Files
rtems/cpukit/libmisc/stackchk/check.c
Sebastian Huber 511dc4b2be Rework initialization and interrupt stack support
Statically initialize the interrupt stack area
(_Configuration_Interrupt_stack_area_begin,
_Configuration_Interrupt_stack_area_end, and
_Configuration_Interrupt_stack_size) via <rtems/confdefs.h>.  Place the
interrupt stack area in a special section ".rtemsstack.interrupt".  Let
BSPs define the optimal placement of this section in their linker
command files (e.g. in a fast on-chip memory).

This change makes makes the CPU_HAS_SOFTWARE_INTERRUPT_STACK and
CPU_HAS_HARDWARE_INTERRUPT_STACK CPU port defines superfluous, since the
low level initialization code has all information available via global
symbols.

This change makes the CPU_ALLOCATE_INTERRUPT_STACK CPU port define
superfluous, since the interrupt stacks are allocated by confdefs.h for
all architectures.  There is no need for BSP-specific linker command
file magic (except the section placement), see previous ARM linker
command file as a bad example.

Remove _CPU_Install_interrupt_stack().  Initialize the hardware
interrupt stack in _CPU_Initialize() if necessary (e.g.
m68k_install_interrupt_stack()).

The optional _CPU_Interrupt_stack_setup() is still useful to customize
the registration of the interrupt stack area in the per-CPU information.

The initialization stack can reuse the interrupt stack, since

  * interrupts are disabled during the sequential system initialization,
    and

  * the boot_card() function does not return.

This stack resuse saves memory.

Changes per architecture:

arm:

  * Mostly replace the linker symbol based configuration of stacks with
    the standard <rtems/confdefs.h> configuration via
    CONFIGURE_INTERRUPT_STACK_SIZE.  The size of the FIQ, ABT and UND
    mode stack is still defined via linker symbols.  These modes are
    rarely used in applications and the default values provided by the
    BSP should be sufficient in most cases.

  * Remove the bsp_processor_count linker symbol hack used for the SMP
    support. This is possible since the interrupt stack area is now
    allocated by the linker and not allocated from the heap.  This makes
    some configure.ac stuff obsolete.  Remove the now superfluous BSP
    variants altcycv_devkit_smp and realview_pbx_a9_qemu_smp.

bfin:

  * Remove unused magic linker command file allocation of initialization
    stack.  Maybe a previous linker command file copy and paste problem?
    In the start.S the initialization stack is set to a hard coded value.

lm32, m32c, mips, nios2, riscv, sh, v850:

  * Remove magic linker command file allocation of initialization stack.
    Reuse interrupt stack for initialization stack.

m68k:

  * Remove magic linker command file allocation of initialization stack.
    Reuse interrupt stack for initialization stack.

powerpc:

  * Remove magic linker command file allocation of initialization stack.
    Reuse interrupt stack for initialization stack.

  * Used dedicated memory region (REGION_RTEMSSTACK) for the interrupt
    stack on BSPs using the shared linkcmds.base (replacement for
    REGION_RWEXTRA).

sparc:

  * Remove the hard coded initialization stack.  Use the interrupt stack
    for the initialization stack on the boot processor.  This saves
    16KiB of RAM.

Update #3459.
2018-06-27 08:58:16 +02:00

468 lines
11 KiB
C

/**
* @file
*
* @brief Stack Overflow Check User Extension Set
* @ingroup libmisc_stackchk Stack Checker Mechanism
*
* NOTE: This extension set automatically determines at
* initialization time whether the stack for this
* CPU grows up or down and installs the correct
* extension routines for that direction.
*/
/*
* COPYRIGHT (c) 1989-2010.
* On-Line Applications Research Corporation (OAR).
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.org/license/LICENSE.
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <rtems.h>
#include <inttypes.h>
#include <string.h>
#include <stdlib.h>
#include <rtems/bspIo.h>
#include <rtems/printer.h>
#include <rtems/stackchk.h>
#include <rtems/score/percpu.h>
#include <rtems/score/threadimpl.h>
/*
* This structure is used to fill in and compare the "end of stack"
* marker pattern.
* pattern area must be a multiple of 4 words.
*/
#if !defined(CPU_STACK_CHECK_PATTERN_INITIALIZER)
#define CPU_STACK_CHECK_PATTERN_INITIALIZER \
{ \
0xFEEDF00D, 0x0BAD0D06, /* FEED FOOD to BAD DOG */ \
0xDEADF00D, 0x600D0D06 /* DEAD FOOD but GOOD DOG */ \
}
#endif
/*
* The pattern used to fill the entire stack.
*/
#define BYTE_PATTERN 0xA5
#define U32_PATTERN 0xA5A5A5A5
/*
* Variable to indicate when the stack checker has been initialized.
*/
static bool Stack_check_Initialized;
/*
* The "magic pattern" used to mark the end of the stack.
*/
static const uint32_t Stack_check_Pattern[] =
CPU_STACK_CHECK_PATTERN_INITIALIZER;
#define PATTERN_SIZE_BYTES sizeof(Stack_check_Pattern)
#define PATTERN_SIZE_WORDS RTEMS_ARRAY_SIZE(Stack_check_Pattern)
/*
* Helper function to report if the actual stack pointer is in range.
*
* NOTE: This uses a GCC specific method.
*/
static inline bool Stack_check_Frame_pointer_in_range(
const Thread_Control *the_thread
)
{
#if defined(__GNUC__)
void *sp = __builtin_frame_address(0);
const Stack_Control *the_stack = &the_thread->Start.Initial_stack;
if ( sp < the_stack->area ) {
return false;
}
if ( sp > (the_stack->area + the_stack->size) ) {
return false;
}
#else
#error "How do I check stack bounds on a non-GNU compiler?"
#endif
return true;
}
/*
* Where the pattern goes in the stack area is dependent upon
* whether the stack grow to the high or low area of the memory.
*/
#if (CPU_STACK_GROWS_UP == TRUE)
#define Stack_check_Get_pattern( _the_stack ) \
((char *)(_the_stack)->area + \
(_the_stack)->size - PATTERN_SIZE_BYTES )
#define Stack_check_Calculate_used( _low, _size, _high_water ) \
((char *)(_high_water) - (char *)(_low))
#define Stack_check_usable_stack_start(_the_stack) \
((_the_stack)->area)
#else
/*
* We need this magic offset because during a task delete the task stack will
* be freed before we enter the task switch extension which checks the stack.
* The task stack free operation will write the next and previous pointers
* for the free list into this area.
*/
#define Stack_check_Get_pattern( _the_stack ) \
((char *)(_the_stack)->area + sizeof(Heap_Block) - HEAP_BLOCK_HEADER_SIZE)
#define Stack_check_Calculate_used( _low, _size, _high_water) \
( ((char *)(_low) + (_size)) - (char *)(_high_water) )
#define Stack_check_usable_stack_start(_the_stack) \
((char *)(_the_stack)->area + PATTERN_SIZE_BYTES)
#endif
/*
* The assumption is that if the pattern gets overwritten, the task
* is too close. This defines the usable stack memory.
*/
#define Stack_check_usable_stack_size(_the_stack) \
((_the_stack)->size - PATTERN_SIZE_BYTES)
#if defined(RTEMS_SMP)
static Stack_Control Stack_check_Interrupt_stack[ CPU_MAXIMUM_PROCESSORS ];
#else
static Stack_Control Stack_check_Interrupt_stack[ 1 ];
#endif
/*
* Fill an entire stack area with BYTE_PATTERN. This will be used
* to check for amount of actual stack used.
*/
#define Stack_check_Dope_stack(_stack) \
memset((_stack)->area, BYTE_PATTERN, (_stack)->size)
static bool Stack_check_Is_pattern_valid(const Thread_Control *the_thread)
{
return memcmp(
Stack_check_Get_pattern(&the_thread->Start.Initial_stack),
Stack_check_Pattern,
PATTERN_SIZE_BYTES
) == 0;
}
/*
* rtems_stack_checker_create_extension
*/
bool rtems_stack_checker_create_extension(
Thread_Control *running RTEMS_UNUSED,
Thread_Control *the_thread
)
{
Stack_check_Initialized = true;
Stack_check_Dope_stack(&the_thread->Start.Initial_stack);
memcpy(
Stack_check_Get_pattern(&the_thread->Start.Initial_stack),
Stack_check_Pattern,
PATTERN_SIZE_BYTES
);
return true;
}
void rtems_stack_checker_begin_extension( Thread_Control *executing )
{
Per_CPU_Control *cpu_self;
uint32_t cpu_self_index;
Stack_Control *stack;
/*
* If appropriate, set up the interrupt stack of the current processor for
* high water testing also. This must be done after multi-threading started,
* since the initialization stacks may reuse the interrupt stacks. Disable
* thread dispatching in SMP configurations to prevent thread migration.
* Writing to the interrupt stack is only safe if done from the corresponding
* processor in thread context.
*/
#if defined(RTEMS_SMP)
cpu_self = _Thread_Dispatch_disable();
#else
cpu_self = _Per_CPU_Get();
#endif
cpu_self_index = _Per_CPU_Get_index( cpu_self );
stack = &Stack_check_Interrupt_stack[ cpu_self_index ];
if ( stack->area == NULL ) {
stack->area = cpu_self->interrupt_stack_low;
stack->size = (size_t) ( (char *) cpu_self->interrupt_stack_high -
(char *) cpu_self->interrupt_stack_low );
Stack_check_Dope_stack( stack );
}
#if defined(RTEMS_SMP)
_Thread_Dispatch_enable( cpu_self );
#endif
}
/*
* Stack_check_report_blown_task
*
* Report a blown stack. Needs to be a separate routine
* so that interrupt handlers can use this too.
*
* NOTE: The system is in a questionable state... we may not get
* the following message out.
*/
static void Stack_check_report_blown_task(
const Thread_Control *running,
bool pattern_ok
)
{
const Stack_Control *stack = &running->Start.Initial_stack;
void *pattern_area = Stack_check_Get_pattern(stack);
char name[32];
printk("BLOWN STACK!!!\n");
printk("task control block: 0x%08" PRIxPTR "\n", (intptr_t) running);
printk("task ID: 0x%08lx\n", (unsigned long) running->Object.id);
printk(
"task name: 0x%08" PRIx32 "\n",
running->Object.name.name_u32
);
_Thread_Get_name(running, name, sizeof(name));
printk("task name string: %s\n", name);
printk(
"task stack area (%lu Bytes): 0x%08" PRIxPTR " .. 0x%08" PRIxPTR "\n",
(unsigned long) stack->size,
(intptr_t) stack->area,
(intptr_t) ((char *) stack->area + stack->size)
);
if (!pattern_ok) {
printk(
"damaged pattern area (%lu Bytes): 0x%08" PRIxPTR " .. 0x%08" PRIxPTR "\n",
(unsigned long) PATTERN_SIZE_BYTES,
(intptr_t) pattern_area,
(intptr_t) (pattern_area + PATTERN_SIZE_BYTES)
);
}
#if defined(RTEMS_MULTIPROCESSING)
if (rtems_configuration_get_user_multiprocessing_table()) {
printk(
"node: 0x%08" PRIxPTR "\n",
(intptr_t) rtems_configuration_get_user_multiprocessing_table()->node
);
}
#endif
rtems_fatal(
RTEMS_FATAL_SOURCE_STACK_CHECKER,
running->Object.name.name_u32
);
}
/*
* rtems_stack_checker_switch_extension
*/
void rtems_stack_checker_switch_extension(
Thread_Control *running RTEMS_UNUSED,
Thread_Control *heir RTEMS_UNUSED
)
{
bool sp_ok;
bool pattern_ok;
/*
* Check for an out of bounds stack pointer or an overwrite
*/
sp_ok = Stack_check_Frame_pointer_in_range( running );
pattern_ok = Stack_check_Is_pattern_valid( running );
if ( !sp_ok || !pattern_ok ) {
Stack_check_report_blown_task( running, pattern_ok );
}
}
/*
* Check if blown
*/
bool rtems_stack_checker_is_blown( void )
{
rtems_stack_checker_switch_extension( _Thread_Get_executing(), NULL );
/*
* The Stack Pointer and the Pattern Area are OK so return false.
*/
return false;
}
/*
* Stack_check_find_high_water_mark
*/
static inline void *Stack_check_find_high_water_mark(
const void *s,
size_t n
)
{
const uint32_t *base, *ebase;
uint32_t length;
base = s;
length = n/4;
#if ( CPU_STACK_GROWS_UP == TRUE )
/*
* start at higher memory and find first word that does not
* match pattern
*/
base += length - 1;
for (ebase = s; base > ebase; base--)
if (*base != U32_PATTERN)
return (void *) base;
#else
/*
* start at lower memory and find first word that does not
* match pattern
*/
base += PATTERN_SIZE_WORDS;
for (ebase = base + length; base < ebase; base++)
if (*base != U32_PATTERN)
return (void *) base;
#endif
return (void *)0;
}
static bool Stack_check_Dump_stack_usage(
const Stack_Control *stack,
const void *current,
const char *name,
uint32_t id,
const rtems_printer *printer
)
{
uint32_t size;
uint32_t used;
void *low;
void *high_water_mark;
low = Stack_check_usable_stack_start(stack);
size = Stack_check_usable_stack_size(stack);
high_water_mark = Stack_check_find_high_water_mark(low, size);
if ( high_water_mark )
used = Stack_check_Calculate_used( low, size, high_water_mark );
else
used = 0;
rtems_printf(
printer,
"0x%08" PRIx32 " %-21s 0x%08" PRIxPTR " 0x%08" PRIxPTR " 0x%08" PRIxPTR " %6" PRId32 " ",
id,
name,
(uintptr_t) stack->area,
(uintptr_t) stack->area + (uintptr_t) stack->size - 1,
(uintptr_t) current,
size
);
if (Stack_check_Initialized) {
rtems_printf( printer, "%6" PRId32 "\n", used );
} else {
rtems_printf( printer, "N/A\n" );
}
return false;
}
static bool Stack_check_Dump_threads_usage(
Thread_Control *the_thread,
void *arg
)
{
char name[ 22 ];
const rtems_printer *printer;
printer = arg;
_Thread_Get_name( the_thread, name, sizeof( name ) );
Stack_check_Dump_stack_usage(
&the_thread->Start.Initial_stack,
(void *) _CPU_Context_Get_SP( &the_thread->Registers ),
name,
the_thread->Object.id,
printer
);
return false;
}
static void Stack_check_Dump_interrupt_stack_usage(
const Stack_Control *stack,
uint32_t id,
const rtems_printer *printer
)
{
Stack_check_Dump_stack_usage(
stack,
NULL,
"Interrupt Stack",
id,
printer
);
}
/*
* rtems_stack_checker_report_usage
*/
void rtems_stack_checker_report_usage_with_plugin(
const rtems_printer* printer
)
{
uint32_t cpu_max;
uint32_t cpu_index;
rtems_printf(
printer,
" STACK USAGE BY THREAD\n"
"ID NAME LOW HIGH CURRENT AVAIL USED\n"
);
/* iterate over all threads and dump the usage */
rtems_task_iterate(
Stack_check_Dump_threads_usage,
RTEMS_DECONST( rtems_printer *, printer )
);
cpu_max = rtems_get_processor_count();
for ( cpu_index = 0; cpu_index < cpu_max; ++cpu_index ) {
Stack_check_Dump_interrupt_stack_usage(
&Stack_check_Interrupt_stack[ cpu_index ],
cpu_index,
printer
);
}
}
void rtems_stack_checker_report_usage( void )
{
rtems_printer printer;
rtems_print_printer_printk(&printer);
rtems_stack_checker_report_usage_with_plugin( &printer );
}