* remote-sim.c: first attempt at general simulator interface

* remote-hms.c: whitespace
	* h8300-tdep.c: (h8300_skip_prologue, examine_prologue):
	understand new stack layout. (print_register_hook): print ccr
	register in a fancy way.
This commit is contained in:
Steve Chamberlain
1993-01-03 22:36:04 +00:00
parent fb6e675f95
commit ec25d19bd6
6 changed files with 1167 additions and 811 deletions

View File

@@ -17,9 +17,9 @@ You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/*
/*
Contributed by Steve Chamberlain
sac@cygnus.com
sac@cygnus.com
*/
#include "defs.h"
@@ -29,61 +29,80 @@ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#define UNSIGNED_SHORT(X) ((X) & 0xffff)
/* an easy to debug H8 stack frame looks like:
0x6df2 push r2
0x6df3 push r3
0x6df6 push r6
0x mov.w r7,r6
subs stuff,sp mov.w #x,r5
subs r5,sp
0x6df6 push r6
0x0d76 mov.w r7,r6
0x6dfn push reg
0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
0x1957 sub.w r5,sp
*/
#define IS_PUSH(x) ((x & 0xff00)==0x6d00)
#define IS_PUSH_FP(x) (x == 0x6df6)
#define IS_MOVE_FP(x) (x == 0x0d76)
#define IS_MOV_SP_FP(x) (x == 0x0d76)
#define IS_SUB2_SP(x) (x==0x1b87)
#define IS_MOVK_R5(x) (x==0x7905)
CORE_ADDR examine_prologue();
#define IS_SUB_R5SP(x) (x==0x1957)
CORE_ADDR examine_prologue ();
void frame_find_saved_regs ();
CORE_ADDR h8300_skip_prologue(start_pc)
CORE_ADDR start_pc;
void frame_find_saved_regs ();
CORE_ADDR
h8300_skip_prologue (start_pc)
CORE_ADDR start_pc;
{
/* Skip past all push insns */
short int w;
w = read_memory_short(start_pc);
while (IS_PUSH(w))
{
start_pc+=2;
w = read_memory_short(start_pc);
}
/* Skip past a move to FP */
if (IS_MOVE_FP(w)) {
start_pc +=2 ;
w = read_memory_short(start_pc);
w = read_memory_short (start_pc);
/* Skip past all push insns */
while (IS_PUSH_FP (w))
{
start_pc += 2;
w = read_memory_short (start_pc);
}
return start_pc;
}
/* Skip past a move to FP */
if (IS_MOVE_FP (w))
{
start_pc += 2;
w = read_memory_short (start_pc);
}
/* Skip the stack adjust */
if (IS_MOVK_R5 (w))
{
start_pc += 2;
w = read_memory_short (start_pc);
}
if (IS_SUB_R5SP (w))
{
start_pc += 2;
w = read_memory_short (start_pc);
}
while (IS_SUB2_SP (w))
{
start_pc += 2;
w = read_memory_short (start_pc);
}
return start_pc;
}
int
print_insn(memaddr, stream)
CORE_ADDR memaddr;
FILE *stream;
print_insn (memaddr, stream)
CORE_ADDR memaddr;
FILE *stream;
{
/* Nothing is bigger than 8 bytes */
char data[8];
read_memory (memaddr, data, sizeof(data));
return print_insn_h8300(memaddr, data, stream);
char data[8];
read_memory (memaddr, data, sizeof (data));
return print_insn_h8300 (memaddr, data, stream);
}
/* Given a GDB frame, determine the address of the calling function's frame.
This will be used to create a new GDB frame struct, and then
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
@@ -97,11 +116,9 @@ FRAME_CHAIN (thisframe)
{
frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
return thisframe->fsr->regs[SP_REGNUM];
return thisframe->fsr->regs[SP_REGNUM];
}
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
@@ -128,18 +145,19 @@ frame_find_saved_regs (fi, fsr)
if (!fi->fsr)
{
cache_fsr = (struct frame_saved_regs *)
obstack_alloc (&frame_cache_obstack,
sizeof (struct frame_saved_regs));
obstack_alloc (&frame_cache_obstack,
sizeof (struct frame_saved_regs));
bzero (cache_fsr, sizeof (struct frame_saved_regs));
fi->fsr = cache_fsr;
/* Find the start and end of the function prologue. If the PC
is in the function prologue, we only consider the part that
has executed already. */
ip = get_pc_function_start (fi->pc);
sal = find_pc_line (ip, 0);
limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
/* This will fill in fields in *fi as well as in cache_fsr. */
examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
@@ -148,55 +166,37 @@ frame_find_saved_regs (fi, fsr)
if (fsr)
*fsr = *fi->fsr;
}
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
is not the address of a valid instruction, the address of the next
instruction beyond ADDR otherwise. *PWORD1 receives the first word
of the instruction.*/
CORE_ADDR
NEXT_PROLOGUE_INSN(addr, lim, pword1)
CORE_ADDR addr;
CORE_ADDR lim;
short *pword1;
NEXT_PROLOGUE_INSN (addr, lim, pword1)
CORE_ADDR addr;
CORE_ADDR lim;
short *pword1;
{
if (addr < lim+8)
{
read_memory (addr, pword1, sizeof(*pword1));
SWAP_TARGET_AND_HOST (pword1, sizeof (short));
return addr + 2;
}
if (addr < lim + 8)
{
read_memory (addr, pword1, sizeof (*pword1));
SWAP_TARGET_AND_HOST (pword1, sizeof (short));
return addr + 2;
}
return 0;
}
/* Examine the prologue of a function. `ip' points to the first instruction.
`limit' is the limit of the prologue (e.g. the addr of the first
`limit' is the limit of the prologue (e.g. the addr of the first
linenumber, or perhaps the program counter if we're stepping through).
`frame_sp' is the stack pointer value in use in this frame.
`frame_sp' is the stack pointer value in use in this frame.
`fsr' is a pointer to a frame_saved_regs structure into which we put
info about the registers saved by this frame.
info about the registers saved by this frame.
`fi' is a struct frame_info pointer; we fill in various fields in it
to reflect the offsets of the arg pointer and the locals pointer. */
/* We will find two sorts of prologue, framefull and non framefull:
push r2
push r3
push fp
mov sp,fp
stack_ad
and
push x
push y
stack_ad
*/
static CORE_ADDR
examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
register CORE_ADDR ip;
@@ -209,107 +209,102 @@ examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
int r;
int i;
int have_fp = 0;
register int src;
register struct pic_prologue_code *pcode;
INSN_WORD insn_word;
int size, offset;
unsigned int reg_save_depth = 2; /* Number of things pushed onto
unsigned int reg_save_depth = 2; /* Number of things pushed onto
stack, starts at 2, 'cause the
PC is already there */
unsigned int auto_depth = 0; /* Number of bytes of autos */
char in_frame[NUM_REGS]; /* One for each reg */
memset(in_frame, 1, NUM_REGS);
if (after_prolog_fp == 0) {
after_prolog_fp = read_register(SP_REGNUM);
}
if (ip == 0 || ip & ~0xffff) return 0;
char in_frame[NUM_REGS]; /* One for each reg */
memset (in_frame, 1, NUM_REGS);
for (r = 0; r < NUM_REGS; r++)
{
fsr->regs[r] = 0;
}
if (after_prolog_fp == 0)
{
after_prolog_fp = read_register (SP_REGNUM);
}
if (ip == 0 || ip & ~0xffff)
return 0;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
/* Skip over any push instructions, and remember where they were saved */
/* Skip over any fp push instructions */
fsr->regs[6] = after_prolog_fp;
while (next_ip && IS_PUSH_FP (insn_word))
{
ip = next_ip;
while (next_ip && IS_PUSH(insn_word))
{
ip = next_ip;
in_frame[insn_word & 0x7] = reg_save_depth;
next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
reg_save_depth +=2;
}
in_frame[insn_word & 0x7] = reg_save_depth;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
reg_save_depth += 2;
}
/* Is this a move into the fp */
if (next_ip && IS_MOV_SP_FP(insn_word))
{
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
have_fp = 1;
}
if (next_ip && IS_MOV_SP_FP (insn_word))
{
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
have_fp = 1;
}
/* Skip over any stack adjustment, happens either with a number of
sub#2,sp or a mov #x,r5 sub r5,sp */
if (next_ip && IS_SUB2_SP(insn_word))
{
while (next_ip && IS_SUB2_SP(insn_word))
if (next_ip && IS_SUB2_SP (insn_word))
{
auto_depth +=2 ;
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
while (next_ip && IS_SUB2_SP (insn_word))
{
auto_depth += 2;
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
}
}
}
else
{
if (next_ip && IS_MOVK_R5(insn_word))
else
{
if (next_ip && IS_MOVK_R5 (insn_word))
{
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
auto_depth += insn_word;
next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
auto_depth += insn_word;
}
}
/* Work out which regs are stored where */
while (next_ip && IS_PUSH (insn_word))
{
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
auto_depth += insn_word;
ip +=4;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
fsr->regs[r] = after_prolog_fp + auto_depth;
auto_depth += 2;
}
}
/* The args are always reffed based from the stack pointer */
fi->args_pointer = after_prolog_fp - auto_depth;
fi->args_pointer = after_prolog_fp;
/* Locals are always reffed based from the fp */
fi->locals_pointer = after_prolog_fp ;
fi->locals_pointer = after_prolog_fp;
/* The PC is at a known place */
fi->from_pc = read_memory_short(after_prolog_fp + reg_save_depth-2 );
fi->from_pc = read_memory_short (after_prolog_fp + 2);
/* Rememeber any others too */
in_frame[PC_REGNUM] = 0;
for (r = 0; r < NUM_REGS; r++)
{
if (in_frame[r] != 1)
{
fsr->regs[r] = after_prolog_fp + reg_save_depth - in_frame[r] -2;
}
else
{
fsr->regs[r] = 0;
}
}
if (have_fp)
/* We keep the old FP in the SP spot */
fsr->regs[SP_REGNUM] = (read_memory_short(fsr->regs[6])) ;
else
fsr->regs[SP_REGNUM] = after_prolog_fp + reg_save_depth;
if (have_fp)
/* We keep the old FP in the SP spot */
fsr->regs[SP_REGNUM] = (read_memory_short (fsr->regs[6]));
else
fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
return (ip);
}
@@ -322,8 +317,9 @@ init_extra_frame_info (fromleaf, fi)
fi->args_pointer = 0; /* Unknown */
fi->locals_pointer = 0; /* Unknown */
fi->from_pc = 0;
}
/* Return the saved PC from this frame.
If the frame has a memory copy of SRP_REGNUM, use that. If not,
@@ -331,23 +327,23 @@ init_extra_frame_info (fromleaf, fi)
CORE_ADDR
frame_saved_pc (frame)
FRAME frame;
FRAME frame;
{
return frame->from_pc;
}
CORE_ADDR
frame_locals_address (fi)
struct frame_info *fi;
{
if (!fi->locals_pointer)
{
struct frame_saved_regs ignore;
get_frame_saved_regs(fi, &ignore);
if (!fi->locals_pointer)
{
struct frame_saved_regs ignore;
}
get_frame_saved_regs (fi, &ignore);
}
return fi->locals_pointer;
}
@@ -358,38 +354,87 @@ CORE_ADDR
frame_args_address (fi)
struct frame_info *fi;
{
if (!fi->args_pointer)
{
struct frame_saved_regs ignore;
get_frame_saved_regs(fi, &ignore);
if (!fi->args_pointer)
{
struct frame_saved_regs ignore;
get_frame_saved_regs (fi, &ignore);
}
}
return fi->args_pointer;
}
void h8300_pop_frame()
void
h8300_pop_frame ()
{
unsigned regnum;
struct frame_saved_regs fsr;
struct frame_info *fi;
FRAME frame = get_current_frame();
fi = get_frame_info(frame);
get_frame_saved_regs(fi, &fsr);
FRAME frame = get_current_frame ();
for (regnum = 0; regnum < NUM_REGS; regnum ++)
{
if(fsr.regs[regnum])
fi = get_frame_info (frame);
get_frame_saved_regs (fi, &fsr);
for (regnum = 0; regnum < NUM_REGS; regnum++)
{
write_register(regnum, read_memory_short (fsr.regs[regnum]));
if (fsr.regs[regnum])
{
write_register (regnum, read_memory_short (fsr.regs[regnum]));
}
flush_cached_frames ();
set_current_frame (create_new_frame (read_register (FP_REGNUM),
read_pc ()));
}
flush_cached_frames();
set_current_frame(create_new_frame(read_register(FP_REGNUM),
read_pc()));
}
}
void
print_register_hook (regno)
{
if (regno == 8)
{
/* CCR register */
int C, Z, N, V;
unsigned char b[2];
unsigned char l;
read_relative_register_raw_bytes (regno, b);
l = b[1];
printf ("\t");
printf ("I-%d - ", (l & 0x80) != 0);
printf ("H-%d - ", (l & 0x20) != 0);
N = (l & 0x8) != 0;
Z = (l & 0x4) != 0;
V = (l & 0x2) != 0;
C = (l & 0x1) != 0;
printf ("N-%d ", N);
printf ("Z-%d ", Z);
printf ("V-%d ", V);
printf ("C-%d ", C);
if ((C | Z) == 0)
printf ("u> ");
if ((C | Z) == 1)
printf ("u<= ");
if ((C == 0))
printf ("u>= ");
if (C == 1)
printf ("u< ");
if (Z == 0)
printf ("!= ");
if (Z == 1)
printf ("== ");
if ((N ^ V) == 0)
printf (">= ");
if ((N ^ V) == 1)
printf ("< ");
if ((Z | (N ^ V)) == 0)
printf ("> ");
if ((Z | (N ^ V)) == 1)
printf ("<= ");
}
}