Files
rtems/bsps/arm/stm32h7/hal/stm32h7xx_hal_flash_ex.c
Karel Gardas cb78150d86 bsps/stm32h7: update STM32 H7 HAL
This patch updates STM32 H7 HAL source files. The files are taken from two
STM projects from their github.com repositories:

(i)
https://github.com/STMicroelectronics/stm32h7xx_hal_driver.git

The project files are still available under BSD-3 license
and the version/commit used is:

fec141ce999da655a48e1a15db83a72d564a1312

which represents Release v1.11.3 exactly.

(ii)
https://github.com/STMicroelectronics/cmsis_device_h7.git

The project files are available under Apache 2.0 license. Fortunately
the project does not contain NOTICE file so no need to do anything special
when used in RTEMS.

The project version/commit imported is:

faccfec37f82f7a1319c21638111b0f7335de7fe

which represents Release v1.10.4 exactly.
2024-08-05 22:42:52 +00:00

2120 lines
69 KiB
C

/**
******************************************************************************
* @file stm32h7xx_hal_flash_ex.c
* @author MCD Application Team
* @brief Extended FLASH HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the FLASH extension peripheral:
* + Extended programming operations functions
*
@verbatim
==============================================================================
##### Flash Extension features #####
==============================================================================
[..] Comparing to other previous devices, the FLASH interface for STM32H7xx
devices contains the following additional features
(+) Capacity up to 2 Mbyte with dual bank architecture supporting read-while-write
capability (RWW)
(+) Dual bank memory organization
(+) PCROP protection for all banks
(+) Global readout protection (RDP)
(+) Write protection
(+) Secure access only protection
(+) Bank / register swapping (when Dual-Bank)
(+) Cyclic Redundancy Check (CRC)
##### How to use this driver #####
==============================================================================
[..] This driver provides functions to configure and program the FLASH memory
of all STM32H7xx devices. It includes
(#) FLASH Memory Erase functions:
(++) Lock and Unlock the FLASH interface using HAL_FLASH_Unlock() and
HAL_FLASH_Lock() functions
(++) Erase function: Sector erase, bank erase and dual-bank mass erase
(++) There are two modes of erase :
(+++) Polling Mode using HAL_FLASHEx_Erase()
(+++) Interrupt Mode using HAL_FLASHEx_Erase_IT()
(#) Option Bytes Programming functions: Use HAL_FLASHEx_OBProgram() to:
(++) Set/Reset the write protection per bank
(++) Set the Read protection Level
(++) Set the BOR level
(++) Program the user Option Bytes
(++) PCROP protection configuration and control per bank
(++) Secure area configuration and control per bank
(++) Core Boot address configuration
(++) TCM / AXI shared RAM configuration
(++) CPU Frequency Boost configuration
(#) FLASH Memory Lock and unlock per Bank: HAL_FLASHEx_Lock_Bank1(), HAL_FLASHEx_Unlock_Bank1(),
HAL_FLASHEx_Lock_Bank2() and HAL_FLASHEx_Unlock_Bank2() functions
(#) FLASH CRC computation function: Use HAL_FLASHEx_ComputeCRC() to:
(++) Enable CRC feature
(++) Program the desired burst size
(++) Define the user Flash Area on which the CRC has be computed
(++) Perform the CRC computation
(++) Disable CRC feature
(#) Error correction code error functions:
(++) Use the HAL_FLASHEx_EnableEccCorrectionInterrupt() and HAL_FLASHEx_DisableEccCorrectionInterrupt()
functions to enable and disable the FLASH ECC correction interruption.
(++) Use the HAL_FLASHEx_EnableEccDetectionInterrupt() and HAL_FLASHEx_DisableEccDetectionInterrupt()
functions to enable and disable the FLASH ECC Detection interruption.
(++) Handle ECCD interrupt by calling HAL_FLASHEx_BusFault_IRQHandler()
(++) Use HAL_FLASHEx_BusFault_IRQHandler() function called under BusFault_IRQHandler() interrupt subroutine
to handle the ECCD interrupt.
(++) Use HAL_FLASHEx_GetEccInfo() function to get the flash ECC fail information.
@endverbatim
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_hal.h"
/** @addtogroup STM32H7xx_HAL_Driver
* @{
*/
/** @defgroup FLASHEx FLASHEx
* @ingroup RTEMSBSPsARMSTM32H7
* @brief FLASH HAL Extension module driver
* @{
*/
#ifdef HAL_FLASH_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup FLASHEx_Private_Constants
* @{
*/
#define FLASH_TIMEOUT_VALUE 50000U /* 50 s */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup FLASHEx_Private_Functions FLASHEx Private Functions
* @ingroup RTEMSBSPsARMSTM32H7
* @{
*/
static void FLASH_MassErase(uint32_t VoltageRange, uint32_t Banks);
static void FLASH_OB_EnableWRP(uint32_t WRPSector, uint32_t Banks);
static void FLASH_OB_DisableWRP(uint32_t WRPSector, uint32_t Bank);
static void FLASH_OB_GetWRP(uint32_t *WRPState, uint32_t *WRPSector, uint32_t Bank);
static void FLASH_OB_RDPConfig(uint32_t RDPLevel);
static uint32_t FLASH_OB_GetRDP(void);
static void FLASH_OB_PCROPConfig(uint32_t PCROConfigRDP, uint32_t PCROPStartAddr, uint32_t PCROPEndAddr, uint32_t Banks);
static void FLASH_OB_GetPCROP(uint32_t *PCROPConfig, uint32_t *PCROPStartAddr,uint32_t *PCROPEndAddr, uint32_t Bank);
static void FLASH_OB_BOR_LevelConfig(uint32_t Level);
static uint32_t FLASH_OB_GetBOR(void);
static void FLASH_OB_UserConfig(uint32_t UserType, uint32_t UserConfig);
static uint32_t FLASH_OB_GetUser(void);
static void FLASH_OB_BootAddConfig(uint32_t BootOption, uint32_t BootAddress0, uint32_t BootAddress1);
static void FLASH_OB_GetBootAdd(uint32_t *BootAddress0, uint32_t *BootAddress1);
static void FLASH_OB_SecureAreaConfig(uint32_t SecureAreaConfig, uint32_t SecureAreaStartAddr, uint32_t SecureAreaEndAddr, uint32_t Banks);
static void FLASH_OB_GetSecureArea(uint32_t *SecureAreaConfig, uint32_t *SecureAreaStartAddr, uint32_t *SecureAreaEndAddr, uint32_t Bank);
static void FLASH_CRC_AddSector(uint32_t Sector, uint32_t Bank);
static void FLASH_CRC_SelectAddress(uint32_t CRCStartAddr, uint32_t CRCEndAddr, uint32_t Bank);
#if defined (DUAL_CORE)
static void FLASH_OB_CM4BootAddConfig(uint32_t BootOption, uint32_t BootAddress0, uint32_t BootAddress1);
static void FLASH_OB_GetCM4BootAdd(uint32_t *BootAddress0, uint32_t *BootAddress1);
#endif /*DUAL_CORE*/
#if defined (FLASH_OTPBL_LOCKBL)
static void FLASH_OB_OTP_LockConfig(uint32_t OTP_Block);
static uint32_t FLASH_OB_OTP_GetLock(void);
#endif /* FLASH_OTPBL_LOCKBL */
#if defined (FLASH_OPTSR2_TCM_AXI_SHARED)
static void FLASH_OB_SharedRAM_Config(uint32_t SharedRamConfig);
static uint32_t FLASH_OB_SharedRAM_GetConfig(void);
#endif /* FLASH_OPTSR2_TCM_AXI_SHARED */
#if defined (FLASH_OPTSR2_CPUFREQ_BOOST)
static void FLASH_OB_CPUFreq_BoostConfig(uint32_t FreqBoost);
static uint32_t FLASH_OB_CPUFreq_GetBoost(void);
#endif /* FLASH_OPTSR2_CPUFREQ_BOOST */
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup FLASHEx_Exported_Functions FLASHEx Exported Functions
* @ingroup RTEMSBSPsARMSTM32H7
* @{
*/
/** @defgroup FLASHEx_Exported_Functions_Group1 Extended IO operation functions
* @ingroup RTEMSBSPsARMSTM32H7
* @brief Extended IO operation functions
*
@verbatim
===============================================================================
##### Extended programming operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the Extension FLASH
programming operations Operations.
@endverbatim
* @{
*/
/**
* @brief Perform a mass erase or erase the specified FLASH memory sectors
* @param[in] pEraseInit pointer to an FLASH_EraseInitTypeDef structure that
* contains the configuration information for the erasing.
*
* @param[out] SectorError pointer to variable that contains the configuration
* information on faulty sector in case of error (0xFFFFFFFF means that all
* the sectors have been correctly erased)
*
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *SectorError)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t sector_index;
/* Check the parameters */
assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase));
assert_param(IS_FLASH_BANK(pEraseInit->Banks));
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Reset error code */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Wait for last operation to be completed on Bank1 */
if((pEraseInit->Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_1) != HAL_OK)
{
status = HAL_ERROR;
}
}
#if defined (DUAL_BANK)
/* Wait for last operation to be completed on Bank2 */
if((pEraseInit->Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_2) != HAL_OK)
{
status = HAL_ERROR;
}
}
#endif /* DUAL_BANK */
if(status == HAL_OK)
{
if(pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE)
{
/* Mass erase to be done */
FLASH_MassErase(pEraseInit->VoltageRange, pEraseInit->Banks);
/* Wait for last operation to be completed on Bank 1 */
if((pEraseInit->Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_1) != HAL_OK)
{
status = HAL_ERROR;
}
/* if the erase operation is completed, disable the Bank1 BER Bit */
FLASH->CR1 &= (~FLASH_CR_BER);
}
#if defined (DUAL_BANK)
/* Wait for last operation to be completed on Bank 2 */
if((pEraseInit->Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_2) != HAL_OK)
{
status = HAL_ERROR;
}
/* if the erase operation is completed, disable the Bank2 BER Bit */
FLASH->CR2 &= (~FLASH_CR_BER);
}
#endif /* DUAL_BANK */
}
else
{
/*Initialization of SectorError variable*/
*SectorError = 0xFFFFFFFFU;
/* Erase by sector by sector to be done*/
for(sector_index = pEraseInit->Sector; sector_index < (pEraseInit->NbSectors + pEraseInit->Sector); sector_index++)
{
FLASH_Erase_Sector(sector_index, pEraseInit->Banks, pEraseInit->VoltageRange);
if((pEraseInit->Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_1);
/* If the erase operation is completed, disable the SER Bit */
FLASH->CR1 &= (~(FLASH_CR_SER | FLASH_CR_SNB));
}
#if defined (DUAL_BANK)
if((pEraseInit->Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_2);
/* If the erase operation is completed, disable the SER Bit */
FLASH->CR2 &= (~(FLASH_CR_SER | FLASH_CR_SNB));
}
#endif /* DUAL_BANK */
if(status != HAL_OK)
{
/* In case of error, stop erase procedure and return the faulty sector */
*SectorError = sector_index;
break;
}
}
}
}
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
/**
* @brief Perform a mass erase or erase the specified FLASH memory sectors with interrupt enabled
* @param pEraseInit pointer to an FLASH_EraseInitTypeDef structure that
* contains the configuration information for the erasing.
*
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase));
assert_param(IS_FLASH_BANK(pEraseInit->Banks));
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Reset error code */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Wait for last operation to be completed on Bank 1 */
if((pEraseInit->Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_1) != HAL_OK)
{
status = HAL_ERROR;
}
}
#if defined (DUAL_BANK)
/* Wait for last operation to be completed on Bank 2 */
if((pEraseInit->Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_2) != HAL_OK)
{
status = HAL_ERROR;
}
}
#endif /* DUAL_BANK */
if (status != HAL_OK)
{
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
}
else
{
if((pEraseInit->Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
/* Enable End of Operation and Error interrupts for Bank 1 */
#if defined (FLASH_CR_OPERRIE)
__HAL_FLASH_ENABLE_IT_BANK1(FLASH_IT_EOP_BANK1 | FLASH_IT_WRPERR_BANK1 | FLASH_IT_PGSERR_BANK1 | \
FLASH_IT_STRBERR_BANK1 | FLASH_IT_INCERR_BANK1 | FLASH_IT_OPERR_BANK1);
#else
__HAL_FLASH_ENABLE_IT_BANK1(FLASH_IT_EOP_BANK1 | FLASH_IT_WRPERR_BANK1 | FLASH_IT_PGSERR_BANK1 | \
FLASH_IT_STRBERR_BANK1 | FLASH_IT_INCERR_BANK1);
#endif /* FLASH_CR_OPERRIE */
}
#if defined (DUAL_BANK)
if((pEraseInit->Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
/* Enable End of Operation and Error interrupts for Bank 2 */
#if defined (FLASH_CR_OPERRIE)
__HAL_FLASH_ENABLE_IT_BANK2(FLASH_IT_EOP_BANK2 | FLASH_IT_WRPERR_BANK2 | FLASH_IT_PGSERR_BANK2 | \
FLASH_IT_STRBERR_BANK2 | FLASH_IT_INCERR_BANK2 | FLASH_IT_OPERR_BANK2);
#else
__HAL_FLASH_ENABLE_IT_BANK2(FLASH_IT_EOP_BANK2 | FLASH_IT_WRPERR_BANK2 | FLASH_IT_PGSERR_BANK2 | \
FLASH_IT_STRBERR_BANK2 | FLASH_IT_INCERR_BANK2);
#endif /* FLASH_CR_OPERRIE */
}
#endif /* DUAL_BANK */
if(pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE)
{
/*Mass erase to be done*/
if(pEraseInit->Banks == FLASH_BANK_1)
{
pFlash.ProcedureOnGoing = FLASH_PROC_MASSERASE_BANK1;
}
#if defined (DUAL_BANK)
else if(pEraseInit->Banks == FLASH_BANK_2)
{
pFlash.ProcedureOnGoing = FLASH_PROC_MASSERASE_BANK2;
}
#endif /* DUAL_BANK */
else
{
pFlash.ProcedureOnGoing = FLASH_PROC_ALLBANK_MASSERASE;
}
FLASH_MassErase(pEraseInit->VoltageRange, pEraseInit->Banks);
}
else
{
/* Erase by sector to be done */
#if defined (DUAL_BANK)
if(pEraseInit->Banks == FLASH_BANK_1)
{
pFlash.ProcedureOnGoing = FLASH_PROC_SECTERASE_BANK1;
}
else
{
pFlash.ProcedureOnGoing = FLASH_PROC_SECTERASE_BANK2;
}
#else
pFlash.ProcedureOnGoing = FLASH_PROC_SECTERASE_BANK1;
#endif /* DUAL_BANK */
pFlash.NbSectorsToErase = pEraseInit->NbSectors;
pFlash.Sector = pEraseInit->Sector;
pFlash.VoltageForErase = pEraseInit->VoltageRange;
/* Erase first sector and wait for IT */
FLASH_Erase_Sector(pEraseInit->Sector, pEraseInit->Banks, pEraseInit->VoltageRange);
}
}
return status;
}
/**
* @brief Program option bytes
* @param pOBInit pointer to an FLASH_OBProgramInitTypeDef structure that
* contains the configuration information for the programming.
*
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit)
{
HAL_StatusTypeDef status;
/* Check the parameters */
assert_param(IS_OPTIONBYTE(pOBInit->OptionType));
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Reset Error Code */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Wait for last operation to be completed */
if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_1) != HAL_OK)
{
status = HAL_ERROR;
}
#if defined (DUAL_BANK)
else if(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_2) != HAL_OK)
{
status = HAL_ERROR;
}
#endif /* DUAL_BANK */
else
{
status = HAL_OK;
}
if(status == HAL_OK)
{
/*Write protection configuration*/
if((pOBInit->OptionType & OPTIONBYTE_WRP) == OPTIONBYTE_WRP)
{
assert_param(IS_WRPSTATE(pOBInit->WRPState));
if(pOBInit->WRPState == OB_WRPSTATE_ENABLE)
{
/*Enable of Write protection on the selected Sector*/
FLASH_OB_EnableWRP(pOBInit->WRPSector,pOBInit->Banks);
}
else
{
/*Disable of Write protection on the selected Sector*/
FLASH_OB_DisableWRP(pOBInit->WRPSector, pOBInit->Banks);
}
}
/* Read protection configuration */
if((pOBInit->OptionType & OPTIONBYTE_RDP) != 0U)
{
/* Configure the Read protection level */
FLASH_OB_RDPConfig(pOBInit->RDPLevel);
}
/* User Configuration */
if((pOBInit->OptionType & OPTIONBYTE_USER) != 0U)
{
/* Configure the user option bytes */
FLASH_OB_UserConfig(pOBInit->USERType, pOBInit->USERConfig);
}
/* PCROP Configuration */
if((pOBInit->OptionType & OPTIONBYTE_PCROP) != 0U)
{
assert_param(IS_FLASH_BANK(pOBInit->Banks));
/*Configure the Proprietary code readout protection */
FLASH_OB_PCROPConfig(pOBInit->PCROPConfig, pOBInit->PCROPStartAddr, pOBInit->PCROPEndAddr, pOBInit->Banks);
}
/* BOR Level configuration */
if((pOBInit->OptionType & OPTIONBYTE_BOR) == OPTIONBYTE_BOR)
{
FLASH_OB_BOR_LevelConfig(pOBInit->BORLevel);
}
#if defined(DUAL_CORE)
/* CM7 Boot Address configuration */
if((pOBInit->OptionType & OPTIONBYTE_CM7_BOOTADD) == OPTIONBYTE_CM7_BOOTADD)
{
FLASH_OB_BootAddConfig(pOBInit->BootConfig, pOBInit->BootAddr0, pOBInit->BootAddr1);
}
/* CM4 Boot Address configuration */
if((pOBInit->OptionType & OPTIONBYTE_CM4_BOOTADD) == OPTIONBYTE_CM4_BOOTADD)
{
FLASH_OB_CM4BootAddConfig(pOBInit->CM4BootConfig, pOBInit->CM4BootAddr0, pOBInit->CM4BootAddr1);
}
#else /* Single Core*/
/* Boot Address configuration */
if((pOBInit->OptionType & OPTIONBYTE_BOOTADD) == OPTIONBYTE_BOOTADD)
{
FLASH_OB_BootAddConfig(pOBInit->BootConfig, pOBInit->BootAddr0, pOBInit->BootAddr1);
}
#endif /*DUAL_CORE*/
/* Secure area configuration */
if((pOBInit->OptionType & OPTIONBYTE_SECURE_AREA) == OPTIONBYTE_SECURE_AREA)
{
FLASH_OB_SecureAreaConfig(pOBInit->SecureAreaConfig, pOBInit->SecureAreaStartAddr, pOBInit->SecureAreaEndAddr,pOBInit->Banks);
}
#if defined(FLASH_OTPBL_LOCKBL)
/* OTP Block Lock configuration */
if((pOBInit->OptionType & OPTIONBYTE_OTP_LOCK) == OPTIONBYTE_OTP_LOCK)
{
FLASH_OB_OTP_LockConfig(pOBInit->OTPBlockLock);
}
#endif /* FLASH_OTPBL_LOCKBL */
#if defined(FLASH_OPTSR2_TCM_AXI_SHARED)
/* TCM / AXI Shared RAM configuration */
if((pOBInit->OptionType & OPTIONBYTE_SHARED_RAM) == OPTIONBYTE_SHARED_RAM)
{
FLASH_OB_SharedRAM_Config(pOBInit->SharedRamConfig);
}
#endif /* FLASH_OPTSR2_TCM_AXI_SHARED */
#if defined(FLASH_OPTSR2_CPUFREQ_BOOST)
/* CPU Frequency Boost configuration */
if((pOBInit->OptionType & OPTIONBYTE_FREQ_BOOST) == OPTIONBYTE_FREQ_BOOST)
{
FLASH_OB_CPUFreq_BoostConfig(pOBInit->FreqBoostState);
}
#endif /* FLASH_OPTSR2_CPUFREQ_BOOST */
}
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
/**
* @brief Get the Option byte configuration
* @param pOBInit pointer to an FLASH_OBProgramInitTypeDef structure that
* contains the configuration information for the programming.
* @note The parameter Banks of the pOBInit structure must be set exclusively to FLASH_BANK_1 or FLASH_BANK_2,
* as this parameter is use to get the given Bank WRP, PCROP and secured area configuration.
*
* @retval None
*/
void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit)
{
pOBInit->OptionType = (OPTIONBYTE_USER | OPTIONBYTE_RDP | OPTIONBYTE_BOR);
/* Get Read protection level */
pOBInit->RDPLevel = FLASH_OB_GetRDP();
/* Get the user option bytes */
pOBInit->USERConfig = FLASH_OB_GetUser();
/*Get BOR Level*/
pOBInit->BORLevel = FLASH_OB_GetBOR();
#if defined (DUAL_BANK)
if ((pOBInit->Banks == FLASH_BANK_1) || (pOBInit->Banks == FLASH_BANK_2))
#else
if (pOBInit->Banks == FLASH_BANK_1)
#endif /* DUAL_BANK */
{
pOBInit->OptionType |= (OPTIONBYTE_WRP | OPTIONBYTE_PCROP | OPTIONBYTE_SECURE_AREA);
/* Get write protection on the selected area */
FLASH_OB_GetWRP(&(pOBInit->WRPState), &(pOBInit->WRPSector), pOBInit->Banks);
/* Get the Proprietary code readout protection */
FLASH_OB_GetPCROP(&(pOBInit->PCROPConfig), &(pOBInit->PCROPStartAddr), &(pOBInit->PCROPEndAddr), pOBInit->Banks);
/*Get Bank Secure area*/
FLASH_OB_GetSecureArea(&(pOBInit->SecureAreaConfig), &(pOBInit->SecureAreaStartAddr), &(pOBInit->SecureAreaEndAddr), pOBInit->Banks);
}
/*Get Boot Address*/
FLASH_OB_GetBootAdd(&(pOBInit->BootAddr0), &(pOBInit->BootAddr1));
#if defined(DUAL_CORE)
pOBInit->OptionType |= OPTIONBYTE_CM7_BOOTADD | OPTIONBYTE_CM4_BOOTADD;
/*Get CM4 Boot Address*/
FLASH_OB_GetCM4BootAdd(&(pOBInit->CM4BootAddr0), &(pOBInit->CM4BootAddr1));
#else
pOBInit->OptionType |= OPTIONBYTE_BOOTADD;
#endif /*DUAL_CORE*/
#if defined (FLASH_OTPBL_LOCKBL)
pOBInit->OptionType |= OPTIONBYTE_OTP_LOCK;
/* Get OTP Block Lock */
pOBInit->OTPBlockLock = FLASH_OB_OTP_GetLock();
#endif /* FLASH_OTPBL_LOCKBL */
#if defined (FLASH_OPTSR2_TCM_AXI_SHARED)
pOBInit->OptionType |= OPTIONBYTE_SHARED_RAM;
/* Get TCM / AXI Shared RAM */
pOBInit->SharedRamConfig = FLASH_OB_SharedRAM_GetConfig();
#endif /* FLASH_OPTSR2_TCM_AXI_SHARED */
#if defined (FLASH_OPTSR2_CPUFREQ_BOOST)
pOBInit->OptionType |= OPTIONBYTE_FREQ_BOOST;
/* Get CPU Frequency Boost */
pOBInit->FreqBoostState = FLASH_OB_CPUFreq_GetBoost();
#endif /* FLASH_OPTSR2_CPUFREQ_BOOST */
}
/**
* @brief Unlock the FLASH Bank1 control registers access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Unlock_Bank1(void)
{
if(READ_BIT(FLASH->CR1, FLASH_CR_LOCK) != 0U)
{
/* Authorize the FLASH Bank1 Registers access */
WRITE_REG(FLASH->KEYR1, FLASH_KEY1);
WRITE_REG(FLASH->KEYR1, FLASH_KEY2);
/* Verify Flash Bank1 is unlocked */
if (READ_BIT(FLASH->CR1, FLASH_CR_LOCK) != 0U)
{
return HAL_ERROR;
}
}
return HAL_OK;
}
/**
* @brief Locks the FLASH Bank1 control registers access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Lock_Bank1(void)
{
/* Set the LOCK Bit to lock the FLASH Bank1 Registers access */
SET_BIT(FLASH->CR1, FLASH_CR_LOCK);
return HAL_OK;
}
#if defined (DUAL_BANK)
/**
* @brief Unlock the FLASH Bank2 control registers access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Unlock_Bank2(void)
{
if(READ_BIT(FLASH->CR2, FLASH_CR_LOCK) != 0U)
{
/* Authorize the FLASH Bank2 Registers access */
WRITE_REG(FLASH->KEYR2, FLASH_KEY1);
WRITE_REG(FLASH->KEYR2, FLASH_KEY2);
/* Verify Flash Bank1 is unlocked */
if (READ_BIT(FLASH->CR2, FLASH_CR_LOCK) != 0U)
{
return HAL_ERROR;
}
}
return HAL_OK;
}
/**
* @brief Locks the FLASH Bank2 control registers access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_Lock_Bank2(void)
{
/* Set the LOCK Bit to lock the FLASH Bank2 Registers access */
SET_BIT(FLASH->CR2, FLASH_CR_LOCK);
return HAL_OK;
}
#endif /* DUAL_BANK */
/*
* @brief Perform a CRC computation on the specified FLASH memory area
* @param pCRCInit pointer to an FLASH_CRCInitTypeDef structure that
* contains the configuration information for the CRC computation.
* @note CRC computation uses CRC-32 (Ethernet) polynomial 0x4C11DB7
* @note The application should avoid running a CRC on PCROP or secure-only
* user Flash memory area since it may alter the expected CRC value.
* A special error flag (CRC read error: CRCRDERR) can be used to
* detect such a case.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASHEx_ComputeCRC(FLASH_CRCInitTypeDef *pCRCInit, uint32_t *CRC_Result)
{
HAL_StatusTypeDef status;
uint32_t sector_index;
/* Check the parameters */
assert_param(IS_FLASH_BANK_EXCLUSIVE(pCRCInit->Bank));
assert_param(IS_FLASH_TYPECRC(pCRCInit->TypeCRC));
/* Wait for OB change operation to be completed */
status = FLASH_OB_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE);
if (status == HAL_OK)
{
if (pCRCInit->Bank == FLASH_BANK_1)
{
/* Enable CRC feature */
FLASH->CR1 |= FLASH_CR_CRC_EN;
/* Clear CRC flags in Status Register: CRC end of calculation and CRC read error */
FLASH->CCR1 |= (FLASH_CCR_CLR_CRCEND | FLASH_CCR_CLR_CRCRDERR);
/* Clear current CRC result, program burst size and define memory area on which CRC has to be computed */
FLASH->CRCCR1 |= FLASH_CRCCR_CLEAN_CRC | pCRCInit->BurstSize | pCRCInit->TypeCRC;
if (pCRCInit->TypeCRC == FLASH_CRC_SECTORS)
{
/* Clear sectors list */
FLASH->CRCCR1 |= FLASH_CRCCR_CLEAN_SECT;
/* Select CRC sectors */
for(sector_index = pCRCInit->Sector; sector_index < (pCRCInit->NbSectors + pCRCInit->Sector); sector_index++)
{
FLASH_CRC_AddSector(sector_index, FLASH_BANK_1);
}
}
else if (pCRCInit->TypeCRC == FLASH_CRC_BANK)
{
/* Enable Bank 1 CRC select bit */
FLASH->CRCCR1 |= FLASH_CRCCR_ALL_BANK;
}
else
{
/* Select CRC start and end addresses */
FLASH_CRC_SelectAddress(pCRCInit->CRCStartAddr, pCRCInit->CRCEndAddr, FLASH_BANK_1);
}
/* Start the CRC calculation */
FLASH->CRCCR1 |= FLASH_CRCCR_START_CRC;
/* Wait on CRC busy flag */
status = FLASH_CRC_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_1);
/* Return CRC result */
(*CRC_Result) = FLASH->CRCDATA;
/* Disable CRC feature */
FLASH->CR1 &= (~FLASH_CR_CRC_EN);
/* Clear CRC flags */
__HAL_FLASH_CLEAR_FLAG_BANK1(FLASH_FLAG_CRCEND_BANK1 | FLASH_FLAG_CRCRDERR_BANK1);
}
#if defined (DUAL_BANK)
else
{
/* Enable CRC feature */
FLASH->CR2 |= FLASH_CR_CRC_EN;
/* Clear CRC flags in Status Register: CRC end of calculation and CRC read error */
FLASH->CCR2 |= (FLASH_CCR_CLR_CRCEND | FLASH_CCR_CLR_CRCRDERR);
/* Clear current CRC result, program burst size and define memory area on which CRC has to be computed */
FLASH->CRCCR2 |= FLASH_CRCCR_CLEAN_CRC | pCRCInit->BurstSize | pCRCInit->TypeCRC;
if (pCRCInit->TypeCRC == FLASH_CRC_SECTORS)
{
/* Clear sectors list */
FLASH->CRCCR2 |= FLASH_CRCCR_CLEAN_SECT;
/* Add CRC sectors */
for(sector_index = pCRCInit->Sector; sector_index < (pCRCInit->NbSectors + pCRCInit->Sector); sector_index++)
{
FLASH_CRC_AddSector(sector_index, FLASH_BANK_2);
}
}
else if (pCRCInit->TypeCRC == FLASH_CRC_BANK)
{
/* Enable Bank 2 CRC select bit */
FLASH->CRCCR2 |= FLASH_CRCCR_ALL_BANK;
}
else
{
/* Select CRC start and end addresses */
FLASH_CRC_SelectAddress(pCRCInit->CRCStartAddr, pCRCInit->CRCEndAddr, FLASH_BANK_2);
}
/* Start the CRC calculation */
FLASH->CRCCR2 |= FLASH_CRCCR_START_CRC;
/* Wait on CRC busy flag */
status = FLASH_CRC_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE, FLASH_BANK_2);
/* Return CRC result */
(*CRC_Result) = FLASH->CRCDATA;
/* Disable CRC feature */
FLASH->CR2 &= (~FLASH_CR_CRC_EN);
/* Clear CRC flags */
__HAL_FLASH_CLEAR_FLAG_BANK2(FLASH_FLAG_CRCEND_BANK2 | FLASH_FLAG_CRCRDERR_BANK2);
}
#endif /* DUAL_BANK */
}
return status;
}
/**
* @}
*/
#if (USE_FLASH_ECC == 1U)
/** @defgroup FLASHEx_Exported_Functions_Group2 Extended ECC operation functions
* @brief Extended ECC operation functions
*
@verbatim
===============================================================================
##### Extended ECC operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the Extended FLASH
ECC Operations.
@endverbatim
* @{
*/
/**
* @brief Enable ECC correction interrupts on FLASH BANK1 and BANK2.
* @param None
* @retval None
*/
void HAL_FLASHEx_EnableEccCorrectionInterrupt(void)
{
__HAL_FLASH_ENABLE_IT(FLASH_IT_SNECCERR_BANK1);
#if defined (DUAL_BANK)
__HAL_FLASH_ENABLE_IT(FLASH_IT_SNECCERR_BANK2);
#endif /* DUAL_BANK */
}
/**
* @brief Disable ECC correction interrupts on FLASH BANK1 and BANK2.
* @param None
* @retval None
*/
void HAL_FLASHEx_DisableEccCorrectionInterrupt(void)
{
__HAL_FLASH_DISABLE_IT(FLASH_IT_SNECCERR_BANK1);
#if defined (DUAL_BANK)
__HAL_FLASH_DISABLE_IT(FLASH_IT_SNECCERR_BANK2);
#endif /* DUAL_BANK */
}
/**
* @brief Enable ECC correction interrupt on FLASH BANK1.
* @param None
* @retval None
*/
void HAL_FLASHEx_EnableEccCorrectionInterrupt_Bank1(void)
{
__HAL_FLASH_ENABLE_IT(FLASH_IT_SNECCERR_BANK1);
}
/**
* @brief Disable ECC correction interrupt on FLASH BANK1.
* @param None
* @retval None
*/
void HAL_FLASHEx_DisableEccCorrectionInterrupt_Bank1(void)
{
__HAL_FLASH_DISABLE_IT(FLASH_IT_SNECCERR_BANK1);
}
#if defined (DUAL_BANK)
/**
* @brief Enable ECC correction interrupt on FLASH BANK2.
* @param None
* @retval None
*/
void HAL_FLASHEx_EnableEccCorrectionInterrupt_Bank2(void)
{
__HAL_FLASH_ENABLE_IT(FLASH_IT_SNECCERR_BANK2);
}
/**
* @brief Disable ECC correction interrupt on FLASH BANK2.
* @param None
* @retval None
*/
void HAL_FLASHEx_DisableEccCorrectionInterrupt_Bank2(void)
{
__HAL_FLASH_DISABLE_IT(FLASH_IT_SNECCERR_BANK2);
}
#endif /* DUAL_BANK */
/**
* @brief Enable ECC Detection interrupts on FLASH BANK1 and BANK2.
* @param None
* @retval None
*/
void HAL_FLASHEx_EnableEccDetectionInterrupt(void)
{
__HAL_FLASH_ENABLE_IT(FLASH_IT_DBECCERR_BANK1);
#if defined (DUAL_BANK)
__HAL_FLASH_ENABLE_IT(FLASH_IT_DBECCERR_BANK2);
#endif /* DUAL_BANK */
}
/**
* @brief Disable ECC Detection interrupts on FLASH BANK1 and BANK2.
* @param None
* @retval None
*/
void HAL_FLASHEx_DisableEccDetectionInterrupt(void)
{
__HAL_FLASH_DISABLE_IT(FLASH_IT_DBECCERR_BANK1);
#if defined (DUAL_BANK)
__HAL_FLASH_DISABLE_IT(FLASH_IT_DBECCERR_BANK2);
#endif /* DUAL_BANK */
}
/**
* @brief Enable ECC Detection interrupt on FLASH BANK1.
* @param None
* @retval None
*/
void HAL_FLASHEx_EnableEccDetectionInterrupt_Bank1(void)
{
__HAL_FLASH_ENABLE_IT(FLASH_IT_DBECCERR_BANK1);
}
/**
* @brief Disable ECC correction interrupt on FLASH BANK1.
* @param None
* @retval None
*/
void HAL_FLASHEx_DisableEccDetectionInterrupt_Bank1(void)
{
__HAL_FLASH_DISABLE_IT(FLASH_IT_DBECCERR_BANK1);
}
#if defined (DUAL_BANK)
/**
* @brief Enable ECC Detection interrupt on FLASH BANK2.
* @param None
* @retval None
*/
void HAL_FLASHEx_EnableEccDetectionInterrupt_Bank2(void)
{
__HAL_FLASH_ENABLE_IT(FLASH_IT_DBECCERR_BANK2);
}
/**
* @brief Disable ECC Detection interrupt on FLASH BANK2.
* @param None
* @retval None
*/
void HAL_FLASHEx_DisableEccDetectionInterrupt_Bank2(void)
{
__HAL_FLASH_DISABLE_IT(FLASH_IT_DBECCERR_BANK2);
}
#endif /* DUAL_BANK */
/**
* @brief Get the ECC error information.
* @param pData Pointer to an FLASH_EccInfoTypeDef structure that contains the
* ECC error information.
* @note This function should be called before ECC bit is cleared
* (in callback function)
* @retval None
*/
void HAL_FLASHEx_GetEccInfo(FLASH_EccInfoTypeDef *pData)
{
uint32_t errorflag;
/* Check FLASH Bank1 ECC single correction and double detection error flags */
errorflag = FLASH->SR1 & (FLASH_FLAG_SNECCERR_BANK1 | FLASH_FLAG_DBECCERR_BANK1);
if(errorflag != 0U)
{
pData->Area = FLASH_ECC_AREA_USER_BANK1;
pData->Address = ((((FLASH->ECC_FA1 & FLASH_ECC_FA_FAIL_ECC_ADDR))* FLASH_NB_32BITWORD_IN_FLASHWORD * 4) + FLASH_BANK1_BASE);
}
#if defined (DUAL_BANK)
/* Check FLASH Bank2 ECC single correction and double detection error flags */
errorflag = FLASH->SR2 & (FLASH_FLAG_SNECCERR_BANK2 | FLASH_FLAG_DBECCERR_BANK2);
if(errorflag != 0U)
{
pData->Area = FLASH_ECC_AREA_USER_BANK2;
pData->Address = ((((FLASH->ECC_FA2 & FLASH_ECC_FA_FAIL_ECC_ADDR))* FLASH_NB_32BITWORD_IN_FLASHWORD * 4) + FLASH_BANK2_BASE);
}
#endif /* DUAL_BANK */
}
/**
* @brief Handle Flash ECC Detection interrupt request.
* @retval None
*/
void HAL_FLASHEx_BusFault_IRQHandler(void)
{
/* Check if the ECC double error occured*/
if ((FLASH->SR1 & FLASH_FLAG_DBECCERR_BANK1) != 0)
{
/* FLASH ECC detection user callback */
HAL_FLASHEx_EccDetectionCallback();
/* Clear Bank 1 ECC double detection error flag
note : this step will clear all the informations related to the flash ECC detection
*/
__HAL_FLASH_CLEAR_FLAG_BANK1(FLASH_FLAG_DBECCERR_BANK1);
}
#if defined (DUAL_BANK)
/* Check if the ECC double error occured*/
if ((FLASH->SR2 & FLASH_FLAG_DBECCERR_BANK2) != 0)
{
/* FLASH ECC detection user callback */
HAL_FLASHEx_EccDetectionCallback();
/* Clear Bank 2 ECC double detection error flag
note : this step will clear all the informations related to the flash ECC detection
*/
__HAL_FLASH_CLEAR_FLAG_BANK2(FLASH_FLAG_DBECCERR_BANK2);
}
#endif /* DUAL_BANK */
}
/**
* @brief FLASH ECC Correction interrupt callback.
* @retval None
*/
__weak void HAL_FLASHEx_EccCorrectionCallback(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_FLASHEx_EccCorrectionCallback could be implemented in the user file
*/
}
/**
* @brief FLASH ECC Detection interrupt callback.
* @retval None
*/
__weak void HAL_FLASHEx_EccDetectionCallback(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_FLASHEx_EccDetectionCallback could be implemented in the user file
*/
}
/**
* @}
*/
#endif /* USE_FLASH_ECC */
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @addtogroup FLASHEx_Private_Functions
* @{
*/
/**
* @brief Mass erase of FLASH memory
* @param VoltageRange The device program/erase parallelism.
* This parameter can be one of the following values:
* @arg FLASH_VOLTAGE_RANGE_1 : Flash program/erase by 8 bits
* @arg FLASH_VOLTAGE_RANGE_2 : Flash program/erase by 16 bits
* @arg FLASH_VOLTAGE_RANGE_3 : Flash program/erase by 32 bits
* @arg FLASH_VOLTAGE_RANGE_4 : Flash program/erase by 64 bits
*
* @param Banks Banks to be erased
* This parameter can be one of the following values:
* @arg FLASH_BANK_1: Bank1 to be erased
* @arg FLASH_BANK_2: Bank2 to be erased
* @arg FLASH_BANK_BOTH: Bank1 and Bank2 to be erased
*
* @retval HAL Status
*/
static void FLASH_MassErase(uint32_t VoltageRange, uint32_t Banks)
{
/* Check the parameters */
#if defined (FLASH_CR_PSIZE)
assert_param(IS_VOLTAGERANGE(VoltageRange));
#else
UNUSED(VoltageRange);
#endif /* FLASH_CR_PSIZE */
assert_param(IS_FLASH_BANK(Banks));
#if defined (DUAL_BANK)
/* Flash Mass Erase */
if((Banks & FLASH_BANK_BOTH) == FLASH_BANK_BOTH)
{
#if defined (FLASH_CR_PSIZE)
/* Reset Program/erase VoltageRange for Bank1 and Bank2 */
FLASH->CR1 &= (~FLASH_CR_PSIZE);
FLASH->CR2 &= (~FLASH_CR_PSIZE);
/* Set voltage range */
FLASH->CR1 |= VoltageRange;
FLASH->CR2 |= VoltageRange;
#endif /* FLASH_CR_PSIZE */
/* Set Mass Erase Bit */
FLASH->OPTCR |= FLASH_OPTCR_MER;
}
else
#endif /* DUAL_BANK */
{
/* Proceed to erase Flash Bank */
if((Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
#if defined (FLASH_CR_PSIZE)
/* Set Program/erase VoltageRange for Bank1 */
FLASH->CR1 &= (~FLASH_CR_PSIZE);
FLASH->CR1 |= VoltageRange;
#endif /* FLASH_CR_PSIZE */
/* Erase Bank1 */
FLASH->CR1 |= (FLASH_CR_BER | FLASH_CR_START);
}
#if defined (DUAL_BANK)
if((Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
#if defined (FLASH_CR_PSIZE)
/* Set Program/erase VoltageRange for Bank2 */
FLASH->CR2 &= (~FLASH_CR_PSIZE);
FLASH->CR2 |= VoltageRange;
#endif /* FLASH_CR_PSIZE */
/* Erase Bank2 */
FLASH->CR2 |= (FLASH_CR_BER | FLASH_CR_START);
}
#endif /* DUAL_BANK */
}
}
/**
* @brief Erase the specified FLASH memory sector
* @param Sector FLASH sector to erase
* This parameter can be a value of @ref FLASH_Sectors
* @param Banks Banks to be erased
* This parameter can be one of the following values:
* @arg FLASH_BANK_1: Bank1 to be erased
* @arg FLASH_BANK_2: Bank2 to be erased
* @arg FLASH_BANK_BOTH: Bank1 and Bank2 to be erased
* @param VoltageRange The device program/erase parallelism.
* This parameter can be one of the following values:
* @arg FLASH_VOLTAGE_RANGE_1 : Flash program/erase by 8 bits
* @arg FLASH_VOLTAGE_RANGE_2 : Flash program/erase by 16 bits
* @arg FLASH_VOLTAGE_RANGE_3 : Flash program/erase by 32 bits
* @arg FLASH_VOLTAGE_RANGE_4 : Flash program/erase by 64 bits
*
* @retval None
*/
void FLASH_Erase_Sector(uint32_t Sector, uint32_t Banks, uint32_t VoltageRange)
{
assert_param(IS_FLASH_SECTOR(Sector));
assert_param(IS_FLASH_BANK_EXCLUSIVE(Banks));
#if defined (FLASH_CR_PSIZE)
assert_param(IS_VOLTAGERANGE(VoltageRange));
#else
UNUSED(VoltageRange);
#endif /* FLASH_CR_PSIZE */
if((Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
#if defined (FLASH_CR_PSIZE)
/* Reset Program/erase VoltageRange and Sector Number for Bank1 */
FLASH->CR1 &= ~(FLASH_CR_PSIZE | FLASH_CR_SNB);
FLASH->CR1 |= (FLASH_CR_SER | VoltageRange | (Sector << FLASH_CR_SNB_Pos) | FLASH_CR_START);
#else
/* Reset Sector Number for Bank1 */
FLASH->CR1 &= ~(FLASH_CR_SNB);
FLASH->CR1 |= (FLASH_CR_SER | (Sector << FLASH_CR_SNB_Pos) | FLASH_CR_START);
#endif /* FLASH_CR_PSIZE */
}
#if defined (DUAL_BANK)
if((Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
#if defined (FLASH_CR_PSIZE)
/* Reset Program/erase VoltageRange and Sector Number for Bank2 */
FLASH->CR2 &= ~(FLASH_CR_PSIZE | FLASH_CR_SNB);
FLASH->CR2 |= (FLASH_CR_SER | VoltageRange | (Sector << FLASH_CR_SNB_Pos) | FLASH_CR_START);
#else
/* Reset Sector Number for Bank2 */
FLASH->CR2 &= ~(FLASH_CR_SNB);
FLASH->CR2 |= (FLASH_CR_SER | (Sector << FLASH_CR_SNB_Pos) | FLASH_CR_START);
#endif /* FLASH_CR_PSIZE */
}
#endif /* DUAL_BANK */
}
/**
* @brief Enable the write protection of the desired bank1 or bank 2 sectors
* @param WRPSector specifies the sector(s) to be write protected.
* This parameter can be one of the following values:
* @arg WRPSector: A combination of OB_WRP_SECTOR_0 to OB_WRP_SECTOR_7 or OB_WRP_SECTOR_ALL
*
* @param Banks the specific bank to apply WRP sectors
* This parameter can be one of the following values:
* @arg FLASH_BANK_1: enable WRP on specified bank1 sectors
* @arg FLASH_BANK_2: enable WRP on specified bank2 sectors
* @arg FLASH_BANK_BOTH: enable WRP on both bank1 and bank2 specified sectors
*
* @retval HAL FLASH State
*/
static void FLASH_OB_EnableWRP(uint32_t WRPSector, uint32_t Banks)
{
/* Check the parameters */
assert_param(IS_OB_WRP_SECTOR(WRPSector));
assert_param(IS_FLASH_BANK(Banks));
if((Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
/* Enable Write Protection for bank 1 */
FLASH->WPSN_PRG1 &= (~(WRPSector & FLASH_WPSN_WRPSN));
}
#if defined (DUAL_BANK)
if((Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
/* Enable Write Protection for bank 2 */
FLASH->WPSN_PRG2 &= (~(WRPSector & FLASH_WPSN_WRPSN));
}
#endif /* DUAL_BANK */
}
/**
* @brief Disable the write protection of the desired bank1 or bank 2 sectors
* @param WRPSector specifies the sector(s) to disable write protection.
* This parameter can be one of the following values:
* @arg WRPSector: A combination of FLASH_OB_WRP_SECTOR_0 to FLASH_OB_WRP_SECTOR_7 or FLASH_OB_WRP_SECTOR_ALL
*
* @param Banks the specific bank to apply WRP sectors
* This parameter can be one of the following values:
* @arg FLASH_BANK_1: disable WRP on specified bank1 sectors
* @arg FLASH_BANK_2: disable WRP on specified bank2 sectors
* @arg FLASH_BANK_BOTH: disable WRP on both bank1 and bank2 specified sectors
*
* @retval HAL FLASH State
*/
static void FLASH_OB_DisableWRP(uint32_t WRPSector, uint32_t Banks)
{
/* Check the parameters */
assert_param(IS_OB_WRP_SECTOR(WRPSector));
assert_param(IS_FLASH_BANK(Banks));
if((Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
/* Disable Write Protection for bank 1 */
FLASH->WPSN_PRG1 |= (WRPSector & FLASH_WPSN_WRPSN);
}
#if defined (DUAL_BANK)
if((Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
/* Disable Write Protection for bank 2 */
FLASH->WPSN_PRG2 |= (WRPSector & FLASH_WPSN_WRPSN);
}
#endif /* DUAL_BANK */
}
/**
* @brief Get the write protection of the given bank 1 or bank 2 sectors
* @param WRPState gives the write protection state on the given bank.
* This parameter can be one of the following values:
* @arg WRPState: OB_WRPSTATE_DISABLE or OB_WRPSTATE_ENABLE
* @param WRPSector gives the write protected sector(s) on the given bank .
* This parameter can be one of the following values:
* @arg WRPSector: A combination of FLASH_OB_WRP_SECTOR_0 to FLASH_OB_WRP_SECTOR_7 or FLASH_OB_WRP_SECTOR_ALL
*
* @param Bank the specific bank to apply WRP sectors
* This parameter can be exclusively one of the following values:
* @arg FLASH_BANK_1: Get bank1 WRP sectors
* @arg FLASH_BANK_2: Get bank2 WRP sectors
* @arg FLASH_BANK_BOTH: note allowed in this functions
*
* @retval HAL FLASH State
*/
static void FLASH_OB_GetWRP(uint32_t *WRPState, uint32_t *WRPSector, uint32_t Bank)
{
uint32_t regvalue = 0U;
if(Bank == FLASH_BANK_1)
{
regvalue = FLASH->WPSN_CUR1;
}
#if defined (DUAL_BANK)
if(Bank == FLASH_BANK_2)
{
regvalue = FLASH->WPSN_CUR2;
}
#endif /* DUAL_BANK */
(*WRPSector) = (~regvalue) & FLASH_WPSN_WRPSN;
if(*WRPSector == 0U)
{
(*WRPState) = OB_WRPSTATE_DISABLE;
}
else
{
(*WRPState) = OB_WRPSTATE_ENABLE;
}
}
/**
* @brief Set the read protection level.
*
* @note To configure the RDP level, the option lock bit OPTLOCK must be
* cleared with the call of the HAL_FLASH_OB_Unlock() function.
* @note To validate the RDP level, the option bytes must be reloaded
* through the call of the HAL_FLASH_OB_Launch() function.
* @note !!! Warning : When enabling OB_RDP level 2 it's no more possible
* to go back to level 1 or 0 !!!
*
* @param RDPLevel specifies the read protection level.
* This parameter can be one of the following values:
* @arg OB_RDP_LEVEL_0: No protection
* @arg OB_RDP_LEVEL_1: Read protection of the memory
* @arg OB_RDP_LEVEL_2: Full chip protection
*
* @retval HAL status
*/
static void FLASH_OB_RDPConfig(uint32_t RDPLevel)
{
/* Check the parameters */
assert_param(IS_OB_RDP_LEVEL(RDPLevel));
/* Configure the RDP level in the option bytes register */
MODIFY_REG(FLASH->OPTSR_PRG, FLASH_OPTSR_RDP, RDPLevel);
}
/**
* @brief Get the read protection level.
* @retval RDPLevel specifies the read protection level.
* This return value can be one of the following values:
* @arg OB_RDP_LEVEL_0: No protection
* @arg OB_RDP_LEVEL_1: Read protection of the memory
* @arg OB_RDP_LEVEL_2: Full chip protection
*/
static uint32_t FLASH_OB_GetRDP(void)
{
uint32_t rdp_level = READ_BIT(FLASH->OPTSR_CUR, FLASH_OPTSR_RDP);
if ((rdp_level != OB_RDP_LEVEL_0) && (rdp_level != OB_RDP_LEVEL_2))
{
return (OB_RDP_LEVEL_1);
}
else
{
return rdp_level;
}
}
#if defined(DUAL_CORE)
/**
* @brief Program the FLASH User Option Byte.
*
* @note To configure the user option bytes, the option lock bit OPTLOCK must
* be cleared with the call of the HAL_FLASH_OB_Unlock() function.
*
* @note To validate the user option bytes, the option bytes must be reloaded
* through the call of the HAL_FLASH_OB_Launch() function.
*
* @param UserType The FLASH User Option Bytes to be modified :
* a combination of @ref FLASHEx_OB_USER_Type
*
* @param UserConfig The FLASH User Option Bytes values:
* IWDG1_SW(Bit4), IWDG2_SW(Bit 5), nRST_STOP_D1(Bit 6), nRST_STDY_D1(Bit 7),
* FZ_IWDG_STOP(Bit 17), FZ_IWDG_SDBY(Bit 18), ST_RAM_SIZE(Bit[19:20]),
* SECURITY(Bit 21), BCM4(Bit 22), BCM7(Bit 23), nRST_STOP_D2(Bit 24),
* nRST_STDY_D2(Bit 25), IO_HSLV (Bit 29) and SWAP_BANK_OPT(Bit 31).
*
* @retval HAL status
*/
#else
/**
* @brief Program the FLASH User Option Byte.
*
* @note To configure the user option bytes, the option lock bit OPTLOCK must
* be cleared with the call of the HAL_FLASH_OB_Unlock() function.
*
* @note To validate the user option bytes, the option bytes must be reloaded
* through the call of the HAL_FLASH_OB_Launch() function.
*
* @param UserType The FLASH User Option Bytes to be modified :
* a combination of @arg FLASHEx_OB_USER_Type
*
* @param UserConfig The FLASH User Option Bytes values:
* IWDG_SW(Bit4), nRST_STOP_D1(Bit 6), nRST_STDY_D1(Bit 7),
* FZ_IWDG_STOP(Bit 17), FZ_IWDG_SDBY(Bit 18), ST_RAM_SIZE(Bit[19:20]),
* SECURITY(Bit 21), IO_HSLV (Bit 29) and SWAP_BANK_OPT(Bit 31).
*
* @retval HAL status
*/
#endif /*DUAL_CORE*/
static void FLASH_OB_UserConfig(uint32_t UserType, uint32_t UserConfig)
{
uint32_t optr_reg_val = 0;
uint32_t optr_reg_mask = 0;
/* Check the parameters */
assert_param(IS_OB_USER_TYPE(UserType));
if((UserType & OB_USER_IWDG1_SW) != 0U)
{
/* IWDG_HW option byte should be modified */
assert_param(IS_OB_IWDG1_SOURCE(UserConfig & FLASH_OPTSR_IWDG1_SW));
/* Set value and mask for IWDG_HW option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_IWDG1_SW);
optr_reg_mask |= FLASH_OPTSR_IWDG1_SW;
}
#if defined(DUAL_CORE)
if((UserType & OB_USER_IWDG2_SW) != 0U)
{
/* IWDG2_SW option byte should be modified */
assert_param(IS_OB_IWDG2_SOURCE(UserConfig & FLASH_OPTSR_IWDG2_SW));
/* Set value and mask for IWDG2_SW option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_IWDG2_SW);
optr_reg_mask |= FLASH_OPTSR_IWDG2_SW;
}
#endif /*DUAL_CORE*/
if((UserType & OB_USER_NRST_STOP_D1) != 0U)
{
/* NRST_STOP option byte should be modified */
assert_param(IS_OB_STOP_D1_RESET(UserConfig & FLASH_OPTSR_NRST_STOP_D1));
/* Set value and mask for NRST_STOP option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_NRST_STOP_D1);
optr_reg_mask |= FLASH_OPTSR_NRST_STOP_D1;
}
if((UserType & OB_USER_NRST_STDBY_D1) != 0U)
{
/* NRST_STDBY option byte should be modified */
assert_param(IS_OB_STDBY_D1_RESET(UserConfig & FLASH_OPTSR_NRST_STBY_D1));
/* Set value and mask for NRST_STDBY option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_NRST_STBY_D1);
optr_reg_mask |= FLASH_OPTSR_NRST_STBY_D1;
}
if((UserType & OB_USER_IWDG_STOP) != 0U)
{
/* IWDG_STOP option byte should be modified */
assert_param(IS_OB_USER_IWDG_STOP(UserConfig & FLASH_OPTSR_FZ_IWDG_STOP));
/* Set value and mask for IWDG_STOP option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_FZ_IWDG_STOP);
optr_reg_mask |= FLASH_OPTSR_FZ_IWDG_STOP;
}
if((UserType & OB_USER_IWDG_STDBY) != 0U)
{
/* IWDG_STDBY option byte should be modified */
assert_param(IS_OB_USER_IWDG_STDBY(UserConfig & FLASH_OPTSR_FZ_IWDG_SDBY));
/* Set value and mask for IWDG_STDBY option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_FZ_IWDG_SDBY);
optr_reg_mask |= FLASH_OPTSR_FZ_IWDG_SDBY;
}
if((UserType & OB_USER_ST_RAM_SIZE) != 0U)
{
/* ST_RAM_SIZE option byte should be modified */
assert_param(IS_OB_USER_ST_RAM_SIZE(UserConfig & FLASH_OPTSR_ST_RAM_SIZE));
/* Set value and mask for ST_RAM_SIZE option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_ST_RAM_SIZE);
optr_reg_mask |= FLASH_OPTSR_ST_RAM_SIZE;
}
if((UserType & OB_USER_SECURITY) != 0U)
{
/* SECURITY option byte should be modified */
assert_param(IS_OB_USER_SECURITY(UserConfig & FLASH_OPTSR_SECURITY));
/* Set value and mask for SECURITY option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_SECURITY);
optr_reg_mask |= FLASH_OPTSR_SECURITY;
}
#if defined(DUAL_CORE)
if((UserType & OB_USER_BCM4) != 0U)
{
/* BCM4 option byte should be modified */
assert_param(IS_OB_USER_BCM4(UserConfig & FLASH_OPTSR_BCM4));
/* Set value and mask for BCM4 option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_BCM4);
optr_reg_mask |= FLASH_OPTSR_BCM4;
}
if((UserType & OB_USER_BCM7) != 0U)
{
/* BCM7 option byte should be modified */
assert_param(IS_OB_USER_BCM7(UserConfig & FLASH_OPTSR_BCM7));
/* Set value and mask for BCM7 option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_BCM7);
optr_reg_mask |= FLASH_OPTSR_BCM7;
}
#endif /* DUAL_CORE */
#if defined (FLASH_OPTSR_NRST_STOP_D2)
if((UserType & OB_USER_NRST_STOP_D2) != 0U)
{
/* NRST_STOP option byte should be modified */
assert_param(IS_OB_STOP_D2_RESET(UserConfig & FLASH_OPTSR_NRST_STOP_D2));
/* Set value and mask for NRST_STOP option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_NRST_STOP_D2);
optr_reg_mask |= FLASH_OPTSR_NRST_STOP_D2;
}
if((UserType & OB_USER_NRST_STDBY_D2) != 0U)
{
/* NRST_STDBY option byte should be modified */
assert_param(IS_OB_STDBY_D2_RESET(UserConfig & FLASH_OPTSR_NRST_STBY_D2));
/* Set value and mask for NRST_STDBY option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_NRST_STBY_D2);
optr_reg_mask |= FLASH_OPTSR_NRST_STBY_D2;
}
#endif /* FLASH_OPTSR_NRST_STOP_D2 */
#if defined (DUAL_BANK)
if((UserType & OB_USER_SWAP_BANK) != 0U)
{
/* SWAP_BANK_OPT option byte should be modified */
assert_param(IS_OB_USER_SWAP_BANK(UserConfig & FLASH_OPTSR_SWAP_BANK_OPT));
/* Set value and mask for SWAP_BANK_OPT option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_SWAP_BANK_OPT);
optr_reg_mask |= FLASH_OPTSR_SWAP_BANK_OPT;
}
#endif /* DUAL_BANK */
if((UserType & OB_USER_IOHSLV) != 0U)
{
/* IOHSLV_OPT option byte should be modified */
assert_param(IS_OB_USER_IOHSLV(UserConfig & FLASH_OPTSR_IO_HSLV));
/* Set value and mask for IOHSLV_OPT option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_IO_HSLV);
optr_reg_mask |= FLASH_OPTSR_IO_HSLV;
}
#if defined (FLASH_OPTSR_VDDMMC_HSLV)
if((UserType & OB_USER_VDDMMC_HSLV) != 0U)
{
/* VDDMMC_HSLV option byte should be modified */
assert_param(IS_OB_USER_VDDMMC_HSLV(UserConfig & FLASH_OPTSR_VDDMMC_HSLV));
/* Set value and mask for VDDMMC_HSLV option byte */
optr_reg_val |= (UserConfig & FLASH_OPTSR_VDDMMC_HSLV);
optr_reg_mask |= FLASH_OPTSR_VDDMMC_HSLV;
}
#endif /* FLASH_OPTSR_VDDMMC_HSLV */
/* Configure the option bytes register */
MODIFY_REG(FLASH->OPTSR_PRG, optr_reg_mask, optr_reg_val);
}
#if defined(DUAL_CORE)
/**
* @brief Return the FLASH User Option Byte value.
* @retval The FLASH User Option Bytes values
* IWDG1_SW(Bit4), IWDG2_SW(Bit 5), nRST_STOP_D1(Bit 6), nRST_STDY_D1(Bit 7),
* FZ_IWDG_STOP(Bit 17), FZ_IWDG_SDBY(Bit 18), ST_RAM_SIZE(Bit[19:20]),
* SECURITY(Bit 21), BCM4(Bit 22), BCM7(Bit 23), nRST_STOP_D2(Bit 24),
* nRST_STDY_D2(Bit 25), IO_HSLV (Bit 29) and SWAP_BANK_OPT(Bit 31).
*/
#else
/**
* @brief Return the FLASH User Option Byte value.
* @retval The FLASH User Option Bytes values
* IWDG_SW(Bit4), nRST_STOP_D1(Bit 6), nRST_STDY_D1(Bit 7),
* FZ_IWDG_STOP(Bit 17), FZ_IWDG_SDBY(Bit 18), ST_RAM_SIZE(Bit[19:20]),
* SECURITY(Bit 21), IO_HSLV (Bit 29) and SWAP_BANK_OPT(Bit 31).
*/
#endif /*DUAL_CORE*/
static uint32_t FLASH_OB_GetUser(void)
{
uint32_t userConfig = READ_REG(FLASH->OPTSR_CUR);
userConfig &= (~(FLASH_OPTSR_BOR_LEV | FLASH_OPTSR_RDP));
return userConfig;
}
/**
* @brief Configure the Proprietary code readout protection of the desired addresses
*
* @note To configure the PCROP options, the option lock bit OPTLOCK must be
* cleared with the call of the HAL_FLASH_OB_Unlock() function.
* @note To validate the PCROP options, the option bytes must be reloaded
* through the call of the HAL_FLASH_OB_Launch() function.
*
* @param PCROPConfig specifies if the PCROP area for the given Bank shall be erased or not
* when RDP level decreased from Level 1 to Level 0, or after a bank erase with protection removal
* This parameter must be a value of @arg FLASHEx_OB_PCROP_RDP enumeration
*
* @param PCROPStartAddr specifies the start address of the Proprietary code readout protection
* This parameter can be an address between begin and end of the bank
*
* @param PCROPEndAddr specifies the end address of the Proprietary code readout protection
* This parameter can be an address between PCROPStartAddr and end of the bank
*
* @param Banks the specific bank to apply PCROP protection
* This parameter can be one of the following values:
* @arg FLASH_BANK_1: PCROP on specified bank1 area
* @arg FLASH_BANK_2: PCROP on specified bank2 area
* @arg FLASH_BANK_BOTH: PCROP on specified bank1 and bank2 area (same config will be applied on both banks)
*
* @retval None
*/
static void FLASH_OB_PCROPConfig(uint32_t PCROPConfig, uint32_t PCROPStartAddr, uint32_t PCROPEndAddr, uint32_t Banks)
{
/* Check the parameters */
assert_param(IS_FLASH_BANK(Banks));
assert_param(IS_OB_PCROP_RDP(PCROPConfig));
if((Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK1(PCROPStartAddr));
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK1(PCROPEndAddr));
/* Configure the Proprietary code readout protection */
FLASH->PRAR_PRG1 = ((PCROPStartAddr - FLASH_BANK1_BASE) >> 8) | \
(((PCROPEndAddr - FLASH_BANK1_BASE) >> 8) << FLASH_PRAR_PROT_AREA_END_Pos) | \
PCROPConfig;
}
#if defined (DUAL_BANK)
if((Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK2(PCROPStartAddr));
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK2(PCROPEndAddr));
/* Configure the Proprietary code readout protection */
FLASH->PRAR_PRG2 = ((PCROPStartAddr - FLASH_BANK2_BASE) >> 8) | \
(((PCROPEndAddr - FLASH_BANK2_BASE) >> 8) << FLASH_PRAR_PROT_AREA_END_Pos) | \
PCROPConfig;
}
#endif /* DUAL_BANK */
}
/**
* @brief Get the Proprietary code readout protection configuration on a given Bank
*
* @param PCROPConfig indicates if the PCROP area for the given Bank shall be erased or not
* when RDP level decreased from Level 1 to Level 0 or after a bank erase with protection removal
*
* @param PCROPStartAddr gives the start address of the Proprietary code readout protection of the bank
*
* @param PCROPEndAddr gives the end address of the Proprietary code readout protection of the bank
*
* @param Bank the specific bank to apply PCROP protection
* This parameter can be exclusively one of the following values:
* @arg FLASH_BANK_1: PCROP on specified bank1 area
* @arg FLASH_BANK_2: PCROP on specified bank2 area
* @arg FLASH_BANK_BOTH: is not allowed here
*
* @retval None
*/
static void FLASH_OB_GetPCROP(uint32_t *PCROPConfig, uint32_t *PCROPStartAddr, uint32_t *PCROPEndAddr, uint32_t Bank)
{
uint32_t regvalue = 0;
uint32_t bankBase = 0;
if(Bank == FLASH_BANK_1)
{
regvalue = FLASH->PRAR_CUR1;
bankBase = FLASH_BANK1_BASE;
}
#if defined (DUAL_BANK)
if(Bank == FLASH_BANK_2)
{
regvalue = FLASH->PRAR_CUR2;
bankBase = FLASH_BANK2_BASE;
}
#endif /* DUAL_BANK */
(*PCROPConfig) = (regvalue & FLASH_PRAR_DMEP);
(*PCROPStartAddr) = ((regvalue & FLASH_PRAR_PROT_AREA_START) << 8) + bankBase;
(*PCROPEndAddr) = (regvalue & FLASH_PRAR_PROT_AREA_END) >> FLASH_PRAR_PROT_AREA_END_Pos;
(*PCROPEndAddr) = ((*PCROPEndAddr) << 8) + bankBase;
}
/**
* @brief Set the BOR Level.
* @param Level specifies the Option Bytes BOR Reset Level.
* This parameter can be one of the following values:
* @arg OB_BOR_LEVEL0: Reset level threshold is set to 1.6V
* @arg OB_BOR_LEVEL1: Reset level threshold is set to 2.1V
* @arg OB_BOR_LEVEL2: Reset level threshold is set to 2.4V
* @arg OB_BOR_LEVEL3: Reset level threshold is set to 2.7V
* @retval None
*/
static void FLASH_OB_BOR_LevelConfig(uint32_t Level)
{
assert_param(IS_OB_BOR_LEVEL(Level));
/* Configure BOR_LEV option byte */
MODIFY_REG(FLASH->OPTSR_PRG, FLASH_OPTSR_BOR_LEV, Level);
}
/**
* @brief Get the BOR Level.
* @retval The Option Bytes BOR Reset Level.
* This parameter can be one of the following values:
* @arg OB_BOR_LEVEL0: Reset level threshold is set to 1.6V
* @arg OB_BOR_LEVEL1: Reset level threshold is set to 2.1V
* @arg OB_BOR_LEVEL2: Reset level threshold is set to 2.4V
* @arg OB_BOR_LEVEL3: Reset level threshold is set to 2.7V
*/
static uint32_t FLASH_OB_GetBOR(void)
{
return (FLASH->OPTSR_CUR & FLASH_OPTSR_BOR_LEV);
}
/**
* @brief Set Boot address
* @param BootOption Boot address option byte to be programmed,
* This parameter must be a value of @ref FLASHEx_OB_BOOT_OPTION
(OB_BOOT_ADD0, OB_BOOT_ADD1 or OB_BOOT_ADD_BOTH)
*
* @param BootAddress0 Specifies the Boot Address 0
* @param BootAddress1 Specifies the Boot Address 1
* @retval HAL Status
*/
static void FLASH_OB_BootAddConfig(uint32_t BootOption, uint32_t BootAddress0, uint32_t BootAddress1)
{
/* Check the parameters */
assert_param(IS_OB_BOOT_ADD_OPTION(BootOption));
if((BootOption & OB_BOOT_ADD0) == OB_BOOT_ADD0)
{
/* Check the parameters */
assert_param(IS_BOOT_ADDRESS(BootAddress0));
/* Configure CM7 BOOT ADD0 */
#if defined(DUAL_CORE)
MODIFY_REG(FLASH->BOOT7_PRG, FLASH_BOOT7_BCM7_ADD0, (BootAddress0 >> 16));
#else /* Single Core*/
MODIFY_REG(FLASH->BOOT_PRG, FLASH_BOOT_ADD0, (BootAddress0 >> 16));
#endif /* DUAL_CORE */
}
if((BootOption & OB_BOOT_ADD1) == OB_BOOT_ADD1)
{
/* Check the parameters */
assert_param(IS_BOOT_ADDRESS(BootAddress1));
/* Configure CM7 BOOT ADD1 */
#if defined(DUAL_CORE)
MODIFY_REG(FLASH->BOOT7_PRG, FLASH_BOOT7_BCM7_ADD1, BootAddress1);
#else /* Single Core*/
MODIFY_REG(FLASH->BOOT_PRG, FLASH_BOOT_ADD1, BootAddress1);
#endif /* DUAL_CORE */
}
}
/**
* @brief Get Boot address
* @param BootAddress0 Specifies the Boot Address 0.
* @param BootAddress1 Specifies the Boot Address 1.
* @retval HAL Status
*/
static void FLASH_OB_GetBootAdd(uint32_t *BootAddress0, uint32_t *BootAddress1)
{
uint32_t regvalue;
#if defined(DUAL_CORE)
regvalue = FLASH->BOOT7_CUR;
(*BootAddress0) = (regvalue & FLASH_BOOT7_BCM7_ADD0) << 16;
(*BootAddress1) = (regvalue & FLASH_BOOT7_BCM7_ADD1);
#else /* Single Core */
regvalue = FLASH->BOOT_CUR;
(*BootAddress0) = (regvalue & FLASH_BOOT_ADD0) << 16;
(*BootAddress1) = (regvalue & FLASH_BOOT_ADD1);
#endif /* DUAL_CORE */
}
#if defined(DUAL_CORE)
/**
* @brief Set CM4 Boot address
* @param BootOption Boot address option byte to be programmed,
* This parameter must be a value of @ref FLASHEx_OB_BOOT_OPTION
(OB_BOOT_ADD0, OB_BOOT_ADD1 or OB_BOOT_ADD_BOTH)
*
* @param BootAddress0 Specifies the CM4 Boot Address 0.
* @param BootAddress1 Specifies the CM4 Boot Address 1.
* @retval HAL Status
*/
static void FLASH_OB_CM4BootAddConfig(uint32_t BootOption, uint32_t BootAddress0, uint32_t BootAddress1)
{
/* Check the parameters */
assert_param(IS_OB_BOOT_ADD_OPTION(BootOption));
if((BootOption & OB_BOOT_ADD0) == OB_BOOT_ADD0)
{
/* Check the parameters */
assert_param(IS_BOOT_ADDRESS(BootAddress0));
/* Configure CM4 BOOT ADD0 */
MODIFY_REG(FLASH->BOOT4_PRG, FLASH_BOOT4_BCM4_ADD0, (BootAddress0 >> 16));
}
if((BootOption & OB_BOOT_ADD1) == OB_BOOT_ADD1)
{
/* Check the parameters */
assert_param(IS_BOOT_ADDRESS(BootAddress1));
/* Configure CM4 BOOT ADD1 */
MODIFY_REG(FLASH->BOOT4_PRG, FLASH_BOOT4_BCM4_ADD1, BootAddress1);
}
}
/**
* @brief Get CM4 Boot address
* @param BootAddress0 Specifies the CM4 Boot Address 0.
* @param BootAddress1 Specifies the CM4 Boot Address 1.
* @retval HAL Status
*/
static void FLASH_OB_GetCM4BootAdd(uint32_t *BootAddress0, uint32_t *BootAddress1)
{
uint32_t regvalue;
regvalue = FLASH->BOOT4_CUR;
(*BootAddress0) = (regvalue & FLASH_BOOT4_BCM4_ADD0) << 16;
(*BootAddress1) = (regvalue & FLASH_BOOT4_BCM4_ADD1);
}
#endif /*DUAL_CORE*/
/**
* @brief Set secure area configuration
* @param SecureAreaConfig specify if the secure area will be deleted or not
* when RDP level decreased from Level 1 to Level 0 or during a mass erase.
*
* @param SecureAreaStartAddr Specifies the secure area start address
* @param SecureAreaEndAddr Specifies the secure area end address
* @param Banks the specific bank to apply Security protection
* This parameter can be one of the following values:
* @arg FLASH_BANK_1: Secure area on specified bank1 area
* @arg FLASH_BANK_2: Secure area on specified bank2 area
* @arg FLASH_BANK_BOTH: Secure area on specified bank1 and bank2 area (same config will be applied on both banks)
* @retval None
*/
static void FLASH_OB_SecureAreaConfig(uint32_t SecureAreaConfig, uint32_t SecureAreaStartAddr, uint32_t SecureAreaEndAddr, uint32_t Banks)
{
/* Check the parameters */
assert_param(IS_FLASH_BANK(Banks));
assert_param(IS_OB_SECURE_RDP(SecureAreaConfig));
if((Banks & FLASH_BANK_1) == FLASH_BANK_1)
{
/* Check the parameters */
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK1(SecureAreaStartAddr));
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK1(SecureAreaEndAddr));
/* Configure the secure area */
FLASH->SCAR_PRG1 = ((SecureAreaStartAddr - FLASH_BANK1_BASE) >> 8) | \
(((SecureAreaEndAddr - FLASH_BANK1_BASE) >> 8) << FLASH_SCAR_SEC_AREA_END_Pos) | \
(SecureAreaConfig & FLASH_SCAR_DMES);
}
#if defined (DUAL_BANK)
if((Banks & FLASH_BANK_2) == FLASH_BANK_2)
{
/* Check the parameters */
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK2(SecureAreaStartAddr));
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK2(SecureAreaEndAddr));
/* Configure the secure area */
FLASH->SCAR_PRG2 = ((SecureAreaStartAddr - FLASH_BANK2_BASE) >> 8) | \
(((SecureAreaEndAddr - FLASH_BANK2_BASE) >> 8) << FLASH_SCAR_SEC_AREA_END_Pos) | \
(SecureAreaConfig & FLASH_SCAR_DMES);
}
#endif /* DUAL_BANK */
}
/**
* @brief Get secure area configuration
* @param SecureAreaConfig indicates if the secure area will be deleted or not
* when RDP level decreased from Level 1 to Level 0 or during a mass erase.
* @param SecureAreaStartAddr gives the secure area start address
* @param SecureAreaEndAddr gives the secure area end address
* @param Bank Specifies the Bank
* @retval None
*/
static void FLASH_OB_GetSecureArea(uint32_t *SecureAreaConfig, uint32_t *SecureAreaStartAddr, uint32_t *SecureAreaEndAddr, uint32_t Bank)
{
uint32_t regvalue = 0;
uint32_t bankBase = 0;
/* Check Bank parameter value */
if(Bank == FLASH_BANK_1)
{
regvalue = FLASH->SCAR_CUR1;
bankBase = FLASH_BANK1_BASE;
}
#if defined (DUAL_BANK)
if(Bank == FLASH_BANK_2)
{
regvalue = FLASH->SCAR_CUR2;
bankBase = FLASH_BANK2_BASE;
}
#endif /* DUAL_BANK */
/* Get the secure area settings */
(*SecureAreaConfig) = (regvalue & FLASH_SCAR_DMES);
(*SecureAreaStartAddr) = ((regvalue & FLASH_SCAR_SEC_AREA_START) << 8) + bankBase;
(*SecureAreaEndAddr) = (regvalue & FLASH_SCAR_SEC_AREA_END) >> FLASH_SCAR_SEC_AREA_END_Pos;
(*SecureAreaEndAddr) = ((*SecureAreaEndAddr) << 8) + bankBase;
}
/**
* @brief Add a CRC sector to the list of sectors on which the CRC will be calculated
* @param Sector Specifies the CRC sector number
* @param Bank Specifies the Bank
* @retval None
*/
static void FLASH_CRC_AddSector(uint32_t Sector, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FLASH_SECTOR(Sector));
if (Bank == FLASH_BANK_1)
{
/* Clear CRC sector */
FLASH->CRCCR1 &= (~FLASH_CRCCR_CRC_SECT);
/* Select CRC Sector and activate ADD_SECT bit */
FLASH->CRCCR1 |= Sector | FLASH_CRCCR_ADD_SECT;
}
#if defined (DUAL_BANK)
else
{
/* Clear CRC sector */
FLASH->CRCCR2 &= (~FLASH_CRCCR_CRC_SECT);
/* Select CRC Sector and activate ADD_SECT bit */
FLASH->CRCCR2 |= Sector | FLASH_CRCCR_ADD_SECT;
}
#endif /* DUAL_BANK */
}
/**
* @brief Select CRC start and end memory addresses on which the CRC will be calculated
* @param CRCStartAddr Specifies the CRC start address
* @param CRCEndAddr Specifies the CRC end address
* @param Bank Specifies the Bank
* @retval None
*/
static void FLASH_CRC_SelectAddress(uint32_t CRCStartAddr, uint32_t CRCEndAddr, uint32_t Bank)
{
if (Bank == FLASH_BANK_1)
{
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK1(CRCStartAddr));
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK1(CRCEndAddr));
/* Write CRC Start and End addresses */
FLASH->CRCSADD1 = CRCStartAddr;
FLASH->CRCEADD1 = CRCEndAddr;
}
#if defined (DUAL_BANK)
else
{
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK2(CRCStartAddr));
assert_param(IS_FLASH_PROGRAM_ADDRESS_BANK2(CRCEndAddr));
/* Write CRC Start and End addresses */
FLASH->CRCSADD2 = CRCStartAddr;
FLASH->CRCEADD2 = CRCEndAddr;
}
#endif /* DUAL_BANK */
}
/**
* @}
*/
#if defined (FLASH_OTPBL_LOCKBL)
/**
* @brief Configure the OTP Block Lock.
* @param OTP_Block specifies the OTP Block to lock.
* This parameter can be a value of @ref FLASHEx_OTP_Blocks
* @retval None
*/
static void FLASH_OB_OTP_LockConfig(uint32_t OTP_Block)
{
/* Check the parameters */
assert_param(IS_OTP_BLOCK(OTP_Block));
/* Configure the OTP Block lock in the option bytes register */
FLASH->OTPBL_PRG |= (OTP_Block & FLASH_OTPBL_LOCKBL);
}
/**
* @brief Get the OTP Block Lock.
* @retval OTP_Block specifies the OTP Block to lock.
* This return value can be a value of @ref FLASHEx_OTP_Blocks
*/
static uint32_t FLASH_OB_OTP_GetLock(void)
{
return (FLASH->OTPBL_CUR);
}
#endif /* FLASH_OTPBL_LOCKBL */
#if defined (FLASH_OPTSR2_TCM_AXI_SHARED)
/**
* @brief Configure the TCM / AXI Shared RAM.
* @param SharedRamConfig specifies the Shared RAM configuration.
* This parameter can be a value of @ref FLASHEx_OB_TCM_AXI_SHARED
* @retval None
*/
static void FLASH_OB_SharedRAM_Config(uint32_t SharedRamConfig)
{
/* Check the parameters */
assert_param(IS_OB_USER_TCM_AXI_SHARED(SharedRamConfig));
/* Configure the TCM / AXI Shared RAM in the option bytes register */
MODIFY_REG(FLASH->OPTSR2_PRG, FLASH_OPTSR2_TCM_AXI_SHARED, SharedRamConfig);
}
/**
* @brief Get the TCM / AXI Shared RAM configuration.
* @retval SharedRamConfig returns the TCM / AXI Shared RAM configuration.
* This return value can be a value of @ref FLASHEx_OB_TCM_AXI_SHARED
*/
static uint32_t FLASH_OB_SharedRAM_GetConfig(void)
{
return (FLASH->OPTSR2_CUR & FLASH_OPTSR2_TCM_AXI_SHARED);
}
#endif /* FLASH_OPTSR2_TCM_AXI_SHARED */
#if defined (FLASH_OPTSR2_CPUFREQ_BOOST)
/**
* @brief Configure the CPU Frequency Boost.
* @param FreqBoost specifies the CPU Frequency Boost state.
* This parameter can be a value of @ref FLASHEx_OB_CPUFREQ_BOOST
* @retval None
*/
static void FLASH_OB_CPUFreq_BoostConfig(uint32_t FreqBoost)
{
/* Check the parameters */
assert_param(IS_OB_USER_CPUFREQ_BOOST(FreqBoost));
/* Configure the CPU Frequency Boost in the option bytes register */
MODIFY_REG(FLASH->OPTSR2_PRG, FLASH_OPTSR2_CPUFREQ_BOOST, FreqBoost);
}
/**
* @brief Get the CPU Frequency Boost state.
* @retval FreqBoost returns the CPU Frequency Boost state.
* This return value can be a value of @ref FLASHEx_OB_CPUFREQ_BOOST
*/
static uint32_t FLASH_OB_CPUFreq_GetBoost(void)
{
return (FLASH->OPTSR2_CUR & FLASH_OPTSR2_CPUFREQ_BOOST);
}
#endif /* FLASH_OPTSR2_CPUFREQ_BOOST */
#endif /* HAL_FLASH_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/