forked from Imagelibrary/binutils-gdb
* a29k-tdep.c (init_frame_info): Cast null arg to examine_tag.
(pop_frame): Restore PC2 and LR0 from dummy frames. (push_dummy_frame): Save PC2 and LR0 into dummy frames. (setup_arbitrary_frame): Handle 3 args and set up real frames. * config/a29k/tm-a29k.h (FRAME_NUM_ARGS): Update comments. (DUMMY_FRAME_RSIZE): Add 2 longwords for PC2 and LR0. (SETUP_ARBITRARY_FRAME): Define.
This commit is contained in:
@@ -437,14 +437,14 @@ init_frame_info (innermost_frame, fci)
|
||||
after the trace-back tag. */
|
||||
p += 4;
|
||||
}
|
||||
|
||||
/* We've found the start of the function.
|
||||
* Try looking for a tag word that indicates whether there is a
|
||||
* memory frame pointer and what the memory stack allocation is.
|
||||
* If one doesn't exist, try using a more exhaustive search of
|
||||
* the prologue. For now we don't care about the argcount or
|
||||
* whether or not the routine is transparent.
|
||||
*/
|
||||
if (examine_tag(p-4,&trans,NULL,&msize,&mfp_used)) /* Found a good tag */
|
||||
Try looking for a tag word that indicates whether there is a
|
||||
memory frame pointer and what the memory stack allocation is.
|
||||
If one doesn't exist, try using a more exhaustive search of
|
||||
the prologue. */
|
||||
|
||||
if (examine_tag(p-4,&trans,(int *)NULL,&msize,&mfp_used)) /* Found good tag */
|
||||
examine_prologue (p, &rsize, 0, 0);
|
||||
else /* No tag try prologue */
|
||||
examine_prologue (p, &rsize, &msize, &mfp_used);
|
||||
@@ -730,6 +730,8 @@ pop_frame ()
|
||||
CORE_ADDR rfb = read_register (RFB_REGNUM);
|
||||
CORE_ADDR gr1 = fi->frame + fi->rsize;
|
||||
CORE_ADDR lr1;
|
||||
CORE_ADDR original_lr0;
|
||||
int must_fix_lr0 = 0;
|
||||
int i;
|
||||
|
||||
/* If popping a dummy frame, need to restore registers. */
|
||||
@@ -744,15 +746,23 @@ pop_frame ()
|
||||
write_register (SR_REGNUM(i+160), read_register (lrnum++));
|
||||
for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
|
||||
write_register (RETURN_REGNUM + i, read_register (lrnum++));
|
||||
/* Restore the PCs. */
|
||||
/* Restore the PCs and prepare to restore LR0. */
|
||||
write_register(PC_REGNUM, read_register (lrnum++));
|
||||
write_register(NPC_REGNUM, read_register (lrnum));
|
||||
write_register(NPC_REGNUM, read_register (lrnum++));
|
||||
write_register(PC2_REGNUM, read_register (lrnum++));
|
||||
original_lr0 = read_register (lrnum++);
|
||||
must_fix_lr0 = 1;
|
||||
}
|
||||
|
||||
/* Restore the memory stack pointer. */
|
||||
write_register (MSP_REGNUM, fi->saved_msp);
|
||||
/* Restore the register stack pointer. */
|
||||
write_register (GR1_REGNUM, gr1);
|
||||
|
||||
/* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
|
||||
if (must_fix_lr0)
|
||||
write_register (LR0_REGNUM, original_lr0);
|
||||
|
||||
/* Check whether we need to fill registers. */
|
||||
lr1 = read_register (LR0_REGNUM + 1);
|
||||
if (lr1 > rfb)
|
||||
@@ -782,8 +792,13 @@ push_dummy_frame ()
|
||||
long w;
|
||||
CORE_ADDR rab, gr1;
|
||||
CORE_ADDR msp = read_register (MSP_REGNUM);
|
||||
int lrnum, i, saved_lr0;
|
||||
|
||||
int lrnum, i;
|
||||
CORE_ADDR original_lr0;
|
||||
|
||||
/* Read original lr0 before changing gr1. This order isn't really needed
|
||||
since GDB happens to have a snapshot of all the regs and doesn't toss
|
||||
it when gr1 is changed. But it's The Right Thing To Do. */
|
||||
original_lr0 = read_register (LR0_REGNUM);
|
||||
|
||||
/* Allocate the new frame. */
|
||||
gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
|
||||
@@ -826,11 +841,54 @@ push_dummy_frame ()
|
||||
write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
|
||||
for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
|
||||
write_register (lrnum++, read_register (RETURN_REGNUM + i));
|
||||
/* Save the PCs. */
|
||||
/* Save the PCs and LR0. */
|
||||
write_register (lrnum++, read_register (PC_REGNUM));
|
||||
write_register (lrnum, read_register (NPC_REGNUM));
|
||||
write_register (lrnum++, read_register (NPC_REGNUM));
|
||||
write_register (lrnum++, read_register (PC2_REGNUM));
|
||||
write_register (lrnum++, original_lr0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
This routine takes three arguments and makes the cached frames look
|
||||
as if these arguments defined a frame on the cache. This allows the
|
||||
rest of `info frame' to extract the important arguments without much
|
||||
difficulty. Since an individual frame on the 29K is determined by
|
||||
three values (FP, PC, and MSP), we really need all three to do a
|
||||
good job. */
|
||||
|
||||
FRAME
|
||||
setup_arbitrary_frame (argc, argv)
|
||||
int argc;
|
||||
FRAME_ADDR *argv;
|
||||
{
|
||||
FRAME fid;
|
||||
|
||||
if (argc != 3)
|
||||
error ("AMD 29k frame specifications require three arguments: rsp pc msp");
|
||||
|
||||
fid = create_new_frame (argv[0], argv[1]);
|
||||
|
||||
if (!fid)
|
||||
fatal ("internal: create_new_frame returned invalid frame id");
|
||||
|
||||
/* Creating a new frame munges the `frame' value from the current
|
||||
GR1, so we restore it again here. FIXME, untangle all this
|
||||
29K frame stuff... */
|
||||
fid->frame = argv[0];
|
||||
|
||||
/* Our MSP is in argv[2]. It'd be intelligent if we could just
|
||||
save this value in the FRAME. But the way it's set up (FIXME),
|
||||
we must save our caller's MSP. We compute that by adding our
|
||||
memory stack frame size to our MSP. */
|
||||
fid->saved_msp = argv[2] + fid->msize;
|
||||
|
||||
return fid;
|
||||
}
|
||||
|
||||
|
||||
|
||||
enum a29k_processor_types processor_type = a29k_unknown;
|
||||
|
||||
void
|
||||
|
||||
Reference in New Issue
Block a user