Files
rtems/cpukit/libtest/t-test-time.c
Sebastian Huber a6636d9957 libtest: Improve T_now_tick()
The T_now_tick() is a fall back time measurement using the CPU counter
in case no Clock Driver is configured.  Some CPU counter may overflow
during the test execution.  Accumulate the elapsed time to reduce the
chance of CPU counter overflows.
2021-09-21 07:39:09 +02:00

284 lines
6.1 KiB
C

/*
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (C) 2018 embedded brains GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#undef __STRICT_ANSI__
#include <rtems/test.h>
#include <inttypes.h>
#include <stdatomic.h>
#include <stdio.h>
#include <time.h>
#ifdef __rtems__
#include <rtems.h>
#include <rtems/counter.h>
#include <rtems/score/timecounter.h>
#endif
#ifdef __rtems__
static T_time
round_sbt(T_time time)
{
/*
* One 1ns consists of 4.30 fractions of 1/2**32. Round up close to
* the middle. This turns the conversion mapping of struct timespec to
* sbintime_t and back into the identity function.
*/
return time + 2;
}
#endif
const char *
T_time_to_string_ns(T_time time, T_time_string string)
{
uint32_t s;
uint32_t f;
#ifdef __rtems__
time = round_sbt(time);
s = (uint32_t)(time >> 32);
f = (uint32_t)(((uint64_t)1000000000 * (uint32_t)time) >> 32);
#else
s = (uint32_t)(time / 1000000000);
f = (uint32_t)(time % 1000000000);
#endif
(void)T_snprintf(string, sizeof(T_time_string),
"%" PRIu32 ".%09" PRIu32, s, f);
return string;
}
const char *
T_time_to_string_us(T_time time, T_time_string string)
{
uint32_t s;
uint32_t f;
#ifdef __rtems__
time = round_sbt(time);
s = (uint32_t)(time >> 32);
f = (uint32_t)(((uint64_t)1000000 * (uint32_t)time) >> 32);
#else
time /= 1000;
s = (uint32_t)(time / 1000000);
f = (uint32_t)(time % 1000000);
#endif
(void)T_snprintf(string, sizeof(T_time_string),
"%" PRIu32 ".%06" PRIu32, s, f);
return string;
}
const char *
T_time_to_string_ms(T_time time, T_time_string string)
{
uint32_t s;
uint32_t f;
#ifdef __rtems__
time = round_sbt(time);
s = (uint32_t)(time >> 32);
f = (uint32_t)(((uint64_t)1000 * (uint32_t)time) >> 32);
#else
time /= 1000000;
s = (uint32_t)(time / 1000);
f = (uint32_t)(time % 1000);
#endif
(void)T_snprintf(string, sizeof(T_time_string),
"%" PRIu32 ".%03" PRIu32, s, f);
return string;
}
const char *
T_time_to_string_s(T_time time, T_time_string string)
{
uint32_t s;
#ifdef __rtems__
time = round_sbt(time);
s = (uint32_t)(time >> 32);
#else
s = (uint32_t)(time / 1000000000);
#endif
(void)T_snprintf(string, sizeof(T_time_string), "%" PRIu32, s);
return string;
}
const char *
T_ticks_to_string_ns(T_ticks ticks, T_time_string string)
{
return T_time_to_string_ns(T_ticks_to_time(ticks), string);
}
const char *
T_ticks_to_string_us(T_ticks ticks, T_time_string string)
{
return T_time_to_string_us(T_ticks_to_time(ticks), string);
}
const char *
T_ticks_to_string_ms(T_ticks ticks, T_time_string string)
{
return T_time_to_string_ms(T_ticks_to_time(ticks), string);
}
const char *
T_ticks_to_string_s(T_ticks ticks, T_time_string string)
{
return T_time_to_string_s(T_ticks_to_time(ticks), string);
}
uint64_t
T_ticks_to_time(T_ticks ticks)
{
#ifdef __rtems__
return (uint64_t)rtems_counter_ticks_to_sbintime(ticks);
#else
return ticks;
#endif
}
T_ticks
T_time_to_ticks(T_time time)
{
#ifdef __rtems__
return rtems_counter_sbintime_to_ticks((sbintime_t)time);
#else
return time;
#endif
}
T_time
T_seconds_and_nanoseconds_to_time(uint32_t s, uint32_t ns)
{
#ifdef __rtems__
struct timespec ts;
ts.tv_sec = s;
ts.tv_nsec = (long)ns;
return (T_time)tstosbt(ts);
#else
return (T_time)s * (T_time)1000000000 + (T_time)ns;
#endif
}
void
T_time_to_seconds_and_nanoseconds(T_time time, uint32_t *s, uint32_t *ns)
{
#ifdef __rtems__
time = round_sbt(time);
*s = (uint32_t)(time >> 32);
*ns = (uint32_t)(((uint64_t)1000000000 * (uint32_t)time) >> 32);
#else
*s = (uint32_t)(time / 1000000000);
*ns = (uint32_t)(time % 1000000000);
#endif
}
T_time
T_now_clock(void)
{
#ifndef __rtems__
struct timespec tp;
(void)clock_gettime(CLOCK_MONOTONIC, &tp);
return (T_time)tp.tv_sec * (T_time)1000000000 + (T_time)tp.tv_nsec;
#else /* __rtems__ */
return (T_time)_Timecounter_Sbinuptime();
#endif /* __rtems__ */
}
#ifndef __rtems__
T_ticks
T_tick(void)
{
return T_now();
}
#endif
static atomic_uint T_dummy_time;
T_time
T_now_dummy(void)
{
return atomic_fetch_add_explicit(&T_dummy_time, 1,
memory_order_relaxed);
}
#ifndef __rtems__
T_time
T_now_tick(void)
{
return T_ticks_to_time(T_tick());
}
#else /* __rtems__ */
#if defined(RTEMS_SMP)
static rtems_interrupt_lock T_time_lock =
RTEMS_INTERRUPT_LOCK_INITIALIZER("Test Time Lock");
#endif
static T_ticks T_tick_last;
static T_time T_tick_time;
static bool T_tick_initialized;
T_time
T_now_tick(void)
{
rtems_interrupt_lock_context lock_context;
T_ticks ticks;
T_time now;
ticks = T_tick();
rtems_interrupt_lock_acquire(&T_time_lock, &lock_context);
if (T_tick_initialized) {
T_ticks last;
last = T_tick_last;
T_tick_last = ticks;
now = T_tick_time;
now += T_ticks_to_time(ticks - last);
T_tick_time = now;
} else {
T_tick_initialized = true;
T_tick_last = ticks;
now = 0;
}
rtems_interrupt_lock_release(&T_time_lock, &lock_context);
return now;
}
#endif /* __rtems__ */