For one 0afc614c99 ("x86: Warn .insn instruction with length > 15
bytes") introduced a .insn use involving a slash; such tests need to
have --divide passed to gas.
And then 5bc71c2a6b ("x86-64: Add R_X86_64_CODE_6_GOTTPOFF") broke
BFD_RELOC_X86_64_GOTTPOFF conversion to R_X86_64_CODE_4_GOTTPOFF, by
adding respective code in a section guarded by
generate_relax_relocations (the case of that not being required there
was limited to 32-bit object files). Re-arrange that block of code to
check generate_relax_relocations later.
This relaxation is effective for both macro instructions (call36, tail36)
and explicit relocation instructions (pcaddu18i + jirl).
call36 f -> bl f
R_LARCH_CALL36 -> R_LARCH_B26
tail36 $t0, f -> b f
R_LARCH_CALL36 -> R_LARCH_B26
The following instructions are added in this patch:
- ADDPT (predicated): Add checked pointer vectors (predicated).
- ADDPT (unpredicated): Add checked pointer vectors (unpredicated).
- SUBPT (predicated): Subtract checked pointer vectors (predicated).
- SUBPT (unpredicated): Subtract checked pointer vectors (unpredicated).
- MADPT: Multiply-add checked pointer vectors, writing multiplicand
- MLAPT: Multiply-add checked pointer vectors, writing addend
These instructions are part of Checked Pointer Arithmetic extension
and are enabled when both CPA and SVE are enabled. To achieve this,
both flag "+sve" and "+cpa" should be active.
This patch adds assembler and disassembler support for these instructions
with relevant checks. Tests are included as well.
Regression tested on the aarch64-none-linux-gnu target and no regressions
have been found.
The following instructions are added in this patch:
- ADDPT and SUBPT - Add/Subtract checked pointer
- MADDPT and MSUBPT - Multiply Add/Subtract checked pointer
These instructions are part of Checked Pointer Arithmetic extension.
This patch adds assembler and disassembler support for these instructions
with relevant checks. Tests are included as well.
A new flag "+cpa" added to documentation. This flag enables CPA extension.
Regression tested on the aarch64-none-linux-gnu target and no regressions
have been found.
Except for bfml{a,s} their 1st and 3rd operands need to match - pass
the TIED macro argument accordingly. While doing that also slightly
re-arrange table entries, such that all predicated insns are close
together.
At the same time change the existing test source to actually use non-
matching operands for the respective bfml{a,s} forms.
Their index is in bits 19, 20, and 22. Bit 11 in particular is already
set in the base opcode. Note also how disassembler output didn't match
assembler input in the respective testcase.
Irrespective of the encoding being EVEX, the usable SIMD register range
continues to be limited to %xmm0-%xmm15. Enforce this in gas (but
continue to generate code, as in principle we know how to encode
things) and recognize/flag the case in the disassembler.
Oddly enough wrong forms were actually used in the testsuite (register-
only forms are then really meaningless to test here, and are hence
dropped instead of adjusted).
Convert the POP2 test that needs touching anyway (due to a bad ModR/M
byte having been chosen) to .insn.
Use -march=help for gas to print all supported extensions and versions.
Here is part of the output of `as -march=help`:
All available -march extensions for RISC-V:
e 1.9
i 2.1, 2.0
m 2.0
a 2.1, 2.0
f 2.2, 2.0
d 2.2, 2.0
q 2.2, 2.0
c 2.0
v 1.0
h 1.0
zicbom 1.0
zicbop 1.0
...
This patch assumes that the supported extensions with the same versions
are listed together. For example:
static struct riscv_supported_ext riscv_supported_std_ext[] =
{
...
{"i", ISA_SPEC_CLASS_20191213, 2, 1, 0 },
{"i", ISA_SPEC_CLASS_20190608, 2, 1, 0 },
{"i", ISA_SPEC_CLASS_2P2, 2, 0, 0 },
...
};
For the "i" extension, 2.1.0 with different spec class are listed together.
This patch records the previous printed extension and version. If the
current extension and version are the same as the previous one, skip
printing.
bfd/
* elfxx-riscv.c (riscv_print_extensions): New function. Print
available extensions and versions.
* elfxx-riscv.h (riscv_print_extensions): New declaration.
gas/
* gas/config/tc-riscv.c (md_parse_option): Parse 'help' keyword in
-march option to print available extensions and versions.
* testsuite/gas/riscv/march-help.l: New testcase for -march=help.
* testsuite/gas/riscv/riscv.exp: Updated.
Currently, gas will exit immediately and report an error when
it sees illegal operands, and will not process the remaining
instructions. Replace as_fatal with as_bad to check for all
illegal operands.
Add test cases for illegal operands of some instructions.
* After adding the old LE relax, all old LE relocations will have
an R_LARCH_RELAX relocation. Fix the gas test case failure caused
by the implementation of the old LE relax.
* loongarch64-elf does not support pie and -z norelro options,
removed in test files.
Some of these have no explicit %xmm operand(s), yet they still act SSE-
like (in leaveing bits 128 and up untouched). Hence they want similarly
diagnosing, if that was asked for.
Provide expected operand type in s390-specific assembler operand parsing
error message:
"error: operand <operand-number>: missing <operand-type> operand"
With <operand-type> being one of:
- base register
- displacement
- [vector] index register
- length
- access register
- control register
- floating-point register
- general-purpose register
- vector register
- [un]signed number
gas/
* config/tc-s390.c: Provide missing operand type in error
message.
* testsuite/gas/s390/zarch-base-index-0-err.l: Update test case
result validation patterns to operand number in operand syntax
error messages.
* testsuite/gas/s390/zarch-omitted-base-index-err.l: Likewise.
Reviewed-by: Andreas Krebbel <krebbel@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
Prepend the operand number "operand %d:" to the s390-specific assembler
operand parsing warning and error messages.
While at it reword the custom operand out of range error message text to
be closer to the one used by as_bad_value_out_of_range(). Additionally
reword the invalid FPR pair warning message to make it nicer.
gas/
* config/tc-s390.c: Print operand number in error messages.
* testsuite/gas/s390/zarch-base-index-0-err.l: Update test case
verification patterns to accept syntax error messages now
containing the operand number.
* testsuite/gas/s390/zarch-omitted-base-index-err.l: Likewise.
* testsuite/gas/s390/zarch-warn-areg-zero.l: Likewise.
* testsuite/gas/s390/zarch-z9-109-err.l: Likewise.
* testsuite/gas/s390/zarch-z900-err.l: Likewise.
Reviewed-by: Andreas Krebbel <krebbel@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
The base register operand B may be omitted in D(B) by coding D and in
D(L,B) by coding D(L). The index register operand X may be omitted in
D(X,B) by coding D(B) or explicitly omitted by coding D(,B). In both
cases the omitted base register operand value defaults to zero.
Allow to explicitly omit the base register operand B in D(X,B) and
D(L,B) by coding D(X,) and D(L,). Default the omitted base register
operand value to zero.
gas/
* config/tc-s390.c: Allow to explicitly omit the base register
operand in assembly.
* NEWS: Mention that the base register now may be omitted on
s390.
* gas/testsuite/gas/s390/zarch-base-index-0.s: Update test cases
for change to allow to explicitly omit the base register
operand in assembly.
* gas/testsuite/gas/s390/zarch-base-index-0.d: Likewise.
* gas/testsuite/gas/s390/zarch-base-index-0-err.s: Likewise.
* gas/testsuite/gas/s390/zarch-base-index-0-err.l: Likewise.
* gas/testsuite/gas/s390/zarch-omitted-base-index.s: Likewise.
* gas/testsuite/gas/s390/zarch-omitted-base-index.d: Likewise.
* gas/testsuite/gas/s390/zarch-omitted-base-index-err.s:
Likewise.
* gas/testsuite/gas/s390/zarch-omitted-base-index-err.l:
Likewise.
Reviewed-by: Andreas Krebbel <krebbel@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
Base and index register 0 have no effect in address computation:
"A value of zero in the B [base] or X [index] field specifies that no
base or index is to be applied, and, thus, general register 0 cannot be
designated as containing a base address or index."
IBM z/Architecture Principles of Operation [1], chapter "Organization",
section "General Registers".
Index register 0 is omitted in the s390 disassembly. Base register 0 is
omitted in D(B), D(L,B) and D(X,B) - the latter only if the index
register is zero.
To make it more apparent print base register 0 as "0" instead of "%r0",
whenever it would still be printed in the disassembly.
[1]: IBM z/Architecture Principles of Operation, SA22-7832-13,
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
opcodes/
* s390-dis.c: Print base register 0 as "0" in disassembly.
binutils/
* NEWS: Mention base register 0 now being printed as "0" in s390
disassembly.
gas/
* testsuite/gas/s390/zarch-base-index-0.d: Update test case
output verification patterns to accept "0" as base base
register due to disassembler output format change.
* gas/testsuite/gas/s390/zarch-omitted-base-index.d: Likewise.
Reviewed-by: Andreas Krebbel <krebbel@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
Print a warning message when the register type of a specified register
name does not match with the operand's register type:
operand {#}: expected {access|control|floating-point|general|vector}
register name [as {base|index} register]
Introduce a s390-specific assembler option "warn-regtype-mismatch"
with the values "strict", "relaxed", and "no" as well as an option
"no-warn-regtype-mismatch" which control whether the assembler
performs register name type checks and generates above warning messages.
warn-regtype-mismatch=strict:
Perform strict register name type checks.
warn-regtype-mismatch=relaxed:
Perform relaxed register name type checks, which allow floating-point
register (FPR) names %f0 to %f15 to be specified as argument to vector
register (VR) operands and vector register (VR) names %v0 to %v15 to
be specified as argument to floating-point register (FPR) operands.
This is acceptable as the FPRs are embedded into the lower halves of
the VRs. Make "relaxed" the default, as GCC generates assembler code
using FPR and VR interchangeably, which would cause assembler warnings
to be generated with "strict".
warn-regtype-mismatch=no:
no-warn-regtype-mismatch:
Disable any register name type checks.
Tag .insn pseudo mnemonics as such, to skip register name type checks
on those. They need to be skipped, as there do not exist .insn pseudo
mnemonics for every possible operand register type combination. Keep
track of the currently parsed operand number to provide it as reference
in warning messages.
To verify that the introduction of this change does not unnecessarily
affect the compilation of existing code the GNU Binutils, GNU C Library,
and Linux Kernel have been build with the new assembler, verifying that
the assembler did not generate any of the new warning messages.
gas/
* config/tc-s390.c: Handle new assembler options
"[no]warn-regtype-mismatch[=strict|relaxed|no". Annotate
parsed register expressions with register type. Keep track of
operand number being parsed. Print warning message in case of
register type mismatch between instruction operand and parsed
register expression.
* doc/as.texi: Document new s390-specific assembler options
"[no-]warn-regtype-mismatch[=strict|relaxed|no]".
* NEWS: Mention new s390-specific register name type checks and
related assembler option "warn-regtype-mismatch=strict|
relaxed|no".
* testsuite/gas/s390/s390.exp: Add test cases for new assembler
option "warn-regtype-mismatch={strict|relaxed}".
* testsuite/gas/s390/esa-g5.s: Fix register types in tests for
didbr, diebr, tbdr, and tbedr.
* testsuite/gas/s390/zarch-z13.s: Fix register types in tests
for vgef, vgeg, vscef, and vsceg.
* testsuite/gas/s390/zarch-warn-regtype-mismatch-strict.s:
Tests for assembler option "warn-regtype-mismatch=strict".
* testsuite/gas/s390/zarch-warn-regtype-mismatch-strict.l:
Likewise.
* gas/testsuite/gas/s390/zarch-warn-regtype-mismatch-relaxed.s:
Tests for assembler option "warn-regtype-mismatch=relaxed".
* gas/testsuite/gas/s390/zarch-warn-regtype-mismatch-relaxed.l:
Likewise.
* gas/testsuite/gas/s390/zarch-omitted-base-index-err.s: Update
test cases for assembler option "warn-regtype-mismatch"
defaulting to "relaxed".
* testsuite/gas/s390/zarch-omitted-base-index-err.l: Likewise.
include/
* opcode/s390.h (S390_INSTR_FLAG_PSEUDO_MNEMONIC): Add
instruction flag to tag .insn pseudo-mnemonics.
opcodes/
* s390-opc.c (s390_opformats): Tag .insn pseudo-mnemonics as
such.
Reviewed-by: Andreas Krebbel <krebbel@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
While at it add comments to logic to omit base and/or index register 0
in s390 disassembly.
opcodes/
* s390-dis.c: Add comments related to omitting base and/or index
register 0 in disassembly.
gas/
* testsuite/gas/s390/s390.exp: Add test cases for base and/or
index register 0.
* testsuite/gas/s390/zarch-base-index-0.s: Add test cases for
base and/or index register 0.
* testsuite/gas/s390/zarch-base-index-0.d: Likewise.
* testsuite/gas/s390/zarch-base-index-0-err.s: Add error test
cases for base and/or index register 0.
Reviewed-by: Andreas Krebbel <krebbel@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
Assemble the esa-g5 test case with -march=g5.
Assemble the zarch-z900 test case with -march=z900.
gas/
* testsuite/gas/s390/s390.exp: Assemble processor specific test
cases for their respective processor (-march=<processor>).
Reviewed-by: Andreas Krebbel <krebbel@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
The combination of an architecture size of 32 bits and z/Architecture
mode requires the highgprs flag to be set in the ELF output. It causes
the high-halves of the general purpose registers (GPRs) to be preserved
at run-time, so that the code can use 64-bit GPRs.
The architecture size of 32 bits can either be the default in case of
a default architecture name of "s390" or due to specification of the
option -m31 (to generate the 31-bit file format).
The z/Architecture mode can either be the default or due to
specification of the option -mzarch (to assemble for z/Architecture
mode). It can also be selected using the pseudo commands
".machinemode zarch" and ".machinemode zarch_nohighgprs". The latter
not causing the highgprs flag to be set.
The highgprs flag was only set when the following s390-specific
assembler options were given in the following specific order:
"-m31 -mzarch".
The highgprs flag was erroneously not set when:
- the order of above options was inverse (i.e. "-mzarch -m31"),
- the architecture mode defaulted to z/Architecture mode and
option "-m31" was specified,
- the architecture size defaulted to 32 bits due to a default
architecture name of "s390" and option -mzarch was specified,
- the architecture size defaulted to 32 bits and the architecture
mode defaulted to z/Architecture due to the specified processor
(e.g. "-march=z900" or follow-on processor).
Determine whether to set the highgprs flag in init_default_arch() after
having processed all assembler options in md_parse_option(). This
ensures the flag is set in all of the above cases it was erroneously not
set. Add test cases for highgprs flag, including ones that use
.machinemode to switch the architecture mode.
gas/
* config/tc-s390.c: Correct setting of highgprs flag in ELF
output.
* testsuite/gas/s390/s390.exp: Add test cases for highgprs
flag.
* testsuite/gas/s390/blank.s: Empty assembler source used in
test cases for "highgprs" flag.
* testsuite/gas/s390/esa-highgprs-0.d: Add test case for
highgprs flag.
* testsuite/gas/s390/zarch-highgprs-0.d: Likewise.
* testsuite/gas/s390/zarch-highgprs-1.d: Likewise.
* testsuite/gas/s390/esa-highgprs-machinemode-0.s: Add test case
for highgprs flag when using .machinemode to switch
architecture mode.
* testsuite/gas/s390/esa-highgprs-machinemode-0.d: Likewise.
* testsuite/gas/s390/esa-highgprs-machinemode-1.s: Likewise.
* testsuite/gas/s390/esa-highgprs-machinemode-1.d: Likewise.
Reviewed-by: Andreas Krebbel <krebbel@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
The base register operand B may optionally be omitted in D(B) by coding
D and in D(L,B) by coding D(L). The index register operand X may
optionally be omitted in D(X,B) by coding D(,B) or D(B). Both base and
index register operands may optionally be omitted in D(X,B) by coding D.
In any case the omitted base and/or index register operand value
defaults to zero.
When parsing an erroneously omitted length L operand in D(L,B) by coding
D(,B) the base register operand B was erroneously consumed as length
operand. When using a register name for the base register operand this
was detected and reported as error. But when not using a register name
the base register operand value was erroneously used as length operand
value.
Correct the parsing of an omitted optional base or index register to not
erroneously use the base register operand value as length, when
erroneously omitting the length operand.
While at it rename the variable used to remember whether the base or
index register operand was omitted to enhance code readability.
Additionally add test cases for the optional omission of base and/or
index register operands.
Example assembler source:
mvc 16(1,%r1),32(%r2)
mvc 16(1),32(%r2)
mvc 16(,1),32(%r2) # undetected syntax error
Disassembly of bad assembly without commit shows the base register
operand value was erroneously used as length operand value:
0: d2 00 10 10 20 20 mvc 16(1,%r1),32(%r2)
6: d2 00 00 10 20 20 mvc 16(1,%r0),32(%r2)
c: d2 00 00 10 20 20 mvc 16(1,%r0),32(%r2)
Assembler messages with commit:
3: Error: operand 1: missing operand
gas/
* config/tc-s390.c: Correct parsing of omitted base register.
* testsuite/gas/s390/s390.exp: Add test cases for omitted base
and/or index register.
* testsuite/gas/s390/zarch-omitted-base-index.s: Test cases for
omitted optional base or index register.
* testsuite/gas/s390/zarch-omitted-base-index.d: Likewise.
* testsuite/gas/s390/zarch-omitted-base-index-err.s: Test cases
for omitted base and/or index register.
* testsuite/gas/s390/zarch-omitted-base-index-err.l: Likewise.
Reviewed-by: Andreas Krebbel <krebbel@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
Report s390 assembler syntax errors as error instead of fatal error.
This allows the assembler to continue and potentially report further
syntax errors in the source. This should not cause syntax errors to
be erroneously accepted, as both error and fatal error cause the
assembler to return with a non-zero return code.
The following syntax errors are changed from fatal to error:
- invalid length field specified
- odd numbered general purpose register specified as register pair
- invalid floating point register pair. Valid fp register pair operands
are 0, 1, 4, 5, 8, 9, 12 or 13.
gas/
* config/tc-s390.c: Lower severity of assembler syntax errors
from fatal to error.
* testsuite/gas/s390/zarch-z9-109-err.l: Likewise.
Reviewed-by: Andreas Krebbel <krebbel@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
While most logic in optimize_encoding() is already covering APX by way
of the earlier NDD->REX2 conversion, there's a remaining set of cases
which wants handling separately.
In this case spaces 0f38 and 0f3a may not be put in place. To achieve
the intended effect, operand parsing (but not operand processing) needs
pulling ahead, so we know whether eGRP-s are in use.
Even when an EVEX encoding is available, use of such a prefix ought to
be respected (resulting in an error) rather than ignored. As requested
during review already, introduce a new encoding enumerator to record use
of eGPR-s, and update state transitions accordingly.
The optimize_encoding() change also addresses an internal assembler
error that was previously raised when respective memory operands used
eGPR-s for addressing.
While this results in a change of diagnostic issued for VEX-encoded
insns, the new one is at least no worse than the prior one.
gas/
* tc-riscv.c (percent_op_*): Add support for %tlsdesc_hi,
%tlsdesc_load_lo, %tlsdesc_add_lo and %tlsdesc_call. percent_op_rtype
renamed to percent_op_relax_only as this matcher is extended to handle
jalr as well which is not R-type.
(riscv_ip): Apply the percent_op_relax_only rename and update comment.
(md_apply_fix): Add TLSDESC_* to relaxable list. Add TLSDESC_HI20 to
TLS relocation check list.
* testsuite/gas/riscv/tlsdesc.*: New test cases for TLSDESC relocation
generation.
opcodes/
* riscv-opc.c (riscv_opcodes): Add a new syntax for jalr with
%tlsdesc_call annotations.
gas needs to build lists of sections for each group. This arranges to
build the lists earlier, so they can be used when looking for sections
that belong to a group. Using the section hash table to find sections
by name, then by group isn't efficient when there are numerous groups
with the same section names. Using a hash table to quickly find a
group, then searching by section name on a list for the group results
in a 100-fold speed improvement assembling the testcase in this PR.
To reduce the number of times we traverse the section list, the patch
also moves some processing done in elf_adjust_symtab for linked-to
section, to elf_frob_file. This requires a testsuite change because
processing will stop before elf_frob_file if there is a parse error in
section21.s, ie. you'll only get the "junk at end of line" error, not
the "undefined linked-to symbol" errors.
PR 25333
* config/obj-elf.c (struct group_list, groups): Move earlier.
(match_section): New function, extracted from..
(get_section_by_match): ..here.
(free_section_idx): Move earlier.
(group_section_find, group_section_insert): New functions.
(change_section): Use the above.
(elf_set_group_name): New function.
(obj_elf_attach_to_group): Use elf_set_group_name.
(set_additional_section_info): Handle linked_to_symbol_name and
stabs code, extracted from..
(adjust_stab_sections): ..here,..
(build_additional_section_info): ..and here.
(elf_adjust_symtab): Don't call build_additional_section_info.
(elf_frob_file): Adjust.
* config/obj-elf.h (elf_set_group_name): Declare.
* config/tc-xtensa.c (cache_literal_section): Use elf_set_group_name.
(xtensa_make_property_section): Likewise.
* testsuite/gas/elf/attach-1.d: Stricter group section matching,
and changed group section ordering.
* testsuite/gas/elf/attach-2.d: Stricter group section matching.
* testsuite/gas/elf/attach-2.s: Provide section bar type.
* testsuite/gas/elf/elf.exp: Run attach-2.
* testsuite/gas/elf/section21.l: Update.
* testsuite/gas/elf/section21.s: Don't check for a parse error.
Next to code using %ymm<N> or %zmm<N> it is more natural to have .cfi_*
directives also reference those, not the corresponding %xmm<N>. Accept
their names as kind of aliases, i.e. resolving to the same numbers.
While extending the respective 64-bit testcase, also add %bnd<N> there
(should have happened right with 633789901c ["x86-64: Dwarf2 register
numbers for %bnd<N>"], sorry), requiring binutils/dwarf.c to be adjusted
accordingly as well.
While various other entries in version 003 of the spec aren't quite as
explicit (due to simply leaving the respective field blank), all three
have a clear IGNORED there. IOW they ought to be emitted with EVEX.W=0
by default (and respect -mevexwig=).
The R_LARCH_ALIGN need to associated with a symbol if .align has the first
and third expressions. If R_LARCH_ALIGN associate with a symbol, the addend can
represent the first and third expression of .align.
For '.align 3', the addend of R_LARCH_ALIGN only need to represent the alignment
and R_LARCH_ALIGN not need to associate with a symbol.
For '.align x, , y', R_LARCH_ALIGN need to associate with a symbol if 0 < y <
2^x - 4.
This patch moves the existing sysreg tests for AArch64 into a subdirectory
(sysreg). The number of test files related to system registers grew
relatively big with time and makes the browsing of those files difficult.
Moreover, the difference of naming for the failure, working, and
feature-specific scenarios causes the tests not to appear next to one
another in the exploration tree when it is ordered alphabetically.
TCA instructions start with an X, this introduces ambiguities when it
comes to XOR (Is it the OR on the TCA or the XOR of the core?). For this
reason, we rename OR to IOR and XOR to EOR.
OR and XOR variants are still valid on KV3-1 and KV3-2. However, they
have been completely removed from KV4-1.
opcodes/ChangeLog:
* kvx-opc.c: Regenerate.
include/ChangeLog:
* opcode/kvx.h: Regenerate.
gas/ChangeLog:
* config/kvx-parse.h: Regenerate.
* testsuite/gas/kvx/kv3-1-insns-32.d: Regenerate.
* testsuite/gas/kvx/kv3-1-insns-32.s: Regenerate.
* testsuite/gas/kvx/kv3-1-insns-64.d: Regenerate.
* testsuite/gas/kvx/kv3-1-insns-64.s: Regenerate.
* testsuite/gas/kvx/kv3-2-insns-32.d: Regenerate.
* testsuite/gas/kvx/kv3-2-insns-32.s: Regenerate.
* testsuite/gas/kvx/kv3-2-insns-64.d: Regenerate.
* testsuite/gas/kvx/kv3-2-insns-64.s: Regenerate.
* testsuite/gas/kvx/kv4-1-insns-32.d: Regenerate.
* testsuite/gas/kvx/kv4-1-insns-32.s: Regenerate.
* testsuite/gas/kvx/kv4-1-insns-64.d: Regenerate.
* testsuite/gas/kvx/kv4-1-insns-64.s: Regenerate.
The detection of negative powers of 2 was wrong and could lead to
well-formed bundles ending up taking more syllables than necessary.
gas/ChangeLog:
* config/kvx-parse.c (get_token_class): Use the signed value.
* testsuite/gas/kvx/np2-detection.d: New test.
* testsuite/gas/kvx/np2-detection.s: New test.
This adds teh following files that were missing in the previous
commit ecd16ae4e4
testsuite/gas/bpf/indcall-badoperand.d
testsuite/gas/bpf/indcall-badoperand.l
testsuite/gas/bpf/indcall-badoperand.s
As a result of a switch instead of an if, as would issue non-specific
error messages when it encountered an operand it could not parse in bpf.
This patch fixes that regression and adds a test to prevent it from
reoccurring.
Tested for bpf-unknown-none on x86_64-redhat-linux.
gas/ChangeLog:
* config/tc-bpf.c (parse_expression): Change switch to if so that error
* condition is handled.
* testsuite/gas/bpf/bpf.exp: Invoke new test.
* testsuite/gas/bpf/indcall-badoperand.d: New test.
* testsuite/gas/bpf/indcall-badoperand.l: New test.
* testsuite/gas/bpf/indcall-badoperand.s: New test.