/* pow.c - math routines */ /* Copyright 1992-1993 Wind River Systems, Inc. */ /* modification history -------------------- 01e,05feb93,jdi doc changes based on kdl review. 01d,02dec92,jdi doc tweaks. 01c,28oct92,jdi documentation cleanup. 01b,20sep92,smb documentation additions 01a,08jul92,smb documentation. */ /* DESCRIPTION * Copyright (c) 1985 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms are permitted * provided that the above copyright notice and this paragraph are * duplicated in all such forms and that any documentation, * advertising materials, and other materials related to such * distribution and use acknowledge that the software was developed * by the University of California, Berkeley. The name of the * University may not be used to endorse or promote products derived * from this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. * * All recipients should regard themselves as participants in an ongoing * research project and hence should feel obligated to report their * experiences (good or bad) with these elementary function codes, using * the sendbug(8) program, to the authors. * SEE ALSO: American National Standard X3.159-1989 NOMANUAL */ #include "vxWorks.h" #include "math.h" #include "private/mathP.h" #if defined(vax)||defined(tahoe) /* VAX D format */ #include extern double infnan(); #ifdef vax #define _0x(A,B) 0x/**/A/**/B #else /* vax */ #define _0x(A,B) 0x/**/B/**/A #endif /* vax */ /* static double */ /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */ /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */ /* invln2 = 1.4426950408889634148E0 , Hex 2^ 1 * .B8AA3B295C17F1 */ /* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */ static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)}; static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)}; static long invln2x[] = { _0x(aa3b,40b8), _0x(17f1,295c)}; static long sqrt2x[] = { _0x(04f3,40b5), _0x(de65,33f9)}; #define ln2hi (*(double*)ln2hix) #define ln2lo (*(double*)ln2lox) #define invln2 (*(double*)invln2x) #define sqrt2 (*(double*)sqrt2x) #else /* defined(vax)||defined(tahoe) */ static double ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */ invln2 = 1.4426950408889633870E0 , /*Hex 2^ 0 * 1.71547652B82FE */ sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */ #endif /* defined(vax)||defined(tahoe) */ static double zero=0.0, half=1.0/2.0, one=1.0, two=2.0, negone= -1.0; /******************************************************************************* * * pow - compute the value of a number raised to a specified power (ANSI) * * This routine returns to the power of in * double precision (IEEE double, 53 bits). * * A domain error occurs if is negative and is not an integral value. * A domain error occurs if the result cannot be represented when is zero * and is less than or equal to zero. A range error may occur. * * INTERNAL: * Method: * (1) Compute and return log(x) in three pieces: * * log(x) = n*ln2 + hi + lo * * where is an integer. * * (2) Perform y*log(x) by simulating multi-precision arithmetic and * return the answer in three pieces: * * y*log(x) = m*ln2 + hi + lo * * where is an integer. * * (3) Return: * * x**y = exp(y*log(x)) = 2^m * ( exp(hi+lo) ) * * INCLUDE FILES: math.h * * RETURNS: The double-precision value of to the power of . * * Special cases: * .TS * tab(|); * l0 c0 l. * (anything) ** 0 | is | 1 * (anything) ** 1 | is | itself * (anything) ** NaN | is | NaN * NaN ** (anything except 0) | is | NaN * +-(anything > 1) ** +INF | is | +INF * +-(anything > 1) ** -INF | is | +0 * +-(anything < 1) ** +INF | is | +0 * +-(anything < 1) ** -INF | is | +INF * +-1 ** +-INF | is | NaN, signal INVALID * +0 ** +(anything non-0, NaN) | is | +0 * -0 ** +(anything non-0, NaN, odd int) | is | +0 * +0 ** -(anything non-0, NaN) | is | +INF, signal DIV-BY-ZERO * -0 ** -(anything non-0, NaN, odd int) | is | +INF with signal * -0 ** (odd integer) | = | -(+0 ** (odd integer)) * +INF ** +(anything except 0, NaN) | is | +INF * +INF ** -(anything except 0, NaN) | is | +0 * -INF ** (odd integer) | = | -(+INF ** (odd integer)) * -INF ** (even integer) | = | (+INF ** (even integer)) * -INF ** -(any non-integer, NaN) | is | NaN with signal * -(x=anything) ** (k=integer) | is | (-1)**k * (x ** k) * -(anything except 0) ** (non-integer) | is | NaN with signal * .TE * * SEE ALSO: mathALib * * INTERNAL: * Coded in C by K.C. Ng, 1/8/85; * Revised by K.C. Ng on 7/10/85. */ double pow ( double x, /* operand */ double y /* exponent */ ) { double drem(),pow_p(),copysign(),t; int finite(); if (y==zero) return(one); else if(y==one #if !defined(vax)&&!defined(tahoe) ||x!=x #endif /* !defined(vax)&&!defined(tahoe) */ ) return( x ); /* if x is NaN or y=1 */ #if !defined(vax)&&!defined(tahoe) else if(y!=y) return( y ); /* if y is NaN */ #endif /* !defined(vax)&&!defined(tahoe) */ else if(!finite(y)) /* if y is INF */ if((t=copysign(x,one))==one) return(zero/zero); else if(t>one) return((y>zero)?y:zero); else return((yzero)?-x:one/(-x)); else { /* return NaN */ #if defined(vax)||defined(tahoe) return (infnan(EDOM)); /* NaN */ #else /* defined(vax)||defined(tahoe) */ return(zero/zero); #endif /* defined(vax)||defined(tahoe) */ } } /**************************************************************************** * * pow_p - * * pow_p(x,y) return x**y for x with sign=1 and finite y * * * RETURN: * NOMANUAL */ double pow_p(x,y) double x,y; { double logb(),scalb(),copysign(),log__L(),exp__E(); double c,s,t,z,tx,ty; #ifdef tahoe double tahoe_tmp; #endif /* tahoe */ float sx,sy; long k=0; int n,m; if(x==zero||!finite(x)) { /* if x is +INF or +0 */ #if defined(vax)||defined(tahoe) return((y>zero)?x:infnan(ERANGE)); /* if yzero)?x:one/x); #endif /* defined(vax)||defined(tahoe) */ } if(x==1.0) return(x); /* if x=1.0, return 1 since y is finite */ /* reduce x to z in [sqrt(1/2)-1, sqrt(2)-1] */ z=scalb(x,-(n=logb(x))); #if !defined(vax)&&!defined(tahoe) /* IEEE double; subnormal number */ if(n <= -1022) {n += (m=logb(z)); z=scalb(z,-m);} #endif /* !defined(vax)&&!defined(tahoe) */ if(z >= sqrt2 ) {n += 1; z *= half;} z -= one ; /* log(x) = nlog2+log(1+z) ~ nlog2 + t + tx */ s=z/(two+z); c=z*z*half; tx=s*(c+log__L(s*s)); t= z-(c-tx); tx += (z-t)-c; /* if y*log(x) is neither too big nor too small */ if((s=logb(y)+logb(n+t)) < 12.0) if(s>-60.0) { /* compute y*log(x) ~ mlog2 + t + c */ s=y*(n+invln2*t); m=s+copysign(half,s); /* m := nint(y*log(x)) */ k=y; if((double)k==y) { /* if y is an integer */ k = m-k*n; sx=t; tx+=(t-sx); } else { /* if y is not an integer */ k =m; tx+=n*ln2lo; sx=(c=n*ln2hi)+t; tx+=(c-sx)+t; } /* end of checking whether k==y */ sy=y; ty=y-sy; /* y ~ sy + ty */ #ifdef tahoe s = (tahoe_tmp = sx)*sy-k*ln2hi; #else /* tahoe */ s=(double)sx*sy-k*ln2hi; /* (sy+ty)*(sx+tx)-kln2 */ #endif /* tahoe */ z=(tx*ty-k*ln2lo); tx=tx*sy; ty=sx*ty; t=ty+z; t+=tx; t+=s; c= -((((t-s)-tx)-ty)-z); /* return exp(y*log(x)) */ t += exp__E(t,c); return(scalb(one+t,m)); } /* end of if log(y*log(x)) > -60.0 */ else /* exp(+- tiny) = 1 with inexact flag */ {ln2hi+ln2lo; return(one);} else if(copysign(one,y)*(n+invln2*t)