forked from Imagelibrary/rtems
Rename SPARC_USE_SAFE_FP_SUPPORT in SPARC_USE_SYNCHRONOUS_FP_SWITCH. Update comment. Update #3077.
384 lines
11 KiB
C
384 lines
11 KiB
C
/**
|
|
* @file
|
|
*
|
|
* @brief SPARC CPU Dependent Source
|
|
*/
|
|
|
|
/*
|
|
* COPYRIGHT (c) 1989-2007.
|
|
* On-Line Applications Research Corporation (OAR).
|
|
*
|
|
* The license and distribution terms for this file may be
|
|
* found in the file LICENSE in this distribution or at
|
|
* http://www.rtems.org/license/LICENSE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <rtems/system.h>
|
|
#include <rtems/score/isr.h>
|
|
#include <rtems/score/percpu.h>
|
|
#include <rtems/score/tls.h>
|
|
#include <rtems/rtems/cache.h>
|
|
|
|
#if SPARC_HAS_FPU == 1
|
|
RTEMS_STATIC_ASSERT(
|
|
offsetof( Per_CPU_Control, cpu_per_cpu.fsr)
|
|
== SPARC_PER_CPU_FSR_OFFSET,
|
|
SPARC_PER_CPU_FSR_OFFSET
|
|
);
|
|
#endif
|
|
|
|
#define SPARC_ASSERT_OFFSET(field, off) \
|
|
RTEMS_STATIC_ASSERT( \
|
|
offsetof(Context_Control, field) == off ## _OFFSET, \
|
|
Context_Control_offset_ ## field \
|
|
)
|
|
|
|
SPARC_ASSERT_OFFSET(g5, G5);
|
|
SPARC_ASSERT_OFFSET(g7, G7);
|
|
|
|
RTEMS_STATIC_ASSERT(
|
|
offsetof(Context_Control, l0_and_l1) == L0_OFFSET,
|
|
Context_Control_offset_L0
|
|
);
|
|
|
|
RTEMS_STATIC_ASSERT(
|
|
offsetof(Context_Control, l0_and_l1) + 4 == L1_OFFSET,
|
|
Context_Control_offset_L1
|
|
);
|
|
|
|
SPARC_ASSERT_OFFSET(l2, L2);
|
|
SPARC_ASSERT_OFFSET(l3, L3);
|
|
SPARC_ASSERT_OFFSET(l4, L4);
|
|
SPARC_ASSERT_OFFSET(l5, L5);
|
|
SPARC_ASSERT_OFFSET(l6, L6);
|
|
SPARC_ASSERT_OFFSET(l7, L7);
|
|
SPARC_ASSERT_OFFSET(i0, I0);
|
|
SPARC_ASSERT_OFFSET(i1, I1);
|
|
SPARC_ASSERT_OFFSET(i2, I2);
|
|
SPARC_ASSERT_OFFSET(i3, I3);
|
|
SPARC_ASSERT_OFFSET(i4, I4);
|
|
SPARC_ASSERT_OFFSET(i5, I5);
|
|
SPARC_ASSERT_OFFSET(i6_fp, I6_FP);
|
|
SPARC_ASSERT_OFFSET(i7, I7);
|
|
SPARC_ASSERT_OFFSET(o6_sp, O6_SP);
|
|
SPARC_ASSERT_OFFSET(o7, O7);
|
|
SPARC_ASSERT_OFFSET(psr, PSR);
|
|
SPARC_ASSERT_OFFSET(isr_dispatch_disable, ISR_DISPATCH_DISABLE_STACK);
|
|
|
|
#if defined(RTEMS_SMP)
|
|
SPARC_ASSERT_OFFSET(is_executing, SPARC_CONTEXT_CONTROL_IS_EXECUTING);
|
|
#endif
|
|
|
|
#define SPARC_ASSERT_ISF_OFFSET(field, off) \
|
|
RTEMS_STATIC_ASSERT( \
|
|
offsetof(CPU_Interrupt_frame, field) == ISF_ ## off ## _OFFSET, \
|
|
CPU_Interrupt_frame_offset_ ## field \
|
|
)
|
|
|
|
SPARC_ASSERT_ISF_OFFSET(psr, PSR);
|
|
SPARC_ASSERT_ISF_OFFSET(pc, PC);
|
|
SPARC_ASSERT_ISF_OFFSET(npc, NPC);
|
|
SPARC_ASSERT_ISF_OFFSET(g1, G1);
|
|
SPARC_ASSERT_ISF_OFFSET(g2, G2);
|
|
SPARC_ASSERT_ISF_OFFSET(g3, G3);
|
|
SPARC_ASSERT_ISF_OFFSET(g4, G4);
|
|
SPARC_ASSERT_ISF_OFFSET(g5, G5);
|
|
SPARC_ASSERT_ISF_OFFSET(g7, G7);
|
|
SPARC_ASSERT_ISF_OFFSET(i0, I0);
|
|
SPARC_ASSERT_ISF_OFFSET(i1, I1);
|
|
SPARC_ASSERT_ISF_OFFSET(i2, I2);
|
|
SPARC_ASSERT_ISF_OFFSET(i3, I3);
|
|
SPARC_ASSERT_ISF_OFFSET(i4, I4);
|
|
SPARC_ASSERT_ISF_OFFSET(i5, I5);
|
|
SPARC_ASSERT_ISF_OFFSET(i6_fp, I6_FP);
|
|
SPARC_ASSERT_ISF_OFFSET(i7, I7);
|
|
SPARC_ASSERT_ISF_OFFSET(y, Y);
|
|
SPARC_ASSERT_ISF_OFFSET(tpc, TPC);
|
|
|
|
RTEMS_STATIC_ASSERT(
|
|
sizeof(SPARC_Minimum_stack_frame) == SPARC_MINIMUM_STACK_FRAME_SIZE,
|
|
SPARC_MINIMUM_STACK_FRAME_SIZE
|
|
);
|
|
|
|
/* https://devel.rtems.org/ticket/2352 */
|
|
RTEMS_STATIC_ASSERT(
|
|
sizeof(CPU_Interrupt_frame) % CPU_ALIGNMENT == 0,
|
|
CPU_Interrupt_frame_alignment
|
|
);
|
|
|
|
#if (SPARC_HAS_FPU == 1) && !defined(SPARC_USE_SYNCHRONOUS_FP_SWITCH)
|
|
Context_Control_fp _CPU_Null_fp_context;
|
|
#endif
|
|
|
|
/*
|
|
* _CPU_Initialize
|
|
*
|
|
* This routine performs processor dependent initialization.
|
|
*
|
|
* INPUT PARAMETERS: NONE
|
|
*
|
|
* Output Parameters: NONE
|
|
*
|
|
* NOTE: There is no need to save the pointer to the thread dispatch routine.
|
|
* The SPARC's assembly code can reference it directly with no problems.
|
|
*/
|
|
|
|
void _CPU_Initialize(void)
|
|
{
|
|
#if (SPARC_HAS_FPU == 1) && !defined(SPARC_USE_SYNCHRONOUS_FP_SWITCH)
|
|
Context_Control_fp *pointer;
|
|
uint32_t psr;
|
|
|
|
sparc_get_psr( psr );
|
|
psr |= SPARC_PSR_EF_MASK;
|
|
sparc_set_psr( psr );
|
|
|
|
/*
|
|
* This seems to be the most appropriate way to obtain an initial
|
|
* FP context on the SPARC. The NULL fp context is copied it to
|
|
* the task's FP context during Context_Initialize.
|
|
*/
|
|
|
|
pointer = &_CPU_Null_fp_context;
|
|
_CPU_Context_save_fp( &pointer );
|
|
#endif
|
|
}
|
|
|
|
uint32_t _CPU_ISR_Get_level( void )
|
|
{
|
|
uint32_t level;
|
|
|
|
sparc_get_interrupt_level( level );
|
|
|
|
return level;
|
|
}
|
|
|
|
/*
|
|
* _CPU_ISR_install_raw_handler
|
|
*
|
|
* This routine installs the specified handler as a "raw" non-executive
|
|
* supported trap handler (a.k.a. interrupt service routine).
|
|
*
|
|
* Input Parameters:
|
|
* vector - trap table entry number plus synchronous
|
|
* vs. asynchronous information
|
|
* new_handler - address of the handler to be installed
|
|
* old_handler - pointer to an address of the handler previously installed
|
|
*
|
|
* Output Parameters: NONE
|
|
* *new_handler - address of the handler previously installed
|
|
*
|
|
* NOTE:
|
|
*
|
|
* On the SPARC, there are really only 256 vectors. However, the executive
|
|
* has no easy, fast, reliable way to determine which traps are synchronous
|
|
* and which are asynchronous. By default, synchronous traps return to the
|
|
* instruction which caused the interrupt. So if you install a software
|
|
* trap handler as an executive interrupt handler (which is desirable since
|
|
* RTEMS takes care of window and register issues), then the executive needs
|
|
* to know that the return address is to the trap rather than the instruction
|
|
* following the trap.
|
|
*
|
|
* So vectors 0 through 255 are treated as regular asynchronous traps which
|
|
* provide the "correct" return address. Vectors 256 through 512 are assumed
|
|
* by the executive to be synchronous and to require that the return address
|
|
* be fudged.
|
|
*
|
|
* If you use this mechanism to install a trap handler which must reexecute
|
|
* the instruction which caused the trap, then it should be installed as
|
|
* an asynchronous trap. This will avoid the executive changing the return
|
|
* address.
|
|
*/
|
|
|
|
void _CPU_ISR_install_raw_handler(
|
|
uint32_t vector,
|
|
proc_ptr new_handler,
|
|
proc_ptr *old_handler
|
|
)
|
|
{
|
|
uint32_t real_vector;
|
|
CPU_Trap_table_entry *tbr;
|
|
CPU_Trap_table_entry *slot;
|
|
uint32_t u32_tbr;
|
|
uint32_t u32_handler;
|
|
|
|
/*
|
|
* Get the "real" trap number for this vector ignoring the synchronous
|
|
* versus asynchronous indicator included with our vector numbers.
|
|
*/
|
|
|
|
real_vector = SPARC_REAL_TRAP_NUMBER( vector );
|
|
|
|
/*
|
|
* Get the current base address of the trap table and calculate a pointer
|
|
* to the slot we are interested in.
|
|
*/
|
|
|
|
sparc_get_tbr( u32_tbr );
|
|
|
|
u32_tbr &= 0xfffff000;
|
|
|
|
tbr = (CPU_Trap_table_entry *) u32_tbr;
|
|
|
|
slot = &tbr[ real_vector ];
|
|
|
|
/*
|
|
* Get the address of the old_handler from the trap table.
|
|
*
|
|
* NOTE: The old_handler returned will be bogus if it does not follow
|
|
* the RTEMS model.
|
|
*/
|
|
|
|
#define HIGH_BITS_MASK 0xFFFFFC00
|
|
#define HIGH_BITS_SHIFT 10
|
|
#define LOW_BITS_MASK 0x000003FF
|
|
|
|
if ( slot->mov_psr_l0 == _CPU_Trap_slot_template.mov_psr_l0 ) {
|
|
u32_handler =
|
|
(slot->sethi_of_handler_to_l4 << HIGH_BITS_SHIFT) |
|
|
(slot->jmp_to_low_of_handler_plus_l4 & LOW_BITS_MASK);
|
|
*old_handler = (proc_ptr) u32_handler;
|
|
} else
|
|
*old_handler = 0;
|
|
|
|
/*
|
|
* Copy the template to the slot and then fix it.
|
|
*/
|
|
|
|
*slot = _CPU_Trap_slot_template;
|
|
|
|
u32_handler = (uint32_t) new_handler;
|
|
|
|
slot->mov_vector_l3 |= vector;
|
|
slot->sethi_of_handler_to_l4 |=
|
|
(u32_handler & HIGH_BITS_MASK) >> HIGH_BITS_SHIFT;
|
|
slot->jmp_to_low_of_handler_plus_l4 |= (u32_handler & LOW_BITS_MASK);
|
|
|
|
/*
|
|
* There is no instruction cache snooping, so we need to invalidate
|
|
* the instruction cache to make sure that the processor sees the
|
|
* changes to the trap table. This step is required on both single-
|
|
* and multiprocessor systems.
|
|
*
|
|
* In a SMP configuration a change to the trap table might be
|
|
* missed by other cores. If the system state is up, the other
|
|
* cores can be notified using SMP messages that they need to
|
|
* flush their icache. If the up state has not been reached
|
|
* there is no need to notify other cores. They will do an
|
|
* automatic flush of the icache just after entering the up
|
|
* state, but before enabling interrupts.
|
|
*/
|
|
rtems_cache_invalidate_entire_instruction();
|
|
}
|
|
|
|
void _CPU_ISR_install_vector(
|
|
uint32_t vector,
|
|
proc_ptr new_handler,
|
|
proc_ptr *old_handler
|
|
)
|
|
{
|
|
uint32_t real_vector;
|
|
proc_ptr ignored;
|
|
|
|
/*
|
|
* Get the "real" trap number for this vector ignoring the synchronous
|
|
* versus asynchronous indicator included with our vector numbers.
|
|
*/
|
|
|
|
real_vector = SPARC_REAL_TRAP_NUMBER( vector );
|
|
|
|
/*
|
|
* Return the previous ISR handler.
|
|
*/
|
|
|
|
*old_handler = _ISR_Vector_table[ real_vector ];
|
|
|
|
/*
|
|
* Install the wrapper so this ISR can be invoked properly.
|
|
*/
|
|
|
|
_CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored );
|
|
|
|
/*
|
|
* We put the actual user ISR address in '_ISR_vector_table'. This will
|
|
* be used by the _ISR_Handler so the user gets control.
|
|
*/
|
|
|
|
_ISR_Vector_table[ real_vector ] = new_handler;
|
|
}
|
|
|
|
void _CPU_Context_Initialize(
|
|
Context_Control *the_context,
|
|
uint32_t *stack_base,
|
|
uint32_t size,
|
|
uint32_t new_level,
|
|
void *entry_point,
|
|
bool is_fp,
|
|
void *tls_area
|
|
)
|
|
{
|
|
uint32_t stack_high; /* highest "stack aligned" address */
|
|
uint32_t tmp_psr;
|
|
|
|
/*
|
|
* On CPUs with stacks which grow down (i.e. SPARC), we build the stack
|
|
* based on the stack_high address.
|
|
*/
|
|
|
|
stack_high = ((uint32_t)(stack_base) + size);
|
|
stack_high &= ~(CPU_STACK_ALIGNMENT - 1);
|
|
|
|
/*
|
|
* See the README in this directory for a diagram of the stack.
|
|
*/
|
|
|
|
the_context->o7 = ((uint32_t) entry_point) - 8;
|
|
the_context->o6_sp = stack_high - SPARC_MINIMUM_STACK_FRAME_SIZE;
|
|
the_context->i6_fp = 0;
|
|
|
|
/*
|
|
* Build the PSR for the task. Most everything can be 0 and the
|
|
* CWP is corrected during the context switch.
|
|
*
|
|
* The EF bit determines if the floating point unit is available.
|
|
* The FPU is ONLY enabled if the context is associated with an FP task
|
|
* and this SPARC model has an FPU.
|
|
*/
|
|
|
|
sparc_get_psr( tmp_psr );
|
|
tmp_psr &= ~SPARC_PSR_PIL_MASK;
|
|
tmp_psr |= (new_level << 8) & SPARC_PSR_PIL_MASK;
|
|
tmp_psr &= ~SPARC_PSR_EF_MASK; /* disabled by default */
|
|
|
|
/* _CPU_Context_restore_heir() relies on this */
|
|
_Assert( ( tmp_psr & SPARC_PSR_ET_MASK ) != 0 );
|
|
|
|
#if (SPARC_HAS_FPU == 1)
|
|
/*
|
|
* If this bit is not set, then a task gets a fault when it accesses
|
|
* a floating point register. This is a nice way to detect floating
|
|
* point tasks which are not currently declared as such.
|
|
*/
|
|
|
|
if ( is_fp )
|
|
tmp_psr |= SPARC_PSR_EF_MASK;
|
|
#endif
|
|
the_context->psr = tmp_psr;
|
|
|
|
/*
|
|
* Since THIS thread is being created, there is no way that THIS
|
|
* thread can have an _ISR_Dispatch stack frame on its stack.
|
|
*/
|
|
the_context->isr_dispatch_disable = 0;
|
|
|
|
if ( tls_area != NULL ) {
|
|
void *tcb = _TLS_TCB_after_TLS_block_initialize( tls_area );
|
|
|
|
the_context->g7 = (uintptr_t) tcb;
|
|
}
|
|
}
|