forked from Imagelibrary/rtems
* bootloader/pci.c: Removed the r->size=0 and r->base=0 assignement which makes too-large regions conflict with onboard hardware, replacing it with sfree which deletes the memory region from the setup code, leaving it disabled.
1362 lines
41 KiB
C
1362 lines
41 KiB
C
/*
|
|
* pci.c -- Crude pci handling for early boot.
|
|
*
|
|
* Copyright (C) 1998, 1999 Gabriel Paubert, paubert@iram.es
|
|
*
|
|
* Modified to compile in RTEMS development environment
|
|
* by Eric Valette
|
|
*
|
|
* Copyright (C) 1999 Eric Valette. valette@crf.canon.fr
|
|
*
|
|
* The license and distribution terms for this file may be
|
|
* found in found in the file LICENSE in this distribution or at
|
|
* http://www.rtems.com/license/LICENSE.
|
|
*
|
|
* $Id$
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <rtems/bspIo.h>
|
|
#include <libcpu/spr.h>
|
|
#include "bootldr.h"
|
|
#include "pci.h"
|
|
#include <libcpu/io.h>
|
|
#include <libcpu/page.h>
|
|
#include <bsp/consoleIo.h>
|
|
#include <string.h>
|
|
|
|
#include <string.h>
|
|
|
|
typedef unsigned int u32;
|
|
|
|
|
|
|
|
/*
|
|
#define DEBUG
|
|
#define PCI_DEBUG
|
|
*/
|
|
|
|
/* Used to reorganize PCI space on stupid machines which spread resources
|
|
* across a wide address space. This is bad when P2P bridges are present
|
|
* or when it limits the mappings that a resource hog like a PCI<->VME
|
|
* bridge can use.
|
|
*/
|
|
|
|
typedef struct _pci_resource {
|
|
struct _pci_resource *next;
|
|
struct pci_dev *dev;
|
|
u_long base; /* will be 64 bits on 64 bits machines */
|
|
u_long size;
|
|
u_char type; /* 1 is I/O else low order 4 bits of the memory type */
|
|
u_char reg; /* Register # in conf space header */
|
|
u_short cmd; /* Original cmd byte */
|
|
} pci_resource;
|
|
|
|
typedef struct _pci_area {
|
|
struct _pci_area *next;
|
|
u_long start;
|
|
u_long end;
|
|
struct pci_bus *bus;
|
|
u_int flags;
|
|
} pci_area;
|
|
|
|
typedef struct _pci_area_head {
|
|
pci_area *head;
|
|
u_long mask;
|
|
int high; /* To allocate from top */
|
|
} pci_area_head;
|
|
|
|
#define PCI_AREA_PREFETCHABLE 0
|
|
#define PCI_AREA_MEMORY 1
|
|
#define PCI_AREA_IO 2
|
|
|
|
struct _pci_private {
|
|
volatile u_int * config_addr;
|
|
volatile u_char * config_data;
|
|
struct pci_dev **last_dev_p;
|
|
struct pci_bus pci_root;
|
|
pci_resource *resources;
|
|
pci_area_head io, mem;
|
|
|
|
} pci_private = {
|
|
config_addr: NULL,
|
|
config_data: (volatile u_char *) 0x80800000,
|
|
last_dev_p: NULL,
|
|
resources: NULL,
|
|
io: {NULL, 0xfff, 0},
|
|
mem: {NULL, 0xfffff, 0}
|
|
};
|
|
|
|
#define pci ((struct _pci_private *)(bd->pci_private))
|
|
#define pci_root pci->pci_root
|
|
|
|
#if !defined(DEBUG)
|
|
#undef PCI_DEBUG
|
|
/*
|
|
#else
|
|
#define PCI_DEBUG
|
|
*/
|
|
#endif
|
|
|
|
#if defined(PCI_DEBUG)
|
|
static void
|
|
print_pci_resources(const char *s) {
|
|
pci_resource *p;
|
|
printk("%s", s);
|
|
for (p=pci->resources; p; p=p->next) {
|
|
/*
|
|
printk(" %p:%p %06x %08lx %08lx %d\n",
|
|
p, p->next,
|
|
(p->dev->devfn<<8)+(p->dev->bus->number<<16)
|
|
+0x10+p->reg*4,
|
|
p->base,
|
|
p->size,
|
|
p->type);
|
|
*/
|
|
|
|
printk(" %p:%p %d:%02x (%04x:%04x) %08lx %08lx %d\n",
|
|
p, p->next,
|
|
p->dev->bus->number, PCI_SLOT(p->dev->devfn),
|
|
p->dev->vendor, p->dev->device,
|
|
p->base,
|
|
p->size,
|
|
p->type);
|
|
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_pci_area(pci_area *p) {
|
|
for (; p; p=p->next) {
|
|
printk(" %p:%p %p %08lx %08lx\n",
|
|
p, p->next, p->bus, p->start, p->end);
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_pci_areas(const char *s) {
|
|
printk("%s PCI I/O areas:\n",s);
|
|
print_pci_area(pci->io.head);
|
|
printk(" PCI memory areas:\n");
|
|
print_pci_area(pci->mem.head);
|
|
}
|
|
#else
|
|
#define print_pci_areas(x)
|
|
#define print_pci_resources(x)
|
|
#endif
|
|
|
|
/* Maybe there are some devices who use a size different
|
|
* from the alignment. For now we assume both are the same.
|
|
* The blacklist might be used for other weird things in the future too,
|
|
* since weird non PCI complying devices seem to proliferate these days.
|
|
*/
|
|
|
|
struct blacklist_entry {
|
|
u_short vendor, device;
|
|
u_char reg;
|
|
u_long actual_size;
|
|
};
|
|
|
|
#define BLACKLIST(vid, did, breg, actual_size) \
|
|
{PCI_VENDOR_ID_##vid, PCI_DEVICE_ID_##vid##_##did, breg, actual_size}
|
|
|
|
static struct blacklist_entry blacklist[] = {
|
|
BLACKLIST(S3, TRIO, 0, 0x04000000),
|
|
{0xffff, 0, 0, 0}
|
|
};
|
|
|
|
/* This function filters resources and then inserts them into a list of
|
|
* configurable pci resources.
|
|
*/
|
|
|
|
#define AREA(r) \
|
|
(((r->type&PCI_BASE_ADDRESS_SPACE)==PCI_BASE_ADDRESS_SPACE_IO) ? PCI_AREA_IO :\
|
|
((r->type&PCI_BASE_ADDRESS_MEM_PREFETCH) ? PCI_AREA_PREFETCHABLE :\
|
|
PCI_AREA_MEMORY))
|
|
|
|
static int insert_before(pci_resource *e, pci_resource *t) {
|
|
if (e->dev->bus->number != t->dev->bus->number)
|
|
return e->dev->bus->number > t->dev->bus->number;
|
|
if (AREA(e) != AREA(t)) return AREA(e)<AREA(t);
|
|
return (e->size > t->size);
|
|
}
|
|
|
|
static void insert_resource(pci_resource *r) {
|
|
struct blacklist_entry *b;
|
|
pci_resource *p;
|
|
if (!r) return;
|
|
|
|
/* First fixup in case we have a blacklist entry. Note that this
|
|
* may temporarily leave a resource in an inconsistent state: with
|
|
* (base & (size-1)) !=0. This is harmless.
|
|
*/
|
|
for (b=blacklist; b->vendor!=0xffff; b++) {
|
|
if ((r->dev->vendor==b->vendor) &&
|
|
(r->dev->device==b->device) &&
|
|
(r->reg==b->reg)) {
|
|
r->size=b->actual_size;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Motorola NT firmware does not configure pci devices which are not
|
|
* required for booting, others do. For now:
|
|
* - allocated devices in the ISA range (64kB I/O, 16Mb memory)
|
|
* but non zero base registers are left as is.
|
|
* - all other registers, whether already allocated or not, are
|
|
* reallocated unless they require an inordinate amount of
|
|
* resources (>256 Mb for memory >64kB for I/O). These
|
|
* devices with too large mapping requirements are simply ignored
|
|
* and their bases are set to 0. This should disable the
|
|
* corresponding decoders according to the PCI specification.
|
|
* Many devices are buggy in this respect, however, but the
|
|
* limits have hopefully been set high enough to avoid problems.
|
|
*/
|
|
|
|
/*
|
|
** This is little ugly below. It seems that at least on the MCP750,
|
|
** the PBC has some default IO space mappings that the bsp #defines
|
|
** that read/write to PCI I/O space assume, particuarly the i8259
|
|
** manipulation code. So, if we allow the small IO spaces on PCI bus
|
|
** 0 and 1 to be remapped, the registers can shift out from under the
|
|
** #defines. This is particuarly awful, but short of redefining the
|
|
** PCI I/O primitives to be functions with base addresses read from
|
|
** the hardware, we are stuck with the kludge below. Note that
|
|
** everything is remapped on the CPCI backplane and any downstream
|
|
** hardware, its just the builtin stuff we're tiptoeing around.
|
|
**
|
|
** Gregm, 7/16/2003
|
|
**
|
|
** Gregm, changed 11/2003 so IO devices only on bus 0 zero are not
|
|
** remapped. This covers the builtin pc-like io devices- but
|
|
** properly maps IO devices on higher busses.
|
|
*/
|
|
if( r->dev->bus->number == 0 )
|
|
{
|
|
if ((r->type==PCI_BASE_ADDRESS_SPACE_IO)
|
|
? (r->base && r->base <0x10000)
|
|
: (r->base && r->base <0x1000000)) {
|
|
|
|
#ifdef PCI_DEBUG
|
|
printk("freeing region; %p:%p %d:%02x (%04x:%04x) %08lx %08lx %d\n",
|
|
r, r->next,
|
|
r->dev->bus->number, PCI_SLOT(r->dev->devfn),
|
|
r->dev->vendor, r->dev->device,
|
|
r->base,
|
|
r->size,
|
|
r->type);
|
|
#endif
|
|
sfree(r);
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
/* 2004/11/30, PR 729 fix is removing the r->size=0 and r->base=0
|
|
* assignement which makes too-large regions conflict with onboard
|
|
* hardware, replacing it with sfree which deletes the memory region
|
|
* from the setup code, leaving it disabled. */
|
|
if ((r->type==PCI_BASE_ADDRESS_SPACE_IO)
|
|
? (r->size > 0x10000)
|
|
: (r->size > 0x18000000)) {
|
|
sfree(r);
|
|
return;
|
|
}
|
|
|
|
/* Now insert into the list sorting by
|
|
* 1) decreasing bus number
|
|
* 2) space: prefetchable memory, non-prefetchable and finally I/O
|
|
* 3) decreasing size
|
|
*/
|
|
if (!pci->resources || insert_before(r, pci->resources)) {
|
|
r->next = pci->resources;
|
|
pci->resources=r;
|
|
} else {
|
|
for (p=pci->resources; p->next; p=p->next) {
|
|
if (insert_before(r, p->next)) break;
|
|
}
|
|
r->next=p->next;
|
|
p->next=r;
|
|
}
|
|
}
|
|
|
|
/* This version only works for bus 0. I don't have any P2P bridges to test
|
|
* a more sophisticated version which has therefore not been implemented.
|
|
* Prefetchable memory is not yet handled correctly either.
|
|
* And several levels of PCI bridges much less even since there must be
|
|
* allocated together to be able to setup correctly the top bridge.
|
|
*/
|
|
|
|
static u_long find_range(u_char bus, u_char type,
|
|
pci_resource **first,
|
|
pci_resource **past, u_int *flags) {
|
|
pci_resource *p;
|
|
u_long total=0;
|
|
u_int fl=0;
|
|
|
|
for (p=pci->resources; p; p=p->next)
|
|
{
|
|
if ((p->dev->bus->number == bus) &&
|
|
AREA(p)==type) break;
|
|
}
|
|
|
|
*first = p;
|
|
|
|
for (; p; p=p->next)
|
|
{
|
|
if ((p->dev->bus->number != bus) ||
|
|
AREA(p)!=type || p->size == 0) break;
|
|
total = total+p->size;
|
|
fl |= 1<<p->type;
|
|
}
|
|
|
|
*past = p;
|
|
/* This will be used later to tell whether there are any 32 bit
|
|
* devices in an area which could be mapped higher than 4Gb
|
|
* on 64 bits architectures
|
|
*/
|
|
*flags = fl;
|
|
return total;
|
|
}
|
|
|
|
static inline void init_free_area(pci_area_head *h, u_long start,
|
|
u_long end, u_int mask, int high) {
|
|
pci_area *p;
|
|
p = salloc(sizeof(pci_area));
|
|
if (!p) return;
|
|
h->head = p;
|
|
p->next = NULL;
|
|
p->start = (start+mask)&~mask;
|
|
p->end = (end-mask)|mask;
|
|
p->bus = NULL;
|
|
h->mask = mask;
|
|
h->high = high;
|
|
}
|
|
|
|
static void insert_area(pci_area_head *h, pci_area *p) {
|
|
pci_area *q = h->head;
|
|
if (!p) return;
|
|
if (q && (q->start< p->start)) {
|
|
for(;q->next && q->next->start<p->start; q = q->next);
|
|
if ((q->end >= p->start) ||
|
|
(q->next && p->end>=q->next->start)) {
|
|
sfree(p);
|
|
printk("Overlapping pci areas!\n");
|
|
return;
|
|
}
|
|
p->next = q->next;
|
|
q->next = p;
|
|
} else { /* Insert at head */
|
|
if (q && (p->end >= q->start)) {
|
|
sfree(p);
|
|
printk("Overlapping pci areas!\n");
|
|
return;
|
|
}
|
|
p->next = q;
|
|
h->head = p;
|
|
}
|
|
}
|
|
|
|
static
|
|
void remove_area(pci_area_head *h, pci_area *p)
|
|
{
|
|
pci_area *q = h->head;
|
|
|
|
if (!p || !q) return;
|
|
if (q==p)
|
|
{
|
|
h->head = q->next;
|
|
return;
|
|
}
|
|
for(;q && q->next!=p; q=q->next);
|
|
if (q) q->next=p->next;
|
|
}
|
|
|
|
static pci_area * alloc_area(pci_area_head *h, struct pci_bus *bus,
|
|
u_long required, u_long mask, u_int flags) {
|
|
pci_area *p;
|
|
pci_area *from, *split, *new;
|
|
|
|
required = (required+h->mask) & ~h->mask;
|
|
for (p=h->head, from=NULL; p; p=p->next)
|
|
{
|
|
u_long l1 = ((p->start+required+mask)&~mask)-1;
|
|
u_long l2 = ((p->start+mask)&~mask)+required-1;
|
|
/* Allocated areas point to the bus to which they pertain */
|
|
if (p->bus) continue;
|
|
if ((p->end)>=l1 || (p->end)>=l2) from=p;
|
|
if (from && !h->high) break;
|
|
}
|
|
if (!from) return NULL;
|
|
|
|
split = salloc(sizeof(pci_area));
|
|
new = salloc(sizeof(pci_area));
|
|
/* If allocation of new succeeds then allocation of split has
|
|
* also been successful (given the current mm algorithms) !
|
|
*/
|
|
if (!new) {
|
|
sfree(split);
|
|
return NULL;
|
|
}
|
|
new->bus = bus;
|
|
new->flags = flags;
|
|
/* Now allocate pci_space taking alignment into account ! */
|
|
if (h->high)
|
|
{
|
|
u_long l1 = ((from->end+1)&~mask)-required;
|
|
u_long l2 = (from->end+1-required)&~mask;
|
|
new->start = (l1>l2) ? l1 : l2;
|
|
split->end = from->end;
|
|
from->end = new->start-1;
|
|
split->start = new->start+required;
|
|
new->end = new->start+required-1;
|
|
}
|
|
else
|
|
{
|
|
u_long l1 = ((from->start+mask)&~mask)+required-1;
|
|
u_long l2 = ((from->start+required+mask)&~mask)-1;
|
|
new->end = (l1<l2) ? l1 : l2;
|
|
split->start = from->start;
|
|
from->start = new->end+1;
|
|
new->start = new->end+1-required;
|
|
split->end = new->start-1;
|
|
}
|
|
|
|
if (from->end+1 == from->start) remove_area(h, from);
|
|
if (split->end+1 != split->start)
|
|
{
|
|
split->bus = NULL;
|
|
insert_area(h, split);
|
|
}
|
|
else
|
|
{
|
|
sfree(split);
|
|
}
|
|
insert_area(h, new);
|
|
print_pci_areas("alloc_area called:\n");
|
|
return new;
|
|
}
|
|
|
|
static inline
|
|
void alloc_space(pci_area *p, pci_resource *r)
|
|
{
|
|
if (p->start & (r->size-1)) {
|
|
r->base = p->end+1-r->size;
|
|
p->end -= r->size;
|
|
} else {
|
|
r->base = p->start;
|
|
p->start += r->size;
|
|
}
|
|
}
|
|
|
|
static void reconfigure_bus_space(u_char bus, u_char type, pci_area_head *h)
|
|
{
|
|
pci_resource *first, *past, *r;
|
|
pci_area *area, tmp;
|
|
u_int flags;
|
|
u_int required = find_range(bus, type, &first, &past, &flags);
|
|
|
|
if (required==0) return;
|
|
|
|
area = alloc_area(h, first->dev->bus, required, first->size-1, flags);
|
|
|
|
if (!area) return;
|
|
|
|
tmp = *area;
|
|
for (r=first; r!=past; r=r->next)
|
|
{
|
|
alloc_space(&tmp, r);
|
|
}
|
|
}
|
|
|
|
#define BUS0_IO_START 0x10000
|
|
#define BUS0_IO_END 0x1ffff
|
|
#define BUS0_MEM_START 0x1000000
|
|
#define BUS0_MEM_END 0x3f00000
|
|
|
|
#define BUSREST_IO_START 0x20000
|
|
#define BUSREST_IO_END 0x7ffff
|
|
#define BUSREST_MEM_START 0x4000000
|
|
#define BUSREST_MEM_END 0x10000000
|
|
|
|
static void reconfigure_pci(void) {
|
|
pci_resource *r;
|
|
struct pci_dev *dev;
|
|
|
|
/* FIXME: for now memory is relocated from low, it's better
|
|
* to start from higher addresses.
|
|
*/
|
|
/*
|
|
init_free_area(&pci->io, 0x10000, 0x7fffff, 0xfff, 0);
|
|
init_free_area(&pci->mem, 0x1000000, 0x3cffffff, 0xfffff, 0);
|
|
*/
|
|
|
|
init_free_area(&pci->io, BUS0_IO_START, BUS0_IO_END, 0xfff, 0);
|
|
init_free_area(&pci->mem, BUS0_MEM_START, BUS0_MEM_END, 0xfffff, 0);
|
|
|
|
/* First reconfigure the I/O space, this will be more
|
|
* complex when there is more than 1 bus. And 64 bits
|
|
* devices are another kind of problems.
|
|
*/
|
|
reconfigure_bus_space(0, PCI_AREA_IO, &pci->io);
|
|
reconfigure_bus_space(0, PCI_AREA_MEMORY, &pci->mem);
|
|
reconfigure_bus_space(0, PCI_AREA_PREFETCHABLE, &pci->mem);
|
|
|
|
/* Now we have to touch the configuration space of all
|
|
* the devices to remap them better than they are right now.
|
|
* This is done in 3 steps:
|
|
* 1) first disable I/O and memory response of all devices
|
|
* 2) modify the base registers
|
|
* 3) restore the original PCI_COMMAND register.
|
|
*/
|
|
for (r=pci->resources; r; r= r->next) {
|
|
if (!r->dev->sysdata) {
|
|
r->dev->sysdata=r;
|
|
pci_read_config_word(r->dev, PCI_COMMAND, &r->cmd);
|
|
pci_write_config_word(r->dev, PCI_COMMAND,
|
|
r->cmd & ~(PCI_COMMAND_IO|
|
|
PCI_COMMAND_MEMORY));
|
|
}
|
|
}
|
|
|
|
for (r=pci->resources; r; r= r->next) {
|
|
pci_write_config_dword(r->dev,
|
|
PCI_BASE_ADDRESS_0+(r->reg<<2),
|
|
r->base);
|
|
if ((r->type&
|
|
(PCI_BASE_ADDRESS_SPACE|
|
|
PCI_BASE_ADDRESS_MEM_TYPE_MASK)) ==
|
|
(PCI_BASE_ADDRESS_SPACE_MEMORY|
|
|
PCI_BASE_ADDRESS_MEM_TYPE_64)) {
|
|
pci_write_config_dword(r->dev,
|
|
PCI_BASE_ADDRESS_1+(r->reg<<2),
|
|
0);
|
|
}
|
|
}
|
|
for (dev=bd->pci_devices; dev; dev= dev->next) {
|
|
if (dev->sysdata) {
|
|
pci_write_config_word(dev, PCI_COMMAND,
|
|
((pci_resource *)dev->sysdata)
|
|
->cmd);
|
|
dev->sysdata=NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
indirect_pci_read_config_byte(unsigned char bus, unsigned char dev_fn,
|
|
unsigned char offset, unsigned char *val) {
|
|
out_be32(pci->config_addr,
|
|
0x80|(bus<<8)|(dev_fn<<16)|((offset&~3)<<24));
|
|
*val=in_8(pci->config_data + (offset&3));
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static int
|
|
indirect_pci_read_config_word(unsigned char bus, unsigned char dev_fn,
|
|
unsigned char offset, unsigned short *val) {
|
|
*val = 0xffff;
|
|
if (offset&1) return PCIBIOS_BAD_REGISTER_NUMBER;
|
|
out_be32(pci->config_addr,
|
|
0x80|(bus<<8)|(dev_fn<<16)|((offset&~3)<<24));
|
|
*val=in_le16((volatile u_short *)(pci->config_data + (offset&3)));
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static int
|
|
indirect_pci_read_config_dword(unsigned char bus, unsigned char dev_fn,
|
|
unsigned char offset, unsigned int *val) {
|
|
*val = 0xffffffff;
|
|
if (offset&3) return PCIBIOS_BAD_REGISTER_NUMBER;
|
|
out_be32(pci->config_addr,
|
|
0x80|(bus<<8)|(dev_fn<<16)|(offset<<24));
|
|
*val=in_le32((volatile u_int *)pci->config_data);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static int
|
|
indirect_pci_write_config_byte(unsigned char bus, unsigned char dev_fn,
|
|
unsigned char offset, unsigned char val) {
|
|
out_be32(pci->config_addr,
|
|
0x80|(bus<<8)|(dev_fn<<16)|((offset&~3)<<24));
|
|
out_8(pci->config_data + (offset&3), val);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static int
|
|
indirect_pci_write_config_word(unsigned char bus, unsigned char dev_fn,
|
|
unsigned char offset, unsigned short val) {
|
|
if (offset&1) return PCIBIOS_BAD_REGISTER_NUMBER;
|
|
out_be32(pci->config_addr,
|
|
0x80|(bus<<8)|(dev_fn<<16)|((offset&~3)<<24));
|
|
out_le16((volatile u_short *)(pci->config_data + (offset&3)), val);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static int
|
|
indirect_pci_write_config_dword(unsigned char bus, unsigned char dev_fn,
|
|
unsigned char offset, unsigned int val) {
|
|
if (offset&3) return PCIBIOS_BAD_REGISTER_NUMBER;
|
|
out_be32(pci->config_addr,
|
|
0x80|(bus<<8)|(dev_fn<<16)|(offset<<24));
|
|
out_le32((volatile u_int *)pci->config_data, val);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static const struct pci_config_access_functions indirect_functions = {
|
|
indirect_pci_read_config_byte,
|
|
indirect_pci_read_config_word,
|
|
indirect_pci_read_config_dword,
|
|
indirect_pci_write_config_byte,
|
|
indirect_pci_write_config_word,
|
|
indirect_pci_write_config_dword
|
|
};
|
|
|
|
static int
|
|
direct_pci_read_config_byte(unsigned char bus, unsigned char dev_fn,
|
|
unsigned char offset, unsigned char *val) {
|
|
if (bus != 0 || (1<<PCI_SLOT(dev_fn) & 0xff8007fe)) {
|
|
*val=0xff;
|
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
|
}
|
|
*val=in_8(pci->config_data + ((1<<PCI_SLOT(dev_fn))&~1)
|
|
+ (PCI_FUNC(dev_fn)<<8) + offset);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static int
|
|
direct_pci_read_config_word(unsigned char bus, unsigned char dev_fn,
|
|
unsigned char offset, unsigned short *val) {
|
|
*val = 0xffff;
|
|
if (offset&1) return PCIBIOS_BAD_REGISTER_NUMBER;
|
|
if (bus != 0 || (1<<PCI_SLOT(dev_fn) & 0xff8007fe)) {
|
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
|
}
|
|
*val=in_le16((volatile u_short *)
|
|
(pci->config_data + ((1<<PCI_SLOT(dev_fn))&~1)
|
|
+ (PCI_FUNC(dev_fn)<<8) + offset));
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static int
|
|
direct_pci_read_config_dword(unsigned char bus, unsigned char dev_fn,
|
|
unsigned char offset, unsigned int *val) {
|
|
*val = 0xffffffff;
|
|
if (offset&3) return PCIBIOS_BAD_REGISTER_NUMBER;
|
|
if (bus != 0 || (1<<PCI_SLOT(dev_fn) & 0xff8007fe)) {
|
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
|
}
|
|
*val=in_le32((volatile u_int *)
|
|
(pci->config_data + ((1<<PCI_SLOT(dev_fn))&~1)
|
|
+ (PCI_FUNC(dev_fn)<<8) + offset));
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static int
|
|
direct_pci_write_config_byte(unsigned char bus, unsigned char dev_fn,
|
|
unsigned char offset, unsigned char val) {
|
|
if (bus != 0 || (1<<PCI_SLOT(dev_fn) & 0xff8007fe)) {
|
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
|
}
|
|
out_8(pci->config_data + ((1<<PCI_SLOT(dev_fn))&~1)
|
|
+ (PCI_FUNC(dev_fn)<<8) + offset,
|
|
val);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static int
|
|
direct_pci_write_config_word(unsigned char bus, unsigned char dev_fn,
|
|
unsigned char offset, unsigned short val) {
|
|
if (offset&1) return PCIBIOS_BAD_REGISTER_NUMBER;
|
|
if (bus != 0 || (1<<PCI_SLOT(dev_fn) & 0xff8007fe)) {
|
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
|
}
|
|
out_le16((volatile u_short *)
|
|
(pci->config_data + ((1<<PCI_SLOT(dev_fn))&~1)
|
|
+ (PCI_FUNC(dev_fn)<<8) + offset),
|
|
val);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static int
|
|
direct_pci_write_config_dword(unsigned char bus, unsigned char dev_fn,
|
|
unsigned char offset, unsigned int val) {
|
|
if (offset&3) return PCIBIOS_BAD_REGISTER_NUMBER;
|
|
if (bus != 0 || (1<<PCI_SLOT(dev_fn) & 0xff8007fe)) {
|
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
|
}
|
|
out_le32((volatile u_int *)
|
|
(pci->config_data + ((1<<PCI_SLOT(dev_fn))&~1)
|
|
+ (PCI_FUNC(dev_fn)<<8) + offset),
|
|
val);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static const struct pci_config_access_functions direct_functions = {
|
|
direct_pci_read_config_byte,
|
|
direct_pci_read_config_word,
|
|
direct_pci_read_config_dword,
|
|
direct_pci_write_config_byte,
|
|
direct_pci_write_config_word,
|
|
direct_pci_write_config_dword
|
|
};
|
|
|
|
void pci_read_bases(struct pci_dev *dev, unsigned int howmany)
|
|
{
|
|
unsigned int reg, nextreg;
|
|
|
|
#define REG (PCI_BASE_ADDRESS_0 + (reg<<2))
|
|
|
|
u_short cmd;
|
|
u32 l, ml;
|
|
pci_read_config_word(dev, PCI_COMMAND, &cmd);
|
|
|
|
for(reg=0; reg<howmany; reg=nextreg)
|
|
{
|
|
pci_resource *r;
|
|
|
|
nextreg=reg+1;
|
|
pci_read_config_dword(dev, REG, &l);
|
|
#if 0
|
|
if (l == 0xffffffff /*AJF || !l*/) continue;
|
|
#endif
|
|
/* Note that disabling the memory response of a host bridge
|
|
* would lose data if a DMA transfer were in progress. In a
|
|
* bootloader we don't care however. Also we can't print any
|
|
* message for a while since we might just disable the console.
|
|
*/
|
|
pci_write_config_word(dev, PCI_COMMAND, cmd &
|
|
~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
|
|
pci_write_config_dword(dev, REG, ~0);
|
|
pci_read_config_dword(dev, REG, &ml);
|
|
pci_write_config_dword(dev, REG, l);
|
|
|
|
/* Reenable the device now that we've played with
|
|
* base registers.
|
|
*/
|
|
pci_write_config_word(dev, PCI_COMMAND, cmd);
|
|
|
|
/* seems to be an unused entry skip it */
|
|
if ( ml == 0 || ml == 0xffffffff ) continue;
|
|
|
|
if ((l &
|
|
(PCI_BASE_ADDRESS_SPACE|PCI_BASE_ADDRESS_MEM_TYPE_MASK))
|
|
== (PCI_BASE_ADDRESS_MEM_TYPE_64
|
|
|PCI_BASE_ADDRESS_SPACE_MEMORY)) {
|
|
nextreg=reg+2;
|
|
}
|
|
dev->base_address[reg] = l;
|
|
r = salloc(sizeof(pci_resource));
|
|
if (!r) {
|
|
printk("Error allocating pci_resource struct.\n");
|
|
continue;
|
|
}
|
|
r->dev = dev;
|
|
r->reg = reg;
|
|
if ((l&PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) {
|
|
r->type = l&~PCI_BASE_ADDRESS_IO_MASK;
|
|
r->base = l&PCI_BASE_ADDRESS_IO_MASK;
|
|
/* r->size = ~(ml&PCI_BASE_ADDRESS_IO_MASK)+1; */
|
|
} else {
|
|
r->type = l&~PCI_BASE_ADDRESS_MEM_MASK;
|
|
r->base = l&PCI_BASE_ADDRESS_MEM_MASK;
|
|
/* r->size = ~(ml&PCI_BASE_ADDRESS_MEM_MASK)+1; */
|
|
}
|
|
|
|
/* find the first bit set to one after the base
|
|
address type bits to find length of region */
|
|
{
|
|
unsigned int c= 16 , val= 0;
|
|
while( !(val= ml & c) ) c <<= 1;
|
|
r->size = val;
|
|
}
|
|
|
|
#ifdef PCI_DEBUG
|
|
printk(" readbase bus %d, (%04x:%04x), base %08x, size %08x, type %d\n",
|
|
r->dev->bus->number,
|
|
r->dev->vendor,
|
|
r->dev->device,
|
|
r->base,
|
|
r->size,
|
|
r->type );
|
|
#endif
|
|
|
|
/* Check for the blacklisted entries */
|
|
insert_resource(r);
|
|
}
|
|
}
|
|
|
|
u_int pci_scan_bus(struct pci_bus *bus)
|
|
{
|
|
unsigned int devfn, l, max, class;
|
|
unsigned char irq, hdr_type, is_multi = 0;
|
|
struct pci_dev *dev, **bus_last;
|
|
struct pci_bus *child;
|
|
|
|
#if 0
|
|
printk("scanning pci bus %d\n", bus->number );
|
|
#endif
|
|
|
|
bus_last = &bus->devices;
|
|
max = bus->secondary;
|
|
for (devfn = 0; devfn < 0xff; ++devfn) {
|
|
if (PCI_FUNC(devfn) && !is_multi) {
|
|
/* not a multi-function device */
|
|
continue;
|
|
}
|
|
if (pcibios_read_config_byte(bus->number, devfn, PCI_HEADER_TYPE, &hdr_type))
|
|
continue;
|
|
if (!PCI_FUNC(devfn))
|
|
is_multi = hdr_type & 0x80;
|
|
|
|
if (pcibios_read_config_dword(bus->number, devfn, PCI_VENDOR_ID, &l) ||
|
|
/* some broken boards return 0 if a slot is empty: */
|
|
l == 0xffffffff || l == 0x00000000 || l == 0x0000ffff || l == 0xffff0000) {
|
|
is_multi = 0;
|
|
continue;
|
|
}
|
|
|
|
dev = salloc(sizeof(*dev));
|
|
dev->bus = bus;
|
|
dev->devfn = devfn;
|
|
dev->vendor = l & 0xffff;
|
|
dev->device = (l >> 16) & 0xffff;
|
|
|
|
pcibios_read_config_dword(bus->number, devfn,
|
|
PCI_CLASS_REVISION, &class);
|
|
class >>= 8; /* upper 3 bytes */
|
|
dev->class = class;
|
|
class >>= 8;
|
|
dev->hdr_type = hdr_type;
|
|
|
|
switch (hdr_type & 0x7f) { /* header type */
|
|
case PCI_HEADER_TYPE_NORMAL: /* standard header */
|
|
if (class == PCI_CLASS_BRIDGE_PCI)
|
|
goto bad;
|
|
/*
|
|
* If the card generates interrupts, read IRQ number
|
|
* (some architectures change it during pcibios_fixup())
|
|
*/
|
|
pcibios_read_config_byte(bus->number, dev->devfn, PCI_INTERRUPT_PIN, &irq);
|
|
if (irq)
|
|
pcibios_read_config_byte(bus->number, dev->devfn, PCI_INTERRUPT_LINE, &irq);
|
|
dev->irq = irq;
|
|
/*
|
|
* read base address registers, again pcibios_fixup() can
|
|
* tweak these
|
|
*/
|
|
pci_read_bases(dev, 6);
|
|
pcibios_read_config_dword(bus->number, devfn, PCI_ROM_ADDRESS, &l);
|
|
dev->rom_address = (l == 0xffffffff) ? 0 : l;
|
|
break;
|
|
case PCI_HEADER_TYPE_BRIDGE: /* bridge header */
|
|
if (class != PCI_CLASS_BRIDGE_PCI)
|
|
goto bad;
|
|
pci_read_bases(dev, 2);
|
|
pcibios_read_config_dword(bus->number, devfn, PCI_ROM_ADDRESS1, &l);
|
|
dev->rom_address = (l == 0xffffffff) ? 0 : l;
|
|
break;
|
|
case PCI_HEADER_TYPE_CARDBUS: /* CardBus bridge header */
|
|
if (class != PCI_CLASS_BRIDGE_CARDBUS)
|
|
goto bad;
|
|
pci_read_bases(dev, 1);
|
|
break;
|
|
|
|
default: /* unknown header */
|
|
bad:
|
|
printk("PCI device with unknown header type %d ignored.\n",
|
|
hdr_type&0x7f);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Put it into the global PCI device chain. It's used to
|
|
* find devices once everything is set up.
|
|
*/
|
|
*pci->last_dev_p = dev;
|
|
pci->last_dev_p = &dev->next;
|
|
|
|
/*
|
|
* Now insert it into the list of devices held
|
|
* by the parent bus.
|
|
*/
|
|
*bus_last = dev;
|
|
bus_last = &dev->sibling;
|
|
|
|
}
|
|
|
|
/*
|
|
* After performing arch-dependent fixup of the bus, look behind
|
|
* all PCI-to-PCI bridges on this bus.
|
|
*/
|
|
for(dev=bus->devices; dev; dev=dev->sibling)
|
|
/*
|
|
* If it's a bridge, scan the bus behind it.
|
|
*/
|
|
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
|
|
unsigned int buses;
|
|
unsigned int devfn = dev->devfn;
|
|
unsigned short cr;
|
|
|
|
/*
|
|
* Insert it into the tree of buses.
|
|
*/
|
|
child = salloc(sizeof(*child));
|
|
child->next = bus->children;
|
|
bus->children = child;
|
|
child->self = dev;
|
|
child->parent = bus;
|
|
|
|
/*
|
|
* Set up the primary, secondary and subordinate
|
|
* bus numbers.
|
|
*/
|
|
child->number = child->secondary = ++max;
|
|
child->primary = bus->secondary;
|
|
child->subordinate = 0xff;
|
|
/*
|
|
* Clear all status bits and turn off memory,
|
|
* I/O and master enables.
|
|
*/
|
|
pcibios_read_config_word(bus->number, devfn, PCI_COMMAND, &cr);
|
|
pcibios_write_config_word(bus->number, devfn, PCI_COMMAND, 0x0000);
|
|
pcibios_write_config_word(bus->number, devfn, PCI_STATUS, 0xffff);
|
|
/*
|
|
* Read the existing primary/secondary/subordinate bus
|
|
* number configuration to determine if the PCI bridge
|
|
* has already been configured by the system. If so,
|
|
* do not modify the configuration, merely note it.
|
|
*/
|
|
pcibios_read_config_dword(bus->number, devfn, PCI_PRIMARY_BUS, &buses);
|
|
if ((buses & 0xFFFFFF) != 0)
|
|
{
|
|
unsigned int cmax;
|
|
|
|
child->primary = buses & 0xFF;
|
|
child->secondary = (buses >> 8) & 0xFF;
|
|
child->subordinate = (buses >> 16) & 0xFF;
|
|
child->number = child->secondary;
|
|
cmax = pci_scan_bus(child);
|
|
if (cmax > max) max = cmax;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Configure the bus numbers for this bridge:
|
|
*/
|
|
buses &= 0xff000000;
|
|
buses |=
|
|
(((unsigned int)(child->primary) << 0) |
|
|
((unsigned int)(child->secondary) << 8) |
|
|
((unsigned int)(child->subordinate) << 16));
|
|
pcibios_write_config_dword(bus->number, devfn, PCI_PRIMARY_BUS, buses);
|
|
/*
|
|
* Now we can scan all subordinate buses:
|
|
*/
|
|
max = pci_scan_bus(child);
|
|
/*
|
|
* Set the subordinate bus number to its real
|
|
* value:
|
|
*/
|
|
child->subordinate = max;
|
|
buses = (buses & 0xff00ffff)
|
|
| ((unsigned int)(child->subordinate) << 16);
|
|
pcibios_write_config_dword(bus->number, devfn, PCI_PRIMARY_BUS, buses);
|
|
}
|
|
pcibios_write_config_word(bus->number, devfn, PCI_COMMAND, cr );
|
|
}
|
|
|
|
/*
|
|
* We've scanned the bus and so we know all about what's on
|
|
* the other side of any bridges that may be on this bus plus
|
|
* any devices.
|
|
*
|
|
* Return how far we've got finding sub-buses.
|
|
*/
|
|
return max;
|
|
}
|
|
|
|
#if 0
|
|
|
|
void
|
|
pci_fixup(void)
|
|
{
|
|
struct pci_dev *p;
|
|
struct pci_bus *bus;
|
|
|
|
for (bus = &pci_root; bus; bus=bus->next)
|
|
{
|
|
for (p=bus->devices; p; p=p->sibling)
|
|
{
|
|
}
|
|
}
|
|
}
|
|
|
|
static void print_pci_info()
|
|
{
|
|
pci_resource *r;
|
|
struct pci_bus *pb = &pci_root;
|
|
|
|
printk("\n");
|
|
printk("PCI busses:\n");
|
|
|
|
for(pb= &pci_root; pb; pb=pb->children )
|
|
{
|
|
printk(" number %d, primary %d, secondary %d, subordinate %d\n",
|
|
pb->number,
|
|
pb->primary,
|
|
pb->secondary,
|
|
pb->subordinate );
|
|
printk(" bridge; vendor %04x, device %04x\n",
|
|
pb->self->vendor,
|
|
pb->self->device );
|
|
|
|
{
|
|
struct pci_dev *pd;
|
|
|
|
for(pd= pb->devices; pd; pd=pd->sibling )
|
|
{
|
|
printk(" vendor %04x, device %04x, irq %d\n",
|
|
pd->vendor,
|
|
pd->device,
|
|
pd->irq );
|
|
|
|
}
|
|
printk("\n");
|
|
}
|
|
|
|
}
|
|
printk("\n");
|
|
|
|
printk("PCI resources:\n");
|
|
for (r=pci->resources; r; r= r->next)
|
|
{
|
|
printk(" bus %d, vendor %04x, device %04x, base %08x, size %08x, type %d\n",
|
|
r->dev->bus->number,
|
|
r->dev->vendor,
|
|
r->dev->device,
|
|
r->base,
|
|
r->size,
|
|
r->type );
|
|
}
|
|
printk("\n");
|
|
|
|
return;
|
|
}
|
|
|
|
#endif
|
|
|
|
static struct _addr_start
|
|
{
|
|
uint32_t start_pcimem;
|
|
uint32_t start_pciio;
|
|
uint32_t start_prefetch;
|
|
} astart;
|
|
|
|
static pci_resource *enum_device_resources( struct pci_dev *pdev, int i )
|
|
{
|
|
pci_resource *r;
|
|
|
|
for(r= pci->resources; r; r= r->next )
|
|
{
|
|
if( r->dev == pdev )
|
|
{
|
|
if( i-- == 0 ) break;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static void recursive_bus_reconfigure( struct pci_bus *pbus )
|
|
{
|
|
struct pci_dev *pdev;
|
|
struct pci_bus *childbus;
|
|
int isroot = 0;
|
|
|
|
if( !pbus )
|
|
{
|
|
/* start with the root bus */
|
|
astart.start_pcimem = BUSREST_MEM_START;
|
|
astart.start_pciio = BUSREST_IO_START;
|
|
astart.start_prefetch = ((BUSREST_MEM_END >> 16) << 16);
|
|
|
|
pbus = &pci_root;
|
|
isroot = -1;
|
|
}
|
|
|
|
#define WRITE_BRIDGE_IO
|
|
#define WRITE_BRIDGE_MEM
|
|
#define WRITE_BRIDGE_PF
|
|
#define WRITE_BRIDGE_ENABLE
|
|
|
|
/*
|
|
** Run thru the p2p bridges on this bus and recurse into subordinate busses
|
|
*/
|
|
for( childbus= pbus->children; childbus; childbus= childbus->next )
|
|
{
|
|
pdev= childbus->self;
|
|
|
|
pcibios_write_config_byte(pdev->bus->number, pdev->devfn, PCI_LATENCY_TIMER, 0x80 );
|
|
pcibios_write_config_byte(pdev->bus->number, pdev->devfn, PCI_SEC_LATENCY_TIMER, 0x80 );
|
|
|
|
{
|
|
struct _addr_start addrhold;
|
|
uint8_t base8, limit8;
|
|
uint16_t base16, limit16, ubase16, ulimit16;
|
|
|
|
/* save the base address values */
|
|
memcpy( &addrhold, &astart, sizeof(struct _addr_start));
|
|
|
|
recursive_bus_reconfigure( childbus );
|
|
|
|
#ifdef PCI_DEBUG
|
|
printk("pci: configuring bus %d bridge (%04x:%04x), bus %d : (%d-%d)\n",
|
|
pdev->bus->number,
|
|
pdev->vendor,
|
|
pdev->device,
|
|
childbus->primary,
|
|
childbus->secondary,
|
|
childbus->subordinate );
|
|
#endif
|
|
|
|
/*
|
|
* use the current values & the saved ones to figure out
|
|
* the address spaces for the bridge
|
|
*/
|
|
|
|
if( addrhold.start_pciio == astart.start_pciio )
|
|
{
|
|
base8 = limit8 = 0xff;
|
|
ubase16 = ulimit16 = 0xffff;
|
|
}
|
|
else
|
|
{
|
|
base8 = (uint8_t) ((addrhold.start_pciio >> 8) & 0xf0);
|
|
ubase16 = (uint16_t)(addrhold.start_pciio >> 16);
|
|
limit8 = (uint8_t) ((astart.start_pciio >> 8 ) & 0xf0);
|
|
ulimit16 = (uint16_t)(astart.start_pciio >> 16);
|
|
astart.start_pciio += 0x1000;
|
|
}
|
|
|
|
#ifdef PCI_DEBUG
|
|
printk("pci: io base %08x limit %08x\n", (base8<<8)+(ubase16<<16), (limit8<<8)+(ulimit16<<16));
|
|
#endif
|
|
#ifdef WRITE_BRIDGE_IO
|
|
pcibios_write_config_word(pdev->bus->number, pdev->devfn, PCI_IO_BASE_UPPER16, ubase16 );
|
|
pcibios_write_config_byte(pdev->bus->number, pdev->devfn, PCI_IO_BASE, base8 );
|
|
|
|
pcibios_write_config_word(pdev->bus->number, pdev->devfn, PCI_IO_LIMIT_UPPER16, ulimit16 );
|
|
pcibios_write_config_byte(pdev->bus->number, pdev->devfn, PCI_IO_LIMIT, limit8 );
|
|
#endif
|
|
|
|
if( addrhold.start_pcimem == astart.start_pcimem )
|
|
{
|
|
limit16 = 0;
|
|
base16 = 0xffff;
|
|
}
|
|
else
|
|
{
|
|
limit16= (uint16_t)((astart.start_pcimem >> 16) & 0xfff0);
|
|
base16 = (uint16_t)((addrhold.start_pcimem >> 16) & 0xfff0);
|
|
astart.start_pcimem += 0x100000;
|
|
}
|
|
#ifdef PCI_DEBUG
|
|
printk("pci: memory %04x, limit %04x\n", base16, limit16);
|
|
#endif
|
|
#ifdef WRITE_BRIDGE_MEM
|
|
pcibios_write_config_word(pdev->bus->number, pdev->devfn, PCI_MEMORY_BASE, base16 );
|
|
pcibios_write_config_word(pdev->bus->number, pdev->devfn, PCI_MEMORY_LIMIT, limit16 );
|
|
#endif
|
|
|
|
|
|
if( astart.start_prefetch == addrhold.start_prefetch )
|
|
{
|
|
limit16 = 0;
|
|
base16 = 0xffff;
|
|
}
|
|
else
|
|
{
|
|
limit16= (uint16_t)((addrhold.start_prefetch >> 16) & 0xfff0);
|
|
base16 = (uint16_t)((astart.start_prefetch >> 16) & 0xfff0);
|
|
astart.start_prefetch -= 0x100000;
|
|
}
|
|
#ifdef PCI_DEBUG
|
|
printk("pci: pf memory %04x, limit %04x\n", base16, limit16);
|
|
#endif
|
|
#ifdef WRITE_BRIDGE_PF
|
|
pcibios_write_config_dword(pdev->bus->number, pdev->devfn, PCI_PREF_BASE_UPPER32, 0);
|
|
pcibios_write_config_word(pdev->bus->number, pdev->devfn, PCI_PREF_MEMORY_BASE, base16 );
|
|
pcibios_write_config_dword(pdev->bus->number, pdev->devfn, PCI_PREF_LIMIT_UPPER32, 0);
|
|
pcibios_write_config_word(pdev->bus->number, pdev->devfn, PCI_PREF_MEMORY_LIMIT, limit16 );
|
|
#endif
|
|
|
|
#ifdef WRITE_BRIDGE_ENABLE
|
|
pcibios_write_config_word(pdev->bus->number,
|
|
pdev->devfn,
|
|
PCI_BRIDGE_CONTROL,
|
|
(unsigned16)( 0 ));
|
|
|
|
pcibios_write_config_word(pdev->bus->number,
|
|
pdev->devfn,
|
|
PCI_COMMAND,
|
|
(unsigned16)( PCI_COMMAND_IO |
|
|
PCI_COMMAND_MEMORY |
|
|
PCI_COMMAND_MASTER ));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if( !isroot )
|
|
{
|
|
#ifdef PCI_DEBUG
|
|
printk("pci: Configuring devices on bus %d\n", pbus->number);
|
|
#endif
|
|
/*
|
|
** Run thru this bus and set up addresses for all the non-bridge devices
|
|
*/
|
|
for( pdev = pbus->devices; pdev; pdev= pdev->sibling )
|
|
{
|
|
if( (pdev->class >> 8) != PCI_CLASS_BRIDGE_PCI )
|
|
{
|
|
pci_resource *r;
|
|
int i = 0;
|
|
unsigned alloc;
|
|
|
|
/* enumerate all the resources defined by this device & reserve space
|
|
** for each of their defined regions.
|
|
*/
|
|
|
|
#ifdef PCI_DEBUG
|
|
printk("pci: configuring; vendor %04x, device %04x\n", pdev->vendor, pdev->device );
|
|
#endif
|
|
|
|
while( (r= enum_device_resources( pdev, i++ )) )
|
|
{
|
|
/*
|
|
** Force all memory spaces to be non-prefetchable because
|
|
** on the pci bus, byte-wise reads against prefetchable
|
|
** memory are applied as 32 bit reads, which is a pain
|
|
** when you're trying to talk to hardware. This is a
|
|
** little sub-optimal because the algorithm doesn't sort
|
|
** the address regions to pack them in, OTOH, perhaps its
|
|
** not so bad because the inefficient packing will help
|
|
** avoid buffer overflow/underflow problems.
|
|
*/
|
|
#if 0
|
|
if( (r->type & PCI_BASE_ADDRESS_MEM_PREFETCH) )
|
|
{
|
|
/* prefetchable space */
|
|
|
|
/* shift base pointer down to an integer multiple of the size of the desired region */
|
|
astart.start_prefetch -= (alloc= ((r->size / PAGE_SIZE) + 1) * PAGE_SIZE);
|
|
/* shift base pointer down to an integer multiple of the size of the desired region */
|
|
astart.start_prefetch = (astart.start_prefetch / r->size) * r->size;
|
|
|
|
r->base = astart.start_prefetch;
|
|
#ifdef PCI_DEBUG
|
|
printk("pci: pf %08X, size %08X, alloc %08X\n", r->base, r->size, alloc );
|
|
#endif
|
|
}
|
|
#endif
|
|
if( r->type & PCI_BASE_ADDRESS_SPACE_IO )
|
|
{
|
|
/* io space */
|
|
|
|
/* shift base pointer up to an integer multiple of the size of the desired region */
|
|
if( astart.start_pciio % r->size )
|
|
astart.start_pciio = (((astart.start_pciio / r->size) + 1) * r->size);
|
|
|
|
r->base = astart.start_pciio;
|
|
astart.start_pciio += (alloc= ((r->size / PAGE_SIZE) + 1) * PAGE_SIZE);
|
|
#ifdef PCI_DEBUG
|
|
printk("pci: io %08X, size %08X, alloc %08X\n", r->base, r->size, alloc );
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
/* memory space */
|
|
|
|
/* shift base pointer up to an integer multiple of the size of the desired region */
|
|
if( astart.start_pcimem % r->size )
|
|
astart.start_pcimem = (((astart.start_pcimem / r->size) + 1) * r->size);
|
|
|
|
r->base = astart.start_pcimem;
|
|
astart.start_pcimem += (alloc= ((r->size / PAGE_SIZE) + 1) * PAGE_SIZE);
|
|
#ifdef PCI_DEBUG
|
|
printk("pci: mem %08X, size %08X, alloc %08X\n", r->base, r->size, alloc );
|
|
#endif
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void pci_init(void)
|
|
{
|
|
PPC_DEVICE *hostbridge;
|
|
|
|
if (pci->last_dev_p) {
|
|
printk("Two or more calls to pci_init!\n");
|
|
return;
|
|
}
|
|
pci->last_dev_p = &(bd->pci_devices);
|
|
hostbridge=residual_find_device(PROCESSORDEVICE, NULL,
|
|
BridgeController,
|
|
PCIBridge, -1, 0);
|
|
if (hostbridge) {
|
|
if (hostbridge->DeviceId.Interface==PCIBridgeIndirect) {
|
|
bd->pci_functions=&indirect_functions;
|
|
/* Should be extracted from residual data,
|
|
* indeed MPC106 in CHRP mode is different,
|
|
* but we should not use residual data in
|
|
* this case anyway.
|
|
*/
|
|
pci->config_addr = ((volatile u_int *)
|
|
(ptr_mem_map->io_base+0xcf8));
|
|
pci->config_data = ptr_mem_map->io_base+0xcfc;
|
|
} else if(hostbridge->DeviceId.Interface==PCIBridgeDirect) {
|
|
bd->pci_functions=&direct_functions;
|
|
pci->config_data=(u_char *) 0x80800000;
|
|
} else {
|
|
}
|
|
} else {
|
|
/* Let us try by experimentation at our own risk! */
|
|
u_int id0;
|
|
bd->pci_functions = &direct_functions;
|
|
/* On all direct bridges I know the host bridge itself
|
|
* appears as device 0 function 0.
|
|
*/
|
|
pcibios_read_config_dword(0, 0, PCI_VENDOR_ID, &id0);
|
|
if (id0==~0U) {
|
|
bd->pci_functions = &indirect_functions;
|
|
pci->config_addr = ((volatile u_int *)
|
|
(ptr_mem_map->io_base+0xcf8));
|
|
pci->config_data = ptr_mem_map->io_base+0xcfc;
|
|
}
|
|
/* Here we should check that the host bridge is actually
|
|
* present, but if it not, we are in such a desperate
|
|
* situation, that we probably can't even tell it.
|
|
*/
|
|
}
|
|
/* Now build a small database of all found PCI devices */
|
|
printk("\nPCI: Probing PCI hardware\n");
|
|
pci_root.subordinate=pci_scan_bus(&pci_root);
|
|
|
|
print_pci_resources("Installed PCI resources:\n");
|
|
|
|
recursive_bus_reconfigure(NULL);
|
|
|
|
reconfigure_pci();
|
|
|
|
print_pci_resources("Allocated PCI resources:\n");
|
|
|
|
#if 0
|
|
print_pci_info();
|
|
#endif
|
|
}
|
|
|
|
/* eof */
|