)
I've made a new test case,
gdb.dwarf2/DW_OP_piece_with_DW_OP_GNU_uninit.exp, by adapting an
existing one, gdb.dwarf2/opt-out-not-implptr.exp. Since it uses the
DWARF assembler, the test case does not depend on a specific compiler
version or compiler options.
Tested on Fedora 37 and Fedora 38.
A user reported a bug where printing a certain array of integer types
would result in the nonsensical:
(gdb) p l_126
$1 = {6639779683436459270, <synthetic pointer>, <synthetic pointer>, <synthetic pointer>}
I tracked this down to some issues in the DWARF expression code.
First, check_pieced_synthetic_pointer did not account for the
situation where a location expression does not describe all the bits
of a value -- in this case it returned true, meaning there is a
synthetic pointer, but in fact these bits are optimized out. (It
turns out this incorrect output had already been erroneously tested
for as well.)
Next, rw_pieced_value did not mark these bits as optimized-out,
either.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=30296
The test case in this patch shows an unusual situation: an Ada array
has a dynamic bound, but the bound comes from a frame that's referred
to by the static link. This frame is correctly found when evaluating
the array variable itself, but is lost when evaluating the array's
bounds.
This patch fixes the problem by passing this frame through to
value_at_lazy in the DWARF expression evaluator.
This patch turns a grab bag of value functions to methods of value.
These are done together because their implementations are
interrelated.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
This turns many functions that are related to optimized-out or
availability-checking to be methods of value. The static function
value_entirely_covered_by_range_vector is also converted to be a
private method.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
This turns the remaining value_contents functions -- value_contents,
value_contents_all, value_contents_for_printing, and
value_contents_for_printing_const -- into methods of value. It also
converts the static functions require_not_optimized_out and
require_available to be private methods.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
This changes value_incref and value_decref to be methods of value.
Much of this patch was written by script.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
This turns value_contents_raw, value_contents_writeable, and
value_contents_all_raw into methods on value. The remaining functions
will be changed later in the series; they were a bit trickier and so I
didn't include them in this patch.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
This changes the value_computed_funcs and value_computed_closure
functions to be methods of value.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
This changes various offset-related functions to be methods of value.
Much of this patch was written by script.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
The 'rw_pieced_value' function is executed when fetching a (lazy)
variable described by 'DW_OP_piece' or 'DW_OP_bit_piece'. The
function checks the 'type' and 'enclosing_type' fields of the value
for identity.
* The 'type' field describes the type of a value.
* In most cases, the 'enclosing_type' field is identical to the
'type' field.
* Scenarios where the 'type' and 'enclosing_type' of an object
differ are described in 'gdb/value.c'. Possible cases are:
* If a value represents a C++ object, then the 'type' field
gives the object's compile-time type. If the object actually
belongs to some class derived from `type', perhaps with other
base classes and additional members, then `type' is just a
subobject of the real thing, and the full object is probably
larger than `type' would suggest.
* If 'type' is a dynamic class (i.e. one with a vtable), then GDB
can actually determine the object's run-time type by looking at
the run-time type information in the vtable. GDB may then elect
to read the entire object.
* If the user casts a variable to a different type
(e.g. 'print (<type> []) <variable>'), the value's type is
updated before reading the value.
If a lazy value is fetched, GDB allocates space based on the enclosing
type's length and typically reads the 'full' object. This is not
implemented for pieced values and causes an internal error if 'type'
and 'enclosing_type' of a value are not identical.
However, GDB can read the value based on its type. Thus, this patch
fixes the previously mentioned cases by removing the check for identity.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28605
gdb/ChangeLog:
2022-04-13 Stephan Rohr <stephan.rohr@intel.com>
* dwarf2/loc.c (rw_pieced_value): Fix check on 'type' and
'enlcosing_type' when reading pieced value 'v'.
gdb/testsuite/ChangeLog:
2022-04-13 Stephan Rohr <stephan.rohr@intel.com>
* gdb.dwarf2/shortpiece.exp: Added test cases.
This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
Currently, every internal_error call must be passed __FILE__/__LINE__
explicitly, like:
internal_error (__FILE__, __LINE__, "foo %d", var);
The need to pass in explicit __FILE__/__LINE__ is there probably
because the function predates widespread and portable variadic macros
availability. We can use variadic macros nowadays, and in fact, we
already use them in several places, including the related
gdb_assert_not_reached.
So this patch renames the internal_error function to something else,
and then reimplements internal_error as a variadic macro that expands
__FILE__/__LINE__ itself.
The result is that we now should call internal_error like so:
internal_error ("foo %d", var);
Likewise for internal_warning.
The patch adjusts all calls sites. 99% of the adjustments were done
with a perl/sed script.
The non-mechanical changes are in gdbsupport/errors.h,
gdbsupport/gdb_assert.h, and gdb/gdbarch.py.
Approved-By: Simon Marchi <simon.marchi@efficios.com>
Change-Id: Ia6f372c11550ca876829e8fd85048f4502bdcf06
This changes GDB to use frame_info_ptr instead of frame_info *
The substitution was done with multiple sequential `sed` commands:
sed 's/^struct frame_info;/class frame_info_ptr;/'
sed 's/struct frame_info \*/frame_info_ptr /g' - which left some
issues in a few files, that were manually fixed.
sed 's/\<frame_info \*/frame_info_ptr /g'
sed 's/frame_info_ptr $/frame_info_ptr/g' - used to remove whitespace
problems.
The changed files were then manually checked and some 'sed' changes
undone, some constructors and some gets were added, according to what
made sense, and what Tromey originally did
Co-Authored-By: Bruno Larsen <blarsen@redhat.com>
Approved-by: Tom Tomey <tom@tromey.com>
Bug 29374 shows this crash:
$ ./gdb -nx --data-directory=data-directory -q -batch -ex "catch throw" -ex r -ex bt a.out
...
/home/simark/src/binutils-gdb/gdb/../gdbsupport/array-view.h:217: internal-error: copy: Assertion `dest.size () == src.size ()' failed.
The backtrace is:
#0 internal_error (file=0x5555606504c0 "/home/simark/src/binutils-gdb/gdb/../gdbsupport/array-view.h", line=217, fmt=0x55556064b700 "%s: Assertion `%s' failed.") at /home/simark/src/binutils-gdb/gdbsupport/errors.cc:51
#1 0x000055555d41c0bb in gdb::copy<unsigned char const, unsigned char> (src=..., dest=...) at /home/simark/src/binutils-gdb/gdb/../gdbsupport/array-view.h:217
#2 0x000055555deef28c in dwarf_expr_context::fetch_result (this=0x7fffffffb830, type=0x621007a86830, subobj_type=0x621007a86830, subobj_offset=0, as_lval=false) at /home/simark/src/binutils-gdb/gdb/dwarf2/expr.c:1040
#3 0x000055555def0015 in dwarf_expr_context::evaluate (this=0x7fffffffb830, addr=0x62f00004313e "0", len=1, as_lval=false, per_cu=0x60b000069550, frame=0x621007c9e910, addr_info=0x0, type=0x621007a86830, subobj_type=0x621007a86830, subobj_offset=0) at /home/simark/src/binutils-gdb/gdb/dwarf2/expr.c:1091
#4 0x000055555e084327 in dwarf2_evaluate_loc_desc_full (type=0x621007a86830, frame=0x621007c9e910, data=0x62f00004313e "0", size=1, per_cu=0x60b000069550, per_objfile=0x613000006080, subobj_type=0x621007a86830, subobj_byte_offset=0, as_lval=false) at /home/simark/src/binutils-gdb/gdb/dwarf2/loc.c:1485
#5 0x000055555e0849e2 in dwarf2_evaluate_loc_desc (type=0x621007a86830, frame=0x621007c9e910, data=0x62f00004313e "0", size=1, per_cu=0x60b000069550, per_objfile=0x613000006080, as_lval=false) at /home/simark/src/binutils-gdb/gdb/dwarf2/loc.c:1529
#6 0x000055555e0828c6 in dwarf_entry_parameter_to_value (parameter=0x621007a96e58, deref_size=0x0, type=0x621007a86830, caller_frame=0x621007c9e910, per_cu=0x60b000069550, per_objfile=0x613000006080) at /home/simark/src/binutils-gdb/gdb/dwarf2/loc.c:1235
#7 0x000055555e082f55 in value_of_dwarf_reg_entry (type=0x621007a86890, frame=0x621007acc510, kind=CALL_SITE_PARAMETER_DWARF_REG, kind_u=...) at /home/simark/src/binutils-gdb/gdb/dwarf2/loc.c:1332
#8 0x000055555e083449 in value_of_dwarf_block_entry (type=0x621007a86890, frame=0x621007acc510, block=0x61e000033568 "T\004\205\001\240\004\004\243\001T\237\004\240\004\261\004\001T\004\261\004\304\005\004\243\001T\237\004\304\005\310\005\001T\004\310\005\311\005\004\243\001T\237", block_len=1) at /home/simark/src/binutils-gdb/gdb/dwarf2/loc.c:1365
#9 0x000055555e094d40 in loclist_read_variable_at_entry (symbol=0x621007a99bd0, frame=0x621007acc510) at /home/simark/src/binutils-gdb/gdb/dwarf2/loc.c:3889
#10 0x000055555f5192e0 in read_frame_arg (fp_opts=..., sym=0x621007a99bd0, frame=0x621007acc510, argp=0x7fffffffbf20, entryargp=0x7fffffffbf60) at /home/simark/src/binutils-gdb/gdb/stack.c:559
#11 0x000055555f51c352 in print_frame_args (fp_opts=..., func=0x621007a99ad0, frame=0x621007acc510, num=-1, stream=0x6030000bad90) at /home/simark/src/binutils-gdb/gdb/stack.c:887
#12 0x000055555f521919 in print_frame (fp_opts=..., frame=0x621007acc510, print_level=1, print_what=LOCATION, print_args=1, sal=...) at /home/simark/src/binutils-gdb/gdb/stack.c:1390
#13 0x000055555f51f22e in print_frame_info (fp_opts=..., frame=0x621007acc510, print_level=1, print_what=LOCATION, print_args=1, set_current_sal=0) at /home/simark/src/binutils-gdb/gdb/stack.c:1116
#14 0x000055555f526c6d in backtrace_command_1 (fp_opts=..., bt_opts=..., count_exp=0x0, from_tty=0) at /home/simark/src/binutils-gdb/gdb/stack.c:2079
#15 0x000055555f527ae5 in backtrace_command (arg=0x0, from_tty=0) at /home/simark/src/binutils-gdb/gdb/stack.c:2198
The problem is that the type that gets passed down to
dwarf_expr_context::fetch_result (the type of a variable of which we're
trying to read the entry value) is a typedef whose size has never been
computed yet (check_typedef has never been called on it). As we get in
the DWARF_VALUE_STACK case (line 1028 of dwarf2/expr.c), the `len`
variable is therefore set to 0, instead of the actual type length. We
then call allocate_value on subobj_type, which does call check_typedef,
so the length of the typedef gets filled in at that point. We end up
passing to the copy function a source array view of length 0 and a
target array view of length 4, and the assertion fails.
Fix this by calling check_typedef on both type and subobj_type at the
beginning of fetch_result.
I tried writing a test for this using the DWARF assembler, but I haven't
succeeded. It's possible that we need to get into this specific code
path (value_of_dwarf_reg_entry and all) to manage to get to
dwarf_expr_context::fetch_result with a typedef type that has never been
resolved. In all my attempts, the typedef would always be resolved
already, so the bug wouldn't show up.
As a fallback, I made a gdb.dwarf2 test with compiler-generated .S
files. I don't particularly like those, but I think it's better than no
test. The .cpp source code is the smallest reproducer I am able to make
from the reproducer given in the bug (thanks to Pedro for suggestions on
how to minimize it further than I had). Since I tested on both amd64
and aarch64, I added versions of the test for these two architectures.
Change-Id: I182733ad08e34df40d8bcc47af72c482fabf4900
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=29374
gdbarch implements its own registry-like approach. This patch changes
it to instead use registry.h. It's a rather large patch but largely
uninteresting -- it's mostly a straightforward conversion from the old
approach to the new one.
The main benefit of this change is that it introduces type safety to
the gdbarch registry. It also removes a bunch of code.
One possible drawback is that, previously, the gdbarch registry
differentiated between pre- and post-initialization setup. This
doesn't seem very important to me, though.
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
I think it would make sense for extract_integer, extract_signed_integer
and extract_unsigned_integer to take an array_view. This way, when we
extract an integer, we can validate that we don't overflow the buffer
passed by the caller (e.g. ask to extract a 4-byte integer but pass a
2-byte buffer).
- Change extract_integer to take an array_view
- Add overloads of extract_signed_integer and extract_unsigned_integer
that take array_views. Keep the existing versions so we don't
need to change all callers, but make them call the array_view
versions.
This shortens some places like:
result = extract_unsigned_integer (value_contents (result_val).data (),
TYPE_LENGTH (value_type (result_val)),
byte_order);
into
result = extract_unsigned_integer (value_contents (result_val), byte_order);
value_contents returns an array view that is of length
`TYPE_LENGTH (value_type (result_val))` already, so the length is
implicitly communicated through the array view.
Change-Id: Ic1c1f98c88d5c17a8486393af316f982604d6c95
An assertion was recently added to array_view::operator[] to ensure we
don't do out of bounds accesses. However, when the array_view is copied
to or from using memcpy, it bypasses that safety.
To address this, add a `copy` free function that copies data from an
array view to another, ensuring that the destination and source array
views have the same size. When copying to or from parts of an
array_view, we are expected to use gdb::array_view::slice, which does
its own bounds check. With all that, any copy operation that goes out
of bounds should be caught by an assertion at runtime.
copy is implemented using std::copy and std::copy_backward, which, at
least on libstdc++, appears to pick memmove when copying trivial data.
So in the end there shouldn't be much difference vs using a bare memcpy,
as we do right now. When copying non-trivial data, std::copy and
std::copy_backward assigns each element in a loop.
To properly support overlapping ranges, we must use std::copy or
std::copy_backward, depending on whether the destination is before the
source or vice-versa. std::copy and std::copy_backward don't support
copying exactly overlapping ranges (where the source range is equal to
the destination range). But in this case, no copy is needed anyway, so
we do nothing.
The order of parameters of the new copy function is based on std::copy
and std::copy_backward, where the source comes before the destination.
Change a few randomly selected spots to use the new function, to show
how it can be used.
Add a test for the new function, testing both with arrays of a trivial
type (int) and of a non-trivial type (foo). Test non-overlapping
ranges as well as three kinds of overlapping ranges: source before dest,
dest before source, and dest == source.
Change-Id: Ibeaca04e0028410fd44ce82f72e60058d6230a03
The bug fixed by this [1] patch was caused by an out-of-bounds access to
a value's content. The code gets the value's content (just a pointer)
and then indexes it with a non-sensical index.
This made me think of changing functions that return value contents to
return array_views instead of a plain pointer. This has the advantage
that when GDB is built with _GLIBCXX_DEBUG, accesses to the array_view
are checked, making bugs more apparent / easier to find.
This patch changes the return types of these functions, and updates
callers to call .data() on the result, meaning it's not changing
anything in practice. Additional work will be needed (which can be done
little by little) to make callers propagate the use of array_view and
reap the benefits.
[1] https://sourceware.org/pipermail/gdb-patches/2021-September/182306.html
Change-Id: I5151f888f169e1c36abe2cbc57620110673816f3
This adds an is_optimized_out function pointer to lval_funcs, and
changes value_optimized_out to call it. This new function lets gdb
determine if a value is optimized out without necessarily fetching the
value. This is needed for a subsequent patch, where an attempt to
access a lazy value would fail due to the value size limit -- however,
the access was only needed to determine the optimized-out state.
On an internal test case, using an arm-elf target, commit ba5bc3e5a9
("Make DWARF evaluator return a single struct value") causes a
regression. (It doesn't happen for any of the other cross targets
that I test when importing upstream gdb.)
I don't know if there's an upstream gdb test case showing the same
problem... I can only really run native tests with dejagnu AFAIK.
The failure manifests like this:
Breakpoint 1, file_1.export_1 (param_1=<error reading variable: Unable to access DWARF register number 64>, str=...) at [...]/file_1.adb:5
Whereas when it works it looks like:
Breakpoint 1, file_1.export_1 (param_1=99.0, str=...) at [...]/file_1.adb:5
The difference is that the new code uses the passed-in gdbarch,
whereas the old code used the frame's gdbarch, when handling
DWARF_VALUE_REGISTER.
This patch restores the use of the frame's arch.
Commit 0579205aec ("Simplify dwarf_expr_context class interface")
caused a regression in the internal AdaCore test suite. I didn't try
to reproduce this with the GDB test suite, but the test is identical
to gdb.dwarf2/dynarr-ptr.exp.
The problem is that this change:
case DW_OP_push_object_address:
/* Return the address of the object we are currently observing. */
- if (this->data_view.data () == nullptr
- && this->obj_address == 0)
+ if (this->m_addr_info == nullptr)
... slightly changes the logic here. In particular, it's possible for
the caller to pass in a non-NULL m_addr_info, but one that looks like:
(top) p *this.m_addr_info
$15 = {
type = 0x29b7a70,
valaddr = {
m_array = 0x0,
m_size = 0
},
addr = 0,
next = 0x0
}
In this case, an additional check is needed. With the current code,
what happens instead is that the computation computes an incorrect
address -- but one that does not fail in read_memory, due to the
precise memory map of the embedded target in question.
This patch restores the old logic.