Files
vxWorks/libc/math/cosh.c
2025-08-20 18:25:46 +08:00

144 lines
4.8 KiB
C

/* cosh.c - hyperbolic routines */
/* Copyright 1992-1993 Wind River Systems, Inc. */
/*
modification history
--------------------
01e,05feb93,jdi doc changes based on kdl review.
01d,02dec92,jdi doc tweaks.
01c,28oct92,jdi documentation cleanup.
01b,20sep92,smb documentation additions
01a,08jul92,smb documentation
*/
/*
DESCRIPTION
* Copyright (c) 1985 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that the above copyright notice and this paragraph are
* duplicated in all such forms and that any documentation,
* advertising materials, and other materials related to such
* distribution and use acknowledge that the software was developed
* by the University of California, Berkeley. The name of the
* University may not be used to endorse or promote products derived
* from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* All recipients should regard themselves as participants in an ongoing
* research project and hence should feel obligated to report their
* experiences (good or bad) with these elementary function codes, using
* the sendbug(8) program, to the authors.
*
SEE ALSO: American National Standard X3.159-1989
NOMANUAL
*/
#include "vxWorks.h"
#include "math.h"
#if defined(vax)||defined(tahoe)
#ifdef vax
#define _0x(A,B) 0x/**/A/**/B
#else /* vax */
#define _0x(A,B) 0x/**/B/**/A
#endif /* vax */
/* static double */
/* mln2hi = 8.8029691931113054792E1 , Hex 2^ 7 * .B00F33C7E22BDB */
/* mln2lo = -4.9650192275318476525E-16 , Hex 2^-50 * -.8F1B60279E582A */
/* lnovfl = 8.8029691931113053016E1 ; Hex 2^ 7 * .B00F33C7E22BDA */
static long mln2hix[] = { _0x(0f33,43b0), _0x(2bdb,c7e2)};
static long mln2lox[] = { _0x(1b60,a70f), _0x(582a,279e)};
static long lnovflx[] = { _0x(0f33,43b0), _0x(2bda,c7e2)};
#define mln2hi (*(double*)mln2hix)
#define mln2lo (*(double*)mln2lox)
#define lnovfl (*(double*)lnovflx)
#else /* defined(vax)||defined(tahoe) */
static double
mln2hi = 7.0978271289338397310E2 , /*Hex 2^ 10 * 1.62E42FEFA39EF */
mln2lo = 2.3747039373786107478E-14 , /*Hex 2^-45 * 1.ABC9E3B39803F */
lnovfl = 7.0978271289338397310E2 ; /*Hex 2^ 9 * 1.62E42FEFA39EF */
#endif /* defined(vax)||defined(tahoe) */
#if defined(vax)||defined(tahoe)
static max = 126 ;
#else /* defined(vax)||defined(tahoe) */
static max = 1023 ;
#endif /* defined(vax)||defined(tahoe) */
/*******************************************************************************
*
* cosh - compute a hyperbolic cosine (ANSI)
*
* This routine returns the hyperbolic cosine of <x> in
* double precision (IEEE double, 53 bits).
*
* A range error occurs if <x> is too large.
*
* INTERNAL:
* Method:
* (1) Replace <x> by |x|.
* (2)
* [ exp(x) - 1 ]^2
* 0 <= x <= 0.3465 : cosh(x) := 1 + -------------------
* 2*exp(x)
*
* exp(x) + 1/exp(x)
* 0.3465 <= x <= 22 : cosh(x) := -------------------
* 2
* 22 <= x <= lnovfl : cosh(x) := exp(x)/2
* lnovfl <= x <= lnovfl+log(2)
* : cosh(x) := exp(x)/2 (avoid overflow)
* log(2)+lnovfl < x < INF: overflow to INF
*
* Note: .3465 is a number near one half of ln2.
*
* INCLUDE FILES: math.h
*
* RETURNS:
* The double-precision hyperbolic cosine of <x>.
*
* Special cases:
* If <x> is +INF, -INF, or NaN, cosh() returns <x>.
*
* SEE ALSO: mathALib
*
* INTERNAL:
* Coded in C by K.C. Ng, 1/8/85;
* Revised by K.C. Ng on 2/8/85, 2/23/85, 3/7/85, 3/29/85, 4/16/85.
*/
double cosh
(
double x /* value to compute the hyperbolic cosine of */
)
{
static double half=1.0/2.0,one=1.0, small=1.0E-18; /* fl(1+small)==1 */
double scalb(),copysign(),exp(),exp__E(),t;
#if !defined(vax)&&!defined(tahoe)
if(x!=x) return(x); /* x is NaN */
#endif /* !defined(vax)&&!defined(tahoe) */
if((x=copysign(x,one)) <= 22)
if(x<0.3465)
if(x<small) return(one+x);
else {t=x+exp__E(x,0.0);x=t+t; return(one+t*t/(2.0+x)); }
else /* for x lies in [0.3465,22] */
{ t=exp(x); return((t+one/t)*half); }
if( lnovfl <= x && x <= (lnovfl+0.7))
/* for x lies in [lnovfl, lnovfl+ln2], decrease x by ln(2^(max+1))
* and return 2^max*exp(x) to avoid unnecessary overflow
*/
return(scalb(exp((x-mln2hi)-mln2lo), max));
else
return(exp(x)*half); /* for large x, cosh(x)=exp(x)/2 */
}