libctf: consecutive ctf_id_t assignment

This change modifies type ID assignment in CTF so that it works like BTF:
rather than flipping the high bit on for types in child dicts, types ascend
directly from IDs in the parent to IDs in the child, without interruption
(so type 0x4 in the parent is immediately followed by 0x5 in all children).

Doing this while retaining useful semantics for modification of parents is
challenging.  By definition, child type IDs are not known until the parent
is written out, but we don't want to find ourselves constrained to adding
types to the parent in one go, followed by all child types: that would make
the deduplicator a nightmare and would frankly make the entire ctf_add*()
interface next to useless: all existing clients that add types at all
add types to both parents and children without regard for ordering, and
breaking that would probably necessitate redesigning all of them.

So we have to be a litle cleverer.

We approach this the same way as we approach strings in the recent refs
rework: if a parent has children attached (or has ever had them attached
since it was created or last read in), any new types created in the parent
are assigned provisional IDs starting at the very top of the type space and
working down.  (Their indexes in the internal libctf arrays remain
unchanged, so we don't suddenly need multigigabyte indexes!).  At writeout
(preserialization) time, we traverse the type table (and all other table
containing type IDs) and assign refs to every type ID in exactly the same
way we assign refs to every string offset (just a different set of refs --
we don't want to update type IDs with string offset values!).

For a parent dict with children, these refs are real entities in memory:
pointers to the memory locations where type IDs are stored, tracked in the
DTD of each type.  As we traverse the type table, we assign real IDs to each
type (by simple incrementation), storing those IDs in a new dtd_final_type
field in the DTD for each type.  Once the type table and all other tables
containing type IDs are fully traversed, we update all the refs and
overwrite the IDs currently residing in each with the final IDs for each
type.

That fixes up IDs in the parent dict itself (including forward references in
structs and the like: that's why the ref updates only happen at the end);
but what about child dicts' references, both to parent types and to their
own?  We add armouring to enforce that parent dicts are always serialized
before their children (which ctf-link.c already does, because it's a
precondition for strtab deduplication), and then arrange that when a ref is
added to a type whose ID has been assigned (has a dtd_final_type), we just
immediately do an update rather than storing a ref for later updating.
Since the parent is already serialized, all parent type IDs have a
dtd_final_type by this point, and all parent IDs in the children are
properly updated. The child types can now be renumbered now we now the
number of types in the parent, and their refs updated identically to what
was just done with the parent.

One wrinkle: before the child refs are updated, while we are working over
the child's type section, the type IDs in the child start from 1 (or
something like that), which might seem to overlap the parent IDs.  But this
is not the case: when you serialize the parent, the IDs written out to disk
are changed, but the only change to the representation in memory is that we
remember a dtd_final_type for each type (and use it to update all the child
type refs): its ID in memory is the same as it always was, a nonoverlapping
provisional ID higher than any other valid ID.  We enforce all of this by
asserting that when you add a ref to a type, the memory location that is
modified must be in the buffer being serialized: the code will not let you
accidentally modify the actual DTDs in memory.

We track the number of types in the parent in a new CTFv4 (not BTF) header
field (the dumper is updated): we will also use this to open CTFv3 child
dicts without change by simply declaring for them that the parent dict has
2^31 types in it (or 2^15, for v2 and below): the IDs in the children then
naturally come out right with no other changes needed.  (Right now, opening
CTFv3 child dicts requires extra compatibility code that has not been
written, but that code will no longer need to worry about type ID
differences.)

Various things are newly forbidden:

 - you cannot ctf_import() a child into a parent if you already ctf_add()ed
   types to the child, because all its IDs would change (and since you
   already cannot ctf_add() types to a child that hasn't had its parent
   imported, this in practice means only that ctf_create() must be followed
   immediately by a ctf_import() if this is a new child, which all sane
   clients were doing anyway).

 - You cannot import a child into a parent which has the wrong number of
   (non-provisional) types, again because all its IDs would be wrong:
   because parents only add types in the provisional space if children are
   attached to it, this would break the not unknown case of opening an
   archive, adding types to the parent, and only then importing children
   into it, so we add a special case: archive members which are not children
   in an archive with more than one member always pretend to have at least
   one child, so type additions in them are always provisional even before
   you ctf_import anything. In practice, this does exactly what we want,
   since all archives so far are created by the linker and have one parent
   and N children of that parent.

Because this introduces huge gaps between index and type ID for provisional
types, some extra assertions are added to ensure that the internal
ctf_type_to_index() is only ever called on types in the current dict (never
a parent dict): before now, this was just taken on trust, and it was often
wrong (which at best led to wrong results, as wrong array indexes were used,
and at worst to a buffer overflow). When hash debugging is on (suggesting
that the user doesn't mind expensive checks), every ctf_type_to_index()
triggers a ctf_index_to_type() to make sure that the operations are proper
inverses.

Lots and lots of tests are added to verify that assignment works and that
updating of every type kind works fine -- existing tests suffice for
type IDs in the variable and symtypetab sections.

The ld-ctf tests get a bunch of largely display-based updates: various
tests refer to 0x8... type IDs, which no longer exist, and because the
IDs are shorter all the spacing and alignment has changed.
This commit is contained in:
Nick Alcock
2025-02-16 19:55:11 +00:00
parent 274cc1f13d
commit b5d3790c66
26 changed files with 1207 additions and 164 deletions

View File

@@ -191,6 +191,7 @@ typedef struct ctf_header
uint32_t cth_parname; /* Ref to basename of parent. */
uint32_t cth_cuname; /* Ref to CU name (may be 0). */
uint32_t cth_parent_strlen; /* cth_strlen of parent (may be 0). */
uint32_t cth_parent_typemax; /* Number of types in parent (may be 0). */
uint32_t cth_lbloff; /* Offset of label section. */
uint32_t cth_objtoff; /* Offset of object section. */
uint32_t cth_funcoff; /* Offset of function section. */

View File

@@ -14,8 +14,8 @@ Contents of CTF section .ctf:
Version: 5 \(CTF_VERSION_4\)
#...
0x[0-9a-f]*: \(kind 6\) struct A \(.*
\[0x0\] : ID 0x[0-9a-f]*: \(kind 7\) union \(.*
\[0x0\] : ID 0x[0-9a-f]*: \(kind 7\) union \(.*
#...
0x[0-9a-f]*: \(kind 6\) struct A \(.*
\[0x0\] : ID 0x[0-9a-f]*: \(kind 7\) union \(.*
\[0x0\] : ID 0x[0-9a-f]*: \(kind 7\) union \(.*
#...

View File

@@ -30,10 +30,10 @@ CTF archive member: .*/B.c:
Function objects:
Variables:
b -> 0x80000001: \(kind 6\) struct B \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
b -> 0x[0-9a-f]*: \(kind 6\) struct B \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Types:
0x8[0-9a-f]*: \(kind 6\) struct B .*
0x[0-9a-f]*: \(kind 6\) struct B .*
*\[0x0\] c: ID 0x[0-9a-f]*: \(kind 3\) struct C \* \(.*
Strings:

View File

@@ -30,10 +30,10 @@ CTF archive member: .*/B-2.c:
Function objects:
Variables:
b -> 0x80000001: \(kind 6\) struct B \(.*
b -> 0x[0-9a-f]*: \(kind 6\) struct B \(.*
Types:
0x8[0-9a-f]*: \(kind 6\) struct B \(.*
0x[0-9a-f]*: \(kind 6\) struct B \(.*
*\[0x0\] c: ID 0x[0-9a-f]*: \(kind 3\) struct C \* \(.*
*\[0x[0-9a-f]*\] wombat: ID 0x[0-9a-f]*: \(kind 1\) int \(format 0x1\) \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)

View File

@@ -29,10 +29,10 @@ CTF archive member: .*/A.c:
Function objects:
Variables:
a -> 0x80000001: \(kind 6\) struct A \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
a -> 0x[0-9a-f]*: \(kind 6\) struct A \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Types:
0x8[0-9a-f]*: \(kind 6\) struct A \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
0x[0-9a-f]*: \(kind 6\) struct A \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
*\[0x0\] b: ID 0x[0-9a-f]*: \(kind 3\) struct B \* \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Strings:

View File

@@ -29,10 +29,10 @@ CTF archive member: .*/A-2.c:
Function objects:
Variables:
a -> 0x80000001: \(kind 6\) struct A \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
a -> 0x[0-9a-f]*: \(kind 6\) struct A \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Types:
0x8[0-9a-f]*: \(kind 6\) struct A \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
0x[0-9a-f]*: \(kind 6\) struct A \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
*\[0x0\] b: ID 0x[0-9a-f]*: \(kind 3\) struct B \* \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
*\[0x[0-9a-f]*\] wombat: ID 0x[0-9a-f]*: \(kind 1\) int \(format 0x1\) \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)

View File

@@ -28,10 +28,10 @@ CTF archive member: .*/C.c:
Function objects:
Variables:
c -> 0x80000001: \(kind 6\) struct C \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
c -> 0x[0-9a-f]*: \(kind 6\) struct C \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Types:
0x80000001: \(kind 6\) struct C \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
0x[0-9a-f]*: \(kind 6\) struct C \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
*\[0x0\] a: ID 0x[0-9a-f]*: \(kind 3\) struct A \* \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Strings:

View File

@@ -28,12 +28,12 @@ CTF archive member: .*/C-2.c:
Function objects:
Variables:
c -> 0x80000001: \(kind 6\) struct C \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
c -> 0x[0-9a-f]*: \(kind 6\) struct C \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Types:
0x80000001: \(kind 6\) struct C \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
\[0x0\] a: ID 0x[0-9a-f]*: \(kind 3\) struct A \* \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
\[0x[0-9a-f]*\] wombat: ID 0x[0-9a-f]*: \(kind 1\) int \(format 0x1\) \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
0x[0-9a-f]*: \(kind 6\) struct C \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
\[0x0\] a: ID 0x[0-9a-f]*: \(kind 3\) struct A \* \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
\[0x[0-9a-f]*\] wombat: ID 0x[0-9a-f]*: \(kind 1\) int \(format 0x1\) \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Strings:
#...

View File

@@ -20,28 +20,28 @@ Contents of CTF section .ctf:
CTF archive member: .*enum.*\.c:
#...
Types:
0x80000001: \(kind 8\) enum day_of_the_week \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Sunday: 0
Monday: 1
Tuesday: 2
Wednesday: 3
Thursday: 4
Friday: 5
Saturday: 6
0x[0-9a-f]*: \(kind 8\) enum day_of_the_week \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Sunday: 0
Monday: 1
Tuesday: 2
Wednesday: 3
Thursday: 4
Friday: 5
Saturday: 6
Strings:
#...
CTF archive member: .*enum.*\.c:
#...
Types:
0x80000001: \(kind 8\) enum day_of_the_week \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Monday: 0
Tuesday: 1
Wednesday: 2
Thursday: 3
Friday: 4
Saturday: 5
Sunday: 6
0x[0-9a-f]*: \(kind 8\) enum day_of_the_week \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Monday: 0
Tuesday: 1
Wednesday: 2
Thursday: 3
Friday: 4
Saturday: 5
Sunday: 6
Strings:
#...

View File

@@ -15,15 +15,15 @@ Contents of CTF section .ctf:
#...
Types:
0x1: .*int .*
0x[0-9]: \(kind 10\) word .* -> 0x[0-9]: \(kind 1\) .*int \(format 0x1\) \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
0x[0-9]:.*int .*
0x[0-9a-f]: \(kind 10\) word .* -> 0x[0-9]: \(kind 1\) .*int \(format 0x1\) \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
0x[0-9a-f]:.*int .*
Strings:
#...
CTF archive member: .*typedef.*\.c:
#...
Types:
0x80000001: \(kind 10\) word .* -> 0x[0-9]: \(kind 1\) .*int \(format 0x1\) \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
0x[0-9a-f]*: \(kind 10\) word .* -> 0x[0-9]: \(kind 1\) .*int \(format 0x1\) \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Strings:
#...

View File

@@ -31,7 +31,7 @@ Contents of CTF section \.ctf:
CTF archive member: .*/ld/testsuite/ld-ctf/cross-tu-cyclic-1\.c:
#...
Types:
0x80[0-9a-f]*: \(kind 6\) struct A .*
0x[0-9a-f]*: \(kind 6\) struct A .*
*\[0x0\] a: ID 0x[0-9a-f]*: \(kind 1\) long int .*
*\[0x[0-9a-f]*\] foo: ID 0x[0-9a-f]*\: \(kind 3\) struct B \* .*
@@ -41,7 +41,7 @@ CTF archive member: .*/ld/testsuite/ld-ctf/cross-tu-cyclic-1\.c:
CTF archive member: .*/ld/testsuite/ld-ctf/cross-tu-cyclic-2\.c:
#...
Types:
0x80[0-9a-f]*: \(kind 6\) struct A .*
0x[0-9a-f]*: \(kind 6\) struct A .*
*\[0x0\] a: ID 0x[0-9a-f]*: \(kind 1\) long int .*
*\[0x[0-9a-f]*\] foo: ID 0x[0-9a-f]*: \(kind 3\) struct B \* .*
*\[0x[0-9a-f]*\] bar: ID 0x[0-9a-f]*: \(kind 3\) struct C \* .*

View File

@@ -53,19 +53,19 @@ CTF archive member: .*/data-func-1\.c:
Labels:
Data objects:
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
#...
Function objects:
Variables:
Types:
0x80000001: \(kind 10\) foo_t .* -> .* int .*
0x[0-9a-f]*: \(kind 10\) foo_t .* -> .* int .*
#...

View File

@@ -48,19 +48,19 @@ CTF archive member: .*/data-func-1\.c:
Labels:
Data objects:
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x80000001*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
var_[0-9]* -> 0x[0-9a-f]*: \(kind 10\) foo_t \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\) -> .*
#...
Function objects:
Variables:
Types:
0x80000001: \(kind 10\) foo_t .* -> .* int .*
0x[0-9a-f]*: \(kind 10\) foo_t .* -> .* int .*
#...

View File

@@ -28,9 +28,9 @@ Contents of CTF section .ctf:
CTF archive member: .*enum.*\.c:
#...
Types:
0x80000001: \(kind 8\) enum intersecting_days_of_the_week \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Montag: 1
Tuesday: 2
0x[0-9a-f]*: \(kind 8\) enum intersecting_days_of_the_week \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Montag: 1
Tuesday: 2
Strings:
#...

View File

@@ -28,8 +28,8 @@ Contents of CTF section .ctf:
CTF archive member: .*enum.*\.c:
#...
Types:
0x80000001: \(kind 8\) enum first_day_of_the_week \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Sunday: 0
0x[0-9a-f]*: \(kind 8\) enum first_day_of_the_week \(size 0x[0-9a-f]*\) \(aligned at 0x[0-9a-f]*\)
Sunday: 0
Strings:
#...

View File

@@ -26,7 +26,7 @@ CTF archive member: .*/unshared-strings-A.c:
#...
Types:
0x[0-9a-f]*: \(kind 6\) struct A .*
\[0x0\] wurblefrotz: ID .*
\[0x0\] wurblefrotz: ID .*
Strings:
0x0: .ctf
@@ -37,7 +37,7 @@ CTF archive member: .*/unshared-strings-B.c:
#...
Types:
0x[0-9a-f]*: \(kind 6\) struct A .*
\[0x0\] wurblefritz: ID .*
\[0x0\] wurblefritz: ID .*
Strings:
0x0: .ctf

View File

@@ -745,6 +745,18 @@ ctf_dict_open_cached (ctf_archive_t *arc, const char *name, int *errp)
if (arc->ctfi_crossdict_cache == NULL)
arc->ctfi_crossdict_cache = fp;
/* If this archive has multiple members, and this is a parent, pretend
that we have opened at least one child. This forces type and string
allocations in the parent to use provisional IDs, permitting you to
import children into it even if you modify the parent before you import
any. */
if (arc->ctfi_is_archive && arc->ctfi_archive->ctfa_ndicts > 1
&& !(fp->ctf_flags & LCTF_CHILD))
{
ctf_dprintf ("archived parent: max children bumped.\n");
fp->ctf_max_children++;
}
return fp;
oom:

View File

@@ -387,6 +387,99 @@ ctf_rollback (ctf_dict_t *fp, ctf_snapshot_id_t id)
return 0;
}
/* Assign an ID to a newly-created type.
The type ID assignment scheme in libctf divides types into three
classes.
- static types are types read in from an already-existing dict. They are
stored only in the ctf_buf and have type indexes ranging from 1 up to
fp->ctf_typemax (usually the same as fp->ctf_stypes, but may be differnt
for newly-created children just imported to parents with already-present
dynamic types). Their IDs are derived from their index in the ctf_buf and
are not explicitly assigned, though serialization tracks them in order to
update type IDs that reference them.
Type IDs in a child dict start from fp->ctf_header->ctf_parent_typemax
(fp->ctf_stypes in the parent). There is no gap as in CTFv3 and below:
the IDs run continuously.
- dynamic types are added by ctf_add_*() (ultimately, ctf_add_generic) and
have DTDs: their type IDs are stored in dtd->dtd_type, and the DTD hashtab
is indexed by type ID.
The simplest form of these types, nonprovisionally-numbered dynamic types,
have type IDs stretching from fp->ctf_stypes up to fp->ctf_idmax, and
corresponding indexes. Such types only exist for child dicts and for
parent dicts which had types added before any children were imported.
- As soon as a child is imported, the parent starts allocating provisionally-
numbered dynamic types from the top of the type space down, updating
ctf_provtypemax and ctf_nprovtypes as it goes, and bumping ctf_typemax:
ctf_idmax is no longer bumped. The child continues to allocate in lower
type space starting from the parent's ctf_idmax + 1. Obviously all
references to provisional types can't stick around: so at serialization
time we note down the position of every reference to a provisional type ID
and all child type IDs, then lay out the type table by going over the
nonprovisional types and then the provisional ones and dropping them in
place in their serialized buffers, work out what the final type IDs will
be, and update all the refs accordingly, changing every type ID that refers
to the old type to refer to the new one instead. (See ctf_serialize.)
The indexes of provisional types run identically to the indexes of
non-provisional types, i.e. straight upwards without breaks or
discontinuities, even though this probably overlaps type IDs in the child.
Indexes and type IDs are not the same!
At serialization time, we track references to type IDs in the same dict via
the refs system while the type table et al are being built (during
preserialization), and update them with the real type IDs at final
serialization time; the final type IDs are recorded in the dtd_final_type,
and we assert if a future serialization would assign a different ID (which
should be impossible). When child dicts are serialized, references to parent
types are updated with the dtd_final_type of that type whenever one is set.
It is considered an error to try to serialize a child while its parent has
provisional types that have not yet had IDs assigned.
(The refs system is not employed to track references from child dicts to
parents, since forward references are not possible between dicts: the parent
dict must have been completely serialized when serializing a child. We can't
be halfway through, which is the case the refs system is there to handle:
refs from structure members to types not yet known, etc.)
Only parents have provisional type IDs! Child IDs are always simply assigned
straight in the child. This means that the provisional ID space is not
sparse, and we don't need to worry about child and parent IDs being
interspersed in it. (Not yet, anyway: if we get multilevel parents this will
become a concern).
Note that you can add types to a parent at any time, even after children have
been serialized. This works fine, except that you cannot use the
newly-written dict as a parent for the same children, since they were written
out assuming a smaller number of types in the parent. */
static ctf_id_t
ctf_assign_id (ctf_dict_t *fp)
{
uint32_t idx;
/* All type additions increase the max index. */
idx = ++fp->ctf_typemax;
/* Is this a parent with an attached child? Provisional type. */
if (!(fp->ctf_flags & LCTF_CHILD) && (fp->ctf_max_children > 0))
{
fp->ctf_provtypemax--;
fp->ctf_nprovtypes++;
}
else
fp->ctf_idmax++;
return ctf_index_to_type (fp, idx);
}
/* Note: vlen is the amount of space *allocated* for the vlen. It may well not
be the amount of space used (yet): the space used is declared in per-kind
fashion in the dtd_data's info word. */
@@ -396,19 +489,28 @@ ctf_add_generic (ctf_dict_t *fp, uint32_t flag, const char *name, int kind,
{
ctf_dtdef_t *dtd;
ctf_id_t type;
ctf_dict_t *pfp = fp;
if (fp->ctf_parent)
pfp = fp->ctf_parent;
if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT)
return (ctf_set_typed_errno (fp, EINVAL));
if (ctf_index_to_type (fp, fp->ctf_typemax) >= CTF_MAX_TYPE)
if (fp->ctf_typemax + 1 >= pfp->ctf_provtypemax)
return (ctf_set_typed_errno (fp, ECTF_FULL));
if (ctf_index_to_type (fp, fp->ctf_typemax) == (CTF_MAX_PTYPE - 1))
return (ctf_set_typed_errno (fp, ECTF_FULL));
/* Prohibit addition of types in the middle of serialization. */
if (fp->ctf_flags & LCTF_NO_TYPE)
return (ctf_set_errno (fp, ECTF_NOTSERIALIZED));
if (fp->ctf_flags & LCTF_NO_STR)
return (ctf_set_errno (fp, ECTF_NOPARENT));
if (fp->ctf_flags & LCTF_CHILD && fp->ctf_parent == NULL)
return (ctf_set_errno (fp, ECTF_NOPARENT));
/* Prohibit addition of a root-visible type that is already present
in the non-dynamic portion. */
@@ -424,7 +526,7 @@ ctf_add_generic (ctf_dict_t *fp, uint32_t flag, const char *name, int kind,
/* Make sure ptrtab always grows to be big enough for all types. */
if (ctf_grow_ptrtab (fp) < 0)
return CTF_ERR; /* errno is set for us. */
return CTF_ERR; /* errno is set for us. */
if ((dtd = calloc (1, sizeof (ctf_dtdef_t))) == NULL)
return (ctf_set_typed_errno (fp, EAGAIN));
@@ -438,8 +540,7 @@ ctf_add_generic (ctf_dict_t *fp, uint32_t flag, const char *name, int kind,
else
dtd->dtd_vlen = NULL;
type = ++fp->ctf_typemax;
type = ctf_index_to_type (fp, type);
type = ctf_assign_id (fp);
dtd->dtd_data.ctt_name = ctf_str_add (fp, name);
dtd->dtd_type = type;
@@ -525,13 +626,14 @@ ctf_add_reftype (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref, uint32_t kind)
{
ctf_dtdef_t *dtd;
ctf_id_t type;
ctf_dict_t *tmp = fp;
ctf_dict_t *typedict = fp;
ctf_dict_t *refdict = fp;
int child = fp->ctf_flags & LCTF_CHILD;
if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
return (ctf_set_typed_errno (fp, EINVAL));
if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL)
if (ref != 0 && ctf_lookup_by_id (&refdict, ref) == NULL)
return CTF_ERR; /* errno is set for us. */
if ((type = ctf_add_generic (fp, flag, NULL, kind, 0, &dtd)) == CTF_ERR)
@@ -549,8 +651,9 @@ ctf_add_reftype (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref, uint32_t kind)
addition of this type. The pptrtab is lazily-updated as needed, so is not
touched here. */
uint32_t type_idx = ctf_type_to_index (fp, type);
uint32_t ref_idx = ctf_type_to_index (fp, ref);
typedict = ctf_get_dict (fp, type);
uint32_t type_idx = ctf_type_to_index (typedict, type);
uint32_t ref_idx = ctf_type_to_index (refdict, ref);
if (ctf_type_ischild (fp, ref) == child
&& ref_idx < fp->ctf_typemax)
@@ -1137,6 +1240,9 @@ ctf_add_member_offset (ctf_dict_t *fp, ctf_id_t souid, const char *name,
if (fp->ctf_flags & LCTF_NO_STR)
return (ctf_set_errno (fp, ECTF_NOPARENT));
if (fp->ctf_flags & LCTF_NO_TYPE)
return (ctf_set_errno (fp, ECTF_NOTSERIALIZED));
if ((fp->ctf_flags & LCTF_CHILD) && ctf_type_isparent (fp, souid))
{
/* Adding a child type to a parent, even via the child, is prohibited.
@@ -1367,6 +1473,9 @@ ctf_add_variable (ctf_dict_t *fp, const char *name, ctf_id_t ref)
if (fp->ctf_flags & LCTF_NO_STR)
return (ctf_set_errno (fp, ECTF_NOPARENT));
if (fp->ctf_flags & LCTF_NO_TYPE)
return (ctf_set_errno (fp, ECTF_NOTSERIALIZED));
if (ctf_lookup_variable_here (fp, name) != CTF_ERR)
return (ctf_set_errno (fp, ECTF_DUPLICATE));
@@ -1390,6 +1499,9 @@ ctf_add_funcobjt_sym_forced (ctf_dict_t *fp, int is_function, const char *name,
if (fp->ctf_flags & LCTF_NO_STR)
return (ctf_set_errno (fp, ECTF_NOPARENT));
if (fp->ctf_flags & LCTF_NO_TYPE)
return (ctf_set_errno (fp, ECTF_NOTSERIALIZED));
if (ctf_lookup_by_id (&tmp, id) == NULL)
return -1; /* errno is set for us. */
@@ -1541,7 +1653,9 @@ membcmp (const char *name, ctf_id_t type _libctf_unused_, unsigned long offset,
Our OOM handling here is just to not do anything, because this is called deep
enough in the call stack that doing anything useful is painfully difficult:
the worst consequence if we do OOM is a bit of type duplication anyway. */
the worst consequence if we do OOM is a bit of type duplication anyway.
The non-imported checks are just paranoia and should never be able to
happen, but if they do we don't want a coredump. */
static void
ctf_add_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type,

View File

@@ -387,6 +387,9 @@ ctf_dump_header (ctf_dict_t *fp, ctf_dump_state_t *state)
if (ctf_dump_header_sizefield (fp, state, "Parent strlen", hp->cth_parent_strlen) < 0)
goto err;
if (ctf_dump_header_sizefield (fp, state, "Parent max type", hp->cth_parent_typemax) < 0)
goto err;
if (ctf_dump_header_sectfield (fp, state, "Label section", hp->cth_lbloff,
hp->cth_objtoff) < 0)
goto err;

View File

@@ -178,6 +178,8 @@ typedef struct ctf_dtdef
{
ctf_list_t dtd_list; /* List forward/back pointers. */
ctf_id_t dtd_type; /* Type identifier for this definition. */
ctf_id_t dtd_final_type; /* Final (nonprovisional) id, if nonzero. */
ctf_list_t dtd_refs; /* Refs to this DTD's dtd_type: see below. */
ctf_type_t dtd_data; /* Type node, including name. */
size_t dtd_vlen_alloc; /* Total vlen space allocated (vbytes). */
unsigned char *dtd_vlen; /* Variable-length data for this type. */
@@ -423,8 +425,12 @@ struct ctf_dict
ctf_list_t ctf_in_flight_dynsyms; /* Dynsyms during accumulation. */
struct ctf_varent *ctf_vars; /* Sorted variable->type mapping. */
unsigned long ctf_nvars; /* Number of variables in ctf_vars. */
unsigned long ctf_typemax; /* Maximum valid type ID number. */
unsigned long ctf_stypes; /* Number of static (non-dynamic) types. */
uint32_t ctf_typemax; /* Maximum valid type index. */
uint32_t ctf_idmax; /* Maximum valid non-provisional type ID. */
uint32_t ctf_stypes; /* Number of static (non-dynamic) types. */
uint32_t ctf_provtypemax; /* Latest valid provisional type ID.
Counts down. Parent only. */
uint32_t ctf_nprovtypes; /* Number of provisional types (convenience). */
const ctf_dmodel_t *ctf_dmodel; /* Data model pointer (see above). */
const char *ctf_cuname; /* Compilation unit name (if any). */
char *ctf_dyncuname; /* Dynamically allocated name of CU. */
@@ -433,7 +439,6 @@ struct ctf_dict
const char *ctf_parlabel; /* Label in parent dict (if any). */
const char *ctf_parname; /* Basename of parent (if any). */
char *ctf_dynparname; /* Dynamically allocated name of parent. */
uint32_t ctf_parmax; /* Highest type ID of a parent type. */
uint32_t ctf_refcnt; /* Reference count (for parent links). */
uint32_t ctf_flags; /* Libctf flags (see below). */
uint32_t ctf_max_children; /* Max number of child dicts. */
@@ -598,7 +603,7 @@ extern ctf_id_t ctf_index_to_type (const ctf_dict_t *, uint32_t);
#define LCTF_LINKING 0x0002 /* CTF link is underway: respect ctf_link_flags. */
#define LCTF_STRICT_NO_DUP_ENUMERATORS 0x0004 /* Duplicate enums prohibited. */
#define LCTF_NO_STR 0x0008 /* No string lookup possible yet. */
#define LCTF_NO_SERIALIZE 0x0010 /* Serialization of this dict prohibited. */
#define LCTF_NO_TYPE 0x0010 /* No type additions possible. */
#define LCTF_PRESERIALIZED 0x0020 /* Already serialized all but the strtab. */
extern ctf_dynhash_t *ctf_name_table (ctf_dict_t *, int);

View File

@@ -690,8 +690,7 @@ upgrade_types (ctf_dict_t *fp, ctf_header_t *cth)
parent/child boundary is unchanged (and much lower). */
case CTF_VERSION_1_UPGRADED_3:
fp->ctf_parmax = CTF_MAX_PTYPE_V1;
fp->ctf_flags |= LCTF_NO_SERIALIZE;
fp->ctf_header->cth_parent_typemax = CTF_MAX_PTYPE_V1;
break;
/* v2 and v3 are currently just the same as v4 except for new types and
@@ -700,6 +699,7 @@ upgrade_types (ctf_dict_t *fp, ctf_header_t *cth)
UPTODO: this is really going to change. */
case CTF_VERSION_2: ;
case CTF_VERSION_3: ;
fp->ctf_header->cth_parent_typemax = CTF_MAX_PTYPE;
/* FALLTHRU */
}
return 0;
@@ -731,6 +731,11 @@ init_static_types (ctf_dict_t *fp, ctf_header_t *cth)
const ctf_type_t *tp;
unsigned long typemax = 0;
/* Provisional types always start from the top of the type space and work
down. */
fp->ctf_provtypemax = (uint32_t) -1;
/* We determine whether the dict is a child or a parent based on the value of
cth_parname. */
@@ -838,6 +843,7 @@ init_static_types (ctf_dict_t *fp, ctf_header_t *cth)
fp->ctf_ptrtab_len = typemax + 1;
fp->ctf_stypes = typemax;
fp->ctf_typemax = typemax;
fp->ctf_idmax = typemax;
if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
return ENOMEM; /* Memory allocation failed. */
@@ -850,7 +856,7 @@ init_static_types (ctf_dict_t *fp, ctf_header_t *cth)
return 0;
}
ctf_dprintf ("%lu types initialized (other than names)\n", fp->ctf_typemax);
ctf_dprintf ("%u types initialized (other than names)\n", fp->ctf_typemax);
return init_static_types_names (fp, cth);
}
@@ -1111,7 +1117,7 @@ init_static_types_names_internal (ctf_dict_t *fp, ctf_header_t *cth,
fp->ctf_typemax--;
assert (fp->ctf_typemax == typemax);
ctf_dprintf ("%lu total types processed\n", fp->ctf_typemax);
ctf_dprintf ("%u total types processed\n", fp->ctf_typemax);
/* In the third pass, we traverse the enums we spotted earlier and track all
the enumeration constants to aid in future detection of duplicates.
@@ -1804,7 +1810,6 @@ ctf_bufopen (const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
goto bad;
}
fp->ctf_parmax = CTF_MAX_PTYPE; /* May be reset by upgrade_types. */
memcpy (&fp->ctf_data, ctfsect, sizeof (ctf_sect_t));
if (symsect != NULL)
@@ -2220,6 +2225,36 @@ ctf_import_internal (ctf_dict_t *fp, ctf_dict_t *pfp, int unreffed)
return (ctf_set_errno (fp, ECTF_WRONGPARENT));
}
/* If the child dict expects the parent to have types, make sure it has that
number of types. (Provisional types excepted: they go at the top of the
type ID space, and will not overlap any child types.) */
if (pfp->ctf_idmax != fp->ctf_header->cth_parent_typemax)
{
if (fp->ctf_header->cth_parent_typemax != 0)
{
ctf_err_warn (fp, 0, ECTF_WRONGPARENT,
_("ctf_import: incorrect parent dict: %u types expected, %u found"),
fp->ctf_header->cth_parent_typemax, pfp->ctf_idmax);
return (ctf_set_errno (fp, ECTF_WRONGPARENT));
}
else if (fp->ctf_header->cth_parent_typemax == 0)
{
/* If we are importing into a parent dict, the child dict had better
be empty. Set its starting type ID, which need not be zero: the
parent can already have types. */
if (fp->ctf_typemax != 0)
{
ctf_err_warn (fp, 0, EINVAL,
_("ctf_import: dict already has %u types, cannot turn into a new child"),
fp->ctf_typemax);
return (ctf_set_errno (fp, EINVAL));
}
fp->ctf_header->cth_parent_typemax = pfp->ctf_typemax;
}
}
/* We might in time be able to lift this restriction, but it is unlikely to be
something anyone would want to do, so let's not bother for now. */

View File

@@ -28,6 +28,16 @@
#include <ctf-ref.h>
/* Functions in this file are roughly divided into two types: sizing functions,
which work out the size of various structures in the final serialized
representation, and emission functions that actually emit data into them.
When the sizing functions are called, the buffer into which the output will
be serialized has not yet been created: so no functions which create
references into that buffer (notably, ctf_*_add_ref) should be called.
This requirement is to some degree enforced by ctf_assert calls. */
/* Symtypetab sections. */
/* Symtypetab emission flags. */
@@ -62,6 +72,54 @@ typedef struct emit_symtypetab_state
size_t maxfunc;
} emit_symtypetab_state_t;
/* Emit a ref to a type in this dict. As with string refs, this ref can be
updated later on to change the type ID recorded in this location. The ref
may not be emitted if the value is already known and cannot change.
All refs must point within the ctf_serializing_buf. */
static int
ctf_type_add_ref (ctf_dict_t *fp, uint32_t *ref)
{
ctf_dtdef_t *dtd;
/* Type in the static portion: cannot change, value already correct. */
if (*ref <= fp->ctf_stypes)
return 0;
dtd = ctf_dtd_lookup (fp, *ref);
if (!ctf_assert (fp, dtd))
return 0;
if (!ctf_assert (fp, fp->ctf_serializing_buf != NULL
&& (unsigned char *) ref > fp->ctf_serializing_buf
&& (unsigned char *) ref < fp->ctf_serializing_buf + fp->ctf_serializing_buf_size))
return -1;
/* Simple case: final ID different from what is recorded, but already known.
Just set it. */
if (dtd->dtd_final_type)
*ref = dtd->dtd_final_type;
/* Otherwise, create a ref to it so we can set it later. */
else if (!ctf_create_ref (fp, &dtd->dtd_refs, ref))
return (ctf_set_errno (fp, ENOMEM));
return 0;
}
/* Purge all refs to this dict's dynamic types (all refs added by
ctf_type_add_ref while serializing this dict). */
static void
ctf_type_purge_refs (ctf_dict_t *fp)
{
ctf_dtdef_t *dtd;
for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL;
dtd = ctf_list_next (dtd))
ctf_purge_ref_list (fp, &dtd->dtd_refs);
}
/* Determine if a symbol is "skippable" and should never appear in the
symtypetab sections. */
@@ -88,7 +146,10 @@ ctf_symtab_skippable (ctf_link_sym_t *sym)
will always be set in the flags.
Also figure out if any symbols need to be moved to the variable section, and
add them (if not already present). */
add them (if not already present).
This is a sizing function, called before the output buffer is
constructed. Do not add any refs in this function! */
_libctf_nonnull_ ((1,3,4,5,6,7,8))
static int
@@ -253,7 +314,10 @@ symtypetab_density (ctf_dict_t *fp, ctf_dict_t *symfp, ctf_dynhash_t *symhash,
elements in it: unindexed output would terminate at symbol OUTMAX and is in
any case no larger than SIZE bytes. Some index elements are expected to be
skipped: see symtypetab_density. The linker-reported set of symbols (if any)
is found in SYMFP. */
is found in SYMFP.
Note down type ID refs as we go. */
static int
emit_symtypetab (ctf_dict_t *fp, ctf_dict_t *symfp, uint32_t *dp,
ctf_link_sym_t **idx, const char **nameidx, uint32_t nidx,
@@ -337,7 +401,9 @@ emit_symtypetab (ctf_dict_t *fp, ctf_dict_t *symfp, uint32_t *dp,
if (!ctf_assert (fp, (((char *) dpp) - (char *) dp) < size))
return -1; /* errno is set for us. */
*dpp++ = (ctf_id_t) (uintptr_t) type;
*dpp = (ctf_id_t) (uintptr_t) type;
if (ctf_type_add_ref (fp, dpp++) < 0)
return -1; /* errno is set for us. */
/* When emitting unindexed output, all later symbols are pads: stop
early. */
@@ -431,9 +497,10 @@ emit_symtypetab_index (ctf_dict_t *fp, ctf_dict_t *symfp, uint32_t *dp,
return 0;
}
/* Delete symbols that have been assigned names from the variable section. Must
be called from within ctf_serialize, because that is the only place you can
safely delete variables without messing up ctf_rollback. */
/* Delete variables with the same name as symbols that have been reported by
the linker from the variable section. Must be called from within
ctf_serialize, because that is the only place you can safely delete
variables without messing up ctf_rollback. */
static int
symtypetab_delete_nonstatics (ctf_dict_t *fp, ctf_dict_t *symfp)
@@ -458,7 +525,11 @@ symtypetab_delete_nonstatics (ctf_dict_t *fp, ctf_dict_t *symfp)
}
/* Figure out the sizes of the symtypetab sections, their indexed state,
etc. */
etc.
This is a sizing function, called before the output buffer is
constructed. Do not add any refs in this function! */
static int
ctf_symtypetab_sect_sizes (ctf_dict_t *fp, emit_symtypetab_state_t *s,
ctf_header_t *hdr, size_t *objt_size,
@@ -573,6 +644,8 @@ ctf_symtypetab_sect_sizes (ctf_dict_t *fp, emit_symtypetab_state_t *s,
return 0;
}
/* Emit the symtypetab sections. */
static int
ctf_emit_symtypetab_sects (ctf_dict_t *fp, emit_symtypetab_state_t *s,
unsigned char **tptr, size_t objt_size,
@@ -721,7 +794,10 @@ symerr:
/* Type section. */
/* Iterate through the static types and the dynamic type definition list and
compute the size of the CTF type section. */
compute the size of the CTF type section.
This is a sizing function, called before the output buffer is
constructed. Do not add any refs in this function! */
static size_t
ctf_type_sect_size (ctf_dict_t *fp)
@@ -784,17 +860,23 @@ ctf_type_sect_size (ctf_dict_t *fp)
}
/* Take a final lap through the dynamic type definition list and copy the
appropriate type records to the output buffer, noting down the strings as
we go. */
appropriate type records to the output buffer, noting down the strings
and type IDs as we go. */
static void
static int
ctf_emit_type_sect (ctf_dict_t *fp, unsigned char **tptr)
{
unsigned char *t = *tptr;
ctf_dtdef_t *dtd;
ctf_id_t id;
if (!(fp->ctf_flags & LCTF_CHILD))
id = fp->ctf_stypes + 1;
else
id = fp->ctf_header->cth_parent_typemax + 1;
for (dtd = ctf_list_next (&fp->ctf_dtdefs);
dtd != NULL; dtd = ctf_list_next (dtd))
dtd != NULL; dtd = ctf_list_next (dtd), id++)
{
uint32_t kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
uint32_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
@@ -804,6 +886,13 @@ ctf_emit_type_sect (ctf_dict_t *fp, unsigned char **tptr)
const char *name;
size_t i;
/* Make sure the ID hasn't changed, if already assigned by a previous
serialization. */
if (dtd->dtd_final_type != 0
&& !ctf_assert (fp, dtd->dtd_final_type == id))
return -1; /* errno is set for us. */
/* Shrink ctf_type_t-using types from a ctf_type_t to a ctf_stype_t
if possible. */
@@ -836,22 +925,65 @@ ctf_emit_type_sect (ctf_dict_t *fp, unsigned char **tptr)
t += sizeof (uint32_t);
break;
case CTF_K_POINTER:
case CTF_K_VOLATILE:
case CTF_K_CONST:
case CTF_K_RESTRICT:
case CTF_K_TYPEDEF:
if (ctf_type_add_ref (fp, &copied->ctt_type) < 0)
return -1; /* errno is set for us. */
break;
case CTF_K_SLICE:
memcpy (t, dtd->dtd_vlen, sizeof (struct ctf_slice));
{
ctf_slice_t *slice = (ctf_slice_t *) t;
memcpy (t, dtd->dtd_vlen, sizeof (struct ctf_slice));
if (ctf_type_add_ref (fp, &slice->cts_type) < 0)
return -1; /* errno is set for us. */
}
t += sizeof (struct ctf_slice);
break;
case CTF_K_ARRAY:
memcpy (t, dtd->dtd_vlen, sizeof (struct ctf_array));
{
ctf_array_t *array = (ctf_array_t *) t;
memcpy (t, dtd->dtd_vlen, sizeof (struct ctf_array));
if (ctf_type_add_ref (fp, &array->cta_contents) < 0)
return -1; /* errno is set for us. */
if (ctf_type_add_ref (fp, &array->cta_index) < 0)
return -1; /* errno is set for us. */
}
t += sizeof (struct ctf_array);
break;
case CTF_K_FUNCTION:
/* Functions with no args also have no vlen. */
if (dtd->dtd_vlen)
memcpy (t, dtd->dtd_vlen, sizeof (uint32_t) * (vlen + (vlen & 1)));
{
uint32_t *args = (uint32_t *) t;
/* Functions with no args also have no vlen. */
if (dtd->dtd_vlen)
memcpy (t, dtd->dtd_vlen, sizeof (uint32_t) * (vlen + (vlen & 1)));
if (ctf_type_add_ref (fp, &copied->ctt_type) < 0)
return -1; /* errno is set for us. */
for (i = 0; i < vlen; i++)
{
if (ctf_type_add_ref (fp, &args[i]) < 0)
return -1; /* errno is set for us. */
}
t += sizeof (uint32_t) * (vlen + (vlen & 1));
break;
}
/* These need to be copied across element by element, depending on
their ctt_size. */
@@ -873,12 +1005,18 @@ ctf_emit_type_sect (ctf_dict_t *fp, unsigned char **tptr)
t_vlen[i].ctm_name = dtd_vlen[i].ctlm_name;
t_vlen[i].ctm_type = dtd_vlen[i].ctlm_type;
t_vlen[i].ctm_offset = CTF_LMEM_OFFSET (&dtd_vlen[i]);
ctf_str_add_ref (fp, name, &t_vlen[i].ctm_name);
if (ctf_type_add_ref (fp, &t_vlen[i].ctm_type) < 0)
return -1; /* errno is set for us. */
}
else
{
t_lvlen[i] = dtd_vlen[i];
ctf_str_add_ref (fp, name, &t_lvlen[i].ctlm_name);
if (ctf_type_add_ref (fp, &t_lvlen[i].ctlm_type) < 0)
return -1; /* errno is set for us. */
}
}
}
@@ -906,9 +1044,12 @@ ctf_emit_type_sect (ctf_dict_t *fp, unsigned char **tptr)
break;
}
}
dtd->dtd_final_type = id;
}
*tptr = t;
return 0;
}
/* Variable section. */
@@ -935,15 +1076,17 @@ ctf_sort_var (const void *one_, const void *two_, void *arg_)
/* Overall serialization. */
/* Do all aspects of serialization up to strtab writeout and variable table
sorting. The resulting dict will have the LCTF_PRESERIALIZED flag on and
must not be modified in any way before serialization. (This is not enforced,
as this feature is internal-only, employed by the linker machinery.) */
sorting, including final type ID assignment. The resulting dict will have
the LCTF_PRESERIALIZED flag on and must not be modified in any way before
serialization. (This is only lightly enforced, as this feature is internal-
only, employed by the linker machinery.) */
int
ctf_preserialize (ctf_dict_t *fp)
{
ctf_header_t hdr, *hdrp;
ctf_dvdef_t *dvd;
ctf_dtdef_t *dtd;
int sym_functions = 0;
unsigned char *t;
@@ -956,15 +1099,50 @@ ctf_preserialize (ctf_dict_t *fp)
emit_symtypetab_state_t symstate;
memset (&symstate, 0, sizeof (emit_symtypetab_state_t));
ctf_dprintf ("Preserializing dict for %s\n", ctf_cuname (fp));
if (fp->ctf_flags & LCTF_NO_STR)
return (ctf_set_errno (fp, ECTF_NOPARENT));
/* Prohibit reserialization of dicts for which we have dynamic state inherited
from the upgrade process which we cannot record in the dict. Right now,
this applies only to CTFv1 dicts, which have a different parent/child type
offset to v2 and higher, and nowhere to record this in CTFv4. */
/* Make sure that any parents have been serialized at least once since the
last type was added to them, so we have known final IDs for all their
types. */
if (!fp->ctf_parent)
if (fp->ctf_parent)
{
if (fp->ctf_parent->ctf_nprovtypes > 0)
{
ctf_dtdef_t *dtd;
dtd = ctf_list_prev (&fp->ctf_parent->ctf_dtdefs);
if (dtd && dtd->dtd_final_type == 0)
{
ctf_set_errno (fp, ECTF_NOTSERIALIZED);
ctf_err_warn (fp, 0, 0, _("cannot write out child dict: write out the parent dict first"));
return -1; /* errno is set for us. */
}
}
/* Prohibit serialization of a dict which has already been serialized and
whose parent has had more types added to it since then: this dict would
have overlapping types if serialized, since we only pass through
newly-added types to renumber them, not already-existing types in the
read-in buffer. You can emit such dicts using ctf_link, which can
change type IDs arbitrarily, resolving all overlaps. */
if (fp->ctf_header->cth_stroff - fp->ctf_header->cth_typeoff > 0 &&
fp->ctf_header->cth_parent_typemax < fp->ctf_parent->ctf_typemax)
{
ctf_set_errno (fp, ECTF_NOTSERIALIZED);
ctf_err_warn (fp, 0, 0, _("cannot write out already-written child dict: parent has had %u types added"),
fp->ctf_parent->ctf_typemax - fp->ctf_header->cth_parent_typemax);
return -1; /* errno is set for us. */
}
fp->ctf_header->cth_parent_typemax = fp->ctf_parent->ctf_typemax;
}
else
{
/* Prohibit serialization of a parent dict which has already been
serialized, has children, and has had strings added since the last
@@ -1054,12 +1232,17 @@ ctf_preserialize (ctf_dict_t *fp)
hdr.cth_stroff = hdr.cth_typeoff + type_size;
hdr.cth_strlen = 0;
hdr.cth_parent_strlen = 0;
if (fp->ctf_parent)
hdr.cth_parent_typemax = fp->ctf_parent->ctf_typemax;
buf_size = sizeof (ctf_header_t) + hdr.cth_stroff + hdr.cth_strlen;
if ((buf = malloc (buf_size)) == NULL)
return (ctf_set_errno (fp, EAGAIN));
fp->ctf_serializing_buf = buf;
fp->ctf_serializing_buf_size = buf_size;
memcpy (buf, &hdr, sizeof (ctf_header_t));
t = (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_objtoff;
@@ -1071,10 +1254,7 @@ ctf_preserialize (ctf_dict_t *fp)
if (ctf_emit_symtypetab_sects (fp, &symstate, &t, objt_size, func_size,
objtidx_size, funcidx_size) < 0)
{
free (buf);
return -1; /* errno is set for us. */
}
goto err;
assert (t == (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_varoff);
@@ -1089,6 +1269,9 @@ ctf_preserialize (ctf_dict_t *fp)
ctf_str_add_ref (fp, dvd->dvd_name, &var->ctv_name);
var->ctv_type = (uint32_t) dvd->dvd_type;
if (ctf_type_add_ref (fp, &var->ctv_type) < 0)
goto err;
}
assert (i == nvars);
@@ -1102,39 +1285,66 @@ ctf_preserialize (ctf_dict_t *fp)
memcpy (t, fp->ctf_buf + fp->ctf_header->cth_typeoff,
fp->ctf_header->cth_stroff - fp->ctf_header->cth_typeoff);
t += fp->ctf_header->cth_stroff - fp->ctf_header->cth_typeoff;
ctf_emit_type_sect (fp, &t);
if (ctf_emit_type_sect (fp, &t) < 0)
goto err;
assert (t == (unsigned char *) buf + sizeof (ctf_header_t) + hdr.cth_stroff);
fp->ctf_serializing_buf = buf;
fp->ctf_serializing_buf_size = buf_size;
/* All types laid out: update all refs to types to cite the final IDs. */
/* Prohibit additions and the like from this point on. */
fp->ctf_flags |= LCTF_NO_STR;
for (dtd = ctf_list_next (&fp->ctf_dtdefs);
dtd != NULL; dtd = ctf_list_next (dtd))
{
if (!ctf_assert (fp, dtd->dtd_type != 0 && dtd->dtd_final_type != 0))
goto err;
ctf_update_refs (&dtd->dtd_refs, dtd->dtd_final_type);
}
ctf_type_purge_refs (fp);
/* Prohibit type and string additions from this point on. */
fp->ctf_flags |= LCTF_NO_STR | LCTF_NO_TYPE;
return 0;
err:
fp->ctf_serializing_buf = NULL;
fp->ctf_serializing_buf_size = 0;
free (buf);
ctf_str_purge_refs (fp);
ctf_type_purge_refs (fp);
return -1; /* errno is set for us. */
}
/* Undo preserialization (called on error). */
void
ctf_depreserialize (ctf_dict_t *fp)
{
fp->ctf_flags &= ~LCTF_NO_STR;
ctf_str_purge_refs (fp);
ctf_type_purge_refs (fp);
free (fp->ctf_serializing_buf);
fp->ctf_serializing_buf = NULL;
fp->ctf_serializing_vars = NULL;
fp->ctf_serializing_buf_size = 0;
fp->ctf_serializing_nvars = 0;
fp->ctf_flags &= ~(LCTF_NO_STR | LCTF_NO_TYPE);
}
/* Emit a new CTF dict which is a serialized copy of this one: also reify
the string table and update all offsets in the current dict suitably.
(This simplifies ctf-string.c a little, at the cost of storing a second
copy of the strtab if this dict was originally read in via ctf_open.)
/* Emit a new CTF dict which is a serialized copy of this one: also reify the
string table and update all offsets in the newly-serialized dict suitably.
(This simplifies ctf-string.c a little, at the cost of storing a second copy
of the strtab during serialization.)
Other aspects of the existing dict are unchanged, although some
static entries may be duplicated in the dynamic state (which should
have no effect on visible operation). */
Other aspects of the existing dict are unchanged, although some static
entries may be duplicated in the dynamic state (which should have no effect
on visible operation). */
static unsigned char *
ctf_serialize (ctf_dict_t *fp, size_t *bufsiz)
@@ -1177,13 +1387,15 @@ ctf_serialize (ctf_dict_t *fp, size_t *bufsiz)
hdrp = (ctf_header_t *) fp->ctf_serializing_buf;
ctf_dprintf ("Writing strtab for %s\n", ctf_cuname (fp));
strtab = ctf_str_write_strtab (fp);
if (strtab == NULL)
goto err;
/* Now the string table is constructed, we can sort the buffer of
ctf_varent_t's. */
/* Now the string table is constructed and all the refs updated, we can sort
the buffer of ctf_varent_t's. */
ctf_sort_var_arg_cb_t sort_var_arg = { fp, (ctf_strs_t *) strtab };
ctf_qsort_r (fp->ctf_serializing_vars, fp->ctf_serializing_nvars,
sizeof (ctf_varent_t), ctf_sort_var, &sort_var_arg);
@@ -1207,6 +1419,7 @@ ctf_serialize (ctf_dict_t *fp, size_t *bufsiz)
fp->ctf_serializing_vars = NULL;
fp->ctf_serializing_buf_size = 0;
fp->ctf_serializing_nvars = 0;
fp->ctf_flags &= ~LCTF_NO_TYPE;
return buf;

View File

@@ -21,12 +21,38 @@
#include <assert.h>
#include <string.h>
/* Determine whether a type is a parent or a child. */
/* Determine whether a type is a parent or a child. Bad IDs are not
diagnosed! */
int
ctf_type_isparent (const ctf_dict_t *fp, ctf_id_t id)
{
return (id <= fp->ctf_parmax);
/* All types visible in the parent are parent types, by definition. */
if (!(fp->ctf_flags & LCTF_CHILD))
return 1;
/* Not imported: no provisional types are possible because no types can
have been added. Simple range check. */
if (!fp->ctf_parent)
return (fp->ctf_header->cth_parent_typemax >= id);
/* Types in the parent's idmax range (which encompasses its stypes range) are
in the parent. */
if (id <= fp->ctf_parent->ctf_idmax)
return 1;
/* Types in the provisional ID range are in the parent: otherwise, they are in
the child. */
if (id >= fp->ctf_parent->ctf_provtypemax)
return (ctf_dynhash_lookup (fp->ctf_dthash,
(void *) (uintptr_t) id) == NULL);
/* Child type. */
return 0;
}
int
@@ -36,21 +62,76 @@ ctf_type_ischild (const ctf_dict_t *fp, ctf_id_t id)
}
/* Get the index in the internal type array (or otherwise) for a given type ID.
Only ever called on the right dictionary for the type and can fail otherwise.
Only ever called on the right dictionary for the type, and can fail otherwise.
If called on an invalid type, may return an index that does not correspond to
any type (such as -1). */
any type (such as -1), but will not return an index that does correspond to a
type. */
static uint32_t
ctf_type_to_index_internal (const ctf_dict_t *fp, ctf_id_t type)
{
uint32_t idx = type;
assert (((fp->ctf_flags & LCTF_CHILD) && (type > fp->ctf_header->cth_parent_typemax)) ||
(!(fp->ctf_flags & LCTF_CHILD)));
if (fp->ctf_flags & LCTF_CHILD)
{
/* Non-dynamic type in parent: no index permitted. */
assert (type > fp->ctf_header->cth_parent_typemax);
idx -= fp->ctf_header->cth_parent_typemax;
}
if (idx <= fp->ctf_stypes)
return idx;
/* Dynamic types. In children this is easy. */
if (fp->ctf_flags & LCTF_CHILD)
return idx;
/* For parents, there are three ranges of types: below stypes (static), above
stypes and below typemax - nprovtypes (dynamic, non-provisional, added
before any children were imported, type ID derived identically to stypes),
and above that (provisional, running backwards from the top of the ID
space). We have already handled the first. Once we start inserting
provisional types, no further nonprovisional types can be inserted:
typemax, provtypemax and nprovtypes will rise in concert. */
if (idx <= (fp->ctf_typemax - fp->ctf_nprovtypes))
return type;
else /* Provisional type. */
return fp->ctf_typemax - (type - fp->ctf_provtypemax);
}
/* Verification of type_to_index -> index_to_type roundtripping.
Doubles the cost of this core operation, so done under
hash debugging only. */
uint32_t
ctf_type_to_index (const ctf_dict_t *fp, ctf_id_t type)
{
return type & fp->ctf_parmax;
uint32_t idx = ctf_type_to_index_internal (fp, type);
#ifdef ENABLE_LIBCTF_HASH_DEBUGGING
assert (ctf_index_to_type (fp, idx) == type);
#endif
return idx;
}
/* The inverse of ctf_type_to_index. */
ctf_id_t
ctf_index_to_type (const ctf_dict_t *fp, uint32_t idx)
{
return (fp->ctf_flags & LCTF_CHILD) ? ((idx) | (fp->ctf_parmax+1)) : idx;
if (fp->ctf_flags & LCTF_CHILD)
return idx + fp->ctf_header->cth_parent_typemax;
if (idx <= (fp->ctf_typemax - fp->ctf_nprovtypes))
return idx;
else /* Provisional type. */
return fp->ctf_provtypemax + (fp->ctf_typemax - idx);
}
/* Expand a structure element into the passed-in ctf_lmember_t. */

View File

@@ -3,12 +3,18 @@
We check specifically a subset of known-buggy functions.
Functions that require a buggy linker to expose, or that only fail on
assertion-failure-incurring corrupted dicts, are not tested. */
assertion-failure-incurring corrupted dicts, are not tested.
This is very much a whitebox test: we do things no legitimate client should
do to be sure that we can get invalid type ID errors that you are normally
blocked from getting. */
#include "config.h"
#include <ctf-api.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "ctf-impl.h"
static const char *desc;
@@ -19,13 +25,19 @@ check_prop_err (ctf_dict_t *child, ctf_dict_t *parent, int expected)
return;
if (ctf_errno (parent) == expected)
fprintf (stderr, "%s: error propagation failure: error \"%s\" not seen on child, "
"but instead on parent\n", desc, ctf_errmsg (ctf_errno (parent)));
{
fprintf (stderr, "%s: error propagation failure: error \"%s\" not seen on child, "
"but instead on parent\n", desc, ctf_errmsg (ctf_errno (parent)));
exit (1);
}
else
fprintf (stderr, "%s: expected error is entirely lost: "
"\"%s\" seen on parent, \"%s\" on child\n", desc,
ctf_errmsg (ctf_errno (parent)),
ctf_errmsg (ctf_errno (child)));
{
fprintf (stderr, "%s: expected error is entirely lost: "
"\"%s\" seen on parent, \"%s\" on child\n", desc,
ctf_errmsg (ctf_errno (parent)),
ctf_errmsg (ctf_errno (child)));
exit (1);
}
}
static void
@@ -39,6 +51,8 @@ int main (void)
ctf_dict_t *parent;
ctf_dict_t *child;
ctf_dict_t *wrong;
ctf_dict_t *blank;
ctf_dict_t tmp;
ctf_id_t void_id;
ctf_id_t wrong_id;
ctf_id_t base;
@@ -54,7 +68,8 @@ int main (void)
if ((parent = ctf_create (&err)) == NULL
|| (child = ctf_create (&err)) == NULL
|| (wrong = ctf_create (&err)) == NULL)
|| (wrong = ctf_create (&err)) == NULL
|| (blank = ctf_create (&err)) == NULL)
{
fprintf (stderr, "Cannot create dicts: %s\n", ctf_errmsg (err));
return 1;
@@ -66,11 +81,19 @@ int main (void)
return 1;
}
/* Populate two dicts, one with the same types in a different order. This
passes all ctf_import checks (type and strtab count), but will still
induce errors due to type mismatches with the child. In particular, base
in the right parent is a non-integral type (a pointer) in the wrong one,
and "void" in the parent is an unknown type in the wrong one. */
if ((ctf_import (blank, wrong)) < 0)
{
fprintf (stderr, "cannot import wrong-types dict: %s\n", ctf_errmsg (ctf_errno (blank)));
return 1;
}
/* Populate two dicts, one with the same types in a different order: both have
children, to ensure that all types in both dicts are provisional and have
the same IDs. This passes all ctf_import checks (type and strtab count),
but will still induce errors due to type mismatches with the child. In
particular, base in the right parent is a non-integral type (a pointer) in
the wrong one, and "void" in the parent is an unknown type in the wrong
one. */
if ((ctf_add_unknown (parent, CTF_ADD_ROOT, "spacer")) /* 1 */
== CTF_ERR)
@@ -100,14 +123,14 @@ int main (void)
== CTF_ERR)
goto parent_err;
if ((ctf_add_unknown (parent, CTF_ADD_ROOT, "spacer")) /* 3 */
== CTF_ERR)
goto parent_err;
if ((ptr = ctf_add_pointer (wrong, CTF_ADD_ROOT, wrong_id)) /* 4 */
if ((ptr = ctf_add_pointer (wrong, CTF_ADD_ROOT, wrong_id)) /* 3 */
== CTF_ERR)
goto parent_err;
if ((ctf_add_unknown (wrong, CTF_ADD_ROOT, "spacer")) /* 4 */
== CTF_ERR)
goto parent_err;
if ((ctf_add_unknown (wrong, CTF_ADD_ROOT, "spacer2")) /* 5 */
== CTF_ERR)
goto parent_err;
@@ -138,47 +161,46 @@ int main (void)
no_prop_err ();
check_prop_err (child, parent, ECTF_NOTFUNC);
/* Write out and reopen to get a child with no parent. */
if ((ctf_import (child, wrong)) < 0)
{
fprintf (stderr, "cannot reimport: %s\n", ctf_errmsg (ctf_errno (child)));
return 1;
}
/* Swap the insides of "parent" and "wrong" so we get a parent dict with
different types than it had. */
memcpy (&tmp, parent, sizeof (ctf_dict_t));
memcpy (parent, wrong, sizeof (ctf_dict_t));
memcpy (wrong, &tmp, sizeof (ctf_dict_t));
/* This is testing ctf_type_resolve_unsliced(), which is called by the enum
functions (which are not themselves buggy). This type isn't an enum, but
that's OK: we're after an error, after all, and the type we're slicing is
not visible any longer, so nothing can tell it's not an enum. */
that's OK: we're after an error, after all. */
desc = "child slice resolution";
if ((ctf_enum_value (child, slice, "foo", NULL)) != CTF_ERR)
no_prop_err ();
check_prop_err (child, wrong, ECTF_NONREPRESENTABLE);
check_prop_err (child, parent, ECTF_NONREPRESENTABLE);
desc = "child slice encoding lookup";
if ((ctf_type_encoding (child, slice, &foo)) != CTF_ERR)
no_prop_err ();
check_prop_err (child, wrong, ECTF_BADID);
check_prop_err (child, parent, ECTF_NONREPRESENTABLE);
desc = "func info lookup of nonrepresentable function";
if ((ctf_func_type_info (child, base, &fi)) != CTF_ERR)
no_prop_err ();
check_prop_err (child, wrong, ECTF_NONREPRESENTABLE);
check_prop_err (child, parent, ECTF_NONREPRESENTABLE);
desc = "func args lookup of nonrepresentable function";
if ((ctf_func_type_args (child, base, 0, &bar)) != CTF_ERR)
no_prop_err ();
check_prop_err (child, wrong, ECTF_NONREPRESENTABLE);
check_prop_err (child, parent, ECTF_NONREPRESENTABLE);
desc = "child slice addition";
if ((slice = ctf_add_slice (child, CTF_ADD_ROOT, base, &foo)) != CTF_ERR)
no_prop_err ();
check_prop_err (child, wrong, ECTF_NOTINTFP);
check_prop_err (child, parent, ECTF_NONREPRESENTABLE);
desc = "variable lookup";
if (ctf_lookup_variable (child, "base") != CTF_ERR)
no_prop_err ();
check_prop_err (child, wrong, ECTF_NOTYPEDAT);
check_prop_err (child, parent, ECTF_NOTYPEDAT);
ctf_dict_close (child);
ctf_dict_close (parent);

View File

@@ -0,0 +1,552 @@
/* Test parent / child ID assignment. */
#include <ctf-api.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int
test (int empty_parent, int unserialized_parent)
{
ctf_dict_t *parent;
ctf_dict_t *child;
ctf_id_t pint = 0, pprovint = 0, pptr = 0, parray = 0, pfunction = 0;
ctf_id_t ctype, ctype2, cslice, ctypedef, cfunction, cself;
ctf_id_t foo;
ctf_encoding_t encoding = { CTF_INT_SIGNED, 0, (sizeof (char) * 8) - 1 };
ctf_encoding_t slice_encoding = { CTF_INT_SIGNED, 1, (sizeof (char) * 8) - 1 };
ctf_encoding_t out;
unsigned char *pbuf = NULL, *cbuf = NULL, *pbuf2 = NULL, *cbuf2 = NULL;
size_t psize, csize;
int err;
ctf_id_t first_child_type = 1;
ctf_membinfo_t memb;
ctf_arinfo_t ar;
ctf_funcinfo_t func;
ctf_funcinfo_t pfunc, cfunc;
ctf_id_t args[2], pargs[2], cargs[2];
printf ("Testing with %s, %s parent\n", empty_parent ? "empty" : "nonempty",
unserialized_parent ? "unserialized" : "serialized");
if ((parent = ctf_create (&err)) == NULL)
goto create_err;
if ((child = ctf_create (&err)) == NULL)
goto create_err;
/* Try some tests with a parent that already has some types in it (thus, a
nonempty stypes range). */
if (!empty_parent)
{
if ((pint = ctf_add_integer (parent, CTF_ADD_ROOT, "int", &encoding)) == CTF_ERR)
goto parent_add_err;
first_child_type++;
}
if (!unserialized_parent)
{
if ((pbuf = ctf_write_mem (parent, &psize, -1)) == NULL)
goto parent_write_err;
ctf_dict_close (parent);
if ((parent = ctf_simple_open ((char *) pbuf, psize, NULL, 0, 0, NULL, 0, &err)) == NULL)
goto parent_open_err;
if (!empty_parent)
{
/* Look up int again: its ID will have changed. */
if ((pint = ctf_lookup_by_name (parent, "int")) == CTF_ERR)
{
fprintf (stderr, "Cannot look up int in parent: %s\n", ctf_errmsg (ctf_errno (parent)));
exit (1);
}
}
}
if (ctf_import (child, parent) < 0)
goto import_err;
/* Add some types that should end up with provisional IDs and be reassigned on
writeout, with all references to them in all dicts following along. */
if (!empty_parent)
{
if ((pprovint = ctf_add_integer (parent, CTF_ADD_ROOT, "provint", &encoding)) == CTF_ERR)
goto parent_add_err;
first_child_type++;
if ((pptr = ctf_add_pointer (parent, CTF_ADD_ROOT, pint)) == CTF_ERR)
goto parent_add_err;
first_child_type++;
ar.ctr_contents = pint;
ar.ctr_index = pint;
ar.ctr_nelems = 666;
if ((parray = ctf_add_array (parent, CTF_ADD_ROOT, &ar)) == CTF_ERR)
goto parent_add_err;
first_child_type++;
func.ctc_argc = 2;
func.ctc_flags = 0;
func.ctc_return = pprovint;
args[0] = pptr;
args[1] = parray;
if ((pfunction = ctf_add_function (parent, CTF_ADD_ROOT, &func, args)) == CTF_ERR)
goto parent_add_err;
first_child_type++;
}
if ((ctype = ctf_add_enum (child, CTF_ADD_ROOT, "wombat")) == CTF_ERR)
goto child_add_err;
if ((ctype2 = ctf_add_struct (child, CTF_ADD_ROOT, "foo")) == CTF_ERR)
goto child_add_err;
if (ctf_add_member (child, ctype2, "wombat_member", ctype) < 0)
goto child_add_memb_err;
if (!empty_parent)
{
/* pint is still valid: nonprovisional type. */
if (ctf_add_member (child, ctype2, "a", pint) < 0)
goto child_add_memb_err;
/* (pptr is provisional.) */
if (ctf_add_member (child, ctype2, "b", pptr) < 0)
goto child_add_memb_err;
if ((cself = ctf_add_pointer (child, CTF_ADD_ROOT, ctype2)) == CTF_ERR)
goto child_add_err;
if (ctf_add_member (child, ctype2, "self", cself) < 0)
goto child_add_memb_err;
/* Make sure types are distinct. */
if (pint == pptr || pint == ctype || pint == ctype2 ||
pptr == ctype || pptr == ctype2 || ctype == ctype2)
goto overlapping_err;
if (pint > pptr || ctype > pptr || ctype2 > pptr)
goto provisional_too_low_err;
/* Add an instance of every other serialized type-referencing type,
referencing a type provisional in the parent. */
if (ctf_add_typedef (child, CTF_ADD_ROOT, "td", parray) == CTF_ERR)
goto child_add_err;
if ((cslice = ctf_add_slice (child, CTF_ADD_ROOT, pprovint, &slice_encoding)) == CTF_ERR)
goto child_add_err;
if (ctf_add_member (child, ctype2, "c", cslice) < 0)
goto child_add_memb_err;
if (ctf_add_member (child, ctype2, "pfunc", pfunction) < 0)
goto child_add_memb_err;
func.ctc_argc = 2;
func.ctc_flags = 0;
func.ctc_return = pprovint;
args[0] = pptr;
args[1] = parray;
if ((cfunction = ctf_add_function (parent, CTF_ADD_ROOT, &func, args)) == CTF_ERR)
goto child_add_err;
first_child_type++;
if (ctf_add_member (child, ctype2, "cfunc", pfunction) < 0)
goto child_add_memb_err;
}
/* Make sure we can't write out the child before the parent. */
if (!empty_parent)
{
if ((cbuf = ctf_write_mem (child, &csize, -1)) != NULL)
{
fprintf (stderr, "writing child before parent works unexpectedly\n");
exit (1);
}
if (ctf_errno (child) != ECTF_NOTSERIALIZED)
{
fprintf (stderr, "writing child before parent: unexpected error %s\n",
ctf_errmsg (ctf_errno (child)));
exit (1);
}
}
/* Write out the parent, then the child: read both back in, reimport them,
do some lookups, make sure they work. Make sure we can't write the parent
out if it was already serialized, unless it was empty when that happened */
if (!empty_parent && !unserialized_parent)
{
if ((pbuf2 = ctf_write_mem (parent, &psize, -1)) != NULL)
{
fprintf (stderr, "Writing out modified already-serialized parent succeeded unexpectedly\n");
exit (1);
}
/* Nothing more to test in this case. */
ctf_dict_close (child);
ctf_dict_close (parent);
free (pbuf);
free (pbuf2);
return 0;
}
if ((pbuf2 = ctf_write_mem (parent, &psize, -1)) == NULL)
goto parent_write_err;
if ((cbuf2 = ctf_write_mem (child, &csize, -1)) == NULL)
goto child_write_err;
ctf_dict_close (child);
ctf_dict_close (parent);
free (pbuf);
free (cbuf);
if ((parent = ctf_simple_open ((char *) pbuf2, psize, NULL, 0, 0, NULL, 0, &err)) == NULL)
goto parent_open_err;
if ((child = ctf_simple_open ((char *) cbuf2, csize, NULL, 0, 0, NULL, 0, &err)) == NULL)
goto child_open_err;
if (ctf_import (child, parent) < 0)
goto import_err;
if (!empty_parent)
{
ctf_id_t foo2;
if ((foo = ctf_lookup_by_name (parent, "int")) == CTF_ERR)
{
fprintf (stderr, "Cannot look up int in parent: %s\n", ctf_errmsg (ctf_errno (parent)));
exit (1);
}
if ((foo2 = ctf_lookup_by_name (child, "int")) == CTF_ERR)
{
fprintf (stderr, "Cannot look up int in child: %s\n", ctf_errmsg (ctf_errno (parent)));
exit (1);
}
if (foo != foo2)
{
fprintf (stderr, "int in parent and child have different IDs: %lx versus %lx\n", foo, foo2);
exit (1);
}
/* Verify that ctf_type_pointer still works: it saw changes as part of
the CTFv4 type ID rework. In particular it works on parent types now
too. */
if ((foo2 = ctf_type_pointer (parent, foo)) == CTF_ERR)
{
fprintf (stderr, "pointer lookup in parent failed: %s\n", ctf_errmsg (ctf_errno (parent)));
exit (1);
}
if (ctf_type_kind (parent, foo2) != CTF_K_POINTER)
{
fprintf (stderr, "pointer lookup in parent yields non-pointer: %i\n", ctf_type_kind (parent, foo2));
exit (1);
}
if ((foo2 = ctf_type_pointer (child, foo)) == CTF_ERR)
{
fprintf (stderr, "pointer lookup in child failed: %s\n", ctf_errmsg (ctf_errno (child)));
exit (1);
}
if (ctf_type_kind (child, foo2) != CTF_K_POINTER)
{
fprintf (stderr, "pointer lookup in child yields non-pointer: %i\n", ctf_type_kind (child, foo2));
exit (1);
}
}
if ((ctype = ctf_lookup_by_name (child, "enum wombat")) == CTF_ERR)
{
fprintf (stderr, "Cannot look up enum wombat in child: %s\n", ctf_errmsg (ctf_errno (child)));
exit (1);
}
/* Check consecutiveness. */
if (ctype != first_child_type)
{
fprintf (stderr, "expected first child type to be ID %lx but is %lx\n", first_child_type, ctype);
exit (1);
}
if ((ctype2 = ctf_lookup_by_name (child, "struct foo")) == CTF_ERR)
{
fprintf (stderr, "Cannot look up struct foo in child: %s\n", ctf_errmsg (ctf_errno (child)));
exit (1);
}
/* Check consecutiveness. */
if (ctype2 != ctype + 1)
{
fprintf (stderr, "expected second child type to be ID %lx but is %lx\n", ctype + 1, ctype2);
exit (1);
}
if (!empty_parent)
{
if ((ctypedef = ctf_lookup_by_name (child, "td")) == CTF_ERR)
goto typedef_td_err;
if ((parray = ctf_type_reference (child, ctypedef)) == CTF_ERR)
goto typedef_err;
if (ctf_array_info (child, parray, &ar) < 0)
goto array_err;
char *name;
if ((name = ctf_type_aname (child, ar.ctr_contents)) == NULL)
goto type_name_err;
if (strcmp (name, "int") != 0)
{
fprintf (stderr, "expected array member to be int, but was %s\n", name);
exit (1);
}
free (name);
if (ar.ctr_contents != ar.ctr_index)
{
fprintf (stderr, "array contents and index are not the same type: %lx versus %lx",
ar.ctr_contents, ar.ctr_index);
exit (1);
}
}
/* Check membership links. */
if (ctf_member_info (child, ctype2, "wombat_member", &memb) < 0)
goto memb_err;
if (memb.ctm_type != ctype)
{
fprintf (stderr, "child enum member lookup yielded %lx, not %lx\n", memb.ctm_type, ctype);
exit (1);
}
if (!empty_parent)
{
if (ctf_member_info (child, ctype2, "a", &memb) < 0)
goto memb_err;
if (ctf_type_kind (child, memb.ctm_type) != CTF_K_INTEGER)
{
fprintf (stderr, "parent member integer lookup yielded %lx, not %x\n", memb.ctm_type, CTF_K_INTEGER);
exit (1);
}
if (ctf_member_info (child, ctype2, "b", &memb) < 0)
goto memb_err;
if (ctf_type_kind (child, memb.ctm_type) != CTF_K_POINTER)
goto memb_ptr_err;
if ((foo = ctf_type_reference (child, memb.ctm_type)) == CTF_ERR)
goto memb_err;
if ((ctf_type_kind (child, foo)) != CTF_K_INTEGER)
{
fprintf (stderr, "parent member pointer final lookup yielded kind %x, not %x\n", ctf_type_kind (child, foo), CTF_K_INTEGER);
exit (1);
}
if (ctf_member_info (child, ctype2, "c", &memb) < 0)
goto memb_err;
if (ctf_type_encoding (child, memb.ctm_type, &out) < 0)
goto encoding_err;
if (memcmp (&out, &slice_encoding, sizeof (out)) != 0)
{
fprintf (stderr, "slice encoding differs\n");
exit (1);
}
if (ctf_type_kind (child, memb.ctm_type) != CTF_K_INTEGER)
{
fprintf (stderr, "parent member slice final lookup yielded kind %x, not %x\n", ctf_type_kind (child, memb.ctm_type), CTF_K_INTEGER);
exit (1);
}
if (ctf_member_info (child, ctype2, "pfunc", &memb) < 0)
goto memb_err;
if (ctf_type_kind (child, memb.ctm_type) != CTF_K_FUNCTION)
goto func_err;
pfunction = memb.ctm_type;
if (ctf_member_info (child, ctype2, "cfunc", &memb) < 0)
goto memb_err;
if (ctf_type_kind (child, memb.ctm_type) != CTF_K_FUNCTION)
goto func_err;
cfunction = memb.ctm_type;
if (ctf_func_type_info (child, pfunction, &pfunc) < 0 ||
ctf_func_type_info (child, cfunction, &cfunc) < 0)
{
fprintf (stderr, "func info lookup failed: %s\n", ctf_errmsg (ctf_errno (child)));
exit (1);
}
if (memcmp (&pfunc, &cfunc, sizeof (pfunc)) != 0)
{
fprintf (stderr, "parent and child funcs differ\n");
exit (1);
}
if (ctf_type_kind (child, pfunc.ctc_return) != CTF_K_INTEGER)
{
fprintf (stderr, "func return type lookup yielded kind %x, not %x\n", ctf_type_kind (child, pfunc.ctc_return), CTF_K_INTEGER);
exit (1);
}
/* This isn't a type ID, so we're not really expecting problems here, but if
there are problems, rather an error message than a buffer overrun. */
if (pfunc.ctc_argc != 2)
{
fprintf (stderr, "func has %i args, not 2\n", pfunc.ctc_argc);
exit (1);
}
if (ctf_func_type_args (child, pfunction, pfunc.ctc_argc, pargs) < 0 ||
ctf_func_type_args (child, cfunction, cfunc.ctc_argc, cargs) < 0)
{
fprintf (stderr, "func arg lookup failed: %s\n", ctf_errmsg (ctf_errno (child)));
exit (1);
}
if (memcmp (pargs, cargs, sizeof (pargs)) != 0)
{
fprintf (stderr, "parent and child func args differ\n");
exit (1);
}
if (ctf_type_kind (child, pargs[0]) != CTF_K_POINTER ||
ctf_type_kind (child, pargs[1]) != CTF_K_ARRAY)
{
fprintf (stderr, "func args lookup not as expected\n");
exit (1);
}
if (ctf_member_info (child, ctype2, "self", &memb) < 0)
goto memb_err;
if (ctf_type_kind (child, memb.ctm_type) != CTF_K_POINTER)
goto memb_ptr_err;
if (ctf_type_reference (child, memb.ctm_type) != ctype2)
{
fprintf (stderr, "structure self-ref yields type %lx, not %lx as expected\n",
ctf_type_reference (child, memb.ctm_type), ctype2);
exit (1);
}
}
ctf_dict_close (child);
ctf_dict_close (parent);
free (cbuf2);
free (pbuf2);
return 0;
create_err:
fprintf (stderr, "Cannot create: %s\n", ctf_errmsg (err));
exit (1);
parent_write_err:
fprintf (stderr, "Cannot serialize parent: %s\n", ctf_errmsg (ctf_errno (parent)));
exit (1);
child_write_err:
fprintf (stderr, "Cannot serialize child: %s\n", ctf_errmsg (ctf_errno (child)));
exit (1);
parent_open_err:
fprintf (stderr, "Cannot open parent: %s\n", ctf_errmsg (err));
exit (1);
child_open_err:
fprintf (stderr, "Cannot open chile: %s\n", ctf_errmsg (err));
exit (1);
import_err:
fprintf (stderr, "Cannot import: %s\n", ctf_errmsg (ctf_errno (child)));
exit (1);
parent_add_err:
fprintf (stderr, "Cannot add parent types: %s\n", ctf_errmsg (ctf_errno (parent)));
exit (1);
child_add_err:
fprintf (stderr, "Cannot add child types: %s\n", ctf_errmsg (ctf_errno (child)));
exit (1);
child_add_memb_err:
fprintf (stderr, "Cannot add child members: %s (%i)\n", ctf_errmsg (ctf_errno (child)), ctf_errno (child));
exit (1);
overlapping_err:
fprintf (stderr, "type IDs overlap\n");
exit (1);
provisional_too_low_err:
fprintf (stderr, "provisional ID %lx is too low\n", pptr);
exit (1);
memb_err:
fprintf (stderr, "cannot look up members: %s\n", ctf_errmsg (ctf_errno (child)));
exit (1);
memb_ptr_err:
fprintf (stderr, "parent member pointer lookup yielded %lx, not %x\n", memb.ctm_type, CTF_K_POINTER);
exit (1);
typedef_td_err:
fprintf (stderr, "Cannot look up typedef td in child: %s\n", ctf_errmsg (ctf_errno (child)));
exit (1);
typedef_err:
fprintf (stderr, "Cannot look up typedef array ref in child: %s\n", ctf_errmsg (ctf_errno (child)));
exit (1);
array_err:
fprintf (stderr, "Cannot look up array in child: %s\n", ctf_errmsg (ctf_errno (child)));
exit (1);
type_name_err:
fprintf (stderr, "Cannot look up type name in child: %s\n", ctf_errmsg (ctf_errno (child)));
exit (1);
encoding_err:
fprintf (stderr, "cannot get type encoding in child: %s\n", ctf_errmsg (ctf_errno (child)));
exit (1);
func_err:
fprintf (stderr, "parent member function final lookup yielded kind %x, not %x\n", ctf_type_kind (child, memb.ctm_type), CTF_K_FUNCTION);
exit (1);
}
int main (void)
{
test (1, 1);
test (1, 0);
test (0, 1);
test (0, 0);
printf ("All done.\n");
}

View File

@@ -0,0 +1,5 @@
Testing with empty, unserialized parent
Testing with empty, serialized parent
Testing with nonempty, unserialized parent
Testing with nonempty, serialized parent
All done.