PR 12573
	* dwarf2read.c (struct dwarf2_cu): New field has_loclist.
	(producer_is_gcc_ge_4_0): New function.
	(process_full_comp_unit): Set also symtab->locations_valid.  Move the
	symtab->language code.
	(var_decode_location): Set cu->has_loclist.
	* symtab.c (skip_prologue_sal): New variables saved_pc, force_skip and
	skip.  Intialize force_skip from locations_valid.  Move the prologue
	skipping code into two passes.
	* symtab.h (struct symtab): Make the primary field a bitfield.  New
	field locations_valid.

gdb/testsuite/
	PR 12573
	* gdb.dwarf2/dw2-skip-prologue.S: New file.
	* gdb.dwarf2/dw2-skip-prologue.c: New file.
	* gdb.dwarf2/dw2-skip-prologue.exp: New file.
This commit is contained in:
Jan Kratochvil
2011-05-06 15:06:49 +00:00
parent 5b7b7d6e05
commit 8be455d765
8 changed files with 677 additions and 42 deletions

View File

@@ -2441,12 +2441,13 @@ skip_prologue_sal (struct symtab_and_line *sal)
struct symbol *sym;
struct symtab_and_line start_sal;
struct cleanup *old_chain;
CORE_ADDR pc;
CORE_ADDR pc, saved_pc;
struct obj_section *section;
const char *name;
struct objfile *objfile;
struct gdbarch *gdbarch;
struct block *b, *function_block;
int force_skip, skip;
/* Do not change the SAL is PC was specified explicitly. */
if (sal->explicit_pc)
@@ -2484,46 +2485,69 @@ skip_prologue_sal (struct symtab_and_line *sal)
gdbarch = get_objfile_arch (objfile);
/* If the function is in an unmapped overlay, use its unmapped LMA address,
so that gdbarch_skip_prologue has something unique to work on. */
if (section_is_overlay (section) && !section_is_mapped (section))
pc = overlay_unmapped_address (pc, section);
/* Process the prologue in two passes. In the first pass try to skip the
prologue (SKIP is true) and verify there is a real need for it (indicated
by FORCE_SKIP). If no such reason was found run a second pass where the
prologue is not skipped (SKIP is false). */
/* Skip "first line" of function (which is actually its prologue). */
pc += gdbarch_deprecated_function_start_offset (gdbarch);
pc = gdbarch_skip_prologue (gdbarch, pc);
skip = 1;
force_skip = 1;
/* For overlays, map pc back into its mapped VMA range. */
pc = overlay_mapped_address (pc, section);
/* Be conservative - allow direct PC (without skipping prologue) only if we
have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
have to be set by the caller so we use SYM instead. */
if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
force_skip = 0;
/* Calculate line number. */
start_sal = find_pc_sect_line (pc, section, 0);
/* Check if gdbarch_skip_prologue left us in mid-line, and the next
line is still part of the same function. */
if (start_sal.pc != pc
&& (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
&& start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
: (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
== lookup_minimal_symbol_by_pc_section (pc, section))))
saved_pc = pc;
do
{
/* First pc of next line */
pc = start_sal.end;
/* Recalculate the line number (might not be N+1). */
start_sal = find_pc_sect_line (pc, section, 0);
}
pc = saved_pc;
/* On targets with executable formats that don't have a concept of
constructors (ELF with .init has, PE doesn't), gcc emits a call
to `__main' in `main' between the prologue and before user
code. */
if (gdbarch_skip_main_prologue_p (gdbarch)
&& name && strcmp (name, "main") == 0)
{
pc = gdbarch_skip_main_prologue (gdbarch, pc);
/* Recalculate the line number (might not be N+1). */
/* If the function is in an unmapped overlay, use its unmapped LMA address,
so that gdbarch_skip_prologue has something unique to work on. */
if (section_is_overlay (section) && !section_is_mapped (section))
pc = overlay_unmapped_address (pc, section);
/* Skip "first line" of function (which is actually its prologue). */
pc += gdbarch_deprecated_function_start_offset (gdbarch);
if (skip)
pc = gdbarch_skip_prologue (gdbarch, pc);
/* For overlays, map pc back into its mapped VMA range. */
pc = overlay_mapped_address (pc, section);
/* Calculate line number. */
start_sal = find_pc_sect_line (pc, section, 0);
/* Check if gdbarch_skip_prologue left us in mid-line, and the next
line is still part of the same function. */
if (skip && start_sal.pc != pc
&& (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
&& start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
: (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
== lookup_minimal_symbol_by_pc_section (pc, section))))
{
/* First pc of next line */
pc = start_sal.end;
/* Recalculate the line number (might not be N+1). */
start_sal = find_pc_sect_line (pc, section, 0);
}
/* On targets with executable formats that don't have a concept of
constructors (ELF with .init has, PE doesn't), gcc emits a call
to `__main' in `main' between the prologue and before user
code. */
if (gdbarch_skip_main_prologue_p (gdbarch)
&& name && strcmp (name, "main") == 0)
{
pc = gdbarch_skip_main_prologue (gdbarch, pc);
/* Recalculate the line number (might not be N+1). */
start_sal = find_pc_sect_line (pc, section, 0);
force_skip = 1;
}
}
while (!force_skip && skip--);
/* If we still don't have a valid source line, try to find the first
PC in the lineinfo table that belongs to the same function. This
@@ -2533,7 +2557,7 @@ skip_prologue_sal (struct symtab_and_line *sal)
the case with the DJGPP target using "gcc -gcoff" when the
compiler inserted code after the prologue to make sure the stack
is aligned. */
if (sym && start_sal.symtab == NULL)
if (!force_skip && sym && start_sal.symtab == NULL)
{
pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
/* Recalculate the line number. */