Commit Graph

8 Commits

Author SHA1 Message Date
Nick Alcock
26503e2f5e libctf, create: fix ctf_type_add of structs with unnamed members
Our recent commit to support unnamed structure members better ditched
the old ctf_member_iter iterator body in favour of ctf_member_next.
However, these functions treat unnamed structure members differently:
ctf_member_iter just returned whatever the internal representation
contained, while ctf_member_next took care to always return "" rather
than sometimes returning "" and sometimes NULL depending on whether the
dict was dynamic (a product of ctf_create) or not (a product of
ctf_open).  After this commit, ctf_member_iter did the same.

It was always a bug for external callers not to treat a "" return from
these functions as if it were NULL, so only buggy callers could be
affected -- but one of those buggy callers was ctf_add_type, which
assumed that it could just take whatever name was returned from
ctf_member_iter and slam it directly into the internal representation of
a dynamic dict -- which expects NULL for unnamed members, not "".  The
net effect of all of this is that taking a struct containing unnamed
members and ctf_add_type'ing it into a dynamic dict produced a dict
whose unnamed members were inaccessible to ctf_member_info (though if
you wrote that dict out and then ctf_open'ed it, they would magically
reappear again).

Compensate for this by suitably transforming a "" name into NULL in the
internal representation, as should have been done all along.

libctf/ChangeLog
2021-01-19  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-create.c (membadd): Transform ""-named members into
	NULL-named ones.
	* testsuite/libctf-regression/type-add-unnamed-struct*: New test.
2021-01-19 12:45:20 +00:00
Nick Alcock
e05a3e5a49 libctf: lookup_by_name: do not return success for nonexistent pointer types
The recent work allowing lookups of pointers in child dicts when the
pointed-to type is in the parent dict broke the case where a pointer
type that does not exist at all is looked up: we mistakenly return the
pointed-to type, which is likely not a pointer at all.  This causes
considerable confusion.

Fixed, with a new testcase.

libctf/ChangeLog
2021-01-19  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-lookup.c (ctf_lookup_by_name_internal): Do not return the
	base type if looking up a nonexistent pointer type.
	* testsuite/libctf-regression/pptrtab*: Test it.
2021-01-19 12:45:19 +00:00
Nick Alcock
0814dbfbfc libctf, testsuite: adjust for real return type of ctf_member_count
This returns an int, not a long int or an ssize_t (as one test was
inconsistently assuming).

libctf/ChangeLog
2021-01-05  Nick Alcock  <nick.alcock@oracle.com>

	* testsuite/libctf-lookup/struct-iteration.c (main):
	ctf_member_count returns an int.
2021-01-05 19:34:56 +00:00
Nick Alcock
70d3120f32 libctf, testsuite: don't run without a suitable compiler
We never actually check to see if the compiler supports CTF,
or even if a suitable compiler exists.

libctf/ChangeLog
2021-01-05  Nick Alcock  <nick.alcock@oracle.com>

	* Makefile.am (BASEDIR): New.
	(BFDDIR): Likewise.
	(check-DEJAGNU): Add development.exp to prerequisites.
	(development.exp): New.
	(CONFIG_STATUS_DEPENDENCIES): New.
	(EXTRA_DEJAGNU_SITE_CONFIG): Likewise.
	(DISTCLEANFILES): Likewise.
	* Makefile.in: Regenerated.
	* testsuite/lib/ctf-lib.exp (check_ctf_available): Return boolean.
	* testsuite/libctf-lookup/lookup.exp: Call check_ctf_available.
	* testsuite/libctf-regression/regression.exp: Likewise.
2021-01-05 17:11:20 +00:00
Nick Alcock
abe4ca69a1 libctf: fix lookups of pointers by name in parent dicts
When you look up a type by name using ctf_lookup_by_name, in most cases
libctf can just strip off any qualifiers and look for the name, but for
pointer types this doesn't work, since the caller will want the pointer
type itself.  But pointer types are nameless, and while they cite the
types they point to, looking up a type by name requires a link going the
*other way*, from the type pointed to to the pointer type that points to
it.

libctf has always built this up at open time: ctf_ptrtab is an array of
type indexes pointing from the index of every type to the index of the
type that points to it.  But because it is built up at open time (and
because it uses type indexes and not type IDs) it is restricted to
working within a single dict and ignoring parent/child
relationships. This is normally invisible, unless you manage to get a
dict with a type in the parent but the only pointer to it in a child.
The ctf_ptrtab will not track this relationship, so lookups of this
pointer type by name will fail.  Since which type is in the parent and
which in the child is largely opaque to the user (which goes where is up
to the deduplicator, and it can and does reshuffle things to save
space), this leads to a very bad user experience, with an
obviously-visible pointer type which ctf_lookup_by_name claims doesn't
exist.

The fix is to have another array, ctf_pptrtab, which is populated in
child dicts: like the parent's ctf_ptrtab, it has one element per type
in the parent, but is all zeroes except for those types which are
pointed to by types in the child: so it maps parent dict indices to
child dict indices.  The array is grown, and new child types scanned,
whenever a lookup happens and new types have been added to the child
since the last time a lookup happened that might need the pptrtab.
(So for non-writable dicts, this only happens once, since new types
cannot be added to non-writable dicts at all.)

Since this introduces new complexity (involving updating only part of
the ctf_pptrtab) which is only seen when a writable dict is in use, we
introduce a new libctf-writable testsuite that contains lookup tests
with no corresponding CTF-containing .c files (which can thus be run
even on platforms with no .ctf-section support in the linker yet), and
add a test to check that creation of pointers in children to types in
parents and a following lookup by name works as expected.  The non-
writable case is tested in a new libctf-regression testsuite which is
used to track now-fixed outright bugs in libctf.

libctf/ChangeLog
2021-01-05  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-impl.h (ctf_dict_t) <ctf_pptrtab>: New.
	<ctf_pptrtab_len>: New.
	<ctf_pptrtab_typemax>: New.
	* ctf-create.c (ctf_serialize): Update accordingly.
	(ctf_add_reftype): Note that we don't need to update pptrtab here,
	despite updating ptrtab.
	* ctf-open.c (ctf_dict_close): Destroy the pptrtab.
	(ctf_import): Likewise.
	(ctf_import_unref): Likewise.
	* ctf-lookup.c (grow_pptrtab): New.
	(refresh_pptrtab): New, update a pptrtab.
	(ctf_lookup_by_name): Turn into a wrapper around (and rename to)...
	(ctf_lookup_by_name_internal): ... this: construct the pptrtab, and
	use it in addition to the parent's ptrtab when parent dicts are
	searched.
	* testsuite/libctf-regression/regression.exp: New testsuite for
	regression tests.
	* testsuite/libctf-regression/pptrtab*: New test.
	* testsuite/libctf-writable/writable.exp: New testsuite for tests of
	writable CTF dicts.
	* testsuite/libctf-writable/pptrtab*: New test.
2021-01-05 14:53:40 +00:00
Nick Alcock
6c3a38777b libctf, include: support unnamed structure members better
libctf has no intrinsic support for the GCC unnamed structure member
extension.  This principally means that you can't look up named members
inside unnamed struct or union members via ctf_member_info: you have to
tiresomely find out the type ID of the unnamed members via iteration,
then look in each of these.

This is ridiculous.  Fix it by extending ctf_member_info so that it
recurses into unnamed members for you: this is still unambiguous because
GCC won't let you create ambiguously-named members even in the presence
of this extension.

For consistency, and because the release hasn't happened and we can
still do this, break the ctf_member_next API and add flags: we specify
one flag, CTF_MN_RECURSE, which if set causes ctf_member_next to
automatically recurse into unnamed members for you, returning not only
the members themselves but all their contained members, so that you can
use ctf_member_next to identify every member that it would be valid to
call ctf_member_info with.

New lookup tests are added for all of this.

include/ChangeLog
2021-01-05  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-api.h (CTF_MN_RECURSE): New.
	(ctf_member_next): Add flags argument.

libctf/ChangeLog
2021-01-05  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-impl.h (struct ctf_next) <u.ctn_next>: Move to...
	<ctn_next>: ... here.
	* ctf-util.c (ctf_next_destroy): Unconditionally destroy it.
	* ctf-lookup.c (ctf_symbol_next): Adjust accordingly.
	* ctf-types.c (ctf_member_iter): Reimplement in terms of...
	(ctf_member_next): ... this.  Support recursive unnamed member
	iteration (off by default).
	(ctf_member_info): Look up members in unnamed sub-structs.
	* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_member_next call.
	(ctf_dedup_emit_struct_members): Likewise.
	* testsuite/libctf-lookup/struct-iteration-ctf.c: Test empty unnamed
	members, and a normal member after the end.
	* testsuite/libctf-lookup/struct-iteration.c: Verify that
	ctf_member_count is consistent with the number of successful returns
	from a non-recursive ctf_member_next.
	* testsuite/libctf-lookup/struct-iteration-*: New, test iteration
	over struct members.
	* testsuite/libctf-lookup/struct-lookup.c: New test.
	* testsuite/libctf-lookup/struct-lookup.lk: New test.
2021-01-05 14:53:40 +00:00
Nick Alcock
9bc769718d libctf: new test of enum lookups with the _next iterator
I had reports that this doesn't work.  This test shows it working (and
also shows how annoying it is to do symbol lookup by name with the
present API: we need a ctf_arc_lookup_symbol_name for users that don't
already have a symtab handy).

libctf/ChangeLog
2021-01-05  Nick Alcock  <nick.alcock@oracle.com>

	* testsuite/libctf-lookup/enum-symbol.lk: New symbol-lookup test.
	* testsuite/libctf-lookup/enum-symbol-ctf.c: New CTF input.
	* testsuite/libctf-lookup/enum-symbol.c: New lookup test.
2021-01-05 14:53:40 +00:00
Nick Alcock
c59e30ed17 libctf: new testsuite
This introduces a new lookup testsuite under libctf, which operates by
compiling (with libtool) a "lookup" .c file that uses libctf to analyze
some other program, then compiling some number of test object files with
CTF and optionally linking them together and running the lookup program
on the test object files (or linked test binary), before diffing the
result much as run_dump_test does.

This lets us test the portions of libctf that are not previously
testable, notably the portions that do lookup on linked output and
that create dynamic dictionaries and then do lookup on them before
writing them out, something that is not tested by the ld-ctf testsuite
because the linker never does this.

A couple of simple tests are added: one testing the functionality of
enum lookups, and one testing that the recently-added commit adding
extra paranoia to incomplete type handling doesn't break linking and
that the result of the link is an (otherwise-impossible) array of
forward type in the shared CTF dict.

ChangeLog
2021-01-05  Nick Alcock  <nick.alcock@oracle.com>

	* Makefile.def (libctf): No longer no_check.  Checking depends on
	all-ld.
	* Makefile.in: Regenerated.

libctf/ChangeLog
2021-01-05  Nick Alcock  <nick.alcock@oracle.com>

	* Makefile.am (EXPECT): New.
	(RUNTEST): Likewise.
	(RUNTESTFLAGS): Likewise.
	(CC_FOR_TARGET): Likewise.
	(check-DEJAGNU): Likewise.
	(AUTOMAKE_OPTIONS): Add dejagnu.
	* Makefile.in: Regenerated.
	* testsuite/config/default.exp: New.
	* testsuite/lib/ctf-lib.exp: Likewise.
	* testsuite/libctf-lookup/enum.lk: New test.
	* testsuite/libctf-lookup/enum-ctf.c: New CTF input.
	* testsuite/libctf-lookup/enum.c: New lookup test.
	* testsuite/libctf-lookup/ambiguous-struct*.c: New test.
	* testsuite/libctf-lookup/lookup.exp: New.
2021-01-05 14:53:40 +00:00