forked from Imagelibrary/binutils-gdb
type: add c99 variable length array support
The dwarf standard allow certain attributes to be expressed as dwarf
expressions rather than constants. For instance upper-/lowerbound attributes.
In case of a c99 variable length array the upperbound is a dynamic attribute.
With this change c99 vla behave the same as with static arrays.
1| void foo (size_t n) {
2| int ary[n];
3| memset(ary, 0, sizeof(ary));
4| }
(gdb) print ary
$1 = {0 <repeats 42 times>}
* dwarf2loc.c (dwarf2_locexpr_baton_eval): New function.
(dwarf2_evaluate_property): New function.
* dwarf2loc.h (dwarf2_evaluate_property): New function prototype.
* dwarf2read.c (attr_to_dynamic_prop): New function.
(read_subrange_type): Use attr_to_dynamic_prop to read high bound
attribute.
* gdbtypes.c: Include dwarf2loc.h.
(is_dynamic_type): New function.
(resolve_dynamic_type): New function.
(resolve_dynamic_bounds): New function.
(get_type_length): New function.
(check_typedef): Use get_type_length to compute type length.
* gdbtypes.h (TYPE_HIGH_BOUND_KIND): New macro.
(TYPE_LOW_BOUND_KIND): New macro.
(is_dynamic_type): New function prototype.
* value.c (value_from_contents_and_address): Call resolve_dynamic_type
to resolve dynamic properties of the type. Update comment.
* valops.c (get_value_at, value_at, value_at_lazy): Update comment.
This commit is contained in:
209
gdb/gdbtypes.c
209
gdb/gdbtypes.c
@@ -853,6 +853,17 @@ create_static_range_type (struct type *result_type, struct type *index_type,
|
||||
return result_type;
|
||||
}
|
||||
|
||||
/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
|
||||
are static, otherwise returns 0. */
|
||||
|
||||
static int
|
||||
has_static_range (const struct range_bounds *bounds)
|
||||
{
|
||||
return (bounds->low.kind == PROP_CONST
|
||||
&& bounds->high.kind == PROP_CONST);
|
||||
}
|
||||
|
||||
|
||||
/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
|
||||
TYPE. Return 1 if type is a range type, 0 if it is discrete (and
|
||||
bounds will fit in LONGEST), or -1 otherwise. */
|
||||
@@ -986,27 +997,41 @@ create_array_type_with_stride (struct type *result_type,
|
||||
struct type *range_type,
|
||||
unsigned int bit_stride)
|
||||
{
|
||||
LONGEST low_bound, high_bound;
|
||||
|
||||
if (result_type == NULL)
|
||||
result_type = alloc_type_copy (range_type);
|
||||
|
||||
TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
|
||||
TYPE_TARGET_TYPE (result_type) = element_type;
|
||||
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
|
||||
low_bound = high_bound = 0;
|
||||
CHECK_TYPEDEF (element_type);
|
||||
/* Be careful when setting the array length. Ada arrays can be
|
||||
empty arrays with the high_bound being smaller than the low_bound.
|
||||
In such cases, the array length should be zero. */
|
||||
if (high_bound < low_bound)
|
||||
TYPE_LENGTH (result_type) = 0;
|
||||
else if (bit_stride > 0)
|
||||
TYPE_LENGTH (result_type) =
|
||||
(bit_stride * (high_bound - low_bound + 1) + 7) / 8;
|
||||
if (has_static_range (TYPE_RANGE_DATA (range_type)))
|
||||
{
|
||||
LONGEST low_bound, high_bound;
|
||||
|
||||
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
|
||||
low_bound = high_bound = 0;
|
||||
CHECK_TYPEDEF (element_type);
|
||||
/* Be careful when setting the array length. Ada arrays can be
|
||||
empty arrays with the high_bound being smaller than the low_bound.
|
||||
In such cases, the array length should be zero. */
|
||||
if (high_bound < low_bound)
|
||||
TYPE_LENGTH (result_type) = 0;
|
||||
else if (bit_stride > 0)
|
||||
TYPE_LENGTH (result_type) =
|
||||
(bit_stride * (high_bound - low_bound + 1) + 7) / 8;
|
||||
else
|
||||
TYPE_LENGTH (result_type) =
|
||||
TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
|
||||
}
|
||||
else
|
||||
TYPE_LENGTH (result_type) =
|
||||
TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
|
||||
{
|
||||
/* This type is dynamic and its length needs to be computed
|
||||
on demand. In the meantime, avoid leaving the TYPE_LENGTH
|
||||
undefined by setting it to zero. Although we are not expected
|
||||
to trust TYPE_LENGTH in this case, setting the size to zero
|
||||
allows us to avoid allocating objects of random sizes in case
|
||||
we accidently do. */
|
||||
TYPE_LENGTH (result_type) = 0;
|
||||
}
|
||||
|
||||
TYPE_NFIELDS (result_type) = 1;
|
||||
TYPE_FIELDS (result_type) =
|
||||
(struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
|
||||
@@ -1585,6 +1610,121 @@ stub_noname_complaint (void)
|
||||
complaint (&symfile_complaints, _("stub type has NULL name"));
|
||||
}
|
||||
|
||||
/* See gdbtypes.h. */
|
||||
|
||||
int
|
||||
is_dynamic_type (struct type *type)
|
||||
{
|
||||
type = check_typedef (type);
|
||||
|
||||
if (TYPE_CODE (type) == TYPE_CODE_REF)
|
||||
type = check_typedef (TYPE_TARGET_TYPE (type));
|
||||
|
||||
switch (TYPE_CODE (type))
|
||||
{
|
||||
case TYPE_CODE_ARRAY:
|
||||
{
|
||||
const struct type *range_type;
|
||||
|
||||
gdb_assert (TYPE_NFIELDS (type) == 1);
|
||||
range_type = TYPE_INDEX_TYPE (type);
|
||||
if (!has_static_range (TYPE_RANGE_DATA (range_type)))
|
||||
return 1;
|
||||
else
|
||||
return is_dynamic_type (TYPE_TARGET_TYPE (type));
|
||||
break;
|
||||
}
|
||||
default:
|
||||
return 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Resolves dynamic bound values of an array type TYPE to static ones.
|
||||
ADDRESS might be needed to resolve the subrange bounds, it is the location
|
||||
of the associated array. */
|
||||
|
||||
static struct type *
|
||||
resolve_dynamic_bounds (struct type *type, CORE_ADDR addr)
|
||||
{
|
||||
CORE_ADDR value;
|
||||
struct type *elt_type;
|
||||
struct type *range_type;
|
||||
struct type *ary_dim;
|
||||
const struct dynamic_prop *prop;
|
||||
const struct dwarf2_locexpr_baton *baton;
|
||||
struct dynamic_prop low_bound, high_bound;
|
||||
|
||||
if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
|
||||
{
|
||||
struct type *copy = copy_type (type);
|
||||
|
||||
TYPE_TARGET_TYPE (copy)
|
||||
= resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), addr);
|
||||
|
||||
return copy;
|
||||
}
|
||||
|
||||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
|
||||
|
||||
elt_type = type;
|
||||
range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
|
||||
|
||||
prop = &TYPE_RANGE_DATA (range_type)->low;
|
||||
if (dwarf2_evaluate_property (prop, addr, &value))
|
||||
{
|
||||
low_bound.kind = PROP_CONST;
|
||||
low_bound.data.const_val = value;
|
||||
}
|
||||
else
|
||||
{
|
||||
low_bound.kind = PROP_UNDEFINED;
|
||||
low_bound.data.const_val = 0;
|
||||
}
|
||||
|
||||
prop = &TYPE_RANGE_DATA (range_type)->high;
|
||||
if (dwarf2_evaluate_property (prop, addr, &value))
|
||||
{
|
||||
high_bound.kind = PROP_CONST;
|
||||
high_bound.data.const_val = value;
|
||||
}
|
||||
else
|
||||
{
|
||||
high_bound.kind = PROP_UNDEFINED;
|
||||
high_bound.data.const_val = 0;
|
||||
}
|
||||
|
||||
ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
|
||||
|
||||
if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
|
||||
elt_type = resolve_dynamic_bounds (TYPE_TARGET_TYPE (type), addr);
|
||||
else
|
||||
elt_type = TYPE_TARGET_TYPE (type);
|
||||
|
||||
range_type = create_range_type (NULL,
|
||||
TYPE_TARGET_TYPE (range_type),
|
||||
&low_bound, &high_bound);
|
||||
return create_array_type (copy_type (type),
|
||||
elt_type,
|
||||
range_type);
|
||||
}
|
||||
|
||||
/* See gdbtypes.h */
|
||||
|
||||
struct type *
|
||||
resolve_dynamic_type (struct type *type, CORE_ADDR addr)
|
||||
{
|
||||
struct type *real_type = check_typedef (type);
|
||||
struct type *resolved_type;
|
||||
|
||||
if (!is_dynamic_type (real_type))
|
||||
return type;
|
||||
|
||||
resolved_type = resolve_dynamic_bounds (type, addr);
|
||||
|
||||
return resolved_type;
|
||||
}
|
||||
|
||||
/* Find the real type of TYPE. This function returns the real type,
|
||||
after removing all layers of typedefs, and completing opaque or stub
|
||||
types. Completion changes the TYPE argument, but stripping of
|
||||
@@ -1760,45 +1900,6 @@ check_typedef (struct type *type)
|
||||
{
|
||||
/* Nothing we can do. */
|
||||
}
|
||||
else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
|
||||
&& TYPE_NFIELDS (type) == 1
|
||||
&& (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
|
||||
== TYPE_CODE_RANGE))
|
||||
{
|
||||
/* Now recompute the length of the array type, based on its
|
||||
number of elements and the target type's length.
|
||||
Watch out for Ada null Ada arrays where the high bound
|
||||
is smaller than the low bound. */
|
||||
const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
|
||||
const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
|
||||
ULONGEST len;
|
||||
|
||||
if (high_bound < low_bound)
|
||||
len = 0;
|
||||
else
|
||||
{
|
||||
/* For now, we conservatively take the array length to be 0
|
||||
if its length exceeds UINT_MAX. The code below assumes
|
||||
that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
|
||||
which is technically not guaranteed by C, but is usually true
|
||||
(because it would be true if x were unsigned with its
|
||||
high-order bit on). It uses the fact that
|
||||
high_bound-low_bound is always representable in
|
||||
ULONGEST and that if high_bound-low_bound+1 overflows,
|
||||
it overflows to 0. We must change these tests if we
|
||||
decide to increase the representation of TYPE_LENGTH
|
||||
from unsigned int to ULONGEST. */
|
||||
ULONGEST ulow = low_bound, uhigh = high_bound;
|
||||
ULONGEST tlen = TYPE_LENGTH (target_type);
|
||||
|
||||
len = tlen * (uhigh - ulow + 1);
|
||||
if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
|
||||
|| len > UINT_MAX)
|
||||
len = 0;
|
||||
}
|
||||
TYPE_LENGTH (type) = len;
|
||||
TYPE_TARGET_STUB (type) = 0;
|
||||
}
|
||||
else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
|
||||
{
|
||||
TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
|
||||
|
||||
Reference in New Issue
Block a user