These are a little more fiddly than previous kinds, because their
namespacing rules are odd: they have names (so presumably we want an API to
look them up by name), but the names are not unique (they don't need to be,
because they are not entities you can refer to from C), so many distinct
tags in the same TU can have the same name. Type tags only refer to a type
ID: decl tags refer to a specific function parameter or structure member via
a zero-indexed "component index".
The name tables for these things are a hash of name to a set of type IDs;
rather different from all the other named entities in libctf. As a
consequence, they can presently be looked up only using their own dedicated
functions, not using ctf_lookup_by_name et al. (It's not clear if this
restriction could ever be lifted: ctf_lookup_by_name and friends return a
type ID, not a set of them.)
They are similar enough to each other that we can at least have one function
to look up both type and decl tags if you don't care about their
component_idx and only want a type ID: ctf_tag. (And one to iterate over
them, ctf_tag_next).
(A caveat: because tags aren't widely used or generated yet, much of this is
more or less untested and/or supposition and will need testing later.)
New API, more or less the minimum needed because it's not entirely clear how
these things will be used:
+ctf_id_t ctf_tag (ctf_dict_t *, ctf_id_t tag);
+ctf_id_t ctf_decl_tag (ctf_dict_t *, ctf_id_t decl_tag,
+ int64_t *component_idx);
+ctf_id_t ctf_tag_next (ctf_dict_t *, const char *tag, ctf_next_t **);
+ctf_id_t ctf_add_type_tag (ctf_dict_t *, uint32_t, ctf_id_t, const char *);
+ctf_id_t ctf_add_decl_type_tag (ctf_dict_t *, uint32_t, ctf_id_t, const char *);
+ctf_id_t ctf_add_decl_tag (ctf_dict_t *, uint32_t, ctf_id_t, const char *,
+ int component_idx);
Functions change in CTFv4 by growing argument names as well as argument
types; the representation changes into a two-element array of (type, string
offset) rather than a simple array of arg types. Functions also gain an
explicit linkage in a different type kind (CTF_K_FUNC_LINKAGE, which
corresponds to BTF_KIND_FUNC).
New API:
typedef struct ctf_funcinfo {
/* ... */
- uint32_t ctc_argc; /* Number of typed arguments to function. */
+ size_t ctc_argc; /* Number of typed arguments to function. */
};
int ctf_func_arg_names (ctf_dict_t *, unsigned long, uint32_t, const char **);
int ctf_func_type_arg_names (ctf_dict_t *, ctf_id_t, uint32_t,
const char **names);
+extern int ctf_type_linkage (ctf_dict_t *, ctf_id_t);
-extern ctf_id_t ctf_add_function (ctf_dict_t *, uint32_t,
- const ctf_funcinfo_t *, const ctf_id_t *);
+extern ctf_id_t ctf_add_function (ctf_dict_t *, uint32_t,
+ const ctf_funcinfo_t *, const ctf_id_t *,
+ const char **arg_names);
+extern ctf_id_t ctf_add_function_linkage (ctf_dict_t *, uint32_t,
+ ctf_id_t, const char *, int linkage);
Adding this is fairly straightforward; the only annoying part is the way the
callers need to allocate space for the arg name and type arrays. Maybe we
should rethink these into something like ctf_type_aname(), allocating
space for the caller so the caller doesn't need to? It would certainly
make all the callers in libctf much less complex...
While we're at it, adjust ctf_type_reference, ctf_type_align, and
ctf_type_size for the new internal API changes (they also all have
special-case code for functions).
This is an area of significant difference from CTFv3. The API changes
significantly, with quite a few additions to allow creation and querying of
these new datasec entities:
-typedef int ctf_variable_f (const char *name, ctf_id_t type, void *arg);
+typedef int ctf_variable_f (ctf_dict_t *, const char *name, ctf_id_t type,
+ void *arg);
+typedef int ctf_datasec_var_f (ctf_dict_t *fp, ctf_id_t type, size_t offset,
+ size_t datasec_size, void *arg);
+/* Search a datasec for a variable covering a given offset.
+
+ Errors with ECTF_NODATASEC if not found. */
+
+ctf_id_t ctf_datasec_var_offset (ctf_dict_t *fp, ctf_id_t datasec,
+ uint32_t offset);
+
+/* Return the datasec that a given variable appears in, or ECTF_NODATASEC if
+ none. */
+
+ctf_id_t ctf_variable_datasec (ctf_dict_t *fp, ctf_id_t var);
+int ctf_datasec_var_iter (ctf_dict_t *, ctf_id_t, ctf_datasec_var_f *,
+ void *);
+ctf_id_t ctf_datasec_var_next (ctf_dict_t *, ctf_id_t, ctf_next_t **,
+ size_t *size, size_t *offset);
-int ctf_add_variable (ctf_dict_t *, const char *, ctf_id_t);
+/* ctf_add_variable adds variables to no datasec at all;
+ ctf_add_section_variable adds them to the given datasec, or to no datasec at
+ all if the datasec is NULL. */
+
+ctf_id_t ctf_add_variable (ctf_dict_t *, const char *, int linkage, ctf_id_t);
+ctf_id_t ctf_add_section_variable (ctf_dict_t *, uint32_t,
+ const char *datasec, const char *name,
+ int linkage, ctf_id_t type,
+ size_t size, size_t offset);
We tie datasecs quite closely to variables at addition (and, as should
become clear later, dedup) time: you never create datasecs, you only create
variables *in* datasecs, and the datasec springs into existence when you do
so: datasecs are always found in the same dict as the variables they contain
(the variables are never in the parent if the datasec is in a child or
anything). We keep track of the variable->datasec mapping in
ctf_var_datasecs (populating it at addition and open time), to allow
ctf_variable_datasec to work at reasonable speed. (But, as yet, there are
no tests of this function at all.)
The datasecs are created unsorted (to avoid variable addition becoming
O(n^2)) and sorted at serialization time, and when ctf_datasec_var_offset is
invoked.
We reuse the natural-alignment code from struct addition to get a plausible
offset in datasecs if an alignment of -1 is specified: maybe this is
unnecessary now (it was originally added when ctf_add_variable added
variables to a "default datasec", while now it just leaves them out of
all datasecs, like externs are).
One constraint of this is that we currently prohibit the addition of
nonrepresentable-typed variables, because we can't tell what their natural
alignment is: if we dropped the whole "align" and just required everyone
adding a variable to a datasec to specify an offset, we could drop that
restriction. WDYT?
One additional caveat: right now, ctf_lookup_variable() looks up the type of
a variable (because when it was invented, variables were not entities in
themselves that you could look up). This name is confusing as hell as a
result. It might be less confusing to make it return the CTF_K_VAR, but
that would be awful to adapt callers to, since both are represented with
ctf_id_t's, so the compiler wouldn't warn about the needed change at all...
I've vacillated on this three or four times now.
These all need fairly trivial revisions for prefix types. While
we're at it, we can add explicit handling of nonrepresentable types,
returning CTF_K_UNKNOWN for such types rather than throwing an error,
so that type printing prints (nonrepresentable type) for such types
as it always intended to.
Adds two new external authors to etc/update-copyright.py to cover
bfd/ax_tls.m4, and adds gprofng to dirs handled automatically, then
updates copyright messages as follows:
1) Update cgen/utils.scm emitted copyrights.
2) Run "etc/update-copyright.py --this-year" with an extra external
author I haven't committed, 'Kalray SA.', to cover gas testsuite
files (which should have their copyright message removed).
3) Build with --enable-maintainer-mode --enable-cgen-maint=yes.
4) Check out */po/*.pot which we don't update frequently.
The newer update-copyright.py fixes file encoding too, removing cr/lf
on binutils/bfdtest2.c and ld/testsuite/ld-cygwin/exe-export.exp, and
embedded cr in binutils/testsuite/binutils-all/ar.exp string match.
The result of running etc/update-copyright.py --this-year, fixing all
the files whose mode is changed by the script, plus a build with
--enable-maintainer-mode --enable-cgen-maint=yes, then checking
out */po/*.pot which we don't update frequently.
The copy of cgen was with commit d1dd5fcc38ead reverted as that commit
breaks building of bfp opcodes files.
This commit adds dumping of enumerands in this general form:
0x3: (kind 8) enum eleven_els (size 0x4) (aligned at 0x4)
ELEVEN_ONE: 10
ELEVEN_TWO: 11
ELEVEN_THREE: -256
ELEVEN_FOUR: -255
ELEVEN_FIVE: -254
...
ELEVEN_SEVEN: -252
ELEVEN_EIGHT: -251
ELEVEN_NINE: -250
ELEVEN_TEN: -249
ELEVEN_ELEVEN: -248
The first and last enumerands in the enumerated type are printed so that
you can tell if they've been cut off at one end or the other. (For now,
there is no way to control how many enumerands are printed.)
The dump output in general is improved, from this sort of thing a few
days ago:
4c: char [0x0:0x8] (size 0x1)
[0x0] (ID 0x4c) (kind 1) char:8 (aligned at 0x1, format 0x3, offset:bits 0x0:0x8)
4d: char * (size 0x8) -> 4c: char [0x0:0x8] (size 0x1)
[0x0] (ID 0x4d) (kind 3) char * (aligned at 0x8)
[...]
5a: struct _IO_FILE (size 0xd8)
[0x0] (ID 0x5a) (kind 6) struct _IO_FILE (aligned at 0x4)
[0x0] (ID 0x3) (kind 1) int _flags:32 (aligned at 0x4, format 0x1, offset:bits 0x0:0x20)
[0x40] (ID 0x4d) (kind 3) char * _IO_read_ptr (aligned at 0x8)
[0x80] (ID 0x4d) (kind 3) char * _IO_read_end (aligned at 0x8)
[0xc0] (ID 0x4d) (kind 3) char * _IO_read_base (aligned at 0x8)
5b: __FILE (size 0xd8) -> 5a: struct _IO_FILE (size 0xd8)
[0x0] (ID 0x5b) (kind 10) __FILE (aligned at 0x4)
[0x0] (ID 0x3) (kind 1) int _flags:32 (aligned at 0x4, format 0x1, offset:bits 0x0:0x20)
[0x40] (ID 0x4d) (kind 3) char * _IO_read_ptr (aligned at 0x8)
[0x80] (ID 0x4d) (kind 3) char * _IO_read_end (aligned at 0x8)
[0xc0] (ID 0x4d) (kind 3) char * _IO_read_base (aligned at 0x8)
[...]
406: struct coff_link_hash_entry (size 0x60)
[0x0] (ID 0x406) (kind 6) struct coff_link_hash_entry (aligned at 0x8)
[0x0] (ID 0x2b3) (kind 6) struct bfd_link_hash_entry root (aligned at 0x8)
[0x0] (ID 0x1d6) (kind 6) struct bfd_hash_entry root (aligned at 0x8)
[0x0] (ID 0x1d7) (kind 3) struct bfd_hash_entry * next (aligned at 0x8)
[0x40] (ID 0x61) (kind 3) const char * string (aligned at 0x8)
[0x80] (ID 0x1) (kind 1) long unsigned int hash:64 (aligned at 0x8, format 0x0, offset:bits 0x0:0x40)
[0xc0] (ID 0x397) (kind 8) enum bfd_link_hash_type type:8 (aligned at 0x1, format 0x0, offset:bits 0x0:0x8)
[0xc8] (ID 0x1c7) (kind 1) unsigned int non_ir_ref_regular:1 (aligned at 0x1, format 0x0, offset:bits 0x8:0x1)
[0xc9] (ID 0x1c8) (kind 1) unsigned int non_ir_ref_dynamic:1 (aligned at 0x1, format 0x0, offset:bits 0x9:0x1)
[0xca] (ID 0x1c9) (kind 1) unsigned int linker_def:1 (aligned at 0x1, format 0x0, offset:bits 0xa:0x1)
[0xcb] (ID 0x1ca) (kind 1) unsigned int ldscript_def:1 (aligned at 0x1, format 0x0, offset:bits 0xb:0x1)
[0xcc] (ID 0x1cb) (kind 1) unsigned int rel_from_abs:1 (aligned at 0x1, format 0x0, offset:bits 0xc:0x1)
... to this:
0x4c: (kind 1) char (format 0x3) (size 0x1) (aligned at 0x1)
0x4d: (kind 3) char * (size 0x8) (aligned at 0x8) -> 0x4c: (kind 1) char (format 0x3) (size 0x1) (aligned at 0x1)
0x5a: (kind 6) struct _IO_FILE (size 0xd8) (aligned at 0x4)
[0x0] _flags: ID 0x3: (kind 1) int (format 0x1) (size 0x4) (aligned at 0x4)
[0x40] _IO_read_ptr: ID 0x4d: (kind 3) char * (size 0x8) (aligned at 0x8)
[0x80] _IO_read_end: ID 0x4d: (kind 3) char * (size 0x8) (aligned at 0x8)
[0xc0] _IO_read_base: ID 0x4d: (kind 3) char * (size 0x8) (aligned at 0x8)
[0x100] _IO_write_base: ID 0x4d: (kind 3) char * (size 0x8) (aligned at 0x8)
0x5b: (kind 10) __FILE (size 0xd8) (aligned at 0x4) -> 0x5a: (kind 6) struct _IO_FILE (size 0xd8) (aligned at 0x4)
[...]
0x406: (kind 6) struct coff_link_hash_entry (size 0x60) (aligned at 0x8)
[0x0] root: ID 0x2b3: (kind 6) struct bfd_link_hash_entry (size 0x38) (aligned at 0x8)
[0x0] root: ID 0x1d6: (kind 6) struct bfd_hash_entry (size 0x18) (aligned at 0x8)
[0x0] next: ID 0x1d7: (kind 3) struct bfd_hash_entry * (size 0x8) (aligned at 0x8)
[0x40] string: ID 0x61: (kind 3) const char * (size 0x8) (aligned at 0x8)
[0x80] hash: ID 0x1: (kind 1) long unsigned int (format 0x0) (size 0x8) (aligned at 0x8)
[0xc0] type: ID 0x397: (kind 8) enum bfd_link_hash_type (format 0x7f2e) (size 0x1) (aligned at 0x1)
[0xc8] non_ir_ref_regular: ID 0x1c7: (kind 1) unsigned int:1 [slice 0x8:0x1] (format 0x0) (size 0x1) (aligned at 0x1)
[0xc9] non_ir_ref_dynamic: ID 0x1c8: (kind 1) unsigned int:1 [slice 0x9:0x1] (format 0x0) (size 0x1) (aligned at 0x1)
[0xca] linker_def: ID 0x1c9: (kind 1) unsigned int:1 [slice 0xa:0x1] (format 0x0) (size 0x1) (aligned at 0x1)
[0xcb] ldscript_def: ID 0x1ca: (kind 1) unsigned int:1 [slice 0xb:0x1] (format 0x0) (size 0x1) (aligned at 0x1)
[0xcc] rel_from_abs: ID 0x1cb: (kind 1) unsigned int:1 [slice 0xc:0x1] (format 0x0) (size 0x1) (aligned at 0x1)
[...]
In particular, indented subsections are only present for actual structs
and unions, not forwards to them, and the structure itself doesn't add a
spurious level of indentation; structure field names are easier to spot
(at the cost of not making them look so much like C field declarations
any more, but they weren't always shown in valid decl syntax even before
this change) the size, type kind, and alignment are shown for all types
for which they are meaningful; bitfield info is only shown for actual
bitfields within structures and not ordinary integral fields; and type
IDs are never omitted. Type printing is in general much more consistent
and there is much less duplicated code in the type dumper.
There is one user-visible effect outside the dumper: ctf_type_(a)name
was erroneously emitting a trailing space on the name of slice types,
even though a slice of an int and an int with the corresponding encoding
represent the same type and should have the same print form. This
trailing space is now gone.
ld/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* testsuite/ld-ctf/array.d: Adjust for dumper changes.
* testsuite/ld-ctf/conflicting-cycle-1.B-1.d: Likewise.
* testsuite/ld-ctf/conflicting-cycle-1.B-2.d: Likewise.
* testsuite/ld-ctf/conflicting-cycle-1.parent.d: Likewise.
* testsuite/ld-ctf/conflicting-cycle-2.A-1.d: Likewise.
* testsuite/ld-ctf/conflicting-cycle-2.A-2.d: Likewise.
* testsuite/ld-ctf/conflicting-cycle-2.parent.d: Likewise.
* testsuite/ld-ctf/conflicting-cycle-3.C-1.d: Likewise.
* testsuite/ld-ctf/conflicting-cycle-3.C-2.d: Likewise.
* testsuite/ld-ctf/conflicting-cycle-3.parent.d: Likewise.
* testsuite/ld-ctf/conflicting-enums.d: Likewise.
* testsuite/ld-ctf/conflicting-typedefs.d: Likewise.
* testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: Likewise.
* testsuite/ld-ctf/cross-tu-cyclic-nonconflicting.d: Likewise.
* testsuite/ld-ctf/cross-tu-into-cycle.d: Likewise.
* testsuite/ld-ctf/cross-tu-noncyclic.d: Likewise.
* testsuite/ld-ctf/cycle-1.d: Likewise.
* testsuite/ld-ctf/cycle-2.A.d: Likewise.
* testsuite/ld-ctf/cycle-2.B.d: Likewise.
* testsuite/ld-ctf/cycle-2.C.d: Likewise.
* testsuite/ld-ctf/data-func-conflicted.d: Likewise.
* testsuite/ld-ctf/diag-cttname-null.d: Likewise.
* testsuite/ld-ctf/diag-cuname.d: Likewise.
* testsuite/ld-ctf/diag-parlabel.d: Likewise.
* testsuite/ld-ctf/diag-wrong-magic-number-mixed.d: Likewise.
* testsuite/ld-ctf/forward.d: Likewise.
* testsuite/ld-ctf/function.d: Likewise.
* testsuite/ld-ctf/slice.d: Likewise.
* testsuite/ld-ctf/super-sub-cycles.d: Likewise.
* testsuite/ld-ctf/enums.c: New test.
* testsuite/ld-ctf/enums.d: New test.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-decl.c (ctf_decl_push): Exclude slices from the decl stack.
* ctf-types.c (ctf_type_aname): No longer deal with slices here.
* ctf-dump.c (ctf_dump_membstate_t) <cdm_toplevel_indent>: Constify.
(CTF_FT_REFS): New.
(CTF_FT_BITFIELD): Likewise.
(CTF_FT_ID): Likewise.
(ctf_dump_member): Do not do indentation here. Migrate the
type-printing parts of this into...
(ctf_dump_format_type): ... here, to be shared by all type printers.
Get the errno value for non-representable types right. Do not print
bitfield info for non-bitfields. Improve the format and indentation
of other type output. Shuffle spacing around to make all indentation
either 'width of column' or 4 chars.
(ctf_dump_label): Pass CTF_FT_REFS to ctf_dump_format_type.
(ctf_dump_objts): Likewise. Spacing shuffle.
(ctf_dump_var): Likewise.
(type_hex_digits): Migrate down in the file, to above its new user.
(ctf_dump_type): Indent here instead. Pass CTF_FT_REFS to
ctf_dump_format_type. Don't trim off excess linefeeds now we no
longer generate them. Dump enumerated types.
The CTF declarator stack code (used by ctf_type_aname() and thus
ultimately by ctf-dump.c and objdump --ctf etc) contains careful
code to prepend array declarators to the stack it's building up
on the grounds that array declarators are ordered inside out: only
they're not, they're ordered outside in.
This has led to our (non-upstreamed) compiler emitting array declarators
backwards for years, because it looks backwards in the dumper unless
it's actually emitted backwards into the CTF so the dumper can wrongly
reverse it again: but
int[5][6]
should be an array of 6 int[5]s, not an array of 5 int[6]'s, so even if
the dumper gets it right, actual users calling ctf_array_info are going
to see a completely wrong type graph with the wrong bounds in it.
Fix trivial.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-decl.c (ctf_decl_push): Don't print array decls backwards.
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
ctf_decl_sprintf builds up a formatted string in the ctf_decl_t's
cd_buf, but then on error this is hardly ever freed: we assume that
ctf_decl_fini frees it, but it leaks it instead.
Make it free it like any decent ADT should.
libctf/
* ctf-decl.c (ctf_decl_fini): Free the cd_buf.
(ctf_decl_buf): Once it escapes, don't try to free it later.
These just get in the way of auditing for erroneous usage of strdup and
add a huge irregular surface of "ctf_malloc or malloc? ctf_free or free?
ctf_strdup or strdup?"
ctf_malloc and ctf_free usage has not reliably matched up for many
years, if ever, making the whole game pointless.
Go back to malloc, free, and strdup like everyone else: while we're at
it, fix a bunch of places where we weren't properly checking for OOM.
This changes the interface of ctf_cuname_set and ctf_parent_name_set,
which could strdup but could not return errors (like ENOMEM).
New in v4.
include/
* ctf-api.h (ctf_cuname_set): Can now fail, returning int.
(ctf_parent_name_set): Likewise.
libctf/
* ctf-impl.h (ctf_alloc): Remove.
(ctf_free): Likewise.
(ctf_strdup): Likewise.
* ctf-subr.c (ctf_alloc): Remove.
(ctf_free): Likewise.
* ctf-util.c (ctf_strdup): Remove.
* ctf-create.c (ctf_serialize): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_function): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
(ctf_compress_write): Likewise.
(ctf_write_mem): Likewise.
* ctf-decl.c (ctf_decl_push): Likewise.
(ctf_decl_fini): Likewise.
(ctf_decl_sprintf): Likewise. Check for OOM.
* ctf-dump.c (ctf_dump_append): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dump_free): Likewise.
(ctf_dump): Likewise.
* ctf-open.c (upgrade_types_v1): Likewise.
(init_types): Likewise.
(ctf_file_close): Likewise.
(ctf_bufopen_internal): Likewise. Check for OOM.
(ctf_parent_name_set): Likewise: report the OOM to the caller.
(ctf_cuname_set): Likewise.
(ctf_import): Likewise.
* ctf-string.c (ctf_str_purge_atom_refs): Use malloc, not ctf_alloc;
free, not ctf_free; strdup, not ctf_strdup.
(ctf_str_free_atom): Likewise.
(ctf_str_create_atoms): Likewise.
(ctf_str_add_ref_internal): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_write_strtab): Likewise.
Finally we get to the functions used to actually look up and enumerate
properties of types in a container (names, sizes, members, what type a
pointer or cv-qual references, determination of whether two types are
assignment-compatible, etc).
With a very few exceptions these do not work for types newly added via
ctf_add_*(): they only work on types in read-only containers, or types
added before the most recent call to ctf_update().
This also adds support for lookup of "variables" (string -> type ID
mappings) and for generation of C type names corresponding to a type ID.
libctf/
* ctf-decl.c: New file.
* ctf-types.c: Likewise.
* ctf-impl.h: New declarations.
include/
* ctf-api.h (ctf_visit_f): New definition.
(ctf_member_f): Likewise.
(ctf_enum_f): Likewise.
(ctf_variable_f): Likewise.
(ctf_type_f): Likewise.
(ctf_type_isparent): Likewise.
(ctf_type_ischild): Likewise.
(ctf_type_resolve): Likewise.
(ctf_type_aname): Likewise.
(ctf_type_lname): Likewise.
(ctf_type_name): Likewise.
(ctf_type_sizee): Likewise.
(ctf_type_align): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_reference): Likewise.
(ctf_type_pointer): Likewise.
(ctf_type_encoding): Likewise.
(ctf_type_visit): Likewise.
(ctf_type_cmp): Likewise.
(ctf_type_compat): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_member_iter): Likewise.
(ctf_enum_iter): Likewise.
(ctf_type_iter): Likewise.
(ctf_variable_iter): Likewise.