Add new memory access interface to expr.c

DWARF expression evaluator is currently using a few different
interfaces for memory access: write_memory_with_notification,
read_value_memory, read_memory.

They all seem incosistent, while some of them even need a struct
value typed argument to be present.

This patch is simplifying that interface by replacing it with two new
low level functions: read_from_memory and write_to_memory.

The advantage of this new interface is that it behaves in the same way
as the register access interface from the previous patch. Both of these
have the same error returning policy, which will be usefull for the
following patches.

	* dwarf2/expr.c (xfer_from_memory):  New function.
	(read_from_memory): New function.
	(write_to_memory): New function.
	(rw_pieced_value): Now calls the read_from_memory and
	write_to_memory functions.

Change-Id: Id1f4c9b8127da83dece543e68757ffb1de2afedd
This commit is contained in:
Zoran Zaric
2020-12-07 19:00:18 +00:00
committed by Simon Marchi
parent b9b1a8273b
commit 0ead7f247c

View File

@@ -32,6 +32,8 @@
#include "frame.h"
#include "gdbsupport/underlying.h"
#include "gdbarch.h"
#include "inferior.h"
#include "observable.h"
/* Cookie for gdbarch data. */
@@ -186,6 +188,85 @@ write_to_register (struct frame_info *frame, int regnum,
return;
}
/* Helper for read_from_memory and write_from_memory. */
static void
xfer_from_memory (CORE_ADDR address, gdb_byte *readbuf,
const gdb_byte *writebuf,
size_t length, bool stack, int *unavailable)
{
(*unavailable) = 0;
enum target_object object
= stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
ULONGEST xfered_total = 0;
while (xfered_total < length)
{
ULONGEST xfered_partial;
enum target_xfer_status status
= target_xfer_partial (current_top_target (), object, NULL,
(readbuf != nullptr
? readbuf + xfered_total
: nullptr),
(writebuf != nullptr
? writebuf + xfered_total
: nullptr),
address + xfered_total, length - xfered_total,
&xfered_partial);
if (status == TARGET_XFER_OK)
{
xfered_total += xfered_partial;
QUIT;
}
else if (status == TARGET_XFER_UNAVAILABLE)
{
(*unavailable) = 1;
return;
}
else if (status == TARGET_XFER_EOF)
memory_error (TARGET_XFER_E_IO, address + xfered_total);
else
memory_error (status, address + xfered_total);
}
}
/* Read LENGTH bytes of memory contents starting at ADDRESS.
The data read is copied to a caller-managed buffer BUF. STACK
indicates whether the memory range specified belongs to a stack
memory region.
If the memory is unavailable, the UNAVAILABLE output is set. */
static void
read_from_memory (CORE_ADDR address, gdb_byte *buffer,
size_t length, bool stack, int* unavailable)
{
xfer_from_memory (address, buffer, nullptr, length, stack, unavailable);
}
/* Write LENGTH bytes of memory contents starting at ADDRESS.
The data written is copied from a caller-managed buffer buf. STACK
indicates whether the memory range specified belongs to a stack
memory region.
If the memory is unavailable, the UNAVAILABLE output is set. */
static void
write_to_memory (CORE_ADDR address, const gdb_byte *buffer,
size_t length, bool stack, int *unavailable)
{
xfer_from_memory (address, nullptr, buffer, length, stack, unavailable);
gdb::observers::memory_changed.notify (current_inferior (), address,
length, buffer);
}
struct piece_closure
{
/* Reference count. */
@@ -374,35 +455,34 @@ rw_pieced_value (struct value *v, struct value *from)
bits_to_skip += p->offset;
CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
bool in_stack_memory = p->v.mem.in_stack_memory;
int unavail = 0;
if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
&& offset % 8 == 0)
{
/* Everything is byte-aligned; no buffer needed. */
if (from != NULL)
write_memory_with_notification (start_addr,
(from_contents
+ offset / 8),
this_size_bits / 8);
write_to_memory (start_addr, (from_contents + offset / 8),
this_size_bits / 8, in_stack_memory,
&unavail);
else
read_value_memory (v, offset,
p->v.mem.in_stack_memory,
p->v.mem.addr + bits_to_skip / 8,
v_contents + offset / 8,
this_size_bits / 8);
break;
read_from_memory (start_addr, (v_contents + offset / 8),
this_size_bits / 8, in_stack_memory,
&unavail);
}
else
{
this_size = bits_to_bytes (bits_to_skip, this_size_bits);
buffer.resize (this_size);
if (from == NULL)
{
/* Read mode. */
read_value_memory (v, offset,
p->v.mem.in_stack_memory,
p->v.mem.addr + bits_to_skip / 8,
buffer.data (), this_size);
read_from_memory (start_addr, buffer.data (),
this_size, in_stack_memory,
&unavail);
if (!unavail)
copy_bitwise (v_contents, offset,
buffer.data (), bits_to_skip % 8,
this_size_bits, bits_big_endian);
@@ -415,25 +495,46 @@ rw_pieced_value (struct value *v, struct value *from)
if (this_size <= 8)
{
/* Perform a single read for small sizes. */
read_memory (start_addr, buffer.data (),
this_size);
read_from_memory (start_addr, buffer.data (),
this_size, in_stack_memory,
&unavail);
}
else
{
/* Only the first and last bytes can possibly have
any bits reused. */
read_memory (start_addr, buffer.data (), 1);
read_memory (start_addr + this_size - 1,
&buffer[this_size - 1], 1);
read_from_memory (start_addr, buffer.data (),
1, in_stack_memory,
&unavail);
if (!unavail)
read_from_memory (start_addr + this_size - 1,
&buffer[this_size - 1], 1,
in_stack_memory, &unavail);
}
}
if (!unavail)
{
copy_bitwise (buffer.data (), bits_to_skip % 8,
from_contents, offset,
this_size_bits, bits_big_endian);
write_memory_with_notification (start_addr,
buffer.data (),
this_size);
write_to_memory (start_addr, buffer.data (),
this_size, in_stack_memory,
&unavail);
}
}
}
if (unavail)
{
if (from == NULL)
mark_value_bits_unavailable (v, (offset + bits_to_skip % 8),
this_size_bits);
else
throw_error (NOT_AVAILABLE_ERROR,
_("Can't do read-modify-write to "
"update bitfield; containing word "
"is unavailable"));
}
}
break;