Commit Graph

65 Commits

Author SHA1 Message Date
Joel Brobecker
4a94e36819 Automatic Copyright Year update after running gdb/copyright.py
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.

For the avoidance of doubt, all changes in this commits were
performed by the script.
2022-01-01 19:13:23 +04:00
Tom Tromey
0c7af29227 Handle PIE in .debug_loclists
Simon pointed out that my recent patches to .debug_loclists caused
some regressions.  After a brief discussion we realized it was because
his system compiler defaults to PIE.

This patch changes this code to unconditionally apply the text offset
here.  It also changes loclist_describe_location to work more like
dwarf2_find_location_expression.

I tested this by running the gdb.dwarf2 tests both with and without
-pie.
2021-11-10 12:16:40 -07:00
Tom Tromey
7b9f73fad0 Correctly handle DW_LLE_start_end
When the code to handle DW_LLE_start_end was added (as part of some
DWARF 5 work), it was written to add the base address.  However, this
seems incorrect -- the DWARF standard describes this as an address,
not an offset from the base address.

This patch changes a couple of spots in dwarf2/loc.c to fix this
problem.  It then changes decode_debug_loc_addresses to return
DEBUG_LOC_OFFSET_PAIR instead, which preserves the previous semantics.

This only showed up on the RISC-V target internally, due to the
combination of DWARF 5 and a newer version of GCC.  I've updated a
couple of existing loclists test cases to demonstrate the bug.
2021-11-09 08:30:48 -07:00
Simon Marchi
d8557c3d22 gdb: remove FIELD_DWARF_BLOCK macro
Remove FIELD_DWARF_BLOCK, replace its uses with field::loc_dwarf_block.

Change-Id: I66b7d6a960cb5e341e61e21bd3cc9a6ac26de6a8
2021-10-29 16:44:21 -04:00
Simon Marchi
31a1516a81 gdb: remove FIELD_STATIC_PHYSADDR macro
Remove FIELD_LOC_KIND_PHYSADDR, replace its uses with
field::loc_physaddr.

Change-Id: Ifd8b2bdaad75f42bfb1404ef8c396ffe7e10ac55
2021-10-29 16:44:21 -04:00
Simon Marchi
16654a591a gdb: remove FIELD_STATIC_PHYSNAME macro
Remove FIELD_STATIC_PHYSNAME, replace its uses with field::loc_physname.

Change-Id: Iaa8952410403b4eb5bbd68411feea27e2405d657
2021-10-29 16:44:21 -04:00
Simon Marchi
8d939e8ea4 gdb: remove FIELD_LOC_KIND macro
Remove FIELD_LOC_KIND, replace its uses with field::loc_kind or
call_site_target::loc_kind.

Change-Id: I0368d8c3ea269d491bb215aa70e32edbdf55f389
2021-10-29 16:44:20 -04:00
Simon Marchi
50888e42dc gdb: change functions returning value contents to use gdb::array_view
The bug fixed by this [1] patch was caused by an out-of-bounds access to
a value's content.  The code gets the value's content (just a pointer)
and then indexes it with a non-sensical index.

This made me think of changing functions that return value contents to
return array_views instead of a plain pointer.  This has the advantage
that when GDB is built with _GLIBCXX_DEBUG, accesses to the array_view
are checked, making bugs more apparent / easier to find.

This patch changes the return types of these functions, and updates
callers to call .data() on the result, meaning it's not changing
anything in practice.  Additional work will be needed (which can be done
little by little) to make callers propagate the use of array_view and
reap the benefits.

[1] https://sourceware.org/pipermail/gdb-patches/2021-September/182306.html

Change-Id: I5151f888f169e1c36abe2cbc57620110673816f3
2021-10-25 14:51:44 -04:00
Tom Tromey
a519e8ffe2 Add lval_funcs::is_optimized_out
This adds an is_optimized_out function pointer to lval_funcs, and
changes value_optimized_out to call it.  This new function lets gdb
determine if a value is optimized out without necessarily fetching the
value.  This is needed for a subsequent patch, where an attempt to
access a lazy value would fail due to the value size limit -- however,
the access was only needed to determine the optimized-out state.
2021-10-05 12:34:55 -06:00
Simon Marchi
b0b8879e29 [gdb/symtab] Use unrelocated addresses in call_site
Consider test-case gdb.trace/entry-values.exp with target board
unix/-fPIE/-pie.

Using this command we have an abbreviated version, and can see the correct
@entry values for foo:
...
$ gdb -q -batch outputs/gdb.trace/entry-values/entry-values \
  -ex start \
  -ex "break foo" \
  -ex "set print entry-values both" \
  -ex continue
Temporary breakpoint 1 at 0x679

Temporary breakpoint 1, 0x0000555555554679 in main ()
Breakpoint 2 at 0x55555555463e

Breakpoint 2, 0x000055555555463e in foo (i=0, i@entry=2, j=2, j@entry=3)
...

Now, let's try the same again, but run directly to foo rather than stopping at
main:
...
$ gdb -q -batch outputs/gdb.trace/entry-values/entry-values \
  -ex "break foo" \
  -ex "set print entry-values both" \
  -ex run
Breakpoint 1 at 0x63e

Breakpoint 1, 0x000055555555463e in foo (i=0, i@entry=<optimized out>, \
  j=2, j@entry=<optimized out>)
...

So, what explains the difference?  Noteworthy, this is a dwarf assembly
test-case, with debug info for foo and bar, but not for main.

In the first case:
- we run to main
- this does not trigger expanding debug info, because there's none for main
- we set a breakpoint at foo
- this triggers expanding debug info.  Relocated addresses are used in
  call_site info (because the exec is started)
- we continue to foo, and manage to find the call_site info

In the second case:
- we set a breakpoint at foo
- this triggers expanding debug info.  Unrelocated addresses are used in
  call_site info (because the exec is not started)
- we run to foo
- this triggers objfile_relocate1, but it doesn't update the call_site
  info addresses
- we don't manage to find the call_site info

We could fix this by adding the missing call_site relocation in
objfile_relocate1.

This solution however is counter-trend in the sense that we're trying to
work towards the situation where when starting two instances of an executable,
we need only one instance of debug information, implying the use of
unrelocated addresses.

So, fix this instead by using unrelocated addresses in call_site info.

Tested on x86_64-linux.

This fixes all remaining unix/-fno-PIE/-no-pie vs unix/-fPIE/-pie
regressions, like f.i. PR24892.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=24892

Co-Authored-By: Tom de Vries <tdevries@suse.de>
2021-10-04 18:16:40 +02:00
Simon Marchi
b84aaadaf8 [gdb/symtab] C++-ify call_site
- add constructor
- add member function call_site::pc ()

Tested on x86_64-linux.

Co-Authored-By: Tom de Vries <tdevries@suse.de>
2021-10-04 18:16:40 +02:00
Zoran Zaric
70454ee70a Add as_lval argument to expression evaluator
There are cases where the result of the expression evaluation is
expected to be in a form of a value and not location description.

One place that has this requirement is dwarf_entry_parameter_to_value
function, but more are expected in the future. Until now, this
requirement was fulfilled by extending the evaluated expression with
a DW_OP_stack_value operation at the end.

New implementation, introduces a new evaluation argument instead.

	* dwarf2/expr.c (dwarf_expr_context::fetch_result): Add as_lval
	argument.
	(dwarf_expr_context::eval_exp): Add as_lval argument.
	* dwarf2/expr.h (struct dwarf_expr_context): Add as_lval
	argument to fetch_result and eval_exp methods.
	* dwarf2/frame.c (execute_stack_op): Add as_lval argument.
	* dwarf2/loc.c (dwarf_entry_parameter_to_value): Remove
	DWARF expression extension.
	(dwarf2_evaluate_loc_desc_full): Add as_lval argument support.
	(dwarf2_evaluate_loc_desc): Add as_lval argument support.
	(dwarf2_locexpr_baton_eval): Add as_lval argument support.
2021-08-05 16:41:05 +01:00
Zoran Zaric
0579205aec Simplify dwarf_expr_context class interface
Idea of this patch is to get a clean and simple public interface for
the dwarf_expr_context class, looking like:

- constructor,
- destructor,
- push_address method and
- evaluate method.

Where constructor should only ever require a target architecture
information. This information is held in per object file
(dwarf2_per_objfile) structure, so it makes sense to keep that
structure as a constructor argument. It also makes sense to get the
address size from that structure, but unfortunately that interface
doesn't exist at the moment, so the dwarf_expr_context class user
needs to provide that information.

The push_address method is used to push a CORE_ADDR as a value on
top of the DWARF stack before the evaluation. This method can be
later changed to push any struct value object on the stack.

The evaluate method is the method that evaluates a DWARF expression
and provides the evaluation result, in a form of a single struct
value object that describes a location. To do this, the method requires
a context of the evaluation, as well as expected result type
information. If the type information is not provided, the DWARF generic
type will be used instead.

To avoid storing the gdbarch information in the evaluator object, that
information is now always acquired from the per_objfile object.

All data members are now private and only visible to the evaluator
class, so a m_ prefix was added to all of their names to reflect that.
To make this distinction clear, they are also accessed through objects
this pointer, wherever that was not the case before.

gdb/ChangeLog:

	* dwarf2/expr.c (dwarf_expr_context::dwarf_expr_context): Add
	address size argument.
	(dwarf_expr_context::read_mem): Change to use property_addr_info
	structure.
	(dwarf_expr_context::evaluate): New function.
	(dwarf_expr_context::execute_stack_op): Change to use
	property_addr_info structure.
	* dwarf2/expr.h (struct dwarf_expr_context): New evaluate
	declaration. Change eval and fetch_result method to private.
        (dwarf_expr_context::gdbarch): Remove member.
        (dwarf_expr_context::stack): Make private and add m_ prefix.
        (dwarf_expr_context::addr_size): Make private and add
        m_ prefix.
        (dwarf_expr_context::recursion_depth): Make private and add
        m_ prefix.
        (dwarf_expr_context::max_recursion_depth): Make private and
        add m_ prefix.
        (dwarf_expr_context::len): Make private and add m_ prefix.
        (dwarf_expr_context::data): Make private and add m_ prefix.
        (dwarf_expr_context::initialized): Make private and add
        m_ prefix.
        (dwarf_expr_context::pieces): Make private and add m_ prefix.
        (dwarf_expr_context::per_objfile): Make private and add
        m_ prefix.
        (dwarf_expr_context::frame): Make private and add m_ prefix.
        (dwarf_expr_context::per_cu): Make private and add m_ prefix.
        (dwarf_expr_context::addr_info): Make private and add
        m_ prefix.
	* dwarf2/frame.c (execute_stack_op): Change to call evaluate
	method.
	* dwarf2/loc.c (dwarf2_evaluate_loc_desc_full): Change to call
	evaluate method.
	(dwarf2_locexpr_baton_eval): Change to call evaluate method.
2021-08-05 16:40:56 +01:00
Zoran Zaric
ba5bc3e5a9 Make DWARF evaluator return a single struct value
The patch is addressing the issue of class users writing and reading
the internal data of the dwarf_expr_context class.

At this point, all conditions are met for the DWARF evaluator to return
an evaluation result in a form of a single struct value object.

gdb/ChangeLog:

	* dwarf2/expr.c (pieced_value_funcs): Chenge to static
	function.
	(allocate_piece_closure): Change to static function.
	(dwarf_expr_context::fetch_result): New function.
	* dwarf2/expr.h (struct piece_closure): Remove declaration.
	(struct dwarf_expr_context): fetch_result new declaration.
	fetch, fetch_address and fetch_in_stack_memory members move
	to private.
	(allocate_piece_closure): Remove.
	* dwarf2/frame.c (execute_stack_op): Change to use
	fetch_result.
	* dwarf2/loc.c (dwarf2_evaluate_loc_desc_full): Change to use
	fetch_result.
	(dwarf2_locexpr_baton_eval): Change to use fetch_result.
        * dwarf2/loc.h (invalid_synthetic_pointer): Expose function.
2021-08-05 16:40:47 +01:00
Zoran Zaric
f4091d2644 Move piece_closure and its support to expr.c
Following 5 patches series is trying to clean up the interface of the
DWARF expression evaluator class (dwarf_expr_context).

After merging all expression evaluators into one class, the next
logical step is to make a clean user interface for that class. To do
that, we first need to address the issue of class users writing and
reading the internal data of the class directly.

Fixing the case of writing is simple, it makes sense for an evaluator
instance to be per architecture basis. Currently, the best separation
seems to be per object file, so having that data (dwarf2_per_objfile)
as a constructor argument makes sense. It also makes sense to get the
address size from that object file, but unfortunately that interface
does not exist at the moment.

Luckily, address size information is already available to the users
through other means. As a result, the address size also needs to be a
class constructor argument, at least until a better interface for
acquiring that information from an object file is implemented.

The rest of the user written data comes down to a context of an
evaluated expression (compilation unit context, frame context and
passed in buffer context) and a source type information that a result
of evaluating expression is representing. So, it makes sense for all of
these to be arguments of an evaluation method.

To address the problem of reading the dwarf_expr_context class
internal data, we first need to understand why it is implemented that
way?

This is actualy a question of which existing class can be used to
represent both values and a location descriptions and why it is not
used currently?

The answer is in a struct value class/structure, but the problem is
that before the evaluators were merged, only one evaluator had an
infrastructure to resolve composite and implicit pointer location
descriptions.

After the merge, we are now able to use the struct value to represent
any result of the expression evaluation. It also makes sense to move
all infrastructure for those location descriptions to the expr.c file
considering that that is the only place using that infrastructure.

What we are left with in the end is a clean public interface of the
dwarf_expr_context class containing:

- constructor,
- destructor,
- push_address method and
- eval_exp method.

The idea with this particular patch is to move piece_closure structure
and the interface that handles it (lval_funcs) to expr.c file.

While implicit pointer location descriptions are still not useful in
the CFI context (of the AMD's DWARF standard extensions), the composite
location descriptions are certainly necessary to describe a results of
specific compiler optimizations.

Considering that a piece_closure structure is used to represent both,
there was no benefit in splitting them.

gdb/ChangeLog:

	* dwarf2/expr.c (struct piece_closure): Add from loc.c.
	(allocate_piece_closure): Add from loc.c.
	(bits_to_bytes): Add from loc.c.
	(rw_pieced_value): Add from loc.c.
	(read_pieced_value): Add from loc.c.
	(write_pieced_value): Add from loc.c.
	(check_pieced_synthetic_pointer): Add from loc.c.
	(indirect_pieced_value): Add from loc.c.
	(coerce_pieced_ref): Add from loc.c.
	(copy_pieced_value_closure): Add from loc.c.
	(free_pieced_value_closure): Add from loc.c.
	(sect_variable_value): Add from loc.c.
	* dwarf2/loc.c (sect_variable_value): Move to expr.c.
	(struct piece_closure): Move to expr.c.
	(allocate_piece_closure): Move to expr.c.
	(bits_to_bytes): Move to expr.c.
	(rw_pieced_value): Move to expr.c.
	(read_pieced_value): Move to expr.c.
	(write_pieced_value): Move to expr.c.
	(check_pieced_synthetic_pointer): Move to expr.c.
	(indirect_pieced_value): Move to expr.c.
	(coerce_pieced_ref): Move to expr.c.
	(copy_pieced_value_closure): Move to expr.c.
	(free_pieced_value_closure): Move to expr.c.
2021-08-05 16:40:30 +01:00
Zoran Zaric
f9e4ed8baa Merge evaluate_for_locexpr_baton evaluator
The evaluate_for_locexpr_baton is the last derived class from the
dwarf_expr_context class. It's purpose is to support the passed in
buffer functionality.

Although, it is not really necessary to merge this class with it's
base class, doing that simplifies new expression evaluator design.

Considering that this functionality is going around the DWARF standard,
it is also reasonable to expect that with a new evaluator design and
extending the push object address functionality to accept any location
description, there will be no need to support passed in buffers.

Alternatively, it would also makes sense to abstract the interaction
between the evaluator and a given resource in the near future. The
passed in buffer would then be a specialization of that abstraction.

gdb/ChangeLog:

	* dwarf2/expr.c (dwarf_expr_context::read_mem): Merge with
	evaluate_for_locexpr_baton implementation.
	* dwarf2/loc.c (class evaluate_for_locexpr_baton): Remove
	class.
	(evaluate_for_locexpr_baton::read_mem): Move to
	dwarf_expr_context.
	(dwarf2_locexpr_baton_eval): Instantiate dwarf_expr_context
	instead of evaluate_for_locexpr_baton class.
2021-08-05 16:40:26 +01:00
Zoran Zaric
14a62404c9 Remove empty frame and full evaluators
There are no virtual methods that require different specialization in
dwarf_expr_context class. This means that derived classes
dwarf_expr_executor and dwarf_evaluate_loc_desc are not needed any
more.

As a result of this, the  evaluate_for_locexpr_baton class base class
is now the dwarf_expr_context class.

There might be a need for a better class hierarchy when we know more
about the direction of the future DWARF versions and gdb extensions,
but that is out of the scope of this patch series.

gdb/ChangeLog:

	* dwarf2/frame.c (class dwarf_expr_executor): Remove class.
	(execute_stack_op): Instantiate dwarf_expr_context instead of
	dwarf_evaluate_loc_desc class.
	* dwarf2/loc.c (class dwarf_evaluate_loc_desc): Remove class.
	(dwarf2_evaluate_loc_desc_full): Instantiate dwarf_expr_context
	instead of dwarf_evaluate_loc_desc class.
	(struct evaluate_for_locexpr_baton): Derive from
	dwarf_expr_context.
2021-08-05 16:40:17 +01:00
Zoran Zaric
0a2b69d04b Move push_dwarf_reg_entry_value to expr.c
Following the idea of merging the evaluators, the
push_dwarf_reg_entry_value method can be moved from
dwarf_expr_executor and dwarf_evaluate_loc_desc classes
to their base class dwarf_expr_context.

gdb/ChangeLog:

	* dwarf2/expr.c
        (dwarf_expr_context::push_dwarf_reg_entry_value): Move from
	dwarf_evaluate_loc_desc.
	* dwarf2/frame.c
	(dwarf_expr_executor::push_dwarf_reg_entry_value): Remove
	method.
	* dwarf2/loc.c (dwarf_expr_reg_to_entry_parameter): Expose
	function.
	(dwarf_evaluate_loc_desc::push_dwarf_reg_entry_value): Move to
	dwarf_expr_context.
	* dwarf2/loc.h (dwarf_expr_reg_to_entry_parameter): Expose
	function.
2021-08-05 16:40:06 +01:00
Zoran Zaric
3c7c57cdc0 Move read_mem to dwarf_expr_context
Following the idea of merging the evaluators, the read_mem method can
be moved from dwarf_expr_executor and dwarf_evaluate_loc_desc classes
to their base class dwarf_expr_context.

gdb/ChangeLog:

	* dwarf2/expr.c (dwarf_expr_context::read_mem): Move from
	dwarf_evaluate_loc_desc.
	* dwarf2/frame.c (dwarf_expr_executor::read_mem): Remove
	method.
	* dwarf2/loc.c (dwarf_evaluate_loc_desc::read_mem): Move to
	dwarf_expr_context.
2021-08-05 16:39:59 +01:00
Zoran Zaric
73e6b86330 Move get_object_address to dwarf_expr_context
Following the idea of merging the evaluators, the get_object_address
and can be moved from dwarf_expr_executor and dwarf_evaluate_loc_desc
classes to their base class dwarf_expr_context.

gdb/ChangeLog:

	* dwarf2/expr.c (dwarf_expr_context::get_object_address): Move
	from dwarf_evaluate_loc_desc.
	(class dwarf_expr_context): Add object address member to
	dwarf_expr_context.
	* dwarf2/expr.h (dwarf_expr_context::get_frame_pc): Remove
	method.
	* dwarf2/frame.c (dwarf_expr_executor::get_object_address):
	Remove method.
	* dwarf2/loc.c (dwarf_evaluate_loc_desc::get_object_address):
	move to dwarf_expr_context.
	(class dwarf_evaluate_loc_desc): Move object address member to
	dwarf_expr_context.
2021-08-05 16:39:51 +01:00
Zoran Zaric
b6d156edd8 Move dwarf_call to dwarf_expr_context
Following the idea of merging the evaluators, the dwarf_call and
get_frame_pc method can be moved from dwarf_expr_executor and
dwarf_evaluate_loc_desc classes to their base class dwarf_expr_context.
Once this is done, the get_frame_pc can be replace with lambda
function.

gdb/ChangeLog:

	* dwarf2/expr.c (dwarf_expr_context::dwarf_call): Move from
	dwarf_evaluate_loc_desc.
	(dwarf_expr_context::get_frame_pc): Replace with lambda.
	* dwarf2/expr.h (dwarf_expr_context::get_frame_pc): Remove
	method.
	* dwarf2/frame.c (dwarf_expr_executor::dwarf_call): Remove
	method.
	(dwarf_expr_executor::get_frame_pc): Remove method.
	* dwarf2/loc.c (dwarf_evaluate_loc_desc::get_frame_pc): Remove
	method.
	(dwarf_evaluate_loc_desc::dwarf_call): Move to
	dwarf_expr_context.
	(per_cu_dwarf_call): Inline function.
2021-08-05 16:39:43 +01:00
Zoran Zaric
a580d9604b Move compilation unit info to dwarf_expr_context
This patch moves the compilation unit context information and support
from dwarf_expr_executor and dwarf_evaluate_loc_desc to
dwarf_expr_context evaluator. The idea is to report an error when a
given operation requires a compilation unit information to be resolved,
which is not available.

With this change, it also makes sense to always acquire ref_addr_size
information from the compilation unit context, considering that all
DWARF operations that refer to that information require a compilation
unit context to be present during their evaluation.

gdb/ChangeLog:

	* dwarf2/expr.c (ensure_have_per_cu): New function.
	(dwarf_expr_context::dwarf_expr_context): Add compilation unit
	context information.
	(dwarf_expr_context::get_base_type): Move from
	dwarf_evaluate_loc_desc.
	(dwarf_expr_context::get_addr_index): Remove method.
	(dwarf_expr_context::dwarf_variable_value): Remove method.
	(dwarf_expr_context::execute_stack_op): Call compilation unit
	context info check. Inline get_addr_index and
	dwarf_variable_value methods.
	* dwarf2/expr.h (struct dwarf_expr_context): Add compilation
	context info.
        (dwarf_expr_context::get_addr_index): Remove method.
        (dwarf_expr_context::dwarf_variable_value): Remove method.
        (dwarf_expr_context::ref_addr_size): Remove member.
	* dwarf2/frame.c (dwarf_expr_executor::get_addr_index): Remove
	method.
	(dwarf_expr_executor::dwarf_variable_value): Remove method.
	* dwarf2/loc.c (sect_variable_value): Expose function.
	(dwarf_evaluate_loc_desc::get_addr_index): Remove method.
	(dwarf_evaluate_loc_desc::dwarf_variable_value): Remove method.
	(class dwarf_evaluate_loc_desc): Move compilation unit context
	information to dwarf_expr_context class.
	* dwarf2/loc.h (sect_variable_value): Expose function.
2021-08-05 16:39:36 +01:00
Zoran Zaric
6c7779b34b Remove get_frame_cfa from dwarf_expr_context
Following the idea of merging the evaluators, the get_frame_cfa method
can be moved from dwarf_expr_executor and dwarf_evaluate_loc_desc
classes to their base class dwarf_expr_context. Once this is done,
it becomes apparent that the method is only called once and it can be
inlined.

It is also necessary to check if the frame context information was
provided before the DW_OP_call_frame_cfa operation is executed.

gdb/ChangeLog:

	* dwarf2/expr.c (dwarf_expr_context::get_frame_cfa): Remove
	method.
	(dwarf_expr_context::execute_stack_op): Call frame context info
	check for DW_OP_call_frame_cfa. Remove use of get_frame_cfa.
	* dwarf2/expr.h (dwarf_expr_context::get_frame_cfa): Remove
	method.
	* dwarf2/frame.c (dwarf_expr_context::get_frame_cfa): Remove
	method.
	* dwarf2/loc.c (dwarf_expr_context::get_frame_cfa): Remove
	method.
2021-08-05 16:39:27 +01:00
Zoran Zaric
62e37eac1c Move frame context info to dwarf_expr_context
Following 15 patches in this patch series is cleaning up the design of
the DWARF expression evaluator (dwarf_expr_context) to make future
extensions of that evaluator easier and cleaner to implement.

There are three subclasses of the dwarf_expr_context class
(dwarf_expr_executor, dwarf_evaluate_loc_desc and
evaluate_for_locexpr_baton). Here is a short description of each class:

- dwarf_expr_executor is evaluating a DWARF expression in a context
  of a Call Frame Information. The overridden methods of this subclass
  report an error if a specific DWARF operation, represented by that
  method, is not allowed in a CFI context. The source code of this
  subclass lacks the support for composite as well as implicit pointer
  location description.

- dwarf_evaluate_loc_desc can evaluate any expression with no
  restrictions. All of the methods that this subclass overrides are
  actually doing what they are intended to do. This subclass contains
  a full support for all location description types.

- evaluate_for_locexpr_baton subclass is a specialization of the
  dwarf_evaluate_loc_desc subclass and it's function is to add
  support for passed in buffers. This seems to be a way to go around
  the fact that DWARF standard lacks a bit offset support for memory
  location descriptions as well as using any location description for
  the push object address functionality.

It all comes down to this question: what is a function of a DWARF
expression evaluator?

Is it to evaluate the expression in a given context or to check the
correctness of that expression in that context?

Currently, the only reason why there is a dwarf_expr_executor subclass
is to report an invalid DWARF expression in a context of a CFI, but is
that what the evaluator is supposed to do considering that the evaluator
is not tied to a given DWARF version?

There are more and more vendor and GNU extensions that are not part of
the DWARF standard, so is it that impossible to expect that some of the
extensions could actually lift the previously imposed restrictions of
the CFI context? Not to mention that every new DWARF version is lifting
some restrictions anyway.

The thing that makes more sense for an evaluator to do, is to take the
context of an evaluation and checks the requirements of every operation
evaluated against that context. With this approach, the evaluator would
report an error only if parts of the context, necessary for the
evaluation, are missing.

If this approach is taken, then the unification of the
dwarf_evaluate_loc_desc, dwarf_expr_executor and dwarf_expr_context
is the next logical step. This makes a design of the DWARF expression
evaluator cleaner and allows more flexibility when supporting future
vendor and GNU extensions.

Additional benefit here is that now all evaluators have access to all
location description types, which means that a vendor extended CFI
rules could support composite location description as well. This also
means that a new evaluator interface can be changed to return a single
struct value (that describes the result of the evaluation) instead of
a caller poking around the dwarf_expr_context internal data for answers
(like it is done currently).

This patch starts the merging process by moving the frame context
information and support from dwarf_expr_executor and
dwarf_evaluate_loc_desc to dwarf_expr_context evaluator. The idea
is to report an error when a given operation requires a frame
information to be resolved, if that information is not present.

gdb/ChangeLog:

	* dwarf2/expr.c (ensure_have_frame): New function.
	(read_addr_from_reg): Add from frame.c.
	(dwarf_expr_context::dwarf_expr_context): Add frame info to
	dwarf_expr_context.
	(dwarf_expr_context::read_addr_from_reg): Remove.
	(dwarf_expr_context::get_reg_value): Move from
	dwarf_evaluate_loc_desc.
	(dwarf_expr_context::get_frame_base): Move from
	dwarf_evaluate_loc_desc.
	(dwarf_expr_context::execute_stack_op): Call frame context info
	check. Remove use of read_addr_from_reg method.
	* dwarf2/expr.h (struct dwarf_expr_context): Add frame info
	member, read_addr_from_reg, get_reg_value and get_frame_base
	declaration.
	(read_addr_from_reg): Move to expr.c.
	* dwarf2/frame.c (read_addr_from_reg): Move to
	dwarf_expr_context.
	(dwarf_expr_executor::read_addr_from_reg): Remove.
	(dwarf_expr_executor::get_frame_base): Remove.
	(dwarf_expr_executor::get_reg_value): Remove.
	(execute_stack_op): Use read_addr_from_reg function instead of
	read_addr_from_reg method.
	* dwarf2/loc.c (dwarf_evaluate_loc_desc::get_frame_base): Move
	to dwarf_expr_context.
	(dwarf_evaluate_loc_desc::get_reg_value): Move to
	dwarf_expr_context.
	(dwarf_evaluate_loc_desc::read_addr_from_reg): Remove.
	(dwarf2_locexpr_baton_eval):Use read_addr_from_reg function
	instead of read_addr_from_reg method.
2021-08-05 16:39:01 +01:00
Zoran Zaric
183657edcd Replace the symbol needs evaluator with a parser
This patch addresses a design problem with the symbol_needs_eval_context
class. It exposes the problem by introducing two new testsuite test
cases.

To explain the issue, I first need to explain the dwarf_expr_context
class that the symbol_needs_eval_context class derives from.

The intention behind the dwarf_expr_context class is to commonize the
DWARF expression evaluation mechanism for different evaluation
contexts. Currently in gdb, the evaluation context can contain some or
all of the following information: architecture, object file, frame and
compilation unit.

Depending on the information needed to evaluate a given expression,
there are currently three distinct DWARF expression evaluators:

 - Frame: designed to evaluate an expression in the context of a call
   frame information (dwarf_expr_executor class). This evaluator doesn't
   need a compilation unit information.

 - Location description: designed to evaluate an expression in the
   context of a source level information (dwarf_evaluate_loc_desc
   class). This evaluator expects all information needed for the
   evaluation of the given expression to be present.

 - Symbol needs: designed to answer a question about the parts of the
   context information required to evaluate a DWARF expression behind a
   given symbol (symbol_needs_eval_context class). This evaluator
   doesn't need a frame information.

The functional difference between the symbol needs evaluator and the
others is that this evaluator is not meant to interact with the actual
target. Instead, it is supposed to check which parts of the context
information are needed for the given DWARF expression to be evaluated by
the location description evaluator.

The idea is to take advantage of the existing dwarf_expr_context
evaluation mechanism and to fake all required interactions with the
actual target, by returning back dummy values. The evaluation result is
returned as one of three possible values, based on operations found in a
given expression:

- SYMBOL_NEEDS_NONE,
- SYMBOL_NEEDS_REGISTERS and
- SYMBOL_NEEDS_FRAME.

The problem here is that faking results of target interactions can yield
an incorrect evaluation result.

For example, if we have a conditional DWARF expression, where the
condition depends on a value read from an actual target, and the true
branch of the condition requires a frame information to be evaluated,
while the false branch doesn't, fake target reads could conclude that a
frame information is not needed, where in fact it is. This wrong
information would then cause the expression to be actually evaluated (by
the location description evaluator) with a missing frame information.
This would then crash the debugger.

The gdb.dwarf2/symbol_needs_eval_fail.exp test introduces this
scenario, with the following DWARF expression:

                   DW_OP_addr $some_variable
                   DW_OP_deref

                   # conditional jump to DW_OP_bregx
                   DW_OP_bra 4
                   DW_OP_lit0

                   # jump to DW_OP_stack_value
                   DW_OP_skip 3
                   DW_OP_bregx $dwarf_regnum 0
                   DW_OP_stack_value

This expression describes a case where some variable dictates the
location of another variable. Depending on a value of some_variable, the
variable whose location is described by this expression is either read
from a register or it is defined as a constant value 0. In both cases,
the value will be returned as an implicit location description on the
DWARF stack.

Currently, when the symbol needs evaluator fakes a memory read from the
address behind the some_variable variable, the constant value 0 is used
as the value of the variable A, and the check returns the
SYMBOL_NEEDS_NONE result.

This is clearly a wrong result and it causes the debugger to crash.

The scenario might sound strange to some people, but it comes from a
SIMD/SIMT architecture where $some_variable is an execution mask.  In
any case, it is a valid DWARF expression, and GDB shouldn't crash while
evaluating it. Also, a similar example could be made based on a
condition of the frame base value, where if that value is concluded to
be 0, the variable location could be defaulted to a TLS based memory
address.

The gdb.dwarf2/symbol_needs_eval_timeout.exp test introduces a second
scenario. This scenario is a bit more abstract due to the DWARF
assembler lacking the CFI support, but it exposes a different
manifestation of the same problem. Like in the previous scenario, the
DWARF expression used in the test is valid:

                       DW_OP_lit1
                       DW_OP_addr $some_variable
                       DW_OP_deref

                       # jump to DW_OP_fbreg
                       DW_OP_skip 4
                       DW_OP_drop
                       DW_OP_fbreg 0
                       DW_OP_dup
                       DW_OP_lit0
                       DW_OP_eq

                       # conditional jump to DW_OP_drop
                       DW_OP_bra -9
                       DW_OP_stack_value

Similarly to the previous scenario, the location of a variable A is an
implicit location description with a constant value that depends on a
value held by a global variable. The difference from the previous case
is that DWARF expression contains a loop instead of just one branch. The
end condition of that loop depends on the expectation that a frame base
value is never zero. Currently, the act of faking the target reads will
cause the symbol needs evaluator to get stuck in an infinite loop.

Somebody could argue that we could change the fake reads to return
something else, but that would only hide the real problem.

The general impression seems to be that the desired design is to have
one class that deals with parsing of the DWARF expression, while there
are virtual methods that deal with specifics of some operations.

Using an evaluator mechanism here doesn't seem to be correct, because
the act of evaluation relies on accessing the data from the actual
target with the possibility of skipping the evaluation of some parts of
the expression.

To better explain the proposed solution for the issue, I first need to
explain a couple more details behind the current design:

There are multiple places in gdb that handle DWARF expression parsing
for different purposes. Some are in charge of converting the expression
to some other internal representation (decode_location_expression,
disassemble_dwarf_expression and dwarf2_compile_expr_to_ax), some are
analysing the expression for specific information
(compute_stack_depth_worker) and some are in charge of evaluating the
expression in a given context (dwarf_expr_context::execute_stack_op
and decode_locdesc).

The problem is that all those functions have a similar (large) switch
statement that handles each DWARF expression operation. The result of
this is a code duplication and harder maintenance.

As a step into the right direction to solve this problem (at least for
the purpose of a DWARF expression evaluation) the expression parsing was
commonized inside of an evaluator base class (dwarf_expr_context). This
makes sense for all derived classes, except for the symbol needs
evaluator (symbol_needs_eval_context) class.

As described previously the problem with this evaluator is that if the
evaluator is not allowed to access the actual target, it is not really
evaluating.

Instead, the desired function of a symbol needs evaluator seems to fall
more into expression analysis category. This means that a more natural
fit for this evaluator is to be a symbol needs analysis, similar to the
existing compute_stack_depth_worker analysis.

Another problem is that using a heavyweight mechanism of an evaluator
to do an expression analysis seems to be an unneeded overhead. It also
requires a more complicated design of the parent class to support fake
target reads.

The reality is that the whole symbol_needs_eval_context class can be
replaced with a lightweight recursive analysis function, that will give
more correct result without compromising the design of the
dwarf_expr_context class. The analysis treats the expression byte
stream as a DWARF operation graph, where each graph node can be
visited only once and each operation can decide if the frame context
is needed for their evaluation.

The downside of this approach is adding of one more similar switch
statement, but at least this way the new symbol needs analysis will be
a lightweight mechnism and it will provide a correct result for any
given DWARF expression.

A more desired long term design would be to have one class that deals
with parsing of the DWARF expression, while there would be a virtual
methods that deal with specifics of some DWARF operations. Then that
class would be used as a base for all DWARF expression parsing mentioned
at the beginning.

This however, requires a far bigger changes that are out of the scope
of this patch series.

The new analysis requires the DWARF location description for the
argc argument of the main function to change in the assembly file
gdb.python/amd64-py-framefilter-invalidarg.S. Originally, expression
ended with a 0 value byte, which was never reached by the symbol needs
evaluator, because it was detecting a stack underflow when evaluating
the operation before. The new approach does not simulate a DWARF
stack anymore, so the 0 value byte needs to be removed because it
makes the DWARF expression invalid.

gdb/ChangeLog:

        * dwarf2/loc.c (class symbol_needs_eval_context): Remove.
        (dwarf2_get_symbol_read_needs): New function.
        (dwarf2_loc_desc_get_symbol_read_needs): Remove.
        (locexpr_get_symbol_read_needs): Use
        dwarf2_get_symbol_read_needs.

gdb/testsuite/ChangeLog:

        * gdb.python/amd64-py-framefilter-invalidarg.S : Update argc
          DWARF location expression.
        * lib/dwarf.exp (_location): Handle DW_OP_fbreg.
        * gdb.dwarf2/symbol_needs_eval.c: New file.
        * gdb.dwarf2/symbol_needs_eval_fail.exp: New file.
        * gdb.dwarf2/symbol_needs_eval_timeout.exp: New file.
2021-08-05 16:35:02 +01:00
Andreas Schwab
80d1206d7f gdb: Support DW_LLE_start_end
Without that it is impossible to debug on riscv64.

gdb/
	PR symtab/27999
	* dwarf2/loc.c (decode_debug_loclists_addresses): Support
	DW_LLE_start_end.

gdb/testsuite/
	PR symtab/27999
	* lib/dwarf.exp (start_end): New proc inside loclists.
	* gdb.dwarf2/loclists-start-end.exp: New file.
	* gdb.dwarf2/loclists-start-end.c: New file.
2021-06-22 16:39:01 +02:00
Tom Tromey
386de171cb Add PROP_VARIABLE_NAME
With -fgnat-encodings=minimal, an internal version (these patches will
be upstreamed in the near future) of the Ada compiler can emit DWARF
for an array where the bound comes from a variable, like:

 <1><12a7>: Abbrev Number: 7 (DW_TAG_array_type)
    <12a8>   DW_AT_name        : (indirect string, offset: 0x1ae9): pck__my_array
[...]
 <2><12b4>: Abbrev Number: 8 (DW_TAG_subrange_type)
    <12b5>   DW_AT_type        : <0x1294>
    <12b9>   DW_AT_upper_bound : <0x1277>

With the upper bound DIE being:

 <1><1277>: Abbrev Number: 2 (DW_TAG_variable)
    <1278>   DW_AT_name        : (indirect string, offset: 0x1a4d): pck__my_length___U
    <127c>   DW_AT_type        : <0x128f>
    <1280>   DW_AT_external    : 1
    <1280>   DW_AT_artificial  : 1
    <1280>   DW_AT_declaration : 1

Note that the variable is just a declaration -- in this situation, the
variable comes from another compilation unit, and must be found when
trying to compute the array bound.

This patch adds a new PROP_VARIABLE_NAME kind, to enable this search.

This same scenario can occur with DW_OP_GNU_variable_value, so this
patch adds support for that as well.

gdb/ChangeLog
2021-06-04  Tom Tromey  <tromey@adacore.com>

	* dwarf2/read.h (dwarf2_fetch_die_type_sect_off): Add 'var_name'
	parameter.
	* dwarf2/loc.c (dwarf2_evaluate_property) <case
	PROP_VARIABLE_NAME>: New case.
	(compute_var_value): New function.
	(sect_variable_value): Use compute_var_value.
	* dwarf2/read.c (attr_to_dynamic_prop): Handle DW_TAG_variable.
	(var_decl_name): New function.
	(dwarf2_fetch_die_type_sect_off): Add 'var_name' parameter.
	* gdbtypes.h (enum dynamic_prop_kind) <PROP_VARIABLE_NAME>: New
	constant.
	(union dynamic_prop_data) <variable_name>: New member.
	(struct dynamic_prop) <variable_name, set_variable_name>: New
	methods.

gdb/testsuite/ChangeLog
2021-06-04  Tom Tromey  <tromey@adacore.com>

	* gdb.ada/array_of_symbolic_length.exp: New file.
	* gdb.ada/array_of_symbolic_length/foo.adb: New file.
	* gdb.ada/array_of_symbolic_length/gl.adb: New file.
	* gdb.ada/array_of_symbolic_length/gl.ads: New file.
	* gdb.ada/array_of_symbolic_length/pck.adb: New file.
	* gdb.ada/array_of_symbolic_length/pck.ads: New file.
2021-06-04 13:51:23 -06:00
Tom Tromey
9e541c7918 Avoid crash with GCC trunk
With GCC trunk, gdb.ada/access_to_packed_array.exp causes a GDB crash.
The problem is that ptype tries to resolve a dynamic type.  However,
the inferior is not running, so there are no frames.

This patch updates dwarf2_evaluate_loc_desc::get_frame_base to handle
this situation.

gdb/ChangeLog
2021-05-17  Tom Tromey  <tromey@adacore.com>

	* dwarf2/loc.c (dwarf2_evaluate_loc_desc::get_frame_base): Throw
	if frame is null.
2021-05-17 13:07:25 -06:00
Tom Tromey
3637a558a5 Use std::vector for "registers_used" in compile feature
This changes the GDB compile code to use std::vector<bool> when
computing which registers are used.  This is a bit more idiomatic, but
the main benefit is that it also adds some checking when the libstd++
debug mode is enabled.

2021-01-23  Tom Tromey  <tom@tromey.com>

	* symtab.h (struct symbol_computed_ops) <generate_c_location>:
	Change type of "registers_used".
	* dwarf2/loc.h (dwarf2_compile_property_to_c): Update.
	* dwarf2/loc.c (dwarf2_compile_property_to_c)
	(locexpr_generate_c_location, loclist_generate_c_location): Change
	type of "registers_used".
	* compile/compile.h (compile_dwarf_expr_to_c)
	(compile_dwarf_bounds_to_c): Update.
	* compile/compile-loc2c.c (pushf_register_address)
	(pushf_register, do_compile_dwarf_expr_to_c)
	(compile_dwarf_expr_to_c, compile_dwarf_bounds_to_c): Change type
	of "registers_used".
	* compile/compile-c.h (generate_c_for_variable_locations):
	Update.
	* compile/compile-c-symbols.c (generate_vla_size)
	(generate_c_for_for_one_variable): Change type of
	"registers_used".
	(generate_c_for_variable_locations): Return std::vector.
	* compile/compile-c-support.c (generate_register_struct): Change
	type of "registers_used".
	(compute): Update.
2021-01-23 20:33:25 -07:00
Luis Machado
bdec2917b1 Convert some frame functions to use gdb::array_view.
This patch converts the most obvious functions from gdb/frame.h to use
the gdb::array_view abstraction.  I've converted the ones that used buffer +
length.

There are others using only the buffer, with an implicit size. I did not
touch those for now. But it would be nice to pass the size for safety.

Tested with --enable-targets=all on Ubuntu 18.04/20.04 aarch64-linux.

gdb/ChangeLog

2021-01-19  Luis Machado  <luis.machado@linaro.org>

	* frame.h (get_frame_register_bytes): Pass a gdb::array_view instead
	of buffer + length.
	(put_frame_register_bytes): Likewise.
	Adjust documentation.
	(get_frame_memory): Pass a gdb::array_view instead of buffer + length.
	(safe_frame_unwind_memory): Likewise.
	* frame.c (get_frame_register_bytes, put_frame_register_bytes)
	(get_frame_memory, safe_frame_unwind_memory): Adjust to use
	gdb::array_view.
	* amd64-fbsd-tdep.c (amd64fbsd_sigtramp_p): Likewise.
	* amd64-linux-tdep.c (amd64_linux_sigtramp_start): Likewise.
	* amd64-obsd-tdep.c (amd64obsd_sigtramp_p): Likewise.
	* arc-linux-tdep.c (arc_linux_is_sigtramp): Likewise.
	* cris-tdep.c (cris_sigtramp_start, cris_rt_sigtramp_start): Likewise.
	* dwarf2/loc.c (rw_pieced_value): Likewise.
	* hppa-tdep.c (hppa_frame_cache): Likewise.
	* i386-fbsd-tdep.c (i386fbsd_sigtramp_p): Likewise.
	* i386-gnu-tdep.c (i386_gnu_sigtramp_start): Likewise.
	* i386-linux-tdep.c (i386_linux_sigtramp_start)
	(i386_linux_rt_sigtramp_start): Likewise.
	* i386-obsd-tdep.c (i386obsd_sigtramp_p): Likewise.
	* i386-tdep.c (i386_register_to_value): Likewise.
	* i387-tdep.c (i387_register_to_value): Likewise.
	* ia64-tdep.c (ia64_register_to_value): Likewise.
	* m32r-linux-tdep.c (m32r_linux_sigtramp_start)
	(m32r_linux_rt_sigtramp_start): Likewise.
	* m68k-linux-tdep.c (m68k_linux_pc_in_sigtramp): Likewise.
	* m68k-tdep.c (m68k_register_to_value): Likewise.
	* mips-tdep.c (mips_register_to_value)
	(mips_value_to_register): Likewise.
	* ppc-fbsd-tdep.c (ppcfbsd_sigtramp_frame_sniffer)
	(ppcfbsd_sigtramp_frame_cache): Likewise.
	* ppc-obsd-tdep.c (ppcobsd_sigtramp_frame_sniffer)
	(ppcobsd_sigtramp_frame_cache): Likewise.
	* rs6000-tdep.c (rs6000_in_function_epilogue_frame_p)
	(rs6000_register_to_value): Likewise.
	* tilegx-tdep.c (tilegx_analyze_prologue): Likewise.
	* tramp-frame.c (tramp_frame_start): Likewise.
	* valops.c (value_assign): Likewise.
2021-01-19 14:42:23 -03:00
Joel Brobecker
3666a04883 Update copyright year range in all GDB files
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...

gdb/ChangeLog

        Update copyright year range in copyright header of all GDB files.
2021-01-01 12:12:21 +04:00
Tom de Vries
7ce05d212d [gdb/symtab] Fix gdb.base/vla-optimized-out.exp with clang
Consider test-case gdb.base/vla-optimized-out.exp, compiled using clang-10.

GDB fails to get the size of the vla a:
...
(gdb) p sizeof (a)^M
Cannot access memory at address 0x6^M
(gdb) FAIL: gdb.base/vla-optimized-out.exp: o1: printed size of \
  optimized out vla
...

The relevant DWARF looks like this: the variable a:
...
 <2><12b>: Abbrev Number: 5 (DW_TAG_variable)
    <12c>   DW_AT_name        : a
    <132>   DW_AT_type        : <0x189>
...
has type:
...
 <1><189>: Abbrev Number: 10 (DW_TAG_array_type)
    <18a>   DW_AT_type        : <0x198>
 <2><18e>: Abbrev Number: 11 (DW_TAG_subrange_type)
    <18f>   DW_AT_type        : <0x19f>
    <193>   DW_AT_count       : <0x117>
...
with the count attribute equated to the value of this artificial variable:
...
 <2><117>: Abbrev Number: 4 (DW_TAG_variable)
    <118>   DW_AT_location    : 10 byte block: 75 1 10 ff ff ff ff f 1a 9f \
              (DW_OP_breg5 (rdi): 1;
	       DW_OP_constu: 4294967295;
	       DW_OP_and;
	       DW_OP_stack_value)
    <123>   DW_AT_name        : __vla_expr0
    <127>   DW_AT_type        : <0x182>
    <12b>   DW_AT_artificial  : 1
...

The location description of the variable is terminated with DW_OP_stack_value,
which according to the DWARF spec means that "the DWARF expression represents
the actual value of the object, rather than its location".

However, in attr_to_dynamic_prop, we set is_reference to true:
...
               baton->locexpr.is_reference = true;
...
and use it in dwarf2_evaluate_property to dereference the value of the DWARF
expression, which causes the access to memory at address 0x6.

Fix this by ignoring the baton->locexpr.is_reference == true setting if
the expression evaluation has ctx.location == DWARF_VALUE_STACK, such that we
get:
...
(gdb) p sizeof (a)^M
$2 = 6^M
(gdb) PASS: gdb.base/vla-optimized-out.exp: o1: printed size of \
  optimized out vla
...

Tested on x86_64-linux, with gcc.

Tested the following test-cases (the ones mentioned in PR26905) on
x86_64-linux with clang-10:
- gdb.base/vla-optimized-out.exp
- gdb.base/vla-ptr.exp
- gdb.mi/mi-vla-c99

gdb/ChangeLog:

2020-11-30  Tom de Vries  <tdevries@suse.de>

	PR symtab/26905
	* dwarf2/loc.c (dwarf2_locexpr_baton_eval): Add and handle
	is_reference parameter.
	(dwarf2_evaluate_property): Update dwarf2_locexpr_baton_eval call.

gdb/testsuite/ChangeLog:

2020-11-30  Tom de Vries  <tdevries@suse.de>

	PR symtab/26905
	* gdb.dwarf2/count.exp: Remove kfails.
2020-11-30 13:50:26 +01:00
Simon Marchi
dda83cd783 gdb, gdbserver, gdbsupport: fix leading space vs tabs issues
Many spots incorrectly use only spaces for indentation (for example,
there are a lot of spots in ada-lang.c).  I've always found it awkward
when I needed to edit one of these spots: do I keep the original wrong
indentation, or do I fix it?  What if the lines around it are also
wrong, do I fix them too?  I probably don't want to fix them in the same
patch, to avoid adding noise to my patch.

So I propose to fix as much as possible once and for all (hopefully).

One typical counter argument for this is that it makes code archeology
more difficult, because git-blame will show this commit as the last
change for these lines.  My counter counter argument is: when
git-blaming, you often need to do "blame the file at the parent commit"
anyway, to go past some other refactor that touched the line you are
interested in, but is not the change you are looking for.  So you
already need a somewhat efficient way to do this.

Using some interactive tool, rather than plain git-blame, makes this
trivial.  For example, I use "tig blame <file>", where going back past
the commit that changed the currently selected line is one keystroke.
It looks like Magit in Emacs does it too (though I've never used it).
Web viewers of Github and Gitlab do it too.  My point is that it won't
really make archeology more difficult.

The other typical counter argument is that it will cause conflicts with
existing patches.  That's true... but it's a one time cost, and those
are not conflicts that are difficult to resolve.  I have also tried "git
rebase --ignore-whitespace", it seems to work well.  Although that will
re-introduce the faulty indentation, so one needs to take care of fixing
the indentation in the patch after that (which is easy).

gdb/ChangeLog:

	* aarch64-linux-tdep.c: Fix indentation.
	* aarch64-ravenscar-thread.c: Fix indentation.
	* aarch64-tdep.c: Fix indentation.
	* aarch64-tdep.h: Fix indentation.
	* ada-lang.c: Fix indentation.
	* ada-lang.h: Fix indentation.
	* ada-tasks.c: Fix indentation.
	* ada-typeprint.c: Fix indentation.
	* ada-valprint.c: Fix indentation.
	* ada-varobj.c: Fix indentation.
	* addrmap.c: Fix indentation.
	* addrmap.h: Fix indentation.
	* agent.c: Fix indentation.
	* aix-thread.c: Fix indentation.
	* alpha-bsd-nat.c: Fix indentation.
	* alpha-linux-tdep.c: Fix indentation.
	* alpha-mdebug-tdep.c: Fix indentation.
	* alpha-nbsd-tdep.c: Fix indentation.
	* alpha-obsd-tdep.c: Fix indentation.
	* alpha-tdep.c: Fix indentation.
	* amd64-bsd-nat.c: Fix indentation.
	* amd64-darwin-tdep.c: Fix indentation.
	* amd64-linux-nat.c: Fix indentation.
	* amd64-linux-tdep.c: Fix indentation.
	* amd64-nat.c: Fix indentation.
	* amd64-obsd-tdep.c: Fix indentation.
	* amd64-tdep.c: Fix indentation.
	* amd64-windows-tdep.c: Fix indentation.
	* annotate.c: Fix indentation.
	* arc-tdep.c: Fix indentation.
	* arch-utils.c: Fix indentation.
	* arch/arm-get-next-pcs.c: Fix indentation.
	* arch/arm.c: Fix indentation.
	* arm-linux-nat.c: Fix indentation.
	* arm-linux-tdep.c: Fix indentation.
	* arm-nbsd-tdep.c: Fix indentation.
	* arm-pikeos-tdep.c: Fix indentation.
	* arm-tdep.c: Fix indentation.
	* arm-tdep.h: Fix indentation.
	* arm-wince-tdep.c: Fix indentation.
	* auto-load.c: Fix indentation.
	* auxv.c: Fix indentation.
	* avr-tdep.c: Fix indentation.
	* ax-gdb.c: Fix indentation.
	* ax-general.c: Fix indentation.
	* bfin-linux-tdep.c: Fix indentation.
	* block.c: Fix indentation.
	* block.h: Fix indentation.
	* blockframe.c: Fix indentation.
	* bpf-tdep.c: Fix indentation.
	* break-catch-sig.c: Fix indentation.
	* break-catch-syscall.c: Fix indentation.
	* break-catch-throw.c: Fix indentation.
	* breakpoint.c: Fix indentation.
	* breakpoint.h: Fix indentation.
	* bsd-uthread.c: Fix indentation.
	* btrace.c: Fix indentation.
	* build-id.c: Fix indentation.
	* buildsym-legacy.h: Fix indentation.
	* buildsym.c: Fix indentation.
	* c-typeprint.c: Fix indentation.
	* c-valprint.c: Fix indentation.
	* c-varobj.c: Fix indentation.
	* charset.c: Fix indentation.
	* cli/cli-cmds.c: Fix indentation.
	* cli/cli-decode.c: Fix indentation.
	* cli/cli-decode.h: Fix indentation.
	* cli/cli-script.c: Fix indentation.
	* cli/cli-setshow.c: Fix indentation.
	* coff-pe-read.c: Fix indentation.
	* coffread.c: Fix indentation.
	* compile/compile-cplus-types.c: Fix indentation.
	* compile/compile-object-load.c: Fix indentation.
	* compile/compile-object-run.c: Fix indentation.
	* completer.c: Fix indentation.
	* corefile.c: Fix indentation.
	* corelow.c: Fix indentation.
	* cp-abi.h: Fix indentation.
	* cp-namespace.c: Fix indentation.
	* cp-support.c: Fix indentation.
	* cp-valprint.c: Fix indentation.
	* cris-linux-tdep.c: Fix indentation.
	* cris-tdep.c: Fix indentation.
	* darwin-nat-info.c: Fix indentation.
	* darwin-nat.c: Fix indentation.
	* darwin-nat.h: Fix indentation.
	* dbxread.c: Fix indentation.
	* dcache.c: Fix indentation.
	* disasm.c: Fix indentation.
	* dtrace-probe.c: Fix indentation.
	* dwarf2/abbrev.c: Fix indentation.
	* dwarf2/attribute.c: Fix indentation.
	* dwarf2/expr.c: Fix indentation.
	* dwarf2/frame.c: Fix indentation.
	* dwarf2/index-cache.c: Fix indentation.
	* dwarf2/index-write.c: Fix indentation.
	* dwarf2/line-header.c: Fix indentation.
	* dwarf2/loc.c: Fix indentation.
	* dwarf2/macro.c: Fix indentation.
	* dwarf2/read.c: Fix indentation.
	* dwarf2/read.h: Fix indentation.
	* elfread.c: Fix indentation.
	* eval.c: Fix indentation.
	* event-top.c: Fix indentation.
	* exec.c: Fix indentation.
	* exec.h: Fix indentation.
	* expprint.c: Fix indentation.
	* f-lang.c: Fix indentation.
	* f-typeprint.c: Fix indentation.
	* f-valprint.c: Fix indentation.
	* fbsd-nat.c: Fix indentation.
	* fbsd-tdep.c: Fix indentation.
	* findvar.c: Fix indentation.
	* fork-child.c: Fix indentation.
	* frame-unwind.c: Fix indentation.
	* frame-unwind.h: Fix indentation.
	* frame.c: Fix indentation.
	* frv-linux-tdep.c: Fix indentation.
	* frv-tdep.c: Fix indentation.
	* frv-tdep.h: Fix indentation.
	* ft32-tdep.c: Fix indentation.
	* gcore.c: Fix indentation.
	* gdb_bfd.c: Fix indentation.
	* gdbarch.sh: Fix indentation.
	* gdbarch.c: Re-generate
	* gdbarch.h: Re-generate.
	* gdbcore.h: Fix indentation.
	* gdbthread.h: Fix indentation.
	* gdbtypes.c: Fix indentation.
	* gdbtypes.h: Fix indentation.
	* glibc-tdep.c: Fix indentation.
	* gnu-nat.c: Fix indentation.
	* gnu-nat.h: Fix indentation.
	* gnu-v2-abi.c: Fix indentation.
	* gnu-v3-abi.c: Fix indentation.
	* go32-nat.c: Fix indentation.
	* guile/guile-internal.h: Fix indentation.
	* guile/scm-cmd.c: Fix indentation.
	* guile/scm-frame.c: Fix indentation.
	* guile/scm-iterator.c: Fix indentation.
	* guile/scm-math.c: Fix indentation.
	* guile/scm-ports.c: Fix indentation.
	* guile/scm-pretty-print.c: Fix indentation.
	* guile/scm-value.c: Fix indentation.
	* h8300-tdep.c: Fix indentation.
	* hppa-linux-nat.c: Fix indentation.
	* hppa-linux-tdep.c: Fix indentation.
	* hppa-nbsd-nat.c: Fix indentation.
	* hppa-nbsd-tdep.c: Fix indentation.
	* hppa-obsd-nat.c: Fix indentation.
	* hppa-tdep.c: Fix indentation.
	* hppa-tdep.h: Fix indentation.
	* i386-bsd-nat.c: Fix indentation.
	* i386-darwin-nat.c: Fix indentation.
	* i386-darwin-tdep.c: Fix indentation.
	* i386-dicos-tdep.c: Fix indentation.
	* i386-gnu-nat.c: Fix indentation.
	* i386-linux-nat.c: Fix indentation.
	* i386-linux-tdep.c: Fix indentation.
	* i386-nto-tdep.c: Fix indentation.
	* i386-obsd-tdep.c: Fix indentation.
	* i386-sol2-nat.c: Fix indentation.
	* i386-tdep.c: Fix indentation.
	* i386-tdep.h: Fix indentation.
	* i386-windows-tdep.c: Fix indentation.
	* i387-tdep.c: Fix indentation.
	* i387-tdep.h: Fix indentation.
	* ia64-libunwind-tdep.c: Fix indentation.
	* ia64-libunwind-tdep.h: Fix indentation.
	* ia64-linux-nat.c: Fix indentation.
	* ia64-linux-tdep.c: Fix indentation.
	* ia64-tdep.c: Fix indentation.
	* ia64-tdep.h: Fix indentation.
	* ia64-vms-tdep.c: Fix indentation.
	* infcall.c: Fix indentation.
	* infcmd.c: Fix indentation.
	* inferior.c: Fix indentation.
	* infrun.c: Fix indentation.
	* iq2000-tdep.c: Fix indentation.
	* language.c: Fix indentation.
	* linespec.c: Fix indentation.
	* linux-fork.c: Fix indentation.
	* linux-nat.c: Fix indentation.
	* linux-tdep.c: Fix indentation.
	* linux-thread-db.c: Fix indentation.
	* lm32-tdep.c: Fix indentation.
	* m2-lang.c: Fix indentation.
	* m2-typeprint.c: Fix indentation.
	* m2-valprint.c: Fix indentation.
	* m32c-tdep.c: Fix indentation.
	* m32r-linux-tdep.c: Fix indentation.
	* m32r-tdep.c: Fix indentation.
	* m68hc11-tdep.c: Fix indentation.
	* m68k-bsd-nat.c: Fix indentation.
	* m68k-linux-nat.c: Fix indentation.
	* m68k-linux-tdep.c: Fix indentation.
	* m68k-tdep.c: Fix indentation.
	* machoread.c: Fix indentation.
	* macrocmd.c: Fix indentation.
	* macroexp.c: Fix indentation.
	* macroscope.c: Fix indentation.
	* macrotab.c: Fix indentation.
	* macrotab.h: Fix indentation.
	* main.c: Fix indentation.
	* mdebugread.c: Fix indentation.
	* mep-tdep.c: Fix indentation.
	* mi/mi-cmd-catch.c: Fix indentation.
	* mi/mi-cmd-disas.c: Fix indentation.
	* mi/mi-cmd-env.c: Fix indentation.
	* mi/mi-cmd-stack.c: Fix indentation.
	* mi/mi-cmd-var.c: Fix indentation.
	* mi/mi-cmds.c: Fix indentation.
	* mi/mi-main.c: Fix indentation.
	* mi/mi-parse.c: Fix indentation.
	* microblaze-tdep.c: Fix indentation.
	* minidebug.c: Fix indentation.
	* minsyms.c: Fix indentation.
	* mips-linux-nat.c: Fix indentation.
	* mips-linux-tdep.c: Fix indentation.
	* mips-nbsd-tdep.c: Fix indentation.
	* mips-tdep.c: Fix indentation.
	* mn10300-linux-tdep.c: Fix indentation.
	* mn10300-tdep.c: Fix indentation.
	* moxie-tdep.c: Fix indentation.
	* msp430-tdep.c: Fix indentation.
	* namespace.h: Fix indentation.
	* nat/fork-inferior.c: Fix indentation.
	* nat/gdb_ptrace.h: Fix indentation.
	* nat/linux-namespaces.c: Fix indentation.
	* nat/linux-osdata.c: Fix indentation.
	* nat/netbsd-nat.c: Fix indentation.
	* nat/x86-dregs.c: Fix indentation.
	* nbsd-nat.c: Fix indentation.
	* nbsd-tdep.c: Fix indentation.
	* nios2-linux-tdep.c: Fix indentation.
	* nios2-tdep.c: Fix indentation.
	* nto-procfs.c: Fix indentation.
	* nto-tdep.c: Fix indentation.
	* objfiles.c: Fix indentation.
	* objfiles.h: Fix indentation.
	* opencl-lang.c: Fix indentation.
	* or1k-tdep.c: Fix indentation.
	* osabi.c: Fix indentation.
	* osabi.h: Fix indentation.
	* osdata.c: Fix indentation.
	* p-lang.c: Fix indentation.
	* p-typeprint.c: Fix indentation.
	* p-valprint.c: Fix indentation.
	* parse.c: Fix indentation.
	* ppc-linux-nat.c: Fix indentation.
	* ppc-linux-tdep.c: Fix indentation.
	* ppc-nbsd-nat.c: Fix indentation.
	* ppc-nbsd-tdep.c: Fix indentation.
	* ppc-obsd-nat.c: Fix indentation.
	* ppc-ravenscar-thread.c: Fix indentation.
	* ppc-sysv-tdep.c: Fix indentation.
	* ppc64-tdep.c: Fix indentation.
	* printcmd.c: Fix indentation.
	* proc-api.c: Fix indentation.
	* producer.c: Fix indentation.
	* producer.h: Fix indentation.
	* prologue-value.c: Fix indentation.
	* prologue-value.h: Fix indentation.
	* psymtab.c: Fix indentation.
	* python/py-arch.c: Fix indentation.
	* python/py-bpevent.c: Fix indentation.
	* python/py-event.c: Fix indentation.
	* python/py-event.h: Fix indentation.
	* python/py-finishbreakpoint.c: Fix indentation.
	* python/py-frame.c: Fix indentation.
	* python/py-framefilter.c: Fix indentation.
	* python/py-inferior.c: Fix indentation.
	* python/py-infthread.c: Fix indentation.
	* python/py-objfile.c: Fix indentation.
	* python/py-prettyprint.c: Fix indentation.
	* python/py-registers.c: Fix indentation.
	* python/py-signalevent.c: Fix indentation.
	* python/py-stopevent.c: Fix indentation.
	* python/py-stopevent.h: Fix indentation.
	* python/py-threadevent.c: Fix indentation.
	* python/py-tui.c: Fix indentation.
	* python/py-unwind.c: Fix indentation.
	* python/py-value.c: Fix indentation.
	* python/py-xmethods.c: Fix indentation.
	* python/python-internal.h: Fix indentation.
	* python/python.c: Fix indentation.
	* ravenscar-thread.c: Fix indentation.
	* record-btrace.c: Fix indentation.
	* record-full.c: Fix indentation.
	* record.c: Fix indentation.
	* reggroups.c: Fix indentation.
	* regset.h: Fix indentation.
	* remote-fileio.c: Fix indentation.
	* remote.c: Fix indentation.
	* reverse.c: Fix indentation.
	* riscv-linux-tdep.c: Fix indentation.
	* riscv-ravenscar-thread.c: Fix indentation.
	* riscv-tdep.c: Fix indentation.
	* rl78-tdep.c: Fix indentation.
	* rs6000-aix-tdep.c: Fix indentation.
	* rs6000-lynx178-tdep.c: Fix indentation.
	* rs6000-nat.c: Fix indentation.
	* rs6000-tdep.c: Fix indentation.
	* rust-lang.c: Fix indentation.
	* rx-tdep.c: Fix indentation.
	* s12z-tdep.c: Fix indentation.
	* s390-linux-tdep.c: Fix indentation.
	* score-tdep.c: Fix indentation.
	* ser-base.c: Fix indentation.
	* ser-mingw.c: Fix indentation.
	* ser-uds.c: Fix indentation.
	* ser-unix.c: Fix indentation.
	* serial.c: Fix indentation.
	* sh-linux-tdep.c: Fix indentation.
	* sh-nbsd-tdep.c: Fix indentation.
	* sh-tdep.c: Fix indentation.
	* skip.c: Fix indentation.
	* sol-thread.c: Fix indentation.
	* solib-aix.c: Fix indentation.
	* solib-darwin.c: Fix indentation.
	* solib-frv.c: Fix indentation.
	* solib-svr4.c: Fix indentation.
	* solib.c: Fix indentation.
	* source.c: Fix indentation.
	* sparc-linux-tdep.c: Fix indentation.
	* sparc-nbsd-tdep.c: Fix indentation.
	* sparc-obsd-tdep.c: Fix indentation.
	* sparc-ravenscar-thread.c: Fix indentation.
	* sparc-tdep.c: Fix indentation.
	* sparc64-linux-tdep.c: Fix indentation.
	* sparc64-nbsd-tdep.c: Fix indentation.
	* sparc64-obsd-tdep.c: Fix indentation.
	* sparc64-tdep.c: Fix indentation.
	* stabsread.c: Fix indentation.
	* stack.c: Fix indentation.
	* stap-probe.c: Fix indentation.
	* stubs/ia64vms-stub.c: Fix indentation.
	* stubs/m32r-stub.c: Fix indentation.
	* stubs/m68k-stub.c: Fix indentation.
	* stubs/sh-stub.c: Fix indentation.
	* stubs/sparc-stub.c: Fix indentation.
	* symfile-mem.c: Fix indentation.
	* symfile.c: Fix indentation.
	* symfile.h: Fix indentation.
	* symmisc.c: Fix indentation.
	* symtab.c: Fix indentation.
	* symtab.h: Fix indentation.
	* target-float.c: Fix indentation.
	* target.c: Fix indentation.
	* target.h: Fix indentation.
	* tic6x-tdep.c: Fix indentation.
	* tilegx-linux-tdep.c: Fix indentation.
	* tilegx-tdep.c: Fix indentation.
	* top.c: Fix indentation.
	* tracefile-tfile.c: Fix indentation.
	* tracepoint.c: Fix indentation.
	* tui/tui-disasm.c: Fix indentation.
	* tui/tui-io.c: Fix indentation.
	* tui/tui-regs.c: Fix indentation.
	* tui/tui-stack.c: Fix indentation.
	* tui/tui-win.c: Fix indentation.
	* tui/tui-winsource.c: Fix indentation.
	* tui/tui.c: Fix indentation.
	* typeprint.c: Fix indentation.
	* ui-out.h: Fix indentation.
	* unittests/copy_bitwise-selftests.c: Fix indentation.
	* unittests/memory-map-selftests.c: Fix indentation.
	* utils.c: Fix indentation.
	* v850-tdep.c: Fix indentation.
	* valarith.c: Fix indentation.
	* valops.c: Fix indentation.
	* valprint.c: Fix indentation.
	* valprint.h: Fix indentation.
	* value.c: Fix indentation.
	* value.h: Fix indentation.
	* varobj.c: Fix indentation.
	* vax-tdep.c: Fix indentation.
	* windows-nat.c: Fix indentation.
	* windows-tdep.c: Fix indentation.
	* xcoffread.c: Fix indentation.
	* xml-syscall.c: Fix indentation.
	* xml-tdesc.c: Fix indentation.
	* xstormy16-tdep.c: Fix indentation.
	* xtensa-config.c: Fix indentation.
	* xtensa-linux-nat.c: Fix indentation.
	* xtensa-linux-tdep.c: Fix indentation.
	* xtensa-tdep.c: Fix indentation.

gdbserver/ChangeLog:

	* ax.cc: Fix indentation.
	* dll.cc: Fix indentation.
	* inferiors.h: Fix indentation.
	* linux-low.cc: Fix indentation.
	* linux-nios2-low.cc: Fix indentation.
	* linux-ppc-ipa.cc: Fix indentation.
	* linux-ppc-low.cc: Fix indentation.
	* linux-x86-low.cc: Fix indentation.
	* linux-xtensa-low.cc: Fix indentation.
	* regcache.cc: Fix indentation.
	* server.cc: Fix indentation.
	* tracepoint.cc: Fix indentation.

gdbsupport/ChangeLog:

	* common-exceptions.h: Fix indentation.
	* event-loop.cc: Fix indentation.
	* fileio.cc: Fix indentation.
	* filestuff.cc: Fix indentation.
	* gdb-dlfcn.cc: Fix indentation.
	* gdb_string_view.h: Fix indentation.
	* job-control.cc: Fix indentation.
	* signals.cc: Fix indentation.

Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695
2020-11-02 10:28:45 -05:00
Simon Marchi
c6d940a956 gdb: remove TYPE_UNSIGNED
gdb/ChangeLog:

	* gdbtypes.h (TYPE_UNSIGNED): Remove, replace all uses with
	type::is_unsigned.

Change-Id: I84f76f5cd44ff7294e421d317376a9e476bc8666
2020-09-14 11:07:57 -04:00
Simon Marchi
7635cf797e gdb: fix wrong indentation in symbol_needs_eval_context
gdb/ChangeLog:

	* loc.c (class symbol_needs_eval_context): Fix indentation.

Change-Id: Ibf4e6a9ca9573b498737a61db116ee10b287b7f5
2020-08-17 06:02:24 -04:00
Simon Marchi
f54be24b10 gdb: use bool in dwarf2_loc_desc_get_symbol_read_needs
This variable is really a boolean, so use the bool type.

gdb/ChangeLog:

	* dwarf2/loc.c (dwarf2_loc_desc_get_symbol_read_needs): Use
	bool.

Change-Id: I814a47d1200f3b88722c54c822fd49607a6b77be
2020-08-17 05:57:16 -04:00
Simon Marchi
041d9819fb gdb: replace function pointer with void * data with function_view
Replace the function pointer + `void *` parameters of
dwarf2_fetch_die_loc_sect_off and dwarf2_fetch_die_loc_cu_off with a
function_view parameter.  Change call sites to use a lambda function.
This improves type-safety, so reduces the chances of errors.

gdb/ChangeLog:

	* read.h (dwarf2_fetch_die_loc_sect_off,
	dwarf2_fetch_die_loc_cu_off): Replace function pointer +
	`void *` parameter with function_view.
	* read.c (dwarf2_fetch_die_loc_sect_off,
	dwarf2_fetch_die_loc_cu_off): Likewise.
	* loc.c (get_frame_pc_for_per_cu_dwarf_call): Remove.
	(per_cu_dwarf_call): Adjust.
	(get_frame_address_in_block_wrapper): Remove.
	(indirect_synthetic_pointer): Adjust.
	(get_ax_pc): Remove.
	(dwarf2_compile_expr_to_ax): Adjust.

Change-Id: Ic9b6ced0c4128f2b75ca62e0ed638b0962a22859
2020-08-09 18:26:48 -04:00
Simon Marchi
8c2e4e0689 gdb: add accessors to struct dynamic_prop
Add setters, to ensure that the kind and value of the property are
always kept in sync (a caller can't forget one or the other).  Add
getters, such that we can assert that when a caller accesses a data bit
of the property, the property is indeed of the corresponding kind.

Note that because of the way `struct dynamic_prop` is allocated
currently, we can't make the `m_kind` and `m_data` fields private.  That
would make the type non-default-constructible, and we would have to call
the constructor when allocating them.  However, I still prefixed them
with `m_` to indicate that they should not be accessed from outside the
class (and also to be able to use the name `kind` for the method).

gdb/ChangeLog:

	* gdbtypes.h (struct dynamic_prop) <kind, set_undefined,
	const_val, set_const_val, baton, set_locexpr, set_loclist,
	set_addr_offset, variant_parts, set_variant_parts,
	original_type, set_original_type>: New methods.
	<kind>: Rename to...
	<m_kind>: ... this.  Update all users to use the new methods
	instead.
	<data>: Rename to...
	<m_data>: ... this.  Update all users to use the new methods
	instead.

Change-Id: Ib72a8eb440dfeb1a5421d0933334230d7f2478f9
2020-07-12 22:58:51 -04:00
Simon Marchi
1fb5ee6203 gdb: add some more empty lines in loc.c
Add some empty lines at places I forgot in the previous patch.

gdb/ChangeLog:

	* dwarf2/loc.c (decode_debug_loclists_addresses): Add empty
	lines.

Change-Id: I8a9f3766ede1ce750e0703023285dca873bce0da
2020-06-23 15:40:24 -04:00
Simon Marchi
fc3ecb3e61 gdb: add empty lines in loc.c
I always found that some switch statements in this file were a bit too
packed.  I think having empty lines between each case helps with
reading.  I'm pushing this as obvious, I hope it won't be too
controversial.

gdb/ChangeLog:

	* dwarf2/loc.c (decode_debug_loc_dwo_addresses): Add empty
	lines.
	(dwarf2_find_location_expression): Likewise.
	(call_site_parameter_matches): Likewise.
	(dwarf2_compile_expr_to_ax): Likewise.
	(disassemble_dwarf_expression): Likewise.
	(loclist_describe_location): Likewise.

Change-Id: I381366a0468ff1793faa612c46ef48a9d4773192
2020-06-23 15:34:45 -04:00
Simon Marchi
989ade0552 gdb: add comment in dwarf_evaluate_loc_desc::push_dwarf_reg_entry_value
Add a comment to clarify why we temporarily override some of the
context's fields, and especially the per_objfile field.  A longer
explanation can be found in this previous commit

    44486dcf19 ("gdb: use caller objfile in dwarf_evaluate_loc_desc::push_dwarf_reg_entry_value")

gdb/ChangeLog:

	* dwarf2/loc.c (class dwarf_evaluate_loc_desc)
	<push_dwarf_reg_entry_value>: Add comment.

Change-Id: I60c6e1062799f729b30a9db78bcb6448783324b4
2020-05-28 15:47:53 -04:00
Simon Marchi
44486dcf19 gdb: use caller objfile in dwarf_evaluate_loc_desc::push_dwarf_reg_entry_value
In commit

    89b07335fe ("Add dwarf2_per_objfile to dwarf_expr_context and dwarf2_frame_cache")

I replaced the offset property of dwarf_expr_context by a per_objfile
property (since we can get the text offset from the objfile).  The
previous code in dwarf_evaluate_loc_desc::push_dwarf_reg_entry_value
(dwarf_evaluate_loc_desc derives from dwarf_expr_context) did
temporarily override the offset property while evaluating a DWARF
sub-expression.  I speculated that this sub-expression always came from
the same objfile as the outer expression, so I didn't see the need to
temporarily override the per_objfile property in the new code.  A later
commit:

    9f47c70716 ("Remove dwarf2_per_cu_data::objfile ()")

added the following assertion to verify this:

    gdb_assert (this->per_objfile == caller_per_objfile);

It turns out that this is not true.  Call sites can refer to function in
another objfile, and therefore the caller's objfile can be different
from the callee's objfile.  This can happen when the call site DIE in the
DWARF represents a function call done through a function pointer.  The
DIE can't describe statically which function is being called, since it's
variable and not known at compile time.  Instead, it provides an
expression that evaluates to the address of the function being called.
In this case, the called function can very well be in a separate
objfile.

Fix this by overriding the per_objfile property while evaluating the
sub-expression.

This was exposed by the gdb.base/catch-load.exp test failing on openSUSE
Tumbleweed with the glibc debug info installed.  It was also reported to
fail on Fedora.

When I investigated the problem, the particular call site on which we
did hit the assert was coming from this DIE, in
/usr/lib/debug/lib64/libc-2.31.so-2.31-5.1.x86_64.debug on openSUSE
Tumbleweed:

    0x0091aa10:     DW_TAG_GNU_call_site
                      DW_AT_low_pc [DW_FORM_addr]   (0x00000000001398e0)
                      DW_AT_GNU_call_site_target [DW_FORM_exprloc]  (DW_OP_fbreg -272, DW_OP_deref)
                      DW_AT_sibling [DW_FORM_ref4]  (0x0091aa2b)

And for you curious out there, this call site is found in this function:

    0x0091a91d:   DW_TAG_subprogram
                    DW_AT_external [DW_FORM_flag_present]   (true)
                    DW_AT_name [DW_FORM_strp]       ("_dl_catch_exception")
                    DW_AT_decl_file [DW_FORM_data1] ("/usr/src/debug/glibc-2.31-5.1.x86_64/elf/dl-error-skeleton.c")
                    ...

Which is a function that indeed uses a function pointer.

gdb/ChangeLog:

	* dwarf2/loc.c (class dwarf_evaluate_loc_desc)
	<push_dwarf_reg_entry_value>: Remove assert.  Override
	per_objfile with caller_per_objfile.

Change-Id: Ib227d767ce525c10607ab6621a373aaae982c67a
2020-05-28 11:31:00 -04:00
Simon Marchi
aa66c37944 Add dwarf2_per_objfile parameter to get_die_type_at_offset
This allows removing some dwarf2_per_cu_data::dwarf2_per_objfile
references.

gdb/ChangeLog:

	* dwarf2/read.h (dwarf2_get_die_type): Add dwarf2_per_objfile
	parameter.
	* dwarf2/read.c (get_die_type_at_offset): Likewise.
	(read_namespace_alias): Update.
	(lookup_die_type): Update.
	(dwarf2_get_die_type): Add dwarf2_per_objfile parameter.
	* dwarf2/loc.c (class dwarf_evaluate_loc_desc) <get_base_type>:
	Update.
	(disassemble_dwarf_expression): Update.

Change-Id: Ibaf5b684cb0a8eb8f0b23e62bd0283c295410aa5
2020-05-27 11:15:58 -04:00
Simon Marchi
9f47c70716 Remove dwarf2_per_cu_data::objfile ()
Since dwarf2_per_cu_data objects are going to become
objfile-independent, the backlink from dwarf2_per_cu_data to one
particular objfile must be removed.  Instead, users of
dwarf2_per_cu_data that need an objfile must know from somewhere else in
the context of which objfile they are using this CU.

This also helps remove a dwarf2_per_cu_data::dwarf2_per_objfile
reference (from where the objfile was obtained).

Note that the dwarf2_per_cu_data::objfile method has a special case to
make sure to return the main objfile, if the objfile associated to the
dwarf2_per_cu_data is a separate debug objfile.  I don't really know if
this is necessary: I ignored that, and didn't see any regression when
testing with the various Dejagnu boards with separate debug info, so I
presume it wasn't needed.  If it turns out this was needed, then we can
have a helper method on the objfile type for that.

gdb/ChangeLog:

	* dwarf2/read.h (struct dwarf2_per_cu_data) <objfile>: Remove.
	* dwarf2/read.c (dwarf2_compute_name): Pass per_objfile down.
	(read_call_site_scope): Assign per_objfile.
	(dwarf2_per_cu_data::objfile): Remove.
	* gdbtypes.h (struct call_site) <per_objfile>: New member.
	* dwarf2/loc.h (dwarf2_evaluate_loc_desc): Add
	dwarf2_per_objfile parameter.
	* dwarf2/loc.c (dwarf2_evaluate_loc_desc_full): Add
	dwarf2_per_objfile parameter.
	(dwarf_expr_reg_to_entry_parameter): Add output
	dwarf2_per_objfile parameter.
	(locexpr_get_frame_base): Update.
	(class dwarf_evaluate_loc_desc) <get_tls_address>: Update.
	<push_dwarf_reg_entry_value>: Update.
	<call_site_to_target_addr>: Update.
	(dwarf_entry_parameter_to_value): Add dwarf2_per_objfile
	parameter.
	(value_of_dwarf_reg_entry): Update.
	(rw_pieced_value): Update.
	(indirect_synthetic_pointer): Update.
	(dwarf2_evaluate_property): Update.
	(dwarf2_loc_desc_get_symbol_read_needs): Add dwarf2_per_objfile
	parameter.
	(locexpr_read_variable): Update.
	(locexpr_get_symbol_read_needs): Update.
	(loclist_read_variable): Update.

Change-Id: Idb40d1a94995af305054d463967bb6ce11a08f25
2020-05-27 11:15:57 -04:00
Simon Marchi
14095eb326 Add dwarf2_per_objfile parameters to dwarf2_fetch_* functions
This allows removing dwarf2_per_cu_data references.

gdb/ChangeLog:

	* dwarf2/read.h (dwarf2_fetch_die_loc_sect_off,
	dwarf2_fetch_die_loc_cu_off, dwarf2_fetch_constant_bytes,
	dwarf2_fetch_die_type_sect_off): Add dwarf2_per_objfile
	parameter.
	* dwarf2/read.c (dwarf2_fetch_die_loc_sect_off,
	dwarf2_fetch_die_loc_cu_off, dwarf2_fetch_constant_bytes,
	dwarf2_fetch_die_type_sect_off): Add dwarf2_per_objfile
	parameter.
	* dwarf2/loc.c (indirect_synthetic_pointer, per_cu_dwarf_call,
	sect_variable_value): Add dwarf2_per_objfile parameter.
	(class dwarf_evaluate_loc_desc) <dwarf_call,
	dwarf_variable_value>: Update.
	(fetch_const_value_from_synthetic_pointer): Add
	dwarf2_per_objfile parameter.
	(fetch_const_value_from_synthetic_pointer): Update.
	(coerced_pieced_ref): Update.
	(class symbol_needs_eval_context) <dwarf_call,
	dwarf_variable_value>: Update.
	(dwarf2_compile_expr_to_ax): Update.

Change-Id: I07cf1806380633d0572304cea049a1fa5e9ea67f
2020-05-27 11:15:57 -04:00
Simon Marchi
3c3cd3d4d7 Add dwarf2_per_objfile parameter to allocate_piece_closure
This allows removing a dwarf2_per_cu_data::dwarf2_per_objfile reference.

gdb/ChangeLog:

	* dwarf2/loc.c (allocate_piece_closure): Add dwarf2_per_objfile
	parameter.
	(dwarf2_evaluate_loc_desc_full): Update.

Change-Id: Ic4a694a3fc763360a131ee4e3aaf5a5b4735c813
2020-05-27 11:15:57 -04:00
Simon Marchi
82ca3f5189 Add dwarf2_per_objfile parameter to dwarf2_read_addr_index
Pass it all the way from the symbol batons.  This allows removing a
dwarf2_per_cu_data::dwarf2_per_objfile reference.

gdb/ChangeLog:

	* dwarf2/read.h (dwarf2_read_addr_index): Add dwarf2_per_objfile
	parameter.
	* dwarf2/read.c (dwarf2_read_addr_index): Likewise.
	* dwarf2/loc.c (decode_debug_loclists_addresses): Add
	dwarf2_per_objfile parameter.
	(decode_debug_loc_dwo_addresses): Likewise.
	(dwarf2_find_location_expression): Update.
	(class dwarf_evaluate_loc_desc) <get_addr_index>: Update.
	(locexpr_describe_location_piece): Add dwarf2_per_objfile
	parameter.
	(disassemble_dwarf_expression): Add dwarf2_per_objfile
	parameter.
	(locexpr_describe_location_1): Likewise.
	(locexpr_describe_location): Update.

Change-Id: I8414755e41a87c92f96e408524cc7aaccf086cda
2020-05-27 11:15:57 -04:00
Simon Marchi
4b167ea1a0 Remove dwarf2_per_cu_data::text_offset
This method simply returns the text offset of the objfile associated to
the dwarf2_per_cu_data object.  Since dwarf2_per_cu_data objects are
going to become objfile-independent, we can't keep this method.  This
patch removes it.

Existing callers need to figure out the in the context of which objfile
this is being used, and call text_offset on it.  Typically, this comes
from a symbol baton, where we store the corresponding
dwarf2_per_objfile.

gdb/ChangeLog:

	* dwarf2/read.h (struct dwarf2_per_cu_data) <text_offset>:
	Remove.
	* dwarf2/read.c (dwarf2_per_cu_data::text_offset): Remove.
	* dwarf2/loc.c (dwarf2_find_location_expression): Update.
	(dwarf2_compile_property_to_c): Update.
	(dwarf2_compile_expr_to_ax): Add dwarf2_per_objfile parameter,
	use text offset from objfile.
	(locexpr_tracepoint_var_ref): Update.
	(locexpr_generate_c_location): Update.
	(loclist_describe_location): Update.
	(loclist_tracepoint_var_ref): Update.
	* dwarf2/compile.h (compile_dwarf_bounds_to_c): Add
	dwarf2_per_objfile parameter.
	* dwarf2/loc2c.c (do_compile_dwarf_expr_to_c): Likewise,
	use text offset from objfile.
	(compile_dwarf_expr_to_c): Add dwarf2_per_objfile parameter.

Change-Id: I56b01ba294733362a3562426a96d48ae051a776f
2020-05-27 11:15:57 -04:00
Simon Marchi
89b07335fe Add dwarf2_per_objfile to dwarf_expr_context and dwarf2_frame_cache
Evaluating DWARF expressions (such as location expressions) requires
knowing about the current objfile.  For example, it may call functions
like dwarf2_fetch_die_loc_sect_off, which currently obtain the
dwarf2_per_objfile object it needs from the dwarf2_per_cu_data object.
However, since we are going to remove this
dwarf2_per_cu_data::dwarf2_per_objfile link, these functions will need
to obtain the current dwarf2_per_objfile by parmeter.

If we go up the stack, we see that the DWARF expression contexts
(dwarf_expr_context and the classes that derive from it) need to store
the dwarf2_per_objfile, to be able to pass it to those functions that
will need it.

This patch adds a constructor to all these dwarf_expr_context variants,
accepting a dwarf2_per_objfile parameter.  This dwarf2_per_objfile
generally comes from a symbol baton created earlier.

For frame-related expressions, the dwarf2_per_objfile object must be
passed through the dwarf2_frame_cache object.  This lead to the
dwarf2_frame_find_fde function returning (by parameter) a
dwarf2_per_objfile object.  I then realized that this made the existing
"out_offset" parameter redundant.  This offset is
`objfile->text_section_offset ()`, so it can be recomputed from the
dwarf2_per_objfile object at any time.  I therefore opted to remove this
output parameter, as well as the offset field of dwarf2_frame_cache.

*Note*, there's one spot I'm particularly unsure about.  In
dwarf_evaluate_loc_desc::push_dwarf_reg_entry_value, we would save and
overwrite the offset value in the context, along with a bunch of other
state.  This is because we might be about to evaluate something in a
different CU that the current one.  If the two CUs are in the same
objfile, then the text_offset is the same, as it's a property of the
objfile.  However, if the two CUs are possibly in different objfiles,
then it means the text_offsets are different.  It would also mean we
would need to save and restore the dwarf2_per_objfile in the context.
Is that even possible?

gdb/ChangeLog:

	* dwarf2/expr.h (struct dwarf_expr_context)
	<dwarf_expr_context>: Add dwarf2_per_objfile parameter.
	<offset>: Remove.
	<per_objfile>: New member.
	* dwarf2/expr.c (dwarf_expr_context::dwarf_expr_context): Add
	dwarf2_per_objfile parameter.  Don't set offset, set
	per_objfile.
	(dwarf_expr_context::execute_stack_op): Use offset from objfile.
	* dwarf2/frame.c (dwarf2_frame_find_fde): Return (by parameter)
	a dwarf2_per_objfile object instead of an offset.
	(class dwarf_expr_executor) <dwarf_expr_executor>: Add
	constructor.
	(execute_stack_op): Add dwarf2_per_objfile parameter, pass it
	to dwarf2_expr_executor constructor.  Don't set offset.
	(dwarf2_fetch_cfa_info): Update.
	(struct dwarf2_frame_cache) <text_offset>: Remove.
	<per_objfile>: New field.
	(dwarf2_frame_cache): Update.
	(dwarf2_frame_prev_register): Update.
	* dwarf2/loc.c (class dwarf_evaluate_loc_desc)
	<dwarf_evaluate_loc_desc>: Add constructor.
	(dwarf2_evaluate_loc_desc_full): Update.
	(dwarf2_locexpr_baton_eval): Update.
	(class symbol_needs_eval_context) <symbol_needs_eval_context>:
	Add constructor.
	(dwarf2_loc_desc_get_symbol_read_needs): Update.

Change-Id: I14df060669cc36ad04759f1708c6d7b1fda77727
2020-05-27 11:15:56 -04:00
Tom Tromey
a50264baf5 Add dwarf2_per_objfile member to DWARF batons
Various DWARF callbacks expect to be able to fetch the objfile and / or
dwarf2_per_objfile from the DWARF CU object.  However, this won't be
possible once sharing is implemented.

Because these objects are related to full symbols (e.g., they are used
to implement location expressions), they can simply store the
dwarf2_per_objfile they need.

This patch adds a per_objfile member to the various "baton" structures
and arranges to set this value when constructing the baton.

gdb/ChangeLog:

YYYY-MM-DD  Tom Tromey  <tom@tromey.com>
YYYY-MM-DD  Simon Marchi  <simon.marchi@efficios.com>

	* dwarf2/loc.c (struct piece_closure) <per_objfile>: New member.
	(allocate_piece_closure): Set "per_objfile" member.
	(dwarf2_find_location_expression, dwarf2_locexpr_baton_eval)
	(locexpr_describe_location, loclist_describe_location): Use new
	member.
	* dwarf2/read.c (read_call_site_scope)
	(mark_common_block_symbol_computed, attr_to_dynamic_prop)
	(dwarf2_const_value_attr, dwarf2_fetch_die_loc_sect_off)
	(fill_in_loclist_baton, dwarf2_symbol_mark_computed,
	handle_data_member_location): Set per_objfile member.
	* dwarf2/loc.h (struct dwarf2_locexpr_baton) <per_objfile>: New
	member.
	(struct dwarf2_loclist_baton) <per_objfile>: New member.

Change-Id: If3aaa6a0f544be86710157c3adb68fde24d80037
2020-05-27 11:13:50 -04:00