forked from Imagelibrary/rtems
The T_now_tick() is a fall back time measurement using the CPU counter in case no Clock Driver is configured. Some CPU counter may overflow during the test execution. Accumulate the elapsed time to reduce the chance of CPU counter overflows.
284 lines
6.1 KiB
C
284 lines
6.1 KiB
C
/*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*
|
|
* Copyright (C) 2018 embedded brains GmbH
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#undef __STRICT_ANSI__
|
|
|
|
#include <rtems/test.h>
|
|
|
|
#include <inttypes.h>
|
|
#include <stdatomic.h>
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
|
|
#ifdef __rtems__
|
|
#include <rtems.h>
|
|
#include <rtems/counter.h>
|
|
#include <rtems/score/timecounter.h>
|
|
#endif
|
|
|
|
#ifdef __rtems__
|
|
static T_time
|
|
round_sbt(T_time time)
|
|
{
|
|
/*
|
|
* One 1ns consists of 4.30 fractions of 1/2**32. Round up close to
|
|
* the middle. This turns the conversion mapping of struct timespec to
|
|
* sbintime_t and back into the identity function.
|
|
*/
|
|
return time + 2;
|
|
}
|
|
#endif
|
|
|
|
const char *
|
|
T_time_to_string_ns(T_time time, T_time_string string)
|
|
{
|
|
uint32_t s;
|
|
uint32_t f;
|
|
|
|
#ifdef __rtems__
|
|
time = round_sbt(time);
|
|
s = (uint32_t)(time >> 32);
|
|
f = (uint32_t)(((uint64_t)1000000000 * (uint32_t)time) >> 32);
|
|
#else
|
|
s = (uint32_t)(time / 1000000000);
|
|
f = (uint32_t)(time % 1000000000);
|
|
#endif
|
|
|
|
(void)T_snprintf(string, sizeof(T_time_string),
|
|
"%" PRIu32 ".%09" PRIu32, s, f);
|
|
return string;
|
|
}
|
|
|
|
const char *
|
|
T_time_to_string_us(T_time time, T_time_string string)
|
|
{
|
|
uint32_t s;
|
|
uint32_t f;
|
|
|
|
#ifdef __rtems__
|
|
time = round_sbt(time);
|
|
s = (uint32_t)(time >> 32);
|
|
f = (uint32_t)(((uint64_t)1000000 * (uint32_t)time) >> 32);
|
|
#else
|
|
time /= 1000;
|
|
s = (uint32_t)(time / 1000000);
|
|
f = (uint32_t)(time % 1000000);
|
|
#endif
|
|
|
|
(void)T_snprintf(string, sizeof(T_time_string),
|
|
"%" PRIu32 ".%06" PRIu32, s, f);
|
|
return string;
|
|
}
|
|
|
|
const char *
|
|
T_time_to_string_ms(T_time time, T_time_string string)
|
|
{
|
|
uint32_t s;
|
|
uint32_t f;
|
|
|
|
#ifdef __rtems__
|
|
time = round_sbt(time);
|
|
s = (uint32_t)(time >> 32);
|
|
f = (uint32_t)(((uint64_t)1000 * (uint32_t)time) >> 32);
|
|
#else
|
|
time /= 1000000;
|
|
s = (uint32_t)(time / 1000);
|
|
f = (uint32_t)(time % 1000);
|
|
#endif
|
|
|
|
(void)T_snprintf(string, sizeof(T_time_string),
|
|
"%" PRIu32 ".%03" PRIu32, s, f);
|
|
return string;
|
|
}
|
|
|
|
const char *
|
|
T_time_to_string_s(T_time time, T_time_string string)
|
|
{
|
|
uint32_t s;
|
|
|
|
#ifdef __rtems__
|
|
time = round_sbt(time);
|
|
s = (uint32_t)(time >> 32);
|
|
#else
|
|
s = (uint32_t)(time / 1000000000);
|
|
#endif
|
|
|
|
(void)T_snprintf(string, sizeof(T_time_string), "%" PRIu32, s);
|
|
return string;
|
|
}
|
|
|
|
const char *
|
|
T_ticks_to_string_ns(T_ticks ticks, T_time_string string)
|
|
{
|
|
return T_time_to_string_ns(T_ticks_to_time(ticks), string);
|
|
}
|
|
|
|
const char *
|
|
T_ticks_to_string_us(T_ticks ticks, T_time_string string)
|
|
{
|
|
return T_time_to_string_us(T_ticks_to_time(ticks), string);
|
|
}
|
|
|
|
const char *
|
|
T_ticks_to_string_ms(T_ticks ticks, T_time_string string)
|
|
{
|
|
return T_time_to_string_ms(T_ticks_to_time(ticks), string);
|
|
}
|
|
|
|
const char *
|
|
T_ticks_to_string_s(T_ticks ticks, T_time_string string)
|
|
{
|
|
return T_time_to_string_s(T_ticks_to_time(ticks), string);
|
|
}
|
|
|
|
uint64_t
|
|
T_ticks_to_time(T_ticks ticks)
|
|
{
|
|
#ifdef __rtems__
|
|
return (uint64_t)rtems_counter_ticks_to_sbintime(ticks);
|
|
#else
|
|
return ticks;
|
|
#endif
|
|
}
|
|
|
|
T_ticks
|
|
T_time_to_ticks(T_time time)
|
|
{
|
|
#ifdef __rtems__
|
|
return rtems_counter_sbintime_to_ticks((sbintime_t)time);
|
|
#else
|
|
return time;
|
|
#endif
|
|
}
|
|
|
|
T_time
|
|
T_seconds_and_nanoseconds_to_time(uint32_t s, uint32_t ns)
|
|
{
|
|
#ifdef __rtems__
|
|
struct timespec ts;
|
|
|
|
ts.tv_sec = s;
|
|
ts.tv_nsec = (long)ns;
|
|
return (T_time)tstosbt(ts);
|
|
#else
|
|
return (T_time)s * (T_time)1000000000 + (T_time)ns;
|
|
#endif
|
|
}
|
|
|
|
void
|
|
T_time_to_seconds_and_nanoseconds(T_time time, uint32_t *s, uint32_t *ns)
|
|
{
|
|
#ifdef __rtems__
|
|
time = round_sbt(time);
|
|
*s = (uint32_t)(time >> 32);
|
|
*ns = (uint32_t)(((uint64_t)1000000000 * (uint32_t)time) >> 32);
|
|
#else
|
|
*s = (uint32_t)(time / 1000000000);
|
|
*ns = (uint32_t)(time % 1000000000);
|
|
#endif
|
|
}
|
|
|
|
T_time
|
|
T_now_clock(void)
|
|
{
|
|
#ifndef __rtems__
|
|
struct timespec tp;
|
|
|
|
(void)clock_gettime(CLOCK_MONOTONIC, &tp);
|
|
return (T_time)tp.tv_sec * (T_time)1000000000 + (T_time)tp.tv_nsec;
|
|
#else /* __rtems__ */
|
|
return (T_time)_Timecounter_Sbinuptime();
|
|
#endif /* __rtems__ */
|
|
}
|
|
|
|
#ifndef __rtems__
|
|
T_ticks
|
|
T_tick(void)
|
|
{
|
|
return T_now();
|
|
}
|
|
#endif
|
|
|
|
static atomic_uint T_dummy_time;
|
|
|
|
T_time
|
|
T_now_dummy(void)
|
|
{
|
|
return atomic_fetch_add_explicit(&T_dummy_time, 1,
|
|
memory_order_relaxed);
|
|
}
|
|
|
|
#ifndef __rtems__
|
|
T_time
|
|
T_now_tick(void)
|
|
{
|
|
return T_ticks_to_time(T_tick());
|
|
}
|
|
#else /* __rtems__ */
|
|
#if defined(RTEMS_SMP)
|
|
static rtems_interrupt_lock T_time_lock =
|
|
RTEMS_INTERRUPT_LOCK_INITIALIZER("Test Time Lock");
|
|
#endif
|
|
|
|
static T_ticks T_tick_last;
|
|
|
|
static T_time T_tick_time;
|
|
|
|
static bool T_tick_initialized;
|
|
|
|
T_time
|
|
T_now_tick(void)
|
|
{
|
|
rtems_interrupt_lock_context lock_context;
|
|
T_ticks ticks;
|
|
T_time now;
|
|
|
|
ticks = T_tick();
|
|
|
|
rtems_interrupt_lock_acquire(&T_time_lock, &lock_context);
|
|
|
|
if (T_tick_initialized) {
|
|
T_ticks last;
|
|
|
|
last = T_tick_last;
|
|
T_tick_last = ticks;
|
|
|
|
now = T_tick_time;
|
|
now += T_ticks_to_time(ticks - last);
|
|
T_tick_time = now;
|
|
} else {
|
|
T_tick_initialized = true;
|
|
T_tick_last = ticks;
|
|
now = 0;
|
|
}
|
|
|
|
rtems_interrupt_lock_release(&T_time_lock, &lock_context);
|
|
|
|
return now;
|
|
}
|
|
#endif /* __rtems__ */
|