Files
rtems/bsps/arm/stm32h7/hal/stm32h7xx_hal_fdcan.c
Karel Gardas cb78150d86 bsps/stm32h7: update STM32 H7 HAL
This patch updates STM32 H7 HAL source files. The files are taken from two
STM projects from their github.com repositories:

(i)
https://github.com/STMicroelectronics/stm32h7xx_hal_driver.git

The project files are still available under BSD-3 license
and the version/commit used is:

fec141ce999da655a48e1a15db83a72d564a1312

which represents Release v1.11.3 exactly.

(ii)
https://github.com/STMicroelectronics/cmsis_device_h7.git

The project files are available under Apache 2.0 license. Fortunately
the project does not contain NOTICE file so no need to do anything special
when used in RTEMS.

The project version/commit imported is:

faccfec37f82f7a1319c21638111b0f7335de7fe

which represents Release v1.10.4 exactly.
2024-08-05 22:42:52 +00:00

6267 lines
207 KiB
C

/**
******************************************************************************
* @file stm32h7xx_hal_fdcan.c
* @author MCD Application Team
* @brief FDCAN HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Flexible DataRate Controller Area Network
* (FDCAN) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral Configuration and Control functions
* + Peripheral State and Error functions
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(#) Initialize the FDCAN peripheral using HAL_FDCAN_Init function.
(#) If needed , configure the reception filters and optional features using
the following configuration functions:
(++) HAL_FDCAN_ConfigClockCalibration
(++) HAL_FDCAN_ConfigFilter
(++) HAL_FDCAN_ConfigGlobalFilter
(++) HAL_FDCAN_ConfigExtendedIdMask
(++) HAL_FDCAN_ConfigRxFifoOverwrite
(++) HAL_FDCAN_ConfigFifoWatermark
(++) HAL_FDCAN_ConfigRamWatchdog
(++) HAL_FDCAN_ConfigTimestampCounter
(++) HAL_FDCAN_EnableTimestampCounter
(++) HAL_FDCAN_DisableTimestampCounter
(++) HAL_FDCAN_ConfigTimeoutCounter
(++) HAL_FDCAN_EnableTimeoutCounter
(++) HAL_FDCAN_DisableTimeoutCounter
(++) HAL_FDCAN_ConfigTxDelayCompensation
(++) HAL_FDCAN_EnableTxDelayCompensation
(++) HAL_FDCAN_DisableTxDelayCompensation
(++) HAL_FDCAN_EnableISOMode
(++) HAL_FDCAN_DisableISOMode
(++) HAL_FDCAN_EnableEdgeFiltering
(++) HAL_FDCAN_DisableEdgeFiltering
(++) HAL_FDCAN_TT_ConfigOperation
(++) HAL_FDCAN_TT_ConfigReferenceMessage
(++) HAL_FDCAN_TT_ConfigTrigger
(#) Start the FDCAN module using HAL_FDCAN_Start function. At this level
the node is active on the bus: it can send and receive messages.
(#) The following Tx control functions can only be called when the FDCAN
module is started:
(++) HAL_FDCAN_AddMessageToTxFifoQ
(++) HAL_FDCAN_EnableTxBufferRequest
(++) HAL_FDCAN_AbortTxRequest
(#) After having submitted a Tx request in Tx Fifo or Queue, it is possible to
get Tx buffer location used to place the Tx request thanks to
HAL_FDCAN_GetLatestTxFifoQRequestBuffer API.
It is then possible to abort later on the corresponding Tx Request using
HAL_FDCAN_AbortTxRequest API.
(#) When a message is received into the FDCAN message RAM, it can be
retrieved using the HAL_FDCAN_GetRxMessage function.
(#) Calling the HAL_FDCAN_Stop function stops the FDCAN module by entering
it to initialization mode and re-enabling access to configuration
registers through the configuration functions listed here above.
(#) All other control functions can be called any time after initialization
phase, no matter if the FDCAN module is started or stopped.
*** Polling mode operation ***
==============================
[..]
(#) Reception and transmission states can be monitored via the following
functions:
(++) HAL_FDCAN_IsRxBufferMessageAvailable
(++) HAL_FDCAN_IsTxBufferMessagePending
(++) HAL_FDCAN_GetRxFifoFillLevel
(++) HAL_FDCAN_GetTxFifoFreeLevel
*** Interrupt mode operation ***
================================
[..]
(#) There are two interrupt lines: line 0 and 1.
By default, all interrupts are assigned to line 0. Interrupt lines
can be configured using HAL_FDCAN_ConfigInterruptLines function.
(#) Notifications are activated using HAL_FDCAN_ActivateNotification
function. Then, the process can be controlled through one of the
available user callbacks: HAL_FDCAN_xxxCallback.
*** Callback registration ***
=============================================
The compilation define USE_HAL_FDCAN_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use Function HAL_FDCAN_RegisterCallback() or HAL_FDCAN_RegisterXXXCallback()
to register an interrupt callback.
Function HAL_FDCAN_RegisterCallback() allows to register following callbacks:
(+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
(+) RxBufferNewMessageCallback : Rx Buffer New Message Callback.
(+) HighPriorityMessageCallback : High Priority Message Callback.
(+) TimestampWraparoundCallback : Timestamp Wraparound Callback.
(+) TimeoutOccurredCallback : Timeout Occurred Callback.
(+) ErrorCallback : Error Callback.
(+) MspInitCallback : FDCAN MspInit.
(+) MspDeInitCallback : FDCAN MspDeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
For specific callbacks ClockCalibrationCallback, TxEventFifoCallback, RxFifo0Callback, RxFifo1Callback,
TxBufferCompleteCallback, TxBufferAbortCallback, ErrorStatusCallback, TT_ScheduleSyncCallback, TT_TimeMarkCallback,
TT_StopWatchCallback and TT_GlobalTimeCallback, use dedicated register callbacks:
respectively HAL_FDCAN_RegisterClockCalibrationCallback(), HAL_FDCAN_RegisterTxEventFifoCallback(),
HAL_FDCAN_RegisterRxFifo0Callback(), HAL_FDCAN_RegisterRxFifo1Callback(),
HAL_FDCAN_RegisterTxBufferCompleCallback(), HAL_FDCAN_RegisterTxBufferAbortCallback(),
HAL_FDCAN_RegisterErrorStatusCallback(), HAL_FDCAN_TT_RegisterScheduleSyncCallback(),
HAL_FDCAN_TT_RegisterTimeMarkCallback(), HAL_FDCAN_TT_RegisterStopWatchCallback() and
HAL_FDCAN_TT_RegisterGlobalTimeCallback().
Use function HAL_FDCAN_UnRegisterCallback() to reset a callback to the default
weak function.
HAL_FDCAN_UnRegisterCallback takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
(+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
(+) RxBufferNewMessageCallback : Rx Buffer New Message Callback.
(+) HighPriorityMessageCallback : High Priority Message Callback.
(+) TimestampWraparoundCallback : Timestamp Wraparound Callback.
(+) TimeoutOccurredCallback : Timeout Occurred Callback.
(+) ErrorCallback : Error Callback.
(+) MspInitCallback : FDCAN MspInit.
(+) MspDeInitCallback : FDCAN MspDeInit.
For specific callbacks ClockCalibrationCallback, TxEventFifoCallback, RxFifo0Callback,
RxFifo1Callback, TxBufferCompleteCallback, TxBufferAbortCallback, TT_ScheduleSyncCallback,
TT_TimeMarkCallback, TT_StopWatchCallback and TT_GlobalTimeCallback, use dedicated
register callbacks: respectively HAL_FDCAN_UnRegisterClockCalibrationCallback(),
HAL_FDCAN_UnRegisterTxEventFifoCallback(), HAL_FDCAN_UnRegisterRxFifo0Callback(),
HAL_FDCAN_UnRegisterRxFifo1Callback(), HAL_FDCAN_UnRegisterTxBufferCompleCallback(),
HAL_FDCAN_UnRegisterTxBufferAbortCallback(), HAL_FDCAN_UnRegisterErrorStatusCallback(),
HAL_FDCAN_TT_UnRegisterScheduleSyncCallback(), HAL_FDCAN_TT_UnRegisterTimeMarkCallback(),
HAL_FDCAN_TT_UnRegisterStopWatchCallback() and HAL_FDCAN_TT_UnRegisterGlobalTimeCallback().
By default, after the HAL_FDCAN_Init() and when the state is HAL_FDCAN_STATE_RESET,
all callbacks are set to the corresponding weak functions:
examples HAL_FDCAN_ErrorCallback().
Exception done for MspInit and MspDeInit functions that are
reset to the legacy weak function in the HAL_FDCAN_Init()/ HAL_FDCAN_DeInit() only when
these callbacks are null (not registered beforehand).
if not, MspInit or MspDeInit are not null, the HAL_FDCAN_Init()/ HAL_FDCAN_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
Callbacks can be registered/unregistered in HAL_FDCAN_STATE_READY state only.
Exception done MspInit/MspDeInit that can be registered/unregistered
in HAL_FDCAN_STATE_READY or HAL_FDCAN_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using HAL_FDCAN_RegisterCallback() before calling HAL_FDCAN_DeInit()
or HAL_FDCAN_Init() function.
When The compilation define USE_HAL_FDCAN_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all callbacks
are set to the corresponding weak functions.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32h7xx_hal.h"
#if defined(FDCAN1)
/** @addtogroup STM32H7xx_HAL_Driver
* @{
*/
/** @defgroup FDCAN FDCAN
* @ingroup RTEMSBSPsARMSTM32H7
* @brief FDCAN HAL module driver
* @{
*/
#ifdef HAL_FDCAN_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup FDCAN_Private_Constants
* @{
*/
#define FDCAN_TIMEOUT_VALUE 10U
#define FDCAN_TIMEOUT_COUNT 50U
#define FDCAN_TX_EVENT_FIFO_MASK (FDCAN_IR_TEFL | FDCAN_IR_TEFF | FDCAN_IR_TEFW | FDCAN_IR_TEFN)
#define FDCAN_RX_FIFO0_MASK (FDCAN_IR_RF0L | FDCAN_IR_RF0F | FDCAN_IR_RF0W | FDCAN_IR_RF0N)
#define FDCAN_RX_FIFO1_MASK (FDCAN_IR_RF1L | FDCAN_IR_RF1F | FDCAN_IR_RF1W | FDCAN_IR_RF1N)
#define FDCAN_ERROR_MASK (FDCAN_IR_ELO | FDCAN_IR_WDI | FDCAN_IR_PEA | FDCAN_IR_PED | FDCAN_IR_ARA)
#define FDCAN_ERROR_STATUS_MASK (FDCAN_IR_EP | FDCAN_IR_EW | FDCAN_IR_BO)
#define FDCAN_TT_SCHEDULE_SYNC_MASK (FDCAN_TTIR_SBC | FDCAN_TTIR_SMC | FDCAN_TTIR_CSM | FDCAN_TTIR_SOG)
#define FDCAN_TT_TIME_MARK_MASK (FDCAN_TTIR_RTMI | FDCAN_TTIR_TTMI)
#define FDCAN_TT_GLOBAL_TIME_MASK (FDCAN_TTIR_GTW | FDCAN_TTIR_GTD)
#define FDCAN_TT_DISTURBING_ERROR_MASK (FDCAN_TTIR_GTE | FDCAN_TTIR_TXU | FDCAN_TTIR_TXO | \
FDCAN_TTIR_SE1 | FDCAN_TTIR_SE2 | FDCAN_TTIR_ELC)
#define FDCAN_TT_FATAL_ERROR_MASK (FDCAN_TTIR_IWT | FDCAN_TTIR_WT | FDCAN_TTIR_AW | FDCAN_TTIR_CER)
#define FDCAN_ELEMENT_MASK_STDID ((uint32_t)0x1FFC0000U) /* Standard Identifier */
#define FDCAN_ELEMENT_MASK_EXTID ((uint32_t)0x1FFFFFFFU) /* Extended Identifier */
#define FDCAN_ELEMENT_MASK_RTR ((uint32_t)0x20000000U) /* Remote Transmission Request */
#define FDCAN_ELEMENT_MASK_XTD ((uint32_t)0x40000000U) /* Extended Identifier */
#define FDCAN_ELEMENT_MASK_ESI ((uint32_t)0x80000000U) /* Error State Indicator */
#define FDCAN_ELEMENT_MASK_TS ((uint32_t)0x0000FFFFU) /* Timestamp */
#define FDCAN_ELEMENT_MASK_DLC ((uint32_t)0x000F0000U) /* Data Length Code */
#define FDCAN_ELEMENT_MASK_BRS ((uint32_t)0x00100000U) /* Bit Rate Switch */
#define FDCAN_ELEMENT_MASK_FDF ((uint32_t)0x00200000U) /* FD Format */
#define FDCAN_ELEMENT_MASK_EFC ((uint32_t)0x00800000U) /* Event FIFO Control */
#define FDCAN_ELEMENT_MASK_MM ((uint32_t)0xFF000000U) /* Message Marker */
#define FDCAN_ELEMENT_MASK_FIDX ((uint32_t)0x7F000000U) /* Filter Index */
#define FDCAN_ELEMENT_MASK_ANMF ((uint32_t)0x80000000U) /* Accepted Non-matching Frame */
#define FDCAN_ELEMENT_MASK_ET ((uint32_t)0x00C00000U) /* Event type */
#define FDCAN_MESSAGE_RAM_SIZE 0x2800U
#define FDCAN_MESSAGE_RAM_END_ADDRESS (SRAMCAN_BASE + FDCAN_MESSAGE_RAM_SIZE - 0x4U) /* Message RAM width is 4 Bytes */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @addtogroup FDCAN_Private_Variables
* @{
*/
static const uint8_t DLCtoBytes[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 32, 48, 64};
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup FDCAN_Private_Functions_Prototypes
* @{
*/
static HAL_StatusTypeDef FDCAN_CalcultateRamBlockAddresses(FDCAN_HandleTypeDef *hfdcan);
static void FDCAN_CopyMessageToRAM(const FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader,
const uint8_t *pTxData, uint32_t BufferIndex);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup FDCAN_Exported_Functions FDCAN Exported Functions
* @ingroup RTEMSBSPsARMSTM32H7
* @{
*/
/** @defgroup FDCAN_Exported_Functions_Group1 Initialization and de-initialization functions
* @ingroup RTEMSBSPsARMSTM32H7
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and de-initialization functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Initialize and configure the FDCAN.
(+) De-initialize the FDCAN.
(+) Enter FDCAN peripheral in power down mode.
(+) Exit power down mode.
(+) Register callbacks.
(+) Unregister callbacks.
@endverbatim
* @{
*/
/**
* @brief Initializes the FDCAN peripheral according to the specified
* parameters in the FDCAN_InitTypeDef structure.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_Init(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t tickstart;
HAL_StatusTypeDef status;
const uint32_t CvtEltSize[] = {0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7};
/* Check FDCAN handle */
if (hfdcan == NULL)
{
return HAL_ERROR;
}
/* Check FDCAN instance */
if (hfdcan->Instance == FDCAN1)
{
hfdcan->ttcan = (TTCAN_TypeDef *)((uint32_t)hfdcan->Instance + 0x100U);
}
/* Check function parameters */
assert_param(IS_FDCAN_ALL_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_FRAME_FORMAT(hfdcan->Init.FrameFormat));
assert_param(IS_FDCAN_MODE(hfdcan->Init.Mode));
assert_param(IS_FUNCTIONAL_STATE(hfdcan->Init.AutoRetransmission));
assert_param(IS_FUNCTIONAL_STATE(hfdcan->Init.TransmitPause));
assert_param(IS_FUNCTIONAL_STATE(hfdcan->Init.ProtocolException));
assert_param(IS_FDCAN_NOMINAL_PRESCALER(hfdcan->Init.NominalPrescaler));
assert_param(IS_FDCAN_NOMINAL_SJW(hfdcan->Init.NominalSyncJumpWidth));
assert_param(IS_FDCAN_NOMINAL_TSEG1(hfdcan->Init.NominalTimeSeg1));
assert_param(IS_FDCAN_NOMINAL_TSEG2(hfdcan->Init.NominalTimeSeg2));
if (hfdcan->Init.FrameFormat == FDCAN_FRAME_FD_BRS)
{
assert_param(IS_FDCAN_DATA_PRESCALER(hfdcan->Init.DataPrescaler));
assert_param(IS_FDCAN_DATA_SJW(hfdcan->Init.DataSyncJumpWidth));
assert_param(IS_FDCAN_DATA_TSEG1(hfdcan->Init.DataTimeSeg1));
assert_param(IS_FDCAN_DATA_TSEG2(hfdcan->Init.DataTimeSeg2));
}
assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.StdFiltersNbr, 128U));
assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.ExtFiltersNbr, 64U));
assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.RxFifo0ElmtsNbr, 64U));
if (hfdcan->Init.RxFifo0ElmtsNbr > 0U)
{
assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.RxFifo0ElmtSize));
}
assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.RxFifo1ElmtsNbr, 64U));
if (hfdcan->Init.RxFifo1ElmtsNbr > 0U)
{
assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.RxFifo1ElmtSize));
}
assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.RxBuffersNbr, 64U));
if (hfdcan->Init.RxBuffersNbr > 0U)
{
assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.RxBufferSize));
}
assert_param(IS_FDCAN_MAX_VALUE(hfdcan->Init.TxEventsNbr, 32U));
assert_param(IS_FDCAN_MAX_VALUE((hfdcan->Init.TxBuffersNbr + hfdcan->Init.TxFifoQueueElmtsNbr), 32U));
if (hfdcan->Init.TxFifoQueueElmtsNbr > 0U)
{
assert_param(IS_FDCAN_TX_FIFO_QUEUE_MODE(hfdcan->Init.TxFifoQueueMode));
}
if ((hfdcan->Init.TxBuffersNbr + hfdcan->Init.TxFifoQueueElmtsNbr) > 0U)
{
assert_param(IS_FDCAN_DATA_SIZE(hfdcan->Init.TxElmtSize));
}
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
if (hfdcan->State == HAL_FDCAN_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hfdcan->Lock = HAL_UNLOCKED;
/* Reset callbacks to legacy functions */
hfdcan->ClockCalibrationCallback = HAL_FDCAN_ClockCalibrationCallback; /* ClockCalibrationCallback */
hfdcan->TxEventFifoCallback = HAL_FDCAN_TxEventFifoCallback; /* TxEventFifoCallback */
hfdcan->RxFifo0Callback = HAL_FDCAN_RxFifo0Callback; /* RxFifo0Callback */
hfdcan->RxFifo1Callback = HAL_FDCAN_RxFifo1Callback; /* RxFifo1Callback */
hfdcan->TxFifoEmptyCallback = HAL_FDCAN_TxFifoEmptyCallback; /* TxFifoEmptyCallback */
hfdcan->TxBufferCompleteCallback = HAL_FDCAN_TxBufferCompleteCallback; /* TxBufferCompleteCallback */
hfdcan->TxBufferAbortCallback = HAL_FDCAN_TxBufferAbortCallback; /* TxBufferAbortCallback */
hfdcan->RxBufferNewMessageCallback = HAL_FDCAN_RxBufferNewMessageCallback; /* RxBufferNewMessageCallback */
hfdcan->HighPriorityMessageCallback = HAL_FDCAN_HighPriorityMessageCallback; /* HighPriorityMessageCallback */
hfdcan->TimestampWraparoundCallback = HAL_FDCAN_TimestampWraparoundCallback; /* TimestampWraparoundCallback */
hfdcan->TimeoutOccurredCallback = HAL_FDCAN_TimeoutOccurredCallback; /* TimeoutOccurredCallback */
hfdcan->ErrorCallback = HAL_FDCAN_ErrorCallback; /* ErrorCallback */
hfdcan->ErrorStatusCallback = HAL_FDCAN_ErrorStatusCallback; /* ErrorStatusCallback */
hfdcan->TT_ScheduleSyncCallback = HAL_FDCAN_TT_ScheduleSyncCallback; /* TT_ScheduleSyncCallback */
hfdcan->TT_TimeMarkCallback = HAL_FDCAN_TT_TimeMarkCallback; /* TT_TimeMarkCallback */
hfdcan->TT_StopWatchCallback = HAL_FDCAN_TT_StopWatchCallback; /* TT_StopWatchCallback */
hfdcan->TT_GlobalTimeCallback = HAL_FDCAN_TT_GlobalTimeCallback; /* TT_GlobalTimeCallback */
if (hfdcan->MspInitCallback == NULL)
{
hfdcan->MspInitCallback = HAL_FDCAN_MspInit; /* Legacy weak MspInit */
}
/* Init the low level hardware: CLOCK, NVIC */
hfdcan->MspInitCallback(hfdcan);
}
#else
if (hfdcan->State == HAL_FDCAN_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hfdcan->Lock = HAL_UNLOCKED;
/* Init the low level hardware: CLOCK, NVIC */
HAL_FDCAN_MspInit(hfdcan);
}
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
/* Exit from Sleep mode */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR);
/* Get tick */
tickstart = HAL_GetTick();
/* Check Sleep mode acknowledge */
while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA)
{
if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Request initialisation */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until the INIT bit into CCCR register is set */
while ((hfdcan->Instance->CCCR & FDCAN_CCCR_INIT) == 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Enable configuration change */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CCE);
/* Set the no automatic retransmission */
if (hfdcan->Init.AutoRetransmission == ENABLE)
{
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_DAR);
}
else
{
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_DAR);
}
/* Set the transmit pause feature */
if (hfdcan->Init.TransmitPause == ENABLE)
{
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_TXP);
}
else
{
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_TXP);
}
/* Set the Protocol Exception Handling */
if (hfdcan->Init.ProtocolException == ENABLE)
{
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_PXHD);
}
else
{
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_PXHD);
}
/* Set FDCAN Frame Format */
MODIFY_REG(hfdcan->Instance->CCCR, FDCAN_FRAME_FD_BRS, hfdcan->Init.FrameFormat);
/* Reset FDCAN Operation Mode */
CLEAR_BIT(hfdcan->Instance->CCCR, (FDCAN_CCCR_TEST | FDCAN_CCCR_MON | FDCAN_CCCR_ASM));
CLEAR_BIT(hfdcan->Instance->TEST, FDCAN_TEST_LBCK);
/* Set FDCAN Operating Mode:
| Normal | Restricted | Bus | Internal | External
| | Operation | Monitoring | LoopBack | LoopBack
CCCR.TEST | 0 | 0 | 0 | 1 | 1
CCCR.MON | 0 | 0 | 1 | 1 | 0
TEST.LBCK | 0 | 0 | 0 | 1 | 1
CCCR.ASM | 0 | 1 | 0 | 0 | 0
*/
if (hfdcan->Init.Mode == FDCAN_MODE_RESTRICTED_OPERATION)
{
/* Enable Restricted Operation mode */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_ASM);
}
else if (hfdcan->Init.Mode != FDCAN_MODE_NORMAL)
{
if (hfdcan->Init.Mode != FDCAN_MODE_BUS_MONITORING)
{
/* Enable write access to TEST register */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_TEST);
/* Enable LoopBack mode */
SET_BIT(hfdcan->Instance->TEST, FDCAN_TEST_LBCK);
if (hfdcan->Init.Mode == FDCAN_MODE_INTERNAL_LOOPBACK)
{
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_MON);
}
}
else
{
/* Enable bus monitoring mode */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_MON);
}
}
else
{
/* Nothing to do: normal mode */
}
/* Set the nominal bit timing register */
hfdcan->Instance->NBTP = ((((uint32_t)hfdcan->Init.NominalSyncJumpWidth - 1U) << FDCAN_NBTP_NSJW_Pos) | \
(((uint32_t)hfdcan->Init.NominalTimeSeg1 - 1U) << FDCAN_NBTP_NTSEG1_Pos) | \
(((uint32_t)hfdcan->Init.NominalTimeSeg2 - 1U) << FDCAN_NBTP_NTSEG2_Pos) | \
(((uint32_t)hfdcan->Init.NominalPrescaler - 1U) << FDCAN_NBTP_NBRP_Pos));
/* If FD operation with BRS is selected, set the data bit timing register */
if (hfdcan->Init.FrameFormat == FDCAN_FRAME_FD_BRS)
{
hfdcan->Instance->DBTP = ((((uint32_t)hfdcan->Init.DataSyncJumpWidth - 1U) << FDCAN_DBTP_DSJW_Pos) | \
(((uint32_t)hfdcan->Init.DataTimeSeg1 - 1U) << FDCAN_DBTP_DTSEG1_Pos) | \
(((uint32_t)hfdcan->Init.DataTimeSeg2 - 1U) << FDCAN_DBTP_DTSEG2_Pos) | \
(((uint32_t)hfdcan->Init.DataPrescaler - 1U) << FDCAN_DBTP_DBRP_Pos));
}
if (hfdcan->Init.TxFifoQueueElmtsNbr > 0U)
{
/* Select between Tx FIFO and Tx Queue operation modes */
SET_BIT(hfdcan->Instance->TXBC, hfdcan->Init.TxFifoQueueMode);
}
/* Configure Tx element size */
if ((hfdcan->Init.TxBuffersNbr + hfdcan->Init.TxFifoQueueElmtsNbr) > 0U)
{
MODIFY_REG(hfdcan->Instance->TXESC, FDCAN_TXESC_TBDS, CvtEltSize[hfdcan->Init.TxElmtSize]);
}
/* Configure Rx FIFO 0 element size */
if (hfdcan->Init.RxFifo0ElmtsNbr > 0U)
{
MODIFY_REG(hfdcan->Instance->RXESC, FDCAN_RXESC_F0DS,
(CvtEltSize[hfdcan->Init.RxFifo0ElmtSize] << FDCAN_RXESC_F0DS_Pos));
}
/* Configure Rx FIFO 1 element size */
if (hfdcan->Init.RxFifo1ElmtsNbr > 0U)
{
MODIFY_REG(hfdcan->Instance->RXESC, FDCAN_RXESC_F1DS,
(CvtEltSize[hfdcan->Init.RxFifo1ElmtSize] << FDCAN_RXESC_F1DS_Pos));
}
/* Configure Rx buffer element size */
if (hfdcan->Init.RxBuffersNbr > 0U)
{
MODIFY_REG(hfdcan->Instance->RXESC, FDCAN_RXESC_RBDS,
(CvtEltSize[hfdcan->Init.RxBufferSize] << FDCAN_RXESC_RBDS_Pos));
}
/* By default operation mode is set to Event-driven communication.
If Time-triggered communication is needed, user should call the
HAL_FDCAN_TT_ConfigOperation function just after the HAL_FDCAN_Init */
if (hfdcan->Instance == FDCAN1)
{
CLEAR_BIT(hfdcan->ttcan->TTOCF, FDCAN_TTOCF_OM);
}
/* Initialize the Latest Tx FIFO/Queue request buffer index */
hfdcan->LatestTxFifoQRequest = 0U;
/* Initialize the error code */
hfdcan->ErrorCode = HAL_FDCAN_ERROR_NONE;
/* Initialize the FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_READY;
/* Calculate each RAM block address */
status = FDCAN_CalcultateRamBlockAddresses(hfdcan);
/* Return function status */
return status;
}
/**
* @brief Deinitializes the FDCAN peripheral registers to their default reset values.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_DeInit(FDCAN_HandleTypeDef *hfdcan)
{
/* Check FDCAN handle */
if (hfdcan == NULL)
{
return HAL_ERROR;
}
/* Check function parameters */
assert_param(IS_FDCAN_ALL_INSTANCE(hfdcan->Instance));
/* Stop the FDCAN module: return value is voluntary ignored */
(void)HAL_FDCAN_Stop(hfdcan);
/* Disable Interrupt lines */
CLEAR_BIT(hfdcan->Instance->ILE, (FDCAN_INTERRUPT_LINE0 | FDCAN_INTERRUPT_LINE1));
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
if (hfdcan->MspDeInitCallback == NULL)
{
hfdcan->MspDeInitCallback = HAL_FDCAN_MspDeInit; /* Legacy weak MspDeInit */
}
/* DeInit the low level hardware: CLOCK, NVIC */
hfdcan->MspDeInitCallback(hfdcan);
#else
/* DeInit the low level hardware: CLOCK, NVIC */
HAL_FDCAN_MspDeInit(hfdcan);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
/* Reset the FDCAN ErrorCode */
hfdcan->ErrorCode = HAL_FDCAN_ERROR_NONE;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_RESET;
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the FDCAN MSP.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_MspInit(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes the FDCAN MSP.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_MspDeInit(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_MspDeInit could be implemented in the user file
*/
}
/**
* @brief Enter FDCAN peripheral in sleep mode.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_EnterPowerDownMode(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t tickstart;
/* Request clock stop */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until FDCAN is ready for power down */
while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == 0U)
{
if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Exit power down mode.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ExitPowerDownMode(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t tickstart;
/* Reset clock stop request */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until FDCAN exits sleep mode */
while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA)
{
if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Enter normal operation */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT);
/* Return function status */
return HAL_OK;
}
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/**
* @brief Register a FDCAN CallBack.
* To be used instead of the weak predefined callback
* @param hfdcan pointer to a FDCAN_HandleTypeDef structure that contains
* the configuration information for FDCAN module
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_FDCAN_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty callback ID
* @arg @ref HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID Rx buffer new message callback ID
* @arg @ref HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID High priority message callback ID
* @arg @ref HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID Timestamp wraparound callback ID
* @arg @ref HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID Timeout occurred callback ID
* @arg @ref HAL_FDCAN_ERROR_CALLBACK_CB_ID Error callback ID
* @arg @ref HAL_FDCAN_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_FDCAN_MSPDEINIT_CB_ID MspDeInit callback ID
* @param pCallback pointer to the Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterCallback(FDCAN_HandleTypeDef *hfdcan, HAL_FDCAN_CallbackIDTypeDef CallbackID,
void (* pCallback)(FDCAN_HandleTypeDef *_hFDCAN))
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
switch (CallbackID)
{
case HAL_FDCAN_TX_FIFO_EMPTY_CB_ID :
hfdcan->TxFifoEmptyCallback = pCallback;
break;
case HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID :
hfdcan->RxBufferNewMessageCallback = pCallback;
break;
case HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID :
hfdcan->HighPriorityMessageCallback = pCallback;
break;
case HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID :
hfdcan->TimestampWraparoundCallback = pCallback;
break;
case HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID :
hfdcan->TimeoutOccurredCallback = pCallback;
break;
case HAL_FDCAN_ERROR_CALLBACK_CB_ID :
hfdcan->ErrorCallback = pCallback;
break;
case HAL_FDCAN_MSPINIT_CB_ID :
hfdcan->MspInitCallback = pCallback;
break;
case HAL_FDCAN_MSPDEINIT_CB_ID :
hfdcan->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (hfdcan->State == HAL_FDCAN_STATE_RESET)
{
switch (CallbackID)
{
case HAL_FDCAN_MSPINIT_CB_ID :
hfdcan->MspInitCallback = pCallback;
break;
case HAL_FDCAN_MSPDEINIT_CB_ID :
hfdcan->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Unregister a FDCAN CallBack.
* FDCAN callback is redirected to the weak predefined callback
* @param hfdcan pointer to a FDCAN_HandleTypeDef structure that contains
* the configuration information for FDCAN module
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_FDCAN_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty callback ID
* @arg @ref HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID Rx buffer new message callback ID
* @arg @ref HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID High priority message callback ID
* @arg @ref HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID Timestamp wraparound callback ID
* @arg @ref HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID Timeout occurred callback ID
* @arg @ref HAL_FDCAN_ERROR_CALLBACK_CB_ID Error callback ID
* @arg @ref HAL_FDCAN_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_FDCAN_MSPDEINIT_CB_ID MspDeInit callback ID
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterCallback(FDCAN_HandleTypeDef *hfdcan, HAL_FDCAN_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
switch (CallbackID)
{
case HAL_FDCAN_TX_FIFO_EMPTY_CB_ID :
hfdcan->TxFifoEmptyCallback = HAL_FDCAN_TxFifoEmptyCallback;
break;
case HAL_FDCAN_RX_BUFFER_NEW_MSG_CB_ID :
hfdcan->RxBufferNewMessageCallback = HAL_FDCAN_RxBufferNewMessageCallback;
break;
case HAL_FDCAN_HIGH_PRIO_MESSAGE_CB_ID :
hfdcan->HighPriorityMessageCallback = HAL_FDCAN_HighPriorityMessageCallback;
break;
case HAL_FDCAN_TIMESTAMP_WRAPAROUND_CB_ID :
hfdcan->TimestampWraparoundCallback = HAL_FDCAN_TimestampWraparoundCallback;
break;
case HAL_FDCAN_TIMEOUT_OCCURRED_CB_ID :
hfdcan->TimeoutOccurredCallback = HAL_FDCAN_TimeoutOccurredCallback;
break;
case HAL_FDCAN_ERROR_CALLBACK_CB_ID :
hfdcan->ErrorCallback = HAL_FDCAN_ErrorCallback;
break;
case HAL_FDCAN_MSPINIT_CB_ID :
hfdcan->MspInitCallback = HAL_FDCAN_MspInit;
break;
case HAL_FDCAN_MSPDEINIT_CB_ID :
hfdcan->MspDeInitCallback = HAL_FDCAN_MspDeInit;
break;
default :
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (hfdcan->State == HAL_FDCAN_STATE_RESET)
{
switch (CallbackID)
{
case HAL_FDCAN_MSPINIT_CB_ID :
hfdcan->MspInitCallback = HAL_FDCAN_MspInit;
break;
case HAL_FDCAN_MSPDEINIT_CB_ID :
hfdcan->MspDeInitCallback = HAL_FDCAN_MspDeInit;
break;
default :
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register Clock Calibration FDCAN Callback
* To be used instead of the weak HAL_FDCAN_ClockCalibrationCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the Clock Calibration Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterClockCalibrationCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_ClockCalibrationCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->ClockCalibrationCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the Clock Calibration FDCAN Callback
* Clock Calibration FDCAN Callback is redirected to the weak
* HAL_FDCAN_ClockCalibrationCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterClockCalibrationCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->ClockCalibrationCallback = HAL_FDCAN_ClockCalibrationCallback; /* Legacy weak ClockCalibrationCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register Tx Event Fifo FDCAN Callback
* To be used instead of the weak HAL_FDCAN_TxEventFifoCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the Tx Event Fifo Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterTxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_TxEventFifoCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TxEventFifoCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the Tx Event Fifo FDCAN Callback
* Tx Event Fifo FDCAN Callback is redirected to the weak HAL_FDCAN_TxEventFifoCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterTxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TxEventFifoCallback = HAL_FDCAN_TxEventFifoCallback; /* Legacy weak TxEventFifoCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register Rx Fifo 0 FDCAN Callback
* To be used instead of the weak HAL_FDCAN_RxFifo0Callback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the Rx Fifo 0 Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterRxFifo0Callback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_RxFifo0CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->RxFifo0Callback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the Rx Fifo 0 FDCAN Callback
* Rx Fifo 0 FDCAN Callback is redirected to the weak HAL_FDCAN_RxFifo0Callback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterRxFifo0Callback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->RxFifo0Callback = HAL_FDCAN_RxFifo0Callback; /* Legacy weak RxFifo0Callback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register Rx Fifo 1 FDCAN Callback
* To be used instead of the weak HAL_FDCAN_RxFifo1Callback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the Rx Fifo 1 Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterRxFifo1Callback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_RxFifo1CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->RxFifo1Callback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the Rx Fifo 1 FDCAN Callback
* Rx Fifo 1 FDCAN Callback is redirected to the weak HAL_FDCAN_RxFifo1Callback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterRxFifo1Callback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->RxFifo1Callback = HAL_FDCAN_RxFifo1Callback; /* Legacy weak RxFifo1Callback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register Tx Buffer Complete FDCAN Callback
* To be used instead of the weak HAL_FDCAN_TxBufferCompleteCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the Tx Buffer Complete Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterTxBufferCompleteCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_TxBufferCompleteCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TxBufferCompleteCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the Tx Buffer Complete FDCAN Callback
* Tx Buffer Complete FDCAN Callback is redirected to
* the weak HAL_FDCAN_TxBufferCompleteCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterTxBufferCompleteCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TxBufferCompleteCallback = HAL_FDCAN_TxBufferCompleteCallback; /* Legacy weak TxBufferCompleteCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register Tx Buffer Abort FDCAN Callback
* To be used instead of the weak HAL_FDCAN_TxBufferAbortCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the Tx Buffer Abort Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterTxBufferAbortCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_TxBufferAbortCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TxBufferAbortCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the Tx Buffer Abort FDCAN Callback
* Tx Buffer Abort FDCAN Callback is redirected to
* the weak HAL_FDCAN_TxBufferAbortCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterTxBufferAbortCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TxBufferAbortCallback = HAL_FDCAN_TxBufferAbortCallback; /* Legacy weak TxBufferAbortCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register Error Status FDCAN Callback
* To be used instead of the weak HAL_FDCAN_ErrorStatusCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the Error Status Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_ErrorStatusCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->ErrorStatusCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the Error Status FDCAN Callback
* Error Status FDCAN Callback is redirected to the weak HAL_FDCAN_ErrorStatusCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->ErrorStatusCallback = HAL_FDCAN_ErrorStatusCallback; /* Legacy weak ErrorStatusCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register TT Schedule Synchronization FDCAN Callback
* To be used instead of the weak HAL_FDCAN_TT_ScheduleSyncCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the TT Schedule Synchronization Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterTTScheduleSyncCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_TT_ScheduleSyncCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_ScheduleSyncCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the TT Schedule Synchronization FDCAN Callback
* TT Schedule Synchronization Callback is redirected to the weak
* HAL_FDCAN_TT_ScheduleSyncCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTScheduleSyncCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_ScheduleSyncCallback = HAL_FDCAN_TT_ScheduleSyncCallback; /* Legacy weak TT_ScheduleSyncCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register TT Time Mark FDCAN Callback
* To be used instead of the weak HAL_FDCAN_TT_TimeMarkCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the TT Time Mark Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterTTTimeMarkCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_TT_TimeMarkCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_TimeMarkCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the TT Time Mark FDCAN Callback
* TT Time Mark Callback is redirected to the weak HAL_FDCAN_TT_TimeMarkCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTTimeMarkCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_TimeMarkCallback = HAL_FDCAN_TT_TimeMarkCallback; /* Legacy weak TT_TimeMarkCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register TT Stop Watch FDCAN Callback
* To be used instead of the weak HAL_FDCAN_TT_StopWatchCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the TT Stop Watch Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterTTStopWatchCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_TT_StopWatchCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_StopWatchCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the TT Stop Watch FDCAN Callback
* TT Stop Watch Callback is redirected to the weak HAL_FDCAN_TT_StopWatchCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTStopWatchCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_StopWatchCallback = HAL_FDCAN_TT_StopWatchCallback; /* Legacy weak TT_StopWatchCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Register TT Global Time FDCAN Callback
* To be used instead of the weak HAL_FDCAN_TT_GlobalTimeCallback() predefined callback
* @param hfdcan FDCAN handle
* @param pCallback pointer to the TT Global Time Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_RegisterTTGlobalTimeCallback(FDCAN_HandleTypeDef *hfdcan,
pFDCAN_TT_GlobalTimeCallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_GlobalTimeCallback = pCallback;
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief UnRegister the TT Global Time FDCAN Callback
* TT Global Time Callback is redirected to the weak HAL_FDCAN_TT_GlobalTimeCallback() predefined callback
* @param hfdcan FDCAN handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_UnRegisterTTGlobalTimeCallback(FDCAN_HandleTypeDef *hfdcan)
{
HAL_StatusTypeDef status = HAL_OK;
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
hfdcan->TT_GlobalTimeCallback = HAL_FDCAN_TT_GlobalTimeCallback; /* Legacy weak TT_GlobalTimeCallback */
}
else
{
/* Update the error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup FDCAN_Exported_Functions_Group2 Configuration functions
* @ingroup RTEMSBSPsARMSTM32H7
* @brief FDCAN Configuration functions.
*
@verbatim
==============================================================================
##### Configuration functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_FDCAN_ConfigClockCalibration : Configure the FDCAN clock calibration unit
(+) HAL_FDCAN_GetClockCalibrationState : Get the clock calibration state
(+) HAL_FDCAN_ResetClockCalibrationState : Reset the clock calibration state
(+) HAL_FDCAN_GetClockCalibrationCounter : Get the clock calibration counters values
(+) HAL_FDCAN_ConfigFilter : Configure the FDCAN reception filters
(+) HAL_FDCAN_ConfigGlobalFilter : Configure the FDCAN global filter
(+) HAL_FDCAN_ConfigExtendedIdMask : Configure the extended ID mask
(+) HAL_FDCAN_ConfigRxFifoOverwrite : Configure the Rx FIFO operation mode
(+) HAL_FDCAN_ConfigFifoWatermark : Configure the FIFO watermark
(+) HAL_FDCAN_ConfigRamWatchdog : Configure the RAM watchdog
(+) HAL_FDCAN_ConfigTimestampCounter : Configure the timestamp counter
(+) HAL_FDCAN_EnableTimestampCounter : Enable the timestamp counter
(+) HAL_FDCAN_DisableTimestampCounter : Disable the timestamp counter
(+) HAL_FDCAN_GetTimestampCounter : Get the timestamp counter value
(+) HAL_FDCAN_ResetTimestampCounter : Reset the timestamp counter to zero
(+) HAL_FDCAN_ConfigTimeoutCounter : Configure the timeout counter
(+) HAL_FDCAN_EnableTimeoutCounter : Enable the timeout counter
(+) HAL_FDCAN_DisableTimeoutCounter : Disable the timeout counter
(+) HAL_FDCAN_GetTimeoutCounter : Get the timeout counter value
(+) HAL_FDCAN_ResetTimeoutCounter : Reset the timeout counter to its start value
(+) HAL_FDCAN_ConfigTxDelayCompensation : Configure the transmitter delay compensation
(+) HAL_FDCAN_EnableTxDelayCompensation : Enable the transmitter delay compensation
(+) HAL_FDCAN_DisableTxDelayCompensation : Disable the transmitter delay compensation
(+) HAL_FDCAN_EnableISOMode : Enable ISO 11898-1 protocol mode
(+) HAL_FDCAN_DisableISOMode : Disable ISO 11898-1 protocol mode
(+) HAL_FDCAN_EnableEdgeFiltering : Enable edge filtering during bus integration
(+) HAL_FDCAN_DisableEdgeFiltering : Disable edge filtering during bus integration
@endverbatim
* @{
*/
/**
* @brief Configure the FDCAN clock calibration unit according to the specified
* parameters in the FDCAN_ClkCalUnitTypeDef structure.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param sCcuConfig pointer to an FDCAN_ClkCalUnitTypeDef structure that
* contains the clock calibration information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigClockCalibration(FDCAN_HandleTypeDef *hfdcan,
const FDCAN_ClkCalUnitTypeDef *sCcuConfig)
{
/* Check function parameters */
assert_param(IS_FDCAN_CLOCK_CALIBRATION(sCcuConfig->ClockCalibration));
if (sCcuConfig->ClockCalibration == FDCAN_CLOCK_CALIBRATION_DISABLE)
{
assert_param(IS_FDCAN_CKDIV(sCcuConfig->ClockDivider));
}
else
{
assert_param(IS_FDCAN_MAX_VALUE(sCcuConfig->MinOscClkPeriods, 0xFFU));
assert_param(IS_FDCAN_CALIBRATION_FIELD_LENGTH(sCcuConfig->CalFieldLength));
assert_param(IS_FDCAN_MIN_VALUE(sCcuConfig->TimeQuantaPerBitTime, 4U));
assert_param(IS_FDCAN_MAX_VALUE(sCcuConfig->TimeQuantaPerBitTime, 0x25U));
assert_param(IS_FDCAN_MAX_VALUE(sCcuConfig->WatchdogStartValue, 0xFFFFU));
}
/* FDCAN1 should be initialized in order to use clock calibration */
if (hfdcan->Instance != FDCAN1)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
if (sCcuConfig->ClockCalibration == FDCAN_CLOCK_CALIBRATION_DISABLE)
{
/* Bypass clock calibration */
SET_BIT(FDCAN_CCU->CCFG, FDCANCCU_CCFG_BCC);
/* Configure clock divider */
MODIFY_REG(FDCAN_CCU->CCFG, FDCANCCU_CCFG_CDIV,
(sCcuConfig->ClockDivider << FDCANCCU_CCFG_CDIV_Pos));
}
else /* sCcuConfig->ClockCalibration == ENABLE */
{
/* Clock calibration unit generates time quanta clock */
CLEAR_BIT(FDCAN_CCU->CCFG, FDCANCCU_CCFG_BCC);
/* Configure clock calibration unit */
MODIFY_REG(FDCAN_CCU->CCFG,
(FDCANCCU_CCFG_TQBT | FDCANCCU_CCFG_CFL | FDCANCCU_CCFG_OCPM),
((sCcuConfig->TimeQuantaPerBitTime << FDCANCCU_CCFG_TQBT_Pos) |
sCcuConfig->CalFieldLength | (sCcuConfig->MinOscClkPeriods << FDCANCCU_CCFG_OCPM_Pos)));
/* Configure the start value of the calibration watchdog counter */
MODIFY_REG(FDCAN_CCU->CWD, FDCANCCU_CWD_WDC, sCcuConfig->WatchdogStartValue);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Get the clock calibration state.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval State clock calibration state (can be a value of @arg FDCAN_calibration_state)
*/
uint32_t HAL_FDCAN_GetClockCalibrationState(const FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
return (FDCAN_CCU->CSTAT & FDCANCCU_CSTAT_CALS);
}
/**
* @brief Reset the clock calibration state.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ResetClockCalibrationState(FDCAN_HandleTypeDef *hfdcan)
{
/* FDCAN1 should be initialized in order to use clock calibration */
if (hfdcan->Instance != FDCAN1)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Calibration software reset */
SET_BIT(FDCAN_CCU->CCFG, FDCANCCU_CCFG_SWR);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Get the clock calibration counter value.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param Counter clock calibration counter.
* This parameter can be a value of @arg FDCAN_calibration_counter.
* @retval Value clock calibration counter value
*/
uint32_t HAL_FDCAN_GetClockCalibrationCounter(const FDCAN_HandleTypeDef *hfdcan, uint32_t Counter)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* Check function parameters */
assert_param(IS_FDCAN_CALIBRATION_COUNTER(Counter));
if (Counter == FDCAN_CALIB_TIME_QUANTA_COUNTER)
{
return ((FDCAN_CCU->CSTAT & FDCANCCU_CSTAT_TQC) >> FDCANCCU_CSTAT_TQC_Pos);
}
else if (Counter == FDCAN_CALIB_CLOCK_PERIOD_COUNTER)
{
return (FDCAN_CCU->CSTAT & FDCANCCU_CSTAT_OCPC);
}
else /* Counter == FDCAN_CALIB_WATCHDOG_COUNTER */
{
return ((FDCAN_CCU->CWD & FDCANCCU_CWD_WDV) >> FDCANCCU_CWD_WDV_Pos);
}
}
/**
* @brief Configure the FDCAN reception filter according to the specified
* parameters in the FDCAN_FilterTypeDef structure.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param sFilterConfig pointer to an FDCAN_FilterTypeDef structure that
* contains the filter configuration information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigFilter(FDCAN_HandleTypeDef *hfdcan, const FDCAN_FilterTypeDef *sFilterConfig)
{
uint32_t FilterElementW1;
uint32_t FilterElementW2;
uint32_t *FilterAddress;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Check function parameters */
assert_param(IS_FDCAN_ID_TYPE(sFilterConfig->IdType));
assert_param(IS_FDCAN_FILTER_CFG(sFilterConfig->FilterConfig));
if (sFilterConfig->FilterConfig == FDCAN_FILTER_TO_RXBUFFER)
{
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->RxBufferIndex, 63U));
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->IsCalibrationMsg, 1U));
}
if (sFilterConfig->IdType == FDCAN_STANDARD_ID)
{
/* Check function parameters */
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterIndex, (hfdcan->Init.StdFiltersNbr - 1U)));
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID1, 0x7FFU));
if (sFilterConfig->FilterConfig != FDCAN_FILTER_TO_RXBUFFER)
{
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID2, 0x7FFU));
assert_param(IS_FDCAN_STD_FILTER_TYPE(sFilterConfig->FilterType));
}
/* Build filter element */
if (sFilterConfig->FilterConfig == FDCAN_FILTER_TO_RXBUFFER)
{
FilterElementW1 = ((FDCAN_FILTER_TO_RXBUFFER << 27U) |
(sFilterConfig->FilterID1 << 16U) |
(sFilterConfig->IsCalibrationMsg << 8U) |
sFilterConfig->RxBufferIndex);
}
else
{
FilterElementW1 = ((sFilterConfig->FilterType << 30U) |
(sFilterConfig->FilterConfig << 27U) |
(sFilterConfig->FilterID1 << 16U) |
sFilterConfig->FilterID2);
}
/* Calculate filter address */
FilterAddress = (uint32_t *)(hfdcan->msgRam.StandardFilterSA + (sFilterConfig->FilterIndex * 4U));
/* Write filter element to the message RAM */
*FilterAddress = FilterElementW1;
}
else /* sFilterConfig->IdType == FDCAN_EXTENDED_ID */
{
/* Check function parameters */
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterIndex, (hfdcan->Init.ExtFiltersNbr - 1U)));
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID1, 0x1FFFFFFFU));
if (sFilterConfig->FilterConfig != FDCAN_FILTER_TO_RXBUFFER)
{
assert_param(IS_FDCAN_MAX_VALUE(sFilterConfig->FilterID2, 0x1FFFFFFFU));
assert_param(IS_FDCAN_EXT_FILTER_TYPE(sFilterConfig->FilterType));
}
/* Build first word of filter element */
FilterElementW1 = ((sFilterConfig->FilterConfig << 29U) | sFilterConfig->FilterID1);
/* Build second word of filter element */
if (sFilterConfig->FilterConfig == FDCAN_FILTER_TO_RXBUFFER)
{
FilterElementW2 = sFilterConfig->RxBufferIndex;
}
else
{
FilterElementW2 = ((sFilterConfig->FilterType << 30U) | sFilterConfig->FilterID2);
}
/* Calculate filter address */
FilterAddress = (uint32_t *)(hfdcan->msgRam.ExtendedFilterSA + (sFilterConfig->FilterIndex * 4U * 2U));
/* Write filter element to the message RAM */
*FilterAddress = FilterElementW1;
FilterAddress++;
*FilterAddress = FilterElementW2;
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Configure the FDCAN global filter.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param NonMatchingStd Defines how received messages with 11-bit IDs that
* do not match any element of the filter list are treated.
* This parameter can be a value of @arg FDCAN_Non_Matching_Frames.
* @param NonMatchingExt Defines how received messages with 29-bit IDs that
* do not match any element of the filter list are treated.
* This parameter can be a value of @arg FDCAN_Non_Matching_Frames.
* @param RejectRemoteStd Filter or reject all the remote 11-bit IDs frames.
* This parameter can be a value of @arg FDCAN_Reject_Remote_Frames.
* @param RejectRemoteExt Filter or reject all the remote 29-bit IDs frames.
* This parameter can be a value of @arg FDCAN_Reject_Remote_Frames.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigGlobalFilter(FDCAN_HandleTypeDef *hfdcan,
uint32_t NonMatchingStd,
uint32_t NonMatchingExt,
uint32_t RejectRemoteStd,
uint32_t RejectRemoteExt)
{
/* Check function parameters */
assert_param(IS_FDCAN_NON_MATCHING(NonMatchingStd));
assert_param(IS_FDCAN_NON_MATCHING(NonMatchingExt));
assert_param(IS_FDCAN_REJECT_REMOTE(RejectRemoteStd));
assert_param(IS_FDCAN_REJECT_REMOTE(RejectRemoteExt));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Configure global filter */
hfdcan->Instance->GFC = ((NonMatchingStd << FDCAN_GFC_ANFS_Pos) |
(NonMatchingExt << FDCAN_GFC_ANFE_Pos) |
(RejectRemoteStd << FDCAN_GFC_RRFS_Pos) |
(RejectRemoteExt << FDCAN_GFC_RRFE_Pos));
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Configure the extended ID mask.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param Mask Extended ID Mask.
* This parameter must be a number between 0 and 0x1FFFFFFF.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigExtendedIdMask(FDCAN_HandleTypeDef *hfdcan, uint32_t Mask)
{
/* Check function parameters */
assert_param(IS_FDCAN_MAX_VALUE(Mask, 0x1FFFFFFFU));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Configure the extended ID mask */
hfdcan->Instance->XIDAM = Mask;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Configure the Rx FIFO operation mode.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param RxFifo Rx FIFO.
* This parameter can be one of the following values:
* @arg FDCAN_RX_FIFO0: Rx FIFO 0
* @arg FDCAN_RX_FIFO1: Rx FIFO 1
* @param OperationMode operation mode.
* This parameter can be a value of @arg FDCAN_Rx_FIFO_operation_mode.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigRxFifoOverwrite(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo, uint32_t OperationMode)
{
/* Check function parameters */
assert_param(IS_FDCAN_RX_FIFO(RxFifo));
assert_param(IS_FDCAN_RX_FIFO_MODE(OperationMode));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
if (RxFifo == FDCAN_RX_FIFO0)
{
/* Select FIFO 0 Operation Mode */
MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0OM, (OperationMode << FDCAN_RXF0C_F0OM_Pos));
}
else /* RxFifo == FDCAN_RX_FIFO1 */
{
/* Select FIFO 1 Operation Mode */
MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1OM, (OperationMode << FDCAN_RXF1C_F1OM_Pos));
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Configure the FIFO watermark.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param FIFO select the FIFO to be configured.
* This parameter can be a value of @arg FDCAN_FIFO_watermark.
* @param Watermark level for FIFO watermark interrupt.
* This parameter must be a number between:
* - 0 and 32, if FIFO is FDCAN_CFG_TX_EVENT_FIFO
* - 0 and 64, if FIFO is FDCAN_CFG_RX_FIFO0 or FDCAN_CFG_RX_FIFO1
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigFifoWatermark(FDCAN_HandleTypeDef *hfdcan, uint32_t FIFO, uint32_t Watermark)
{
/* Check function parameters */
assert_param(IS_FDCAN_FIFO_WATERMARK(FIFO));
if (FIFO == FDCAN_CFG_TX_EVENT_FIFO)
{
assert_param(IS_FDCAN_MAX_VALUE(Watermark, 32U));
}
else /* (FIFO == FDCAN_CFG_RX_FIFO0) || (FIFO == FDCAN_CFG_RX_FIFO1) */
{
assert_param(IS_FDCAN_MAX_VALUE(Watermark, 64U));
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Set the level for FIFO watermark interrupt */
if (FIFO == FDCAN_CFG_TX_EVENT_FIFO)
{
MODIFY_REG(hfdcan->Instance->TXEFC, FDCAN_TXEFC_EFWM, (Watermark << FDCAN_TXEFC_EFWM_Pos));
}
else if (FIFO == FDCAN_CFG_RX_FIFO0)
{
MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0WM, (Watermark << FDCAN_RXF0C_F0WM_Pos));
}
else /* FIFO == FDCAN_CFG_RX_FIFO1 */
{
MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1WM, (Watermark << FDCAN_RXF1C_F1WM_Pos));
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Configure the RAM watchdog.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param CounterStartValue Start value of the Message RAM Watchdog Counter,
* This parameter must be a number between 0x00 and 0xFF,
* with the reset value of 0x00 the counter is disabled.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigRamWatchdog(FDCAN_HandleTypeDef *hfdcan, uint32_t CounterStartValue)
{
/* Check function parameters */
assert_param(IS_FDCAN_MAX_VALUE(CounterStartValue, 0xFFU));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Configure the RAM watchdog counter start value */
MODIFY_REG(hfdcan->Instance->RWD, FDCAN_RWD_WDC, CounterStartValue);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Configure the timestamp counter.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TimestampPrescaler Timestamp Counter Prescaler.
* This parameter can be a value of @arg FDCAN_Timestamp_Prescaler.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigTimestampCounter(FDCAN_HandleTypeDef *hfdcan, uint32_t TimestampPrescaler)
{
/* Check function parameters */
assert_param(IS_FDCAN_TIMESTAMP_PRESCALER(TimestampPrescaler));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Configure prescaler */
MODIFY_REG(hfdcan->Instance->TSCC, FDCAN_TSCC_TCP, TimestampPrescaler);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Enable the timestamp counter.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TimestampOperation Timestamp counter operation.
* This parameter can be a value of @arg FDCAN_Timestamp.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_EnableTimestampCounter(FDCAN_HandleTypeDef *hfdcan, uint32_t TimestampOperation)
{
/* Check function parameters */
assert_param(IS_FDCAN_TIMESTAMP(TimestampOperation));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Enable timestamp counter */
MODIFY_REG(hfdcan->Instance->TSCC, FDCAN_TSCC_TSS, TimestampOperation);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Disable the timestamp counter.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_DisableTimestampCounter(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Disable timestamp counter */
CLEAR_BIT(hfdcan->Instance->TSCC, FDCAN_TSCC_TSS);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Get the timestamp counter value.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval Timestamp counter value
*/
uint16_t HAL_FDCAN_GetTimestampCounter(const FDCAN_HandleTypeDef *hfdcan)
{
return (uint16_t)(hfdcan->Instance->TSCV);
}
/**
* @brief Reset the timestamp counter to zero.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ResetTimestampCounter(FDCAN_HandleTypeDef *hfdcan)
{
if ((hfdcan->Instance->TSCC & FDCAN_TSCC_TSS) != FDCAN_TIMESTAMP_EXTERNAL)
{
/* Reset timestamp counter.
Actually any write operation to TSCV clears the counter */
CLEAR_REG(hfdcan->Instance->TSCV);
}
else
{
/* Update error code.
Unable to reset external counter */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Configure the timeout counter.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TimeoutOperation Timeout counter operation.
* This parameter can be a value of @arg FDCAN_Timeout_Operation.
* @param TimeoutPeriod Start value of the timeout down-counter.
* This parameter must be a number between 0x0000 and 0xFFFF
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigTimeoutCounter(FDCAN_HandleTypeDef *hfdcan, uint32_t TimeoutOperation,
uint32_t TimeoutPeriod)
{
/* Check function parameters */
assert_param(IS_FDCAN_TIMEOUT(TimeoutOperation));
assert_param(IS_FDCAN_MAX_VALUE(TimeoutPeriod, 0xFFFFU));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Select timeout operation and configure period */
MODIFY_REG(hfdcan->Instance->TOCC,
(FDCAN_TOCC_TOS | FDCAN_TOCC_TOP), (TimeoutOperation | (TimeoutPeriod << FDCAN_TOCC_TOP_Pos)));
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Enable the timeout counter.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_EnableTimeoutCounter(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Enable timeout counter */
SET_BIT(hfdcan->Instance->TOCC, FDCAN_TOCC_ETOC);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Disable the timeout counter.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_DisableTimeoutCounter(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Disable timeout counter */
CLEAR_BIT(hfdcan->Instance->TOCC, FDCAN_TOCC_ETOC);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Get the timeout counter value.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval Timeout counter value
*/
uint16_t HAL_FDCAN_GetTimeoutCounter(const FDCAN_HandleTypeDef *hfdcan)
{
return (uint16_t)(hfdcan->Instance->TOCV);
}
/**
* @brief Reset the timeout counter to its start value.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ResetTimeoutCounter(FDCAN_HandleTypeDef *hfdcan)
{
if ((hfdcan->Instance->TOCC & FDCAN_TOCC_TOS) == FDCAN_TIMEOUT_CONTINUOUS)
{
/* Reset timeout counter to start value */
CLEAR_REG(hfdcan->Instance->TOCV);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Unable to reset counter: controlled only by FIFO empty state */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
/**
* @brief Configure the transmitter delay compensation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TdcOffset Transmitter Delay Compensation Offset.
* This parameter must be a number between 0x00 and 0x7F.
* @param TdcFilter Transmitter Delay Compensation Filter Window Length.
* This parameter must be a number between 0x00 and 0x7F.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigTxDelayCompensation(FDCAN_HandleTypeDef *hfdcan, uint32_t TdcOffset,
uint32_t TdcFilter)
{
/* Check function parameters */
assert_param(IS_FDCAN_MAX_VALUE(TdcOffset, 0x7FU));
assert_param(IS_FDCAN_MAX_VALUE(TdcFilter, 0x7FU));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Configure TDC offset and filter window */
hfdcan->Instance->TDCR = ((TdcFilter << FDCAN_TDCR_TDCF_Pos) | (TdcOffset << FDCAN_TDCR_TDCO_Pos));
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Enable the transmitter delay compensation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_EnableTxDelayCompensation(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Enable transmitter delay compensation */
SET_BIT(hfdcan->Instance->DBTP, FDCAN_DBTP_TDC);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Disable the transmitter delay compensation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_DisableTxDelayCompensation(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Disable transmitter delay compensation */
CLEAR_BIT(hfdcan->Instance->DBTP, FDCAN_DBTP_TDC);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Enable ISO 11898-1 protocol mode.
* CAN FD frame format is according to ISO 11898-1 standard.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_EnableISOMode(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Disable Non ISO protocol mode */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_NISO);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Disable ISO 11898-1 protocol mode.
* CAN FD frame format is according to Bosch CAN FD specification V1.0.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_DisableISOMode(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Enable Non ISO protocol mode */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_NISO);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Enable edge filtering during bus integration.
* Two consecutive dominant tq are required to detect an edge for hard synchronization.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_EnableEdgeFiltering(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Enable edge filtering */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_EFBI);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Disable edge filtering during bus integration.
* One dominant tq is required to detect an edge for hard synchronization.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_DisableEdgeFiltering(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Disable edge filtering */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_EFBI);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @}
*/
/** @defgroup FDCAN_Exported_Functions_Group3 Control functions
* @ingroup RTEMSBSPsARMSTM32H7
* @brief Control functions
*
@verbatim
==============================================================================
##### Control functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_FDCAN_Start : Start the FDCAN module
(+) HAL_FDCAN_Stop : Stop the FDCAN module and enable access to configuration registers
(+) HAL_FDCAN_AddMessageToTxFifoQ : Add a message to the Tx FIFO/Queue and activate the corresponding
transmission request
(+) HAL_FDCAN_AddMessageToTxBuffer : Add a message to a dedicated Tx buffer
(+) HAL_FDCAN_EnableTxBufferRequest : Enable transmission request
(+) HAL_FDCAN_GetLatestTxFifoQRequestBuffer : Get Tx buffer index of latest Tx FIFO/Queue request
(+) HAL_FDCAN_AbortTxRequest : Abort transmission request
(+) HAL_FDCAN_GetRxMessage : Get an FDCAN frame from the Rx Buffer/FIFO zone into the
message RAM
(+) HAL_FDCAN_GetTxEvent : Get an FDCAN Tx event from the Tx Event FIFO zone
into the message RAM
(+) HAL_FDCAN_GetHighPriorityMessageStatus : Get high priority message status
(+) HAL_FDCAN_GetProtocolStatus : Get protocol status
(+) HAL_FDCAN_GetErrorCounters : Get error counter values
(+) HAL_FDCAN_IsRxBufferMessageAvailable : Check if a new message is received in the selected Rx buffer
(+) HAL_FDCAN_IsTxBufferMessagePending : Check if a transmission request is pending
on the selected Tx buffer
(+) HAL_FDCAN_GetRxFifoFillLevel : Return Rx FIFO fill level
(+) HAL_FDCAN_GetTxFifoFreeLevel : Return Tx FIFO free level
(+) HAL_FDCAN_IsRestrictedOperationMode : Check if the FDCAN peripheral entered Restricted Operation Mode
(+) HAL_FDCAN_ExitRestrictedOperationMode : Exit Restricted Operation Mode
@endverbatim
* @{
*/
/**
* @brief Start the FDCAN module.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_Start(FDCAN_HandleTypeDef *hfdcan)
{
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Change FDCAN peripheral state */
hfdcan->State = HAL_FDCAN_STATE_BUSY;
/* Request leave initialisation */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT);
/* Reset the FDCAN ErrorCode */
hfdcan->ErrorCode = HAL_FDCAN_ERROR_NONE;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Stop the FDCAN module and enable access to configuration registers.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_Stop(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
if (hfdcan->State == HAL_FDCAN_STATE_BUSY)
{
/* Request initialisation */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_INIT);
/* Wait until the INIT bit into CCCR register is set */
while ((hfdcan->Instance->CCCR & FDCAN_CCCR_INIT) == 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Reset counter */
Counter = 0U;
/* Exit from Sleep mode */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CSR);
/* Wait until FDCAN exits sleep mode */
while ((hfdcan->Instance->CCCR & FDCAN_CCCR_CSA) == FDCAN_CCCR_CSA)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Enable configuration change */
SET_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_CCE);
/* Reset Latest Tx FIFO/Queue Request Buffer Index */
hfdcan->LatestTxFifoQRequest = 0U;
/* Change FDCAN peripheral state */
hfdcan->State = HAL_FDCAN_STATE_READY;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED;
return HAL_ERROR;
}
}
/**
* @brief Add a message to the Tx FIFO/Queue and activate the corresponding transmission request
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param pTxHeader pointer to a FDCAN_TxHeaderTypeDef structure.
* @param pTxData pointer to a buffer containing the payload of the Tx frame.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_AddMessageToTxFifoQ(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader,
const uint8_t *pTxData)
{
uint32_t PutIndex;
/* Check function parameters */
assert_param(IS_FDCAN_ID_TYPE(pTxHeader->IdType));
if (pTxHeader->IdType == FDCAN_STANDARD_ID)
{
assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x7FFU));
}
else /* pTxHeader->IdType == FDCAN_EXTENDED_ID */
{
assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x1FFFFFFFU));
}
assert_param(IS_FDCAN_FRAME_TYPE(pTxHeader->TxFrameType));
assert_param(IS_FDCAN_DLC(pTxHeader->DataLength));
assert_param(IS_FDCAN_ESI(pTxHeader->ErrorStateIndicator));
assert_param(IS_FDCAN_BRS(pTxHeader->BitRateSwitch));
assert_param(IS_FDCAN_FDF(pTxHeader->FDFormat));
assert_param(IS_FDCAN_EFC(pTxHeader->TxEventFifoControl));
assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->MessageMarker, 0xFFU));
if (hfdcan->State == HAL_FDCAN_STATE_BUSY)
{
/* Check that the Tx FIFO/Queue has an allocated area into the RAM */
if ((hfdcan->Instance->TXBC & FDCAN_TXBC_TFQS) == 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
/* Check that the Tx FIFO/Queue is not full */
if ((hfdcan->Instance->TXFQS & FDCAN_TXFQS_TFQF) != 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_FULL;
return HAL_ERROR;
}
else
{
/* Retrieve the Tx FIFO PutIndex */
PutIndex = ((hfdcan->Instance->TXFQS & FDCAN_TXFQS_TFQPI) >> FDCAN_TXFQS_TFQPI_Pos);
/* Add the message to the Tx FIFO/Queue */
FDCAN_CopyMessageToRAM(hfdcan, pTxHeader, pTxData, PutIndex);
/* Activate the corresponding transmission request */
hfdcan->Instance->TXBAR = ((uint32_t)1 << PutIndex);
/* Store the Latest Tx FIFO/Queue Request Buffer Index */
hfdcan->LatestTxFifoQRequest = ((uint32_t)1 << PutIndex);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED;
return HAL_ERROR;
}
}
/**
* @brief Add a message to a dedicated Tx buffer
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param pTxHeader pointer to a FDCAN_TxHeaderTypeDef structure.
* @param pTxData pointer to a buffer containing the payload of the Tx frame.
* @param BufferIndex index of the buffer to be configured.
* This parameter can be a value of @arg FDCAN_Tx_location.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_AddMessageToTxBuffer(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader,
const uint8_t *pTxData, uint32_t BufferIndex)
{
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_ID_TYPE(pTxHeader->IdType));
if (pTxHeader->IdType == FDCAN_STANDARD_ID)
{
assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x7FFU));
}
else /* pTxHeader->IdType == FDCAN_EXTENDED_ID */
{
assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->Identifier, 0x1FFFFFFFU));
}
assert_param(IS_FDCAN_FRAME_TYPE(pTxHeader->TxFrameType));
assert_param(IS_FDCAN_DLC(pTxHeader->DataLength));
assert_param(IS_FDCAN_ESI(pTxHeader->ErrorStateIndicator));
assert_param(IS_FDCAN_BRS(pTxHeader->BitRateSwitch));
assert_param(IS_FDCAN_FDF(pTxHeader->FDFormat));
assert_param(IS_FDCAN_EFC(pTxHeader->TxEventFifoControl));
assert_param(IS_FDCAN_MAX_VALUE(pTxHeader->MessageMarker, 0xFFU));
assert_param(IS_FDCAN_TX_LOCATION(BufferIndex));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Check that the selected buffer has an allocated area into the RAM */
if (POSITION_VAL(BufferIndex) >= ((hfdcan->Instance->TXBC & FDCAN_TXBC_NDTB) >> FDCAN_TXBC_NDTB_Pos))
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
/* Check that there is no transmission request pending for the selected buffer */
if ((hfdcan->Instance->TXBRP & BufferIndex) != 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING;
return HAL_ERROR;
}
else
{
/* Add the message to the Tx buffer */
FDCAN_CopyMessageToRAM(hfdcan, pTxHeader, pTxData, POSITION_VAL(BufferIndex));
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Enable transmission request.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param BufferIndex buffer index.
* This parameter can be any combination of @arg FDCAN_Tx_location.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_EnableTxBufferRequest(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndex)
{
if (hfdcan->State == HAL_FDCAN_STATE_BUSY)
{
/* Add transmission request */
hfdcan->Instance->TXBAR = BufferIndex;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED;
return HAL_ERROR;
}
}
/**
* @brief Get Tx buffer index of latest Tx FIFO/Queue request
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval Tx buffer index of last Tx FIFO/Queue request
* - Any value of @arg FDCAN_Tx_location if Tx request has been submitted.
* - 0 if no Tx FIFO/Queue request have been submitted.
*/
uint32_t HAL_FDCAN_GetLatestTxFifoQRequestBuffer(const FDCAN_HandleTypeDef *hfdcan)
{
/* Return Last Tx FIFO/Queue Request Buffer */
return hfdcan->LatestTxFifoQRequest;
}
/**
* @brief Abort transmission request
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param BufferIndex buffer index.
* This parameter can be any combination of @arg FDCAN_Tx_location.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_AbortTxRequest(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndex)
{
if (hfdcan->State == HAL_FDCAN_STATE_BUSY)
{
/* Add cancellation request */
hfdcan->Instance->TXBCR = BufferIndex;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED;
return HAL_ERROR;
}
}
/**
* @brief Get an FDCAN frame from the Rx Buffer/FIFO zone into the message RAM.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param RxLocation Location of the received message to be read.
* This parameter can be a value of @arg FDCAN_Rx_location.
* @param pRxHeader pointer to a FDCAN_RxHeaderTypeDef structure.
* @param pRxData pointer to a buffer where the payload of the Rx frame will be stored.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_GetRxMessage(FDCAN_HandleTypeDef *hfdcan, uint32_t RxLocation,
FDCAN_RxHeaderTypeDef *pRxHeader, uint8_t *pRxData)
{
uint32_t *RxAddress;
uint8_t *pData;
uint32_t ByteCounter;
uint32_t GetIndex = 0;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
if (state == HAL_FDCAN_STATE_BUSY)
{
if (RxLocation == FDCAN_RX_FIFO0) /* Rx element is assigned to the Rx FIFO 0 */
{
/* Check that the Rx FIFO 0 has an allocated area into the RAM */
if ((hfdcan->Instance->RXF0C & FDCAN_RXF0C_F0S) == 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
/* Check that the Rx FIFO 0 is not empty */
if ((hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0FL) == 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_EMPTY;
return HAL_ERROR;
}
else
{
/* Check that the Rx FIFO 0 is full & overwrite mode is on */
if (((hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0F) >> FDCAN_RXF0S_F0F_Pos) == 1U)
{
if (((hfdcan->Instance->RXF0C & FDCAN_RXF0C_F0OM) >> FDCAN_RXF0C_F0OM_Pos) == FDCAN_RX_FIFO_OVERWRITE)
{
/* When overwrite status is on discard first message in FIFO */
GetIndex = 1U;
}
}
/* Calculate Rx FIFO 0 element index */
GetIndex += ((hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0GI) >> FDCAN_RXF0S_F0GI_Pos);
/* Calculate Rx FIFO 0 element address */
RxAddress = (uint32_t *)(hfdcan->msgRam.RxFIFO0SA + (GetIndex * hfdcan->Init.RxFifo0ElmtSize * 4U));
}
}
else if (RxLocation == FDCAN_RX_FIFO1) /* Rx element is assigned to the Rx FIFO 1 */
{
/* Check that the Rx FIFO 1 has an allocated area into the RAM */
if ((hfdcan->Instance->RXF1C & FDCAN_RXF1C_F1S) == 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
/* Check that the Rx FIFO 1 is not empty */
if ((hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1FL) == 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_EMPTY;
return HAL_ERROR;
}
else
{
/* Check that the Rx FIFO 1 is full & overwrite mode is on */
if (((hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1F) >> FDCAN_RXF1S_F1F_Pos) == 1U)
{
if (((hfdcan->Instance->RXF1C & FDCAN_RXF1C_F1OM) >> FDCAN_RXF1C_F1OM_Pos) == FDCAN_RX_FIFO_OVERWRITE)
{
/* When overwrite status is on discard first message in FIFO */
GetIndex = 1U;
}
}
/* Calculate Rx FIFO 1 element index */
GetIndex += ((hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1GI) >> FDCAN_RXF1S_F1GI_Pos);
/* Calculate Rx FIFO 1 element address */
RxAddress = (uint32_t *)(hfdcan->msgRam.RxFIFO1SA + (GetIndex * hfdcan->Init.RxFifo1ElmtSize * 4U));
}
}
else /* Rx element is assigned to a dedicated Rx buffer */
{
/* Check that the selected buffer has an allocated area into the RAM */
if (RxLocation >= hfdcan->Init.RxBuffersNbr)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
else
{
/* Calculate Rx buffer address */
RxAddress = (uint32_t *)(hfdcan->msgRam.RxBufferSA + (RxLocation * hfdcan->Init.RxBufferSize * 4U));
}
}
/* Retrieve IdType */
pRxHeader->IdType = *RxAddress & FDCAN_ELEMENT_MASK_XTD;
/* Retrieve Identifier */
if (pRxHeader->IdType == FDCAN_STANDARD_ID) /* Standard ID element */
{
pRxHeader->Identifier = ((*RxAddress & FDCAN_ELEMENT_MASK_STDID) >> 18U);
}
else /* Extended ID element */
{
pRxHeader->Identifier = (*RxAddress & FDCAN_ELEMENT_MASK_EXTID);
}
/* Retrieve RxFrameType */
pRxHeader->RxFrameType = (*RxAddress & FDCAN_ELEMENT_MASK_RTR);
/* Retrieve ErrorStateIndicator */
pRxHeader->ErrorStateIndicator = (*RxAddress & FDCAN_ELEMENT_MASK_ESI);
/* Increment RxAddress pointer to second word of Rx FIFO element */
RxAddress++;
/* Retrieve RxTimestamp */
pRxHeader->RxTimestamp = (*RxAddress & FDCAN_ELEMENT_MASK_TS);
/* Retrieve DataLength */
pRxHeader->DataLength = ((*RxAddress & FDCAN_ELEMENT_MASK_DLC) >> 16U);
/* Retrieve BitRateSwitch */
pRxHeader->BitRateSwitch = (*RxAddress & FDCAN_ELEMENT_MASK_BRS);
/* Retrieve FDFormat */
pRxHeader->FDFormat = (*RxAddress & FDCAN_ELEMENT_MASK_FDF);
/* Retrieve FilterIndex */
pRxHeader->FilterIndex = ((*RxAddress & FDCAN_ELEMENT_MASK_FIDX) >> 24U);
/* Retrieve NonMatchingFrame */
pRxHeader->IsFilterMatchingFrame = ((*RxAddress & FDCAN_ELEMENT_MASK_ANMF) >> 31U);
/* Increment RxAddress pointer to payload of Rx FIFO element */
RxAddress++;
/* Retrieve Rx payload */
pData = (uint8_t *)RxAddress;
for (ByteCounter = 0; ByteCounter < DLCtoBytes[pRxHeader->DataLength]; ByteCounter++)
{
pRxData[ByteCounter] = pData[ByteCounter];
}
if (RxLocation == FDCAN_RX_FIFO0) /* Rx element is assigned to the Rx FIFO 0 */
{
/* Acknowledge the Rx FIFO 0 that the oldest element is read so that it increments the GetIndex */
hfdcan->Instance->RXF0A = GetIndex;
}
else if (RxLocation == FDCAN_RX_FIFO1) /* Rx element is assigned to the Rx FIFO 1 */
{
/* Acknowledge the Rx FIFO 1 that the oldest element is read so that it increments the GetIndex */
hfdcan->Instance->RXF1A = GetIndex;
}
else /* Rx element is assigned to a dedicated Rx buffer */
{
/* Clear the New Data flag of the current Rx buffer */
if (RxLocation < FDCAN_RX_BUFFER32)
{
hfdcan->Instance->NDAT1 = ((uint32_t)1U << RxLocation);
}
else /* FDCAN_RX_BUFFER32 <= RxLocation <= FDCAN_RX_BUFFER63 */
{
hfdcan->Instance->NDAT2 = ((uint32_t)1U << (RxLocation & 0x1FU));
}
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED;
return HAL_ERROR;
}
}
/**
* @brief Get an FDCAN Tx event from the Tx Event FIFO zone into the message RAM.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param pTxEvent pointer to a FDCAN_TxEventFifoTypeDef structure.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_GetTxEvent(FDCAN_HandleTypeDef *hfdcan, FDCAN_TxEventFifoTypeDef *pTxEvent)
{
uint32_t *TxEventAddress;
uint32_t GetIndex;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_MIN_VALUE(hfdcan->Init.TxEventsNbr, 1U));
if (state == HAL_FDCAN_STATE_BUSY)
{
/* Check that the Tx Event FIFO has an allocated area into the RAM */
if ((hfdcan->Instance->TXEFC & FDCAN_TXEFC_EFS) == 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
/* Check that the Tx event FIFO is not empty */
if ((hfdcan->Instance->TXEFS & FDCAN_TXEFS_EFFL) == 0U)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_FIFO_EMPTY;
return HAL_ERROR;
}
/* Calculate Tx event FIFO element address */
GetIndex = ((hfdcan->Instance->TXEFS & FDCAN_TXEFS_EFGI) >> FDCAN_TXEFS_EFGI_Pos);
TxEventAddress = (uint32_t *)(hfdcan->msgRam.TxEventFIFOSA + (GetIndex * 2U * 4U));
/* Retrieve IdType */
pTxEvent->IdType = *TxEventAddress & FDCAN_ELEMENT_MASK_XTD;
/* Retrieve Identifier */
if (pTxEvent->IdType == FDCAN_STANDARD_ID) /* Standard ID element */
{
pTxEvent->Identifier = ((*TxEventAddress & FDCAN_ELEMENT_MASK_STDID) >> 18U);
}
else /* Extended ID element */
{
pTxEvent->Identifier = (*TxEventAddress & FDCAN_ELEMENT_MASK_EXTID);
}
/* Retrieve TxFrameType */
pTxEvent->TxFrameType = (*TxEventAddress & FDCAN_ELEMENT_MASK_RTR);
/* Retrieve ErrorStateIndicator */
pTxEvent->ErrorStateIndicator = (*TxEventAddress & FDCAN_ELEMENT_MASK_ESI);
/* Increment TxEventAddress pointer to second word of Tx Event FIFO element */
TxEventAddress++;
/* Retrieve TxTimestamp */
pTxEvent->TxTimestamp = (*TxEventAddress & FDCAN_ELEMENT_MASK_TS);
/* Retrieve DataLength */
pTxEvent->DataLength = ((*TxEventAddress & FDCAN_ELEMENT_MASK_DLC) >> 16U);
/* Retrieve BitRateSwitch */
pTxEvent->BitRateSwitch = (*TxEventAddress & FDCAN_ELEMENT_MASK_BRS);
/* Retrieve FDFormat */
pTxEvent->FDFormat = (*TxEventAddress & FDCAN_ELEMENT_MASK_FDF);
/* Retrieve EventType */
pTxEvent->EventType = (*TxEventAddress & FDCAN_ELEMENT_MASK_ET);
/* Retrieve MessageMarker */
pTxEvent->MessageMarker = ((*TxEventAddress & FDCAN_ELEMENT_MASK_MM) >> 24U);
/* Acknowledge the Tx Event FIFO that the oldest element is read so that it increments the GetIndex */
hfdcan->Instance->TXEFA = GetIndex;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_STARTED;
return HAL_ERROR;
}
}
/**
* @brief Get high priority message status.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param HpMsgStatus pointer to an FDCAN_HpMsgStatusTypeDef structure.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_GetHighPriorityMessageStatus(const FDCAN_HandleTypeDef *hfdcan,
FDCAN_HpMsgStatusTypeDef *HpMsgStatus)
{
HpMsgStatus->FilterList = ((hfdcan->Instance->HPMS & FDCAN_HPMS_FLST) >> FDCAN_HPMS_FLST_Pos);
HpMsgStatus->FilterIndex = ((hfdcan->Instance->HPMS & FDCAN_HPMS_FIDX) >> FDCAN_HPMS_FIDX_Pos);
HpMsgStatus->MessageStorage = (hfdcan->Instance->HPMS & FDCAN_HPMS_MSI);
HpMsgStatus->MessageIndex = (hfdcan->Instance->HPMS & FDCAN_HPMS_BIDX);
/* Return function status */
return HAL_OK;
}
/**
* @brief Get protocol status.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param ProtocolStatus pointer to an FDCAN_ProtocolStatusTypeDef structure.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_GetProtocolStatus(const FDCAN_HandleTypeDef *hfdcan,
FDCAN_ProtocolStatusTypeDef *ProtocolStatus)
{
uint32_t StatusReg;
/* Read the protocol status register */
StatusReg = READ_REG(hfdcan->Instance->PSR);
/* Fill the protocol status structure */
ProtocolStatus->LastErrorCode = (StatusReg & FDCAN_PSR_LEC);
ProtocolStatus->DataLastErrorCode = ((StatusReg & FDCAN_PSR_DLEC) >> FDCAN_PSR_DLEC_Pos);
ProtocolStatus->Activity = (StatusReg & FDCAN_PSR_ACT);
ProtocolStatus->ErrorPassive = ((StatusReg & FDCAN_PSR_EP) >> FDCAN_PSR_EP_Pos);
ProtocolStatus->Warning = ((StatusReg & FDCAN_PSR_EW) >> FDCAN_PSR_EW_Pos);
ProtocolStatus->BusOff = ((StatusReg & FDCAN_PSR_BO) >> FDCAN_PSR_BO_Pos);
ProtocolStatus->RxESIflag = ((StatusReg & FDCAN_PSR_RESI) >> FDCAN_PSR_RESI_Pos);
ProtocolStatus->RxBRSflag = ((StatusReg & FDCAN_PSR_RBRS) >> FDCAN_PSR_RBRS_Pos);
ProtocolStatus->RxFDFflag = ((StatusReg & FDCAN_PSR_REDL) >> FDCAN_PSR_REDL_Pos);
ProtocolStatus->ProtocolException = ((StatusReg & FDCAN_PSR_PXE) >> FDCAN_PSR_PXE_Pos);
ProtocolStatus->TDCvalue = ((StatusReg & FDCAN_PSR_TDCV) >> FDCAN_PSR_TDCV_Pos);
/* Return function status */
return HAL_OK;
}
/**
* @brief Get error counter values.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param ErrorCounters pointer to an FDCAN_ErrorCountersTypeDef structure.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_GetErrorCounters(const FDCAN_HandleTypeDef *hfdcan,
FDCAN_ErrorCountersTypeDef *ErrorCounters)
{
uint32_t CountersReg;
/* Read the error counters register */
CountersReg = READ_REG(hfdcan->Instance->ECR);
/* Fill the error counters structure */
ErrorCounters->TxErrorCnt = ((CountersReg & FDCAN_ECR_TEC) >> FDCAN_ECR_TEC_Pos);
ErrorCounters->RxErrorCnt = ((CountersReg & FDCAN_ECR_REC) >> FDCAN_ECR_REC_Pos);
ErrorCounters->RxErrorPassive = ((CountersReg & FDCAN_ECR_RP) >> FDCAN_ECR_RP_Pos);
ErrorCounters->ErrorLogging = ((CountersReg & FDCAN_ECR_CEL) >> FDCAN_ECR_CEL_Pos);
/* Return function status */
return HAL_OK;
}
/**
* @brief Check if a new message is received in the selected Rx buffer.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param RxBufferIndex Rx buffer index.
* This parameter must be a number between 0 and 63.
* @retval Status
* - 0 : No new message on RxBufferIndex.
* - 1 : New message received on RxBufferIndex.
*/
uint32_t HAL_FDCAN_IsRxBufferMessageAvailable(FDCAN_HandleTypeDef *hfdcan, uint32_t RxBufferIndex)
{
/* Check function parameters */
assert_param(IS_FDCAN_MAX_VALUE(RxBufferIndex, 63U));
uint32_t NewData1 = hfdcan->Instance->NDAT1;
uint32_t NewData2 = hfdcan->Instance->NDAT2;
/* Check new message reception on the selected buffer */
if (((RxBufferIndex < 32U) && ((NewData1 & (uint32_t)((uint32_t)1 << RxBufferIndex)) == 0U)) ||
((RxBufferIndex >= 32U) && ((NewData2 & (uint32_t)((uint32_t)1 << (RxBufferIndex & 0x1FU))) == 0U)))
{
return 0;
}
/* Clear the New Data flag of the current Rx buffer */
if (RxBufferIndex < 32U)
{
hfdcan->Instance->NDAT1 = ((uint32_t)1 << RxBufferIndex);
}
else /* 32 <= RxBufferIndex <= 63 */
{
hfdcan->Instance->NDAT2 = ((uint32_t)1 << (RxBufferIndex & 0x1FU));
}
return 1;
}
/**
* @brief Check if a transmission request is pending on the selected Tx buffer.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TxBufferIndex Tx buffer index.
* This parameter can be any combination of @arg FDCAN_Tx_location.
* @retval Status
* - 0 : No pending transmission request on TxBufferIndex.
* - 1 : Pending transmission request on TxBufferIndex.
*/
uint32_t HAL_FDCAN_IsTxBufferMessagePending(const FDCAN_HandleTypeDef *hfdcan, uint32_t TxBufferIndex)
{
/* Check pending transmission request on the selected buffer */
if ((hfdcan->Instance->TXBRP & TxBufferIndex) == 0U)
{
return 0;
}
return 1;
}
/**
* @brief Return Rx FIFO fill level.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param RxFifo Rx FIFO.
* This parameter can be one of the following values:
* @arg FDCAN_RX_FIFO0: Rx FIFO 0
* @arg FDCAN_RX_FIFO1: Rx FIFO 1
* @retval Rx FIFO fill level.
*/
uint32_t HAL_FDCAN_GetRxFifoFillLevel(const FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo)
{
uint32_t FillLevel;
/* Check function parameters */
assert_param(IS_FDCAN_RX_FIFO(RxFifo));
if (RxFifo == FDCAN_RX_FIFO0)
{
FillLevel = hfdcan->Instance->RXF0S & FDCAN_RXF0S_F0FL;
}
else /* RxFifo == FDCAN_RX_FIFO1 */
{
FillLevel = hfdcan->Instance->RXF1S & FDCAN_RXF1S_F1FL;
}
/* Return Rx FIFO fill level */
return FillLevel;
}
/**
* @brief Return Tx FIFO free level: number of consecutive free Tx FIFO
* elements starting from Tx FIFO GetIndex.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval Tx FIFO free level.
*/
uint32_t HAL_FDCAN_GetTxFifoFreeLevel(const FDCAN_HandleTypeDef *hfdcan)
{
uint32_t FreeLevel;
FreeLevel = hfdcan->Instance->TXFQS & FDCAN_TXFQS_TFFL;
/* Return Tx FIFO free level */
return FreeLevel;
}
/**
* @brief Check if the FDCAN peripheral entered Restricted Operation Mode.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval Status
* - 0 : Normal FDCAN operation.
* - 1 : Restricted Operation Mode active.
*/
uint32_t HAL_FDCAN_IsRestrictedOperationMode(const FDCAN_HandleTypeDef *hfdcan)
{
uint32_t OperationMode;
/* Get Operation Mode */
OperationMode = ((hfdcan->Instance->CCCR & FDCAN_CCCR_ASM) >> FDCAN_CCCR_ASM_Pos);
return OperationMode;
}
/**
* @brief Exit Restricted Operation Mode.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ExitRestrictedOperationMode(FDCAN_HandleTypeDef *hfdcan)
{
HAL_FDCAN_StateTypeDef state = hfdcan->State;
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Exit Restricted Operation mode */
CLEAR_BIT(hfdcan->Instance->CCCR, FDCAN_CCCR_ASM);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @}
*/
/** @defgroup FDCAN_Exported_Functions_Group4 TT Configuration and control functions
* @ingroup RTEMSBSPsARMSTM32H7
* @brief TT Configuration and control functions
*
@verbatim
==============================================================================
##### TT Configuration and control functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_FDCAN_TT_ConfigOperation : Initialize TT operation parameters
(+) HAL_FDCAN_TT_ConfigReferenceMessage : Configure the reference message
(+) HAL_FDCAN_TT_ConfigTrigger : Configure the FDCAN trigger
(+) HAL_FDCAN_TT_SetGlobalTime : Schedule global time adjustment
(+) HAL_FDCAN_TT_SetClockSynchronization : Schedule TUR numerator update
(+) HAL_FDCAN_TT_ConfigStopWatch : Configure stop watch source and polarity
(+) HAL_FDCAN_TT_ConfigRegisterTimeMark : Configure register time mark pulse generation
(+) HAL_FDCAN_TT_EnableRegisterTimeMarkPulse : Enable register time mark pulse generation
(+) HAL_FDCAN_TT_DisableRegisterTimeMarkPulse : Disable register time mark pulse generation
(+) HAL_FDCAN_TT_EnableTriggerTimeMarkPulse : Enable trigger time mark pulse generation
(+) HAL_FDCAN_TT_DisableTriggerTimeMarkPulse : Disable trigger time mark pulse generation
(+) HAL_FDCAN_TT_EnableHardwareGapControl : Enable gap control by input pin fdcan1_evt
(+) HAL_FDCAN_TT_DisableHardwareGapControl : Disable gap control by input pin fdcan1_evt
(+) HAL_FDCAN_TT_EnableTimeMarkGapControl : Enable gap control (finish only) by register time mark IT
(+) HAL_FDCAN_TT_DisableTimeMarkGapControl : Disable gap control by register time mark interrupt
(+) HAL_FDCAN_TT_SetNextIsGap : Transmit next reference message with Next_is_Gap = "1"
(+) HAL_FDCAN_TT_SetEndOfGap : Finish a Gap by requesting start of reference message
(+) HAL_FDCAN_TT_ConfigExternalSyncPhase : Configure target phase used for external synchronization
(+) HAL_FDCAN_TT_EnableExternalSynchronization : Synchronize the phase of the FDCAN schedule to an external
schedule
(+) HAL_FDCAN_TT_DisableExternalSynchronization : Disable external schedule synchronization
(+) HAL_FDCAN_TT_GetOperationStatus : Get TT operation status
@endverbatim
* @{
*/
/**
* @brief Initialize TT operation parameters.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param pTTParams pointer to a FDCAN_TT_ConfigTypeDef structure.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ConfigOperation(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TT_ConfigTypeDef *pTTParams)
{
uint32_t tickstart;
uint32_t RAMcounter;
uint32_t StartAddress;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_TUR_NUMERATOR(pTTParams->TURNumerator));
assert_param(IS_FDCAN_TT_TUR_DENOMINATOR(pTTParams->TURDenominator));
assert_param(IS_FDCAN_TT_TIME_MASTER(pTTParams->TimeMaster));
assert_param(IS_FDCAN_MAX_VALUE(pTTParams->SyncDevLimit, 7U));
assert_param(IS_FDCAN_MAX_VALUE(pTTParams->InitRefTrigOffset, 127U));
assert_param(IS_FDCAN_MAX_VALUE(pTTParams->TriggerMemoryNbr, 64U));
assert_param(IS_FDCAN_TT_CYCLE_START_SYNC(pTTParams->CycleStartSync));
assert_param(IS_FDCAN_TT_STOP_WATCH_TRIGGER(pTTParams->StopWatchTrigSel));
assert_param(IS_FDCAN_TT_EVENT_TRIGGER(pTTParams->EventTrigSel));
if (pTTParams->TimeMaster == FDCAN_TT_POTENTIAL_MASTER)
{
assert_param(IS_FDCAN_TT_BASIC_CYCLES_NUMBER(pTTParams->BasicCyclesNbr));
}
if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL0)
{
assert_param(IS_FDCAN_TT_OPERATION(pTTParams->GapEnable));
assert_param(IS_FDCAN_MAX_VALUE(pTTParams->AppWdgLimit, 255U));
assert_param(IS_FDCAN_TT_EVENT_TRIGGER_POLARITY(pTTParams->EvtTrigPolarity));
assert_param(IS_FDCAN_TT_TX_ENABLE_WINDOW(pTTParams->TxEnableWindow));
assert_param(IS_FDCAN_MAX_VALUE(pTTParams->ExpTxTrigNbr, 4095U));
}
if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL1)
{
assert_param(IS_FDCAN_TT_TUR_LEVEL_0_2(pTTParams->TURNumerator, pTTParams->TURDenominator));
assert_param(IS_FDCAN_TT_EXTERNAL_CLK_SYNC(pTTParams->ExternalClkSync));
assert_param(IS_FDCAN_TT_GLOBAL_TIME_FILTERING(pTTParams->GlobalTimeFilter));
assert_param(IS_FDCAN_TT_AUTO_CLK_CALIBRATION(pTTParams->ClockCalibration));
}
else
{
assert_param(IS_FDCAN_TT_TUR_LEVEL_1(pTTParams->TURNumerator, pTTParams->TURDenominator));
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Stop local time in order to enable write access to the other bits of TURCF register */
CLEAR_BIT(hfdcan->ttcan->TURCF, FDCAN_TURCF_ELT);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until the ELT bit into TURCF register is reset */
while ((hfdcan->ttcan->TURCF & FDCAN_TURCF_ELT) != 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > FDCAN_TIMEOUT_VALUE)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Configure TUR (Time Unit Ratio) */
MODIFY_REG(hfdcan->ttcan->TURCF,
(FDCAN_TURCF_NCL | FDCAN_TURCF_DC),
(((pTTParams->TURNumerator - 0x10000U) << FDCAN_TURCF_NCL_Pos) |
(pTTParams->TURDenominator << FDCAN_TURCF_DC_Pos)));
/* Enable local time */
SET_BIT(hfdcan->ttcan->TURCF, FDCAN_TURCF_ELT);
/* Configure TT operation */
MODIFY_REG(hfdcan->ttcan->TTOCF,
(FDCAN_TTOCF_OM | FDCAN_TTOCF_TM | FDCAN_TTOCF_LDSDL | FDCAN_TTOCF_IRTO),
(pTTParams->OperationMode | \
pTTParams->TimeMaster | \
(pTTParams->SyncDevLimit << FDCAN_TTOCF_LDSDL_Pos) | \
(pTTParams->InitRefTrigOffset << FDCAN_TTOCF_IRTO_Pos)));
if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL0)
{
MODIFY_REG(hfdcan->ttcan->TTOCF,
(FDCAN_TTOCF_GEN | FDCAN_TTOCF_AWL | FDCAN_TTOCF_EVTP),
(pTTParams->GapEnable | \
(pTTParams->AppWdgLimit << FDCAN_TTOCF_AWL_Pos) | \
pTTParams->EvtTrigPolarity));
}
if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL1)
{
MODIFY_REG(hfdcan->ttcan->TTOCF,
(FDCAN_TTOCF_EECS | FDCAN_TTOCF_EGTF | FDCAN_TTOCF_ECC),
(pTTParams->ExternalClkSync | \
pTTParams->GlobalTimeFilter | \
pTTParams->ClockCalibration));
}
/* Configure system matrix limits */
MODIFY_REG(hfdcan->ttcan->TTMLM, FDCAN_TTMLM_CSS, pTTParams->CycleStartSync);
if (pTTParams->OperationMode != FDCAN_TT_COMMUNICATION_LEVEL0)
{
MODIFY_REG(hfdcan->ttcan->TTMLM,
(FDCAN_TTMLM_TXEW | FDCAN_TTMLM_ENTT),
(((pTTParams->TxEnableWindow - 1U) << FDCAN_TTMLM_TXEW_Pos) |
(pTTParams->ExpTxTrigNbr << FDCAN_TTMLM_ENTT_Pos)));
}
if (pTTParams->TimeMaster == FDCAN_TT_POTENTIAL_MASTER)
{
MODIFY_REG(hfdcan->ttcan->TTMLM, FDCAN_TTMLM_CCM, pTTParams->BasicCyclesNbr);
}
/* Configure input triggers: Stop watch and Event */
MODIFY_REG(hfdcan->ttcan->TTTS,
(FDCAN_TTTS_SWTSEL | FDCAN_TTTS_EVTSEL),
(pTTParams->StopWatchTrigSel | pTTParams->EventTrigSel));
/* Configure trigger memory start address */
StartAddress = (hfdcan->msgRam.EndAddress - SRAMCAN_BASE) / 4U;
MODIFY_REG(hfdcan->ttcan->TTTMC, FDCAN_TTTMC_TMSA, (StartAddress << FDCAN_TTTMC_TMSA_Pos));
/* Trigger memory elements number */
MODIFY_REG(hfdcan->ttcan->TTTMC, FDCAN_TTTMC_TME, (pTTParams->TriggerMemoryNbr << FDCAN_TTTMC_TME_Pos));
/* Recalculate End Address */
hfdcan->msgRam.TTMemorySA = hfdcan->msgRam.EndAddress;
hfdcan->msgRam.EndAddress = hfdcan->msgRam.TTMemorySA + (pTTParams->TriggerMemoryNbr * 2U * 4U);
if (hfdcan->msgRam.EndAddress > FDCAN_MESSAGE_RAM_END_ADDRESS) /* Last address of the Message RAM */
{
/* Update error code.
Message RAM overflow */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
return HAL_ERROR;
}
else
{
/* Flush the allocated Message RAM area */
for (RAMcounter = hfdcan->msgRam.TTMemorySA; RAMcounter < hfdcan->msgRam.EndAddress; RAMcounter += 4U)
{
*(uint32_t *)(RAMcounter) = 0x00000000;
}
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Configure the reference message.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param IdType Identifier Type.
* This parameter can be a value of @arg FDCAN_id_type.
* @param Identifier Reference Identifier.
* This parameter must be a number between:
* - 0 and 0x7FF, if IdType is FDCAN_STANDARD_ID
* - 0 and 0x1FFFFFFF, if IdType is FDCAN_EXTENDED_ID
* @param Payload Enable or disable the additional payload.
* This parameter can be a value of @arg FDCAN_TT_Reference_Message_Payload.
* This parameter is ignored in case of time slaves.
* If this parameter is set to FDCAN_TT_REF_MESSAGE_ADD_PAYLOAD, the
* following elements are taken from Tx Buffer 0:
* - MessageMarker
* - TxEventFifoControl
* - DataLength
* - Data Bytes (payload):
* - bytes 2-8, for Level 1
* - bytes 5-8, for Level 0 and Level 2
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ConfigReferenceMessage(FDCAN_HandleTypeDef *hfdcan, uint32_t IdType,
uint32_t Identifier, uint32_t Payload)
{
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_ID_TYPE(IdType));
if (IdType == FDCAN_STANDARD_ID)
{
assert_param(IS_FDCAN_MAX_VALUE(Identifier, 0x7FFU));
}
else /* IdType == FDCAN_EXTENDED_ID */
{
assert_param(IS_FDCAN_MAX_VALUE(Identifier, 0x1FFFFFFFU));
}
assert_param(IS_FDCAN_TT_REFERENCE_MESSAGE_PAYLOAD(Payload));
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Configure reference message identifier type, identifier and payload */
if (IdType == FDCAN_EXTENDED_ID)
{
MODIFY_REG(hfdcan->ttcan->TTRMC, (FDCAN_TTRMC_RID | FDCAN_TTRMC_XTD | FDCAN_TTRMC_RMPS),
(Payload | IdType | Identifier));
}
else /* IdType == FDCAN_STANDARD_ID */
{
MODIFY_REG(hfdcan->ttcan->TTRMC, (FDCAN_TTRMC_RID | FDCAN_TTRMC_XTD | FDCAN_TTRMC_RMPS),
(Payload | IdType | (Identifier << 18)));
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Configure the FDCAN trigger according to the specified
* parameters in the FDCAN_TriggerTypeDef structure.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param sTriggerConfig pointer to an FDCAN_TriggerTypeDef structure that
* contains the trigger configuration information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ConfigTrigger(FDCAN_HandleTypeDef *hfdcan, const FDCAN_TriggerTypeDef *sTriggerConfig)
{
uint32_t CycleCode;
uint32_t MessageNumber;
uint32_t TriggerElementW1;
uint32_t TriggerElementW2;
uint32_t *TriggerAddress;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->TriggerIndex, 63U));
assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->TimeMark, 0xFFFFU));
assert_param(IS_FDCAN_TT_REPEAT_FACTOR(sTriggerConfig->RepeatFactor));
if (sTriggerConfig->RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE)
{
assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->StartCycle, (sTriggerConfig->RepeatFactor - 1U)));
}
assert_param(IS_FDCAN_TT_TM_EVENT_INTERNAL(sTriggerConfig->TmEventInt));
assert_param(IS_FDCAN_TT_TM_EVENT_EXTERNAL(sTriggerConfig->TmEventExt));
assert_param(IS_FDCAN_TT_TRIGGER_TYPE(sTriggerConfig->TriggerType));
assert_param(IS_FDCAN_ID_TYPE(sTriggerConfig->FilterType));
if ((sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_SINGLE) ||
(sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_CONTINUOUS) ||
(sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_ARBITRATION) ||
(sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_MERGED))
{
assert_param(IS_FDCAN_TX_LOCATION(sTriggerConfig->TxBufferIndex));
}
if (sTriggerConfig->TriggerType == FDCAN_TT_RX_TRIGGER)
{
if (sTriggerConfig->FilterType == FDCAN_STANDARD_ID)
{
assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->FilterIndex, 63U));
}
else /* sTriggerConfig->FilterType == FDCAN_EXTENDED_ID */
{
assert_param(IS_FDCAN_MAX_VALUE(sTriggerConfig->FilterIndex, 127U));
}
}
if (hfdcan->State == HAL_FDCAN_STATE_READY)
{
/* Calculate cycle code */
if (sTriggerConfig->RepeatFactor == FDCAN_TT_REPEAT_EVERY_CYCLE)
{
CycleCode = FDCAN_TT_REPEAT_EVERY_CYCLE;
}
else /* sTriggerConfig->RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE */
{
CycleCode = sTriggerConfig->RepeatFactor + sTriggerConfig->StartCycle;
}
/* Build first word of trigger element */
TriggerElementW1 = ((sTriggerConfig->TimeMark << 16) | \
(CycleCode << 8) | \
sTriggerConfig->TmEventInt | \
sTriggerConfig->TmEventExt | \
sTriggerConfig->TriggerType);
/* Select message number depending on trigger type (transmission or reception) */
if (sTriggerConfig->TriggerType == FDCAN_TT_RX_TRIGGER)
{
MessageNumber = sTriggerConfig->FilterIndex;
}
else if ((sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_SINGLE) ||
(sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_CONTINUOUS) ||
(sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_ARBITRATION) ||
(sTriggerConfig->TriggerType == FDCAN_TT_TX_TRIGGER_MERGED))
{
MessageNumber = POSITION_VAL(sTriggerConfig->TxBufferIndex);
}
else
{
MessageNumber = 0U;
}
/* Build second word of trigger element */
TriggerElementW2 = ((sTriggerConfig->FilterType >> 7) | (MessageNumber << 16));
/* Calculate trigger address */
TriggerAddress = (uint32_t *)(hfdcan->msgRam.TTMemorySA + (sTriggerConfig->TriggerIndex * 4U * 2U));
/* Write trigger element to the message RAM */
*TriggerAddress = TriggerElementW1;
TriggerAddress++;
*TriggerAddress = TriggerElementW2;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Schedule global time adjustment for the next reference message.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TimePreset time preset value.
* This parameter must be a number between:
* - 0x0000 and 0x7FFF, Next_Master_Ref_Mark = Current_Master_Ref_Mark + TimePreset
* or
* - 0x8001 and 0xFFFF, Next_Master_Ref_Mark = Current_Master_Ref_Mark - (0x10000 - TimePreset)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_SetGlobalTime(FDCAN_HandleTypeDef *hfdcan, uint32_t TimePreset)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_TIME_PRESET(TimePreset));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Check that the external clock synchronization is enabled */
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_EECS) != FDCAN_TTOCF_EECS)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
/* Check that no global time preset is pending */
if ((hfdcan->ttcan->TTOST & FDCAN_TTOST_WGTD) == FDCAN_TTOST_WGTD)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING;
return HAL_ERROR;
}
/* Configure time preset */
MODIFY_REG(hfdcan->ttcan->TTGTP, FDCAN_TTGTP_TP, (TimePreset << FDCAN_TTGTP_TP_Pos));
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Schedule time preset to take effect by the next reference message */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_SGT);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Schedule TUR numerator update for the next reference message.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param NewTURNumerator new value of the TUR numerator.
* This parameter must be a number between 0x10000 and 0x1FFFF.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_SetClockSynchronization(FDCAN_HandleTypeDef *hfdcan, uint32_t NewTURNumerator)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_TUR_NUMERATOR(NewTURNumerator));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Check that the external clock synchronization is enabled */
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_EECS) != FDCAN_TTOCF_EECS)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
/* Check that no external clock synchronization is pending */
if ((hfdcan->ttcan->TTOST & FDCAN_TTOST_WECS) == FDCAN_TTOST_WECS)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING;
return HAL_ERROR;
}
/* Configure new TUR numerator */
MODIFY_REG(hfdcan->ttcan->TURCF, FDCAN_TURCF_NCL, (NewTURNumerator - 0x10000U));
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Schedule TUR numerator update by the next reference message */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_ECS);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Configure stop watch source and polarity.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param Source stop watch source.
* This parameter can be a value of @arg FDCAN_TT_stop_watch_source.
* @param Polarity stop watch polarity.
* This parameter can be a value of @arg FDCAN_TT_stop_watch_polarity.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ConfigStopWatch(FDCAN_HandleTypeDef *hfdcan, uint32_t Source, uint32_t Polarity)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_STOP_WATCH_SOURCE(Source));
assert_param(IS_FDCAN_TT_STOP_WATCH_POLARITY(Polarity));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Select stop watch source and polarity */
MODIFY_REG(hfdcan->ttcan->TTOCN, (FDCAN_TTOCN_SWS | FDCAN_TTOCN_SWP), (Source | Polarity));
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Configure register time mark pulse generation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TimeMarkSource time mark source.
* This parameter can be a value of @arg FDCAN_TT_time_mark_source.
* @param TimeMarkValue time mark value (reference).
* This parameter must be a number between 0 and 0xFFFF.
* @param RepeatFactor repeat factor of the cycle for which the time mark is valid.
* This parameter can be a value of @arg FDCAN_TT_Repeat_Factor.
* @param StartCycle index of the first cycle in which the time mark becomes valid.
* This parameter is ignored if RepeatFactor is set to FDCAN_TT_REPEAT_EVERY_CYCLE.
* This parameter must be a number between 0 and RepeatFactor.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ConfigRegisterTimeMark(FDCAN_HandleTypeDef *hfdcan,
uint32_t TimeMarkSource, uint32_t TimeMarkValue,
uint32_t RepeatFactor, uint32_t StartCycle)
{
uint32_t Counter = 0U;
uint32_t CycleCode;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_REGISTER_TIME_MARK_SOURCE(TimeMarkSource));
assert_param(IS_FDCAN_MAX_VALUE(TimeMarkValue, 0xFFFFU));
assert_param(IS_FDCAN_TT_REPEAT_FACTOR(RepeatFactor));
if (RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE)
{
assert_param(IS_FDCAN_MAX_VALUE(StartCycle, (RepeatFactor - 1U)));
}
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Disable the time mark compare function */
CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMC);
if (TimeMarkSource != FDCAN_TT_REG_TIMEMARK_DIABLED)
{
/* Calculate cycle code */
if (RepeatFactor == FDCAN_TT_REPEAT_EVERY_CYCLE)
{
CycleCode = FDCAN_TT_REPEAT_EVERY_CYCLE;
}
else /* RepeatFactor != FDCAN_TT_REPEAT_EVERY_CYCLE */
{
CycleCode = RepeatFactor + StartCycle;
}
Counter = 0U;
/* Wait until the LCKM bit into TTTMK register is reset */
while ((hfdcan->ttcan->TTTMK & FDCAN_TTTMK_LCKM) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Configure time mark value and cycle code */
hfdcan->ttcan->TTTMK = ((TimeMarkValue << FDCAN_TTTMK_TM_Pos) | (CycleCode << FDCAN_TTTMK_TICC_Pos));
Counter = 0U;
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Update the register time mark compare source */
MODIFY_REG(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMC, TimeMarkSource);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Enable register time mark pulse generation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_EnableRegisterTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Enable Register Time Mark Interrupt output on fdcan1_rtp */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_RTIE);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable register time mark pulse generation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_DisableRegisterTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Disable Register Time Mark Interrupt output on fdcan1_rtp */
CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_RTIE);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Enable trigger time mark pulse generation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_EnableTriggerTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Enable Trigger Time Mark Interrupt output on fdcan1_tmp */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TTIE);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable trigger time mark pulse generation.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_DisableTriggerTimeMarkPulse(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Disable Trigger Time Mark Interrupt output on fdcan1_rtp */
CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TTIE);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Enable gap control by input pin fdcan1_evt.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_EnableHardwareGapControl(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Enable gap control by pin fdcan1_evt */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_GCS);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable gap control by input pin fdcan1_evt.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_DisableHardwareGapControl(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Disable gap control by pin fdcan1_evt */
CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_GCS);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Enable gap control (finish only) by register time mark interrupt.
* The next register time mark interrupt (TTIR.RTMI = "1") will finish
* the Gap and start the reference message.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_EnableTimeMarkGapControl(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Enable gap control by register time mark interrupt */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMG);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable gap control by register time mark interrupt.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_DisableTimeMarkGapControl(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Disable gap control by register time mark interrupt */
CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_TMG);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Transmit next reference message with Next_is_Gap = "1".
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_SetNextIsGap(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Check that the node is configured for external event-synchronized TT operation */
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_GEN) != FDCAN_TTOCF_GEN)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Set Next is Gap */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_NIG);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Finish a Gap by requesting start of reference message.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_SetEndOfGap(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Check that the node is configured for external event-synchronized TT operation */
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_GEN) != FDCAN_TTOCF_GEN)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != FDCAN_TT_COMMUNICATION_LEVEL0)
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Set Finish Gap */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_FGP);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code.
Feature not supported for TT Level 0 */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_SUPPORTED;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Configure target phase used for external synchronization by event
* trigger input pin fdcan1_evt.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TargetPhase defines target value of cycle time when a rising edge
* of fdcan1_evt is expected.
* This parameter must be a number between 0 and 0xFFFF.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ConfigExternalSyncPhase(FDCAN_HandleTypeDef *hfdcan, uint32_t TargetPhase)
{
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_MAX_VALUE(TargetPhase, 0xFFFFU));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Check that no external schedule synchronization is pending */
if ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_ESCN) == FDCAN_TTOCN_ESCN)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PENDING;
return HAL_ERROR;
}
/* Configure cycle time target phase */
MODIFY_REG(hfdcan->ttcan->TTGTP, FDCAN_TTGTP_CTP, (TargetPhase << FDCAN_TTGTP_CTP_Pos));
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Synchronize the phase of the FDCAN schedule to an external schedule
* using event trigger input pin fdcan1_evt.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_EnableExternalSynchronization(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Enable external synchronization */
SET_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_ESCN);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable external schedule synchronization.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_DisableExternalSynchronization(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t Counter = 0U;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Wait until the LCKC bit into TTOCN register is reset */
while ((hfdcan->ttcan->TTOCN & FDCAN_TTOCN_LCKC) != 0U)
{
/* Check for the Timeout */
if (Counter > FDCAN_TIMEOUT_COUNT)
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_TIMEOUT;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
/* Increment counter */
Counter++;
}
/* Disable external synchronization */
CLEAR_BIT(hfdcan->ttcan->TTOCN, FDCAN_TTOCN_ESCN);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Get TT operation status.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TTOpStatus pointer to an FDCAN_TTOperationStatusTypeDef structure.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_GetOperationStatus(const FDCAN_HandleTypeDef *hfdcan,
FDCAN_TTOperationStatusTypeDef *TTOpStatus)
{
uint32_t TTStatusReg;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
/* Read the TT operation status register */
TTStatusReg = READ_REG(hfdcan->ttcan->TTOST);
/* Fill the TT operation status structure */
TTOpStatus->ErrorLevel = (TTStatusReg & FDCAN_TTOST_EL);
TTOpStatus->MasterState = (TTStatusReg & FDCAN_TTOST_MS);
TTOpStatus->SyncState = (TTStatusReg & FDCAN_TTOST_SYS);
TTOpStatus->GTimeQuality = ((TTStatusReg & FDCAN_TTOST_QGTP) >> FDCAN_TTOST_QGTP_Pos);
TTOpStatus->ClockQuality = ((TTStatusReg & FDCAN_TTOST_QCS) >> FDCAN_TTOST_QCS_Pos);
TTOpStatus->RefTrigOffset = ((TTStatusReg & FDCAN_TTOST_RTO) >> FDCAN_TTOST_RTO_Pos);
TTOpStatus->GTimeDiscPending = ((TTStatusReg & FDCAN_TTOST_WGTD) >> FDCAN_TTOST_WGTD_Pos);
TTOpStatus->GapFinished = ((TTStatusReg & FDCAN_TTOST_GFI) >> FDCAN_TTOST_GFI_Pos);
TTOpStatus->MasterPriority = ((TTStatusReg & FDCAN_TTOST_TMP) >> FDCAN_TTOST_TMP_Pos);
TTOpStatus->GapStarted = ((TTStatusReg & FDCAN_TTOST_GSI) >> FDCAN_TTOST_GSI_Pos);
TTOpStatus->WaitForEvt = ((TTStatusReg & FDCAN_TTOST_WFE) >> FDCAN_TTOST_WFE_Pos);
TTOpStatus->AppWdgEvt = ((TTStatusReg & FDCAN_TTOST_AWE) >> FDCAN_TTOST_AWE_Pos);
TTOpStatus->ECSPending = ((TTStatusReg & FDCAN_TTOST_WECS) >> FDCAN_TTOST_WECS_Pos);
TTOpStatus->PhaseLock = ((TTStatusReg & FDCAN_TTOST_SPL) >> FDCAN_TTOST_SPL_Pos);
/* Return function status */
return HAL_OK;
}
/**
* @}
*/
/** @defgroup FDCAN_Exported_Functions_Group5 Interrupts management
* @ingroup RTEMSBSPsARMSTM32H7
* @brief Interrupts management
*
@verbatim
==============================================================================
##### Interrupts management #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_FDCAN_ConfigInterruptLines : Assign interrupts to either Interrupt line 0 or 1
(+) HAL_FDCAN_TT_ConfigInterruptLines : Assign TT interrupts to either Interrupt line 0 or 1
(+) HAL_FDCAN_ActivateNotification : Enable interrupts
(+) HAL_FDCAN_DeactivateNotification : Disable interrupts
(+) HAL_FDCAN_TT_ActivateNotification : Enable TT interrupts
(+) HAL_FDCAN_TT_DeactivateNotification : Disable TT interrupts
(+) HAL_FDCAN_IRQHandler : Handles FDCAN interrupt request
@endverbatim
* @{
*/
/**
* @brief Assign interrupts to either Interrupt line 0 or 1.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param ITList indicates which interrupts will be assigned to the selected interrupt line.
* This parameter can be any combination of @arg FDCAN_Interrupts.
* @param InterruptLine Interrupt line.
* This parameter can be a value of @arg FDCAN_Interrupt_Line.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ConfigInterruptLines(FDCAN_HandleTypeDef *hfdcan, uint32_t ITList, uint32_t InterruptLine)
{
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_IT(ITList));
assert_param(IS_FDCAN_IT_LINE(InterruptLine));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Assign list of interrupts to the selected line */
if (InterruptLine == FDCAN_INTERRUPT_LINE0)
{
CLEAR_BIT(hfdcan->Instance->ILS, ITList);
}
else /* InterruptLine == FDCAN_INTERRUPT_LINE1 */
{
SET_BIT(hfdcan->Instance->ILS, ITList);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Assign TT interrupts to either Interrupt line 0 or 1.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TTITList indicates which interrupts will be assigned to the selected interrupt line.
* This parameter can be any combination of @arg FDCAN_TTInterrupts.
* @param InterruptLine Interrupt line.
* This parameter can be a value of @arg FDCAN_Interrupt_Line.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ConfigInterruptLines(FDCAN_HandleTypeDef *hfdcan, uint32_t TTITList,
uint32_t InterruptLine)
{
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_IT(TTITList));
assert_param(IS_FDCAN_IT_LINE(InterruptLine));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Assign list of interrupts to the selected line */
if (InterruptLine == FDCAN_INTERRUPT_LINE0)
{
CLEAR_BIT(hfdcan->ttcan->TTILS, TTITList);
}
else /* InterruptLine == FDCAN_INTERRUPT_LINE1 */
{
SET_BIT(hfdcan->ttcan->TTILS, TTITList);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Enable interrupts.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param ActiveITs indicates which interrupts will be enabled.
* This parameter can be any combination of @arg FDCAN_Interrupts.
* @param BufferIndexes Tx Buffer Indexes.
* This parameter can be any combination of @arg FDCAN_Tx_location.
* This parameter is ignored if ActiveITs does not include one of the following:
* - FDCAN_IT_TX_COMPLETE
* - FDCAN_IT_TX_ABORT_COMPLETE
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_ActivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t ActiveITs,
uint32_t BufferIndexes)
{
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_IT(ActiveITs));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Enable Interrupt lines */
if ((ActiveITs & hfdcan->Instance->ILS) == 0U)
{
/* Enable Interrupt line 0 */
SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0);
}
else if ((ActiveITs & hfdcan->Instance->ILS) == ActiveITs)
{
/* Enable Interrupt line 1 */
SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1);
}
else
{
/* Enable Interrupt lines 0 and 1 */
hfdcan->Instance->ILE = (FDCAN_INTERRUPT_LINE0 | FDCAN_INTERRUPT_LINE1);
}
if ((ActiveITs & FDCAN_IT_TX_COMPLETE) != 0U)
{
/* Enable Tx Buffer Transmission Interrupt to set TC flag in IR register,
but interrupt will only occur if TC is enabled in IE register */
SET_BIT(hfdcan->Instance->TXBTIE, BufferIndexes);
}
if ((ActiveITs & FDCAN_IT_TX_ABORT_COMPLETE) != 0U)
{
/* Enable Tx Buffer Cancellation Finished Interrupt to set TCF flag in IR register,
but interrupt will only occur if TCF is enabled in IE register */
SET_BIT(hfdcan->Instance->TXBCIE, BufferIndexes);
}
/* Enable the selected interrupts */
__HAL_FDCAN_ENABLE_IT(hfdcan, ActiveITs);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable interrupts.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param InactiveITs indicates which interrupts will be disabled.
* This parameter can be any combination of @arg FDCAN_Interrupts.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_DeactivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t InactiveITs)
{
uint32_t ITLineSelection;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_IT(InactiveITs));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Disable the selected interrupts */
__HAL_FDCAN_DISABLE_IT(hfdcan, InactiveITs);
if ((InactiveITs & FDCAN_IT_TX_COMPLETE) != 0U)
{
/* Disable Tx Buffer Transmission Interrupts */
CLEAR_REG(hfdcan->Instance->TXBTIE);
}
if ((InactiveITs & FDCAN_IT_TX_ABORT_COMPLETE) != 0U)
{
/* Disable Tx Buffer Cancellation Finished Interrupt */
CLEAR_REG(hfdcan->Instance->TXBCIE);
}
ITLineSelection = hfdcan->Instance->ILS;
if ((hfdcan->Instance->IE | ITLineSelection) == ITLineSelection)
{
/* Disable Interrupt line 0 */
CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0);
}
if ((hfdcan->Instance->IE & ITLineSelection) == 0U)
{
/* Disable Interrupt line 1 */
CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Enable TT interrupts.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param ActiveTTITs indicates which TT interrupts will be enabled.
* This parameter can be any combination of @arg FDCAN_TTInterrupts.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_ActivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t ActiveTTITs)
{
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_IT(ActiveTTITs));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Enable Interrupt lines */
if ((ActiveTTITs & hfdcan->ttcan->TTILS) == 0U)
{
/* Enable Interrupt line 0 */
SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0);
}
else if ((ActiveTTITs & hfdcan->ttcan->TTILS) == ActiveTTITs)
{
/* Enable Interrupt line 1 */
SET_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1);
}
else
{
/* Enable Interrupt lines 0 and 1 */
hfdcan->Instance->ILE = (FDCAN_INTERRUPT_LINE0 | FDCAN_INTERRUPT_LINE1);
}
/* Enable the selected TT interrupts */
__HAL_FDCAN_TT_ENABLE_IT(hfdcan, ActiveTTITs);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable TT interrupts.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param InactiveTTITs indicates which TT interrupts will be disabled.
* This parameter can be any combination of @arg FDCAN_TTInterrupts.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_FDCAN_TT_DeactivateNotification(FDCAN_HandleTypeDef *hfdcan, uint32_t InactiveTTITs)
{
uint32_t ITLineSelection;
HAL_FDCAN_StateTypeDef state = hfdcan->State;
/* Check function parameters */
assert_param(IS_FDCAN_TT_INSTANCE(hfdcan->Instance));
assert_param(IS_FDCAN_TT_IT(InactiveTTITs));
if ((state == HAL_FDCAN_STATE_READY) || (state == HAL_FDCAN_STATE_BUSY))
{
/* Disable the selected TT interrupts */
__HAL_FDCAN_TT_DISABLE_IT(hfdcan, InactiveTTITs);
ITLineSelection = hfdcan->ttcan->TTILS;
if ((hfdcan->ttcan->TTIE | ITLineSelection) == ITLineSelection)
{
/* Disable Interrupt line 0 */
CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE0);
}
if ((hfdcan->ttcan->TTIE & ITLineSelection) == 0U)
{
/* Disable interrupt line 1 */
CLEAR_BIT(hfdcan->Instance->ILE, FDCAN_INTERRUPT_LINE1);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Handles FDCAN interrupt request.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
void HAL_FDCAN_IRQHandler(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t ClkCalibrationITs;
uint32_t TxEventFifoITs;
uint32_t RxFifo0ITs;
uint32_t RxFifo1ITs;
uint32_t Errors;
uint32_t ErrorStatusITs;
uint32_t TransmittedBuffers;
uint32_t AbortedBuffers;
uint32_t TTSchedSyncITs;
uint32_t TTTimeMarkITs;
uint32_t TTGlobTimeITs;
uint32_t TTDistErrors;
uint32_t TTFatalErrors;
uint32_t SWTime;
uint32_t SWCycleCount;
uint32_t itsourceIE;
uint32_t itsourceTTIE;
uint32_t itflagIR;
uint32_t itflagTTIR;
ClkCalibrationITs = (FDCAN_CCU->IR << 30);
ClkCalibrationITs &= (FDCAN_CCU->IE << 30);
TxEventFifoITs = hfdcan->Instance->IR & FDCAN_TX_EVENT_FIFO_MASK;
TxEventFifoITs &= hfdcan->Instance->IE;
RxFifo0ITs = hfdcan->Instance->IR & FDCAN_RX_FIFO0_MASK;
RxFifo0ITs &= hfdcan->Instance->IE;
RxFifo1ITs = hfdcan->Instance->IR & FDCAN_RX_FIFO1_MASK;
RxFifo1ITs &= hfdcan->Instance->IE;
Errors = hfdcan->Instance->IR & FDCAN_ERROR_MASK;
Errors &= hfdcan->Instance->IE;
ErrorStatusITs = hfdcan->Instance->IR & FDCAN_ERROR_STATUS_MASK;
ErrorStatusITs &= hfdcan->Instance->IE;
itsourceIE = hfdcan->Instance->IE;
itflagIR = hfdcan->Instance->IR;
/* High Priority Message interrupt management *******************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_RX_HIGH_PRIORITY_MSG) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_RX_HIGH_PRIORITY_MSG) != RESET)
{
/* Clear the High Priority Message flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_RX_HIGH_PRIORITY_MSG);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->HighPriorityMessageCallback(hfdcan);
#else
/* High Priority Message Callback */
HAL_FDCAN_HighPriorityMessageCallback(hfdcan);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* Transmission Abort interrupt management **********************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TX_ABORT_COMPLETE) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TX_ABORT_COMPLETE) != RESET)
{
/* List of aborted monitored buffers */
AbortedBuffers = hfdcan->Instance->TXBCF;
AbortedBuffers &= hfdcan->Instance->TXBCIE;
/* Clear the Transmission Cancellation flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TX_ABORT_COMPLETE);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TxBufferAbortCallback(hfdcan, AbortedBuffers);
#else
/* Transmission Cancellation Callback */
HAL_FDCAN_TxBufferAbortCallback(hfdcan, AbortedBuffers);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* Clock calibration unit interrupts management *****************************/
if (ClkCalibrationITs != 0U)
{
/* Clear the Clock Calibration flags */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, ClkCalibrationITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->ClockCalibrationCallback(hfdcan, ClkCalibrationITs);
#else
/* Clock Calibration Callback */
HAL_FDCAN_ClockCalibrationCallback(hfdcan, ClkCalibrationITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* Tx event FIFO interrupts management **************************************/
if (TxEventFifoITs != 0U)
{
/* Clear the Tx Event FIFO flags */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, TxEventFifoITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TxEventFifoCallback(hfdcan, TxEventFifoITs);
#else
/* Tx Event FIFO Callback */
HAL_FDCAN_TxEventFifoCallback(hfdcan, TxEventFifoITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* Rx FIFO 0 interrupts management ******************************************/
if (RxFifo0ITs != 0U)
{
/* Clear the Rx FIFO 0 flags */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, RxFifo0ITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->RxFifo0Callback(hfdcan, RxFifo0ITs);
#else
/* Rx FIFO 0 Callback */
HAL_FDCAN_RxFifo0Callback(hfdcan, RxFifo0ITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* Rx FIFO 1 interrupts management ******************************************/
if (RxFifo1ITs != 0U)
{
/* Clear the Rx FIFO 1 flags */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, RxFifo1ITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->RxFifo1Callback(hfdcan, RxFifo1ITs);
#else
/* Rx FIFO 1 Callback */
HAL_FDCAN_RxFifo1Callback(hfdcan, RxFifo1ITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* Tx FIFO empty interrupt management ***************************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TX_FIFO_EMPTY) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TX_FIFO_EMPTY) != RESET)
{
/* Clear the Tx FIFO empty flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TX_FIFO_EMPTY);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TxFifoEmptyCallback(hfdcan);
#else
/* Tx FIFO empty Callback */
HAL_FDCAN_TxFifoEmptyCallback(hfdcan);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* Transmission Complete interrupt management *******************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TX_COMPLETE) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TX_COMPLETE) != RESET)
{
/* List of transmitted monitored buffers */
TransmittedBuffers = hfdcan->Instance->TXBTO;
TransmittedBuffers &= hfdcan->Instance->TXBTIE;
/* Clear the Transmission Complete flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TX_COMPLETE);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TxBufferCompleteCallback(hfdcan, TransmittedBuffers);
#else
/* Transmission Complete Callback */
HAL_FDCAN_TxBufferCompleteCallback(hfdcan, TransmittedBuffers);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* Rx Buffer New Message interrupt management *******************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_RX_BUFFER_NEW_MESSAGE) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_RX_BUFFER_NEW_MESSAGE) != RESET)
{
/* Clear the Rx Buffer New Message flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_RX_BUFFER_NEW_MESSAGE);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->RxBufferNewMessageCallback(hfdcan);
#else
/* Rx Buffer New Message Callback */
HAL_FDCAN_RxBufferNewMessageCallback(hfdcan);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* Timestamp Wraparound interrupt management ********************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TIMESTAMP_WRAPAROUND) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TIMESTAMP_WRAPAROUND) != RESET)
{
/* Clear the Timestamp Wraparound flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TIMESTAMP_WRAPAROUND);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TimestampWraparoundCallback(hfdcan);
#else
/* Timestamp Wraparound Callback */
HAL_FDCAN_TimestampWraparoundCallback(hfdcan);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* Timeout Occurred interrupt management ************************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_TIMEOUT_OCCURRED) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_TIMEOUT_OCCURRED) != RESET)
{
/* Clear the Timeout Occurred flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_TIMEOUT_OCCURRED);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TimeoutOccurredCallback(hfdcan);
#else
/* Timeout Occurred Callback */
HAL_FDCAN_TimeoutOccurredCallback(hfdcan);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* Message RAM access failure interrupt management **************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceIE, FDCAN_IT_RAM_ACCESS_FAILURE) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagIR, FDCAN_FLAG_RAM_ACCESS_FAILURE) != RESET)
{
/* Clear the Message RAM access failure flag */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, FDCAN_FLAG_RAM_ACCESS_FAILURE);
/* Update error code */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_RAM_ACCESS;
}
}
/* Error Status interrupts management ***************************************/
if (ErrorStatusITs != 0U)
{
/* Clear the Error flags */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, ErrorStatusITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->ErrorStatusCallback(hfdcan, ErrorStatusITs);
#else
/* Error Status Callback */
HAL_FDCAN_ErrorStatusCallback(hfdcan, ErrorStatusITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* Error interrupts management **********************************************/
if (Errors != 0U)
{
/* Clear the Error flags */
__HAL_FDCAN_CLEAR_FLAG(hfdcan, Errors);
/* Update error code */
hfdcan->ErrorCode |= Errors;
}
if (hfdcan->Instance == FDCAN1)
{
if ((hfdcan->ttcan->TTOCF & FDCAN_TTOCF_OM) != 0U)
{
TTSchedSyncITs = hfdcan->ttcan->TTIR & FDCAN_TT_SCHEDULE_SYNC_MASK;
TTSchedSyncITs &= hfdcan->ttcan->TTIE;
TTTimeMarkITs = hfdcan->ttcan->TTIR & FDCAN_TT_TIME_MARK_MASK;
TTTimeMarkITs &= hfdcan->ttcan->TTIE;
TTGlobTimeITs = hfdcan->ttcan->TTIR & FDCAN_TT_GLOBAL_TIME_MASK;
TTGlobTimeITs &= hfdcan->ttcan->TTIE;
TTDistErrors = hfdcan->ttcan->TTIR & FDCAN_TT_DISTURBING_ERROR_MASK;
TTDistErrors &= hfdcan->ttcan->TTIE;
TTFatalErrors = hfdcan->ttcan->TTIR & FDCAN_TT_FATAL_ERROR_MASK;
TTFatalErrors &= hfdcan->ttcan->TTIE;
itsourceTTIE = hfdcan->ttcan->TTIE;
itflagTTIR = hfdcan->ttcan->TTIR;
/* TT Schedule Synchronization interrupts management **********************/
if (TTSchedSyncITs != 0U)
{
/* Clear the TT Schedule Synchronization flags */
__HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTSchedSyncITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TT_ScheduleSyncCallback(hfdcan, TTSchedSyncITs);
#else
/* TT Schedule Synchronization Callback */
HAL_FDCAN_TT_ScheduleSyncCallback(hfdcan, TTSchedSyncITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* TT Time Mark interrupts management *************************************/
if (TTTimeMarkITs != 0U)
{
/* Clear the TT Time Mark flags */
__HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTTimeMarkITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TT_TimeMarkCallback(hfdcan, TTTimeMarkITs);
#else
/* TT Time Mark Callback */
HAL_FDCAN_TT_TimeMarkCallback(hfdcan, TTTimeMarkITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* TT Stop Watch interrupt management *************************************/
if (FDCAN_CHECK_IT_SOURCE(itsourceTTIE, FDCAN_TT_IT_STOP_WATCH) != RESET)
{
if (FDCAN_CHECK_FLAG(itflagTTIR, FDCAN_TT_FLAG_STOP_WATCH) != RESET)
{
/* Retrieve Stop watch Time and Cycle count */
SWTime = ((hfdcan->ttcan->TTCPT & FDCAN_TTCPT_SWV) >> FDCAN_TTCPT_SWV_Pos);
SWCycleCount = ((hfdcan->ttcan->TTCPT & FDCAN_TTCPT_CCV) >> FDCAN_TTCPT_CCV_Pos);
/* Clear the TT Stop Watch flag */
__HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, FDCAN_TT_FLAG_STOP_WATCH);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TT_StopWatchCallback(hfdcan, SWTime, SWCycleCount);
#else
/* TT Stop Watch Callback */
HAL_FDCAN_TT_StopWatchCallback(hfdcan, SWTime, SWCycleCount);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/* TT Global Time interrupts management ***********************************/
if (TTGlobTimeITs != 0U)
{
/* Clear the TT Global Time flags */
__HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTGlobTimeITs);
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->TT_GlobalTimeCallback(hfdcan, TTGlobTimeITs);
#else
/* TT Global Time Callback */
HAL_FDCAN_TT_GlobalTimeCallback(hfdcan, TTGlobTimeITs);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
/* TT Disturbing Error interrupts management ******************************/
if (TTDistErrors != 0U)
{
/* Clear the TT Disturbing Error flags */
__HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTDistErrors);
/* Update error code */
hfdcan->ErrorCode |= TTDistErrors;
}
/* TT Fatal Error interrupts management ***********************************/
if (TTFatalErrors != 0U)
{
/* Clear the TT Fatal Error flags */
__HAL_FDCAN_TT_CLEAR_FLAG(hfdcan, TTFatalErrors);
/* Update error code */
hfdcan->ErrorCode |= TTFatalErrors;
}
}
}
if (hfdcan->ErrorCode != HAL_FDCAN_ERROR_NONE)
{
#if USE_HAL_FDCAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hfdcan->ErrorCallback(hfdcan);
#else
/* Error Callback */
HAL_FDCAN_ErrorCallback(hfdcan);
#endif /* USE_HAL_FDCAN_REGISTER_CALLBACKS */
}
}
/**
* @}
*/
/** @defgroup FDCAN_Exported_Functions_Group6 Callback functions
* @ingroup RTEMSBSPsARMSTM32H7
* @brief FDCAN Callback functions
*
@verbatim
==============================================================================
##### Callback functions #####
==============================================================================
[..]
This subsection provides the following callback functions:
(+) HAL_FDCAN_ClockCalibrationCallback
(+) HAL_FDCAN_TxEventFifoCallback
(+) HAL_FDCAN_RxFifo0Callback
(+) HAL_FDCAN_RxFifo1Callback
(+) HAL_FDCAN_TxFifoEmptyCallback
(+) HAL_FDCAN_TxBufferCompleteCallback
(+) HAL_FDCAN_TxBufferAbortCallback
(+) HAL_FDCAN_RxBufferNewMessageCallback
(+) HAL_FDCAN_HighPriorityMessageCallback
(+) HAL_FDCAN_TimestampWraparoundCallback
(+) HAL_FDCAN_TimeoutOccurredCallback
(+) HAL_FDCAN_ErrorCallback
(+) HAL_FDCAN_ErrorStatusCallback
(+) HAL_FDCAN_TT_ScheduleSyncCallback
(+) HAL_FDCAN_TT_TimeMarkCallback
(+) HAL_FDCAN_TT_StopWatchCallback
(+) HAL_FDCAN_TT_GlobalTimeCallback
@endverbatim
* @{
*/
/**
* @brief Clock Calibration callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param ClkCalibrationITs indicates which Clock Calibration interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_Clock_Calibration_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_ClockCalibrationCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t ClkCalibrationITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(ClkCalibrationITs);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_ClockCalibrationCallback could be implemented in the user file
*/
}
/**
* @brief Tx Event callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TxEventFifoITs indicates which Tx Event FIFO interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_Tx_Event_Fifo_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_TxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TxEventFifoITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(TxEventFifoITs);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TxEventFifoCallback could be implemented in the user file
*/
}
/**
* @brief Rx FIFO 0 callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param RxFifo0ITs indicates which Rx FIFO 0 interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_Rx_Fifo0_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo0ITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(RxFifo0ITs);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_RxFifo0Callback could be implemented in the user file
*/
}
/**
* @brief Rx FIFO 1 callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param RxFifo1ITs indicates which Rx FIFO 1 interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_Rx_Fifo1_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_RxFifo1Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo1ITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(RxFifo1ITs);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_RxFifo1Callback could be implemented in the user file
*/
}
/**
* @brief Tx FIFO Empty callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_TxFifoEmptyCallback(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TxFifoEmptyCallback could be implemented in the user file
*/
}
/**
* @brief Transmission Complete callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param BufferIndexes Indexes of the transmitted buffers.
* This parameter can be any combination of @arg FDCAN_Tx_location.
* @retval None
*/
__weak void HAL_FDCAN_TxBufferCompleteCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndexes)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(BufferIndexes);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TxBufferCompleteCallback could be implemented in the user file
*/
}
/**
* @brief Transmission Cancellation callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param BufferIndexes Indexes of the aborted buffers.
* This parameter can be any combination of @arg FDCAN_Tx_location.
* @retval None
*/
__weak void HAL_FDCAN_TxBufferAbortCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t BufferIndexes)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(BufferIndexes);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TxBufferAbortCallback could be implemented in the user file
*/
}
/**
* @brief Rx Buffer New Message callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_RxBufferNewMessageCallback(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_RxBufferNewMessageCallback could be implemented in the user file
*/
}
/**
* @brief Timestamp Wraparound callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_TimestampWraparoundCallback(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TimestampWraparoundCallback could be implemented in the user file
*/
}
/**
* @brief Timeout Occurred callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_TimeoutOccurredCallback(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TimeoutOccurredCallback could be implemented in the user file
*/
}
/**
* @brief High Priority Message callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_HighPriorityMessageCallback(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_HighPriorityMessageCallback could be implemented in the user file
*/
}
/**
* @brief Error callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval None
*/
__weak void HAL_FDCAN_ErrorCallback(FDCAN_HandleTypeDef *hfdcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_ErrorCallback could be implemented in the user file
*/
}
/**
* @brief Error status callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param ErrorStatusITs indicates which Error Status interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_Error_Status_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_ErrorStatusCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t ErrorStatusITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(ErrorStatusITs);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_ErrorStatusCallback could be implemented in the user file
*/
}
/**
* @brief TT Schedule Synchronization callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TTSchedSyncITs indicates which TT Schedule Synchronization interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_TTScheduleSynchronization_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_TT_ScheduleSyncCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TTSchedSyncITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(TTSchedSyncITs);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TT_ScheduleSyncCallback could be implemented in the user file
*/
}
/**
* @brief TT Time Mark callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TTTimeMarkITs indicates which TT Schedule Synchronization interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_TTTimeMark_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_TT_TimeMarkCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TTTimeMarkITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(TTTimeMarkITs);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TT_TimeMarkCallback could be implemented in the user file
*/
}
/**
* @brief TT Stop Watch callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param SWTime Time Value captured at the Stop Watch Trigger pin (fdcan1_swt) falling/rising
* edge (as configured via HAL_FDCAN_TTConfigStopWatch).
* This parameter is a number between 0 and 0xFFFF.
* @param SWCycleCount Cycle count value captured together with SWTime.
* This parameter is a number between 0 and 0x3F.
* @retval None
*/
__weak void HAL_FDCAN_TT_StopWatchCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t SWTime, uint32_t SWCycleCount)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(SWTime);
UNUSED(SWCycleCount);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TT_StopWatchCallback could be implemented in the user file
*/
}
/**
* @brief TT Global Time callback.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param TTGlobTimeITs indicates which TT Global Time interrupts are signaled.
* This parameter can be any combination of @arg FDCAN_TTGlobalTime_Interrupts.
* @retval None
*/
__weak void HAL_FDCAN_TT_GlobalTimeCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t TTGlobTimeITs)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hfdcan);
UNUSED(TTGlobTimeITs);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_FDCAN_TT_GlobalTimeCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup FDCAN_Exported_Functions_Group7 Peripheral State functions
* @ingroup RTEMSBSPsARMSTM32H7
* @brief FDCAN Peripheral State functions
*
@verbatim
==============================================================================
##### Peripheral State functions #####
==============================================================================
[..]
This subsection provides functions allowing to :
(+) HAL_FDCAN_GetState() : Return the FDCAN state.
(+) HAL_FDCAN_GetError() : Return the FDCAN error code if any.
@endverbatim
* @{
*/
/**
* @brief Return the FDCAN state
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL state
*/
HAL_FDCAN_StateTypeDef HAL_FDCAN_GetState(const FDCAN_HandleTypeDef *hfdcan)
{
/* Return FDCAN state */
return hfdcan->State;
}
/**
* @brief Return the FDCAN error code
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval FDCAN Error Code
*/
uint32_t HAL_FDCAN_GetError(const FDCAN_HandleTypeDef *hfdcan)
{
/* Return FDCAN error code */
return hfdcan->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @defgroup FDCAN_Private_Functions FDCAN Private Functions
* @{
*/
/**
* @brief Calculate each RAM block start address and size
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @retval HAL status
*/
static HAL_StatusTypeDef FDCAN_CalcultateRamBlockAddresses(FDCAN_HandleTypeDef *hfdcan)
{
uint32_t RAMcounter;
uint32_t StartAddress;
StartAddress = hfdcan->Init.MessageRAMOffset;
/* Standard filter list start address */
MODIFY_REG(hfdcan->Instance->SIDFC, FDCAN_SIDFC_FLSSA, (StartAddress << FDCAN_SIDFC_FLSSA_Pos));
/* Standard filter elements number */
MODIFY_REG(hfdcan->Instance->SIDFC, FDCAN_SIDFC_LSS, (hfdcan->Init.StdFiltersNbr << FDCAN_SIDFC_LSS_Pos));
/* Extended filter list start address */
StartAddress += hfdcan->Init.StdFiltersNbr;
MODIFY_REG(hfdcan->Instance->XIDFC, FDCAN_XIDFC_FLESA, (StartAddress << FDCAN_XIDFC_FLESA_Pos));
/* Extended filter elements number */
MODIFY_REG(hfdcan->Instance->XIDFC, FDCAN_XIDFC_LSE, (hfdcan->Init.ExtFiltersNbr << FDCAN_XIDFC_LSE_Pos));
/* Rx FIFO 0 start address */
StartAddress += (hfdcan->Init.ExtFiltersNbr * 2U);
MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0SA, (StartAddress << FDCAN_RXF0C_F0SA_Pos));
/* Rx FIFO 0 elements number */
MODIFY_REG(hfdcan->Instance->RXF0C, FDCAN_RXF0C_F0S, (hfdcan->Init.RxFifo0ElmtsNbr << FDCAN_RXF0C_F0S_Pos));
/* Rx FIFO 1 start address */
StartAddress += (hfdcan->Init.RxFifo0ElmtsNbr * hfdcan->Init.RxFifo0ElmtSize);
MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1SA, (StartAddress << FDCAN_RXF1C_F1SA_Pos));
/* Rx FIFO 1 elements number */
MODIFY_REG(hfdcan->Instance->RXF1C, FDCAN_RXF1C_F1S, (hfdcan->Init.RxFifo1ElmtsNbr << FDCAN_RXF1C_F1S_Pos));
/* Rx buffer list start address */
StartAddress += (hfdcan->Init.RxFifo1ElmtsNbr * hfdcan->Init.RxFifo1ElmtSize);
MODIFY_REG(hfdcan->Instance->RXBC, FDCAN_RXBC_RBSA, (StartAddress << FDCAN_RXBC_RBSA_Pos));
/* Tx event FIFO start address */
StartAddress += (hfdcan->Init.RxBuffersNbr * hfdcan->Init.RxBufferSize);
MODIFY_REG(hfdcan->Instance->TXEFC, FDCAN_TXEFC_EFSA, (StartAddress << FDCAN_TXEFC_EFSA_Pos));
/* Tx event FIFO elements number */
MODIFY_REG(hfdcan->Instance->TXEFC, FDCAN_TXEFC_EFS, (hfdcan->Init.TxEventsNbr << FDCAN_TXEFC_EFS_Pos));
/* Tx buffer list start address */
StartAddress += (hfdcan->Init.TxEventsNbr * 2U);
MODIFY_REG(hfdcan->Instance->TXBC, FDCAN_TXBC_TBSA, (StartAddress << FDCAN_TXBC_TBSA_Pos));
/* Dedicated Tx buffers number */
MODIFY_REG(hfdcan->Instance->TXBC, FDCAN_TXBC_NDTB, (hfdcan->Init.TxBuffersNbr << FDCAN_TXBC_NDTB_Pos));
/* Tx FIFO/queue elements number */
MODIFY_REG(hfdcan->Instance->TXBC, FDCAN_TXBC_TFQS, (hfdcan->Init.TxFifoQueueElmtsNbr << FDCAN_TXBC_TFQS_Pos));
hfdcan->msgRam.StandardFilterSA = SRAMCAN_BASE + (hfdcan->Init.MessageRAMOffset * 4U);
hfdcan->msgRam.ExtendedFilterSA = hfdcan->msgRam.StandardFilterSA + (hfdcan->Init.StdFiltersNbr * 4U);
hfdcan->msgRam.RxFIFO0SA = hfdcan->msgRam.ExtendedFilterSA + (hfdcan->Init.ExtFiltersNbr * 2U * 4U);
hfdcan->msgRam.RxFIFO1SA = hfdcan->msgRam.RxFIFO0SA +
(hfdcan->Init.RxFifo0ElmtsNbr * hfdcan->Init.RxFifo0ElmtSize * 4U);
hfdcan->msgRam.RxBufferSA = hfdcan->msgRam.RxFIFO1SA +
(hfdcan->Init.RxFifo1ElmtsNbr * hfdcan->Init.RxFifo1ElmtSize * 4U);
hfdcan->msgRam.TxEventFIFOSA = hfdcan->msgRam.RxBufferSA +
(hfdcan->Init.RxBuffersNbr * hfdcan->Init.RxBufferSize * 4U);
hfdcan->msgRam.TxBufferSA = hfdcan->msgRam.TxEventFIFOSA + (hfdcan->Init.TxEventsNbr * 2U * 4U);
hfdcan->msgRam.TxFIFOQSA = hfdcan->msgRam.TxBufferSA + (hfdcan->Init.TxBuffersNbr * hfdcan->Init.TxElmtSize * 4U);
hfdcan->msgRam.EndAddress = hfdcan->msgRam.TxFIFOQSA +
(hfdcan->Init.TxFifoQueueElmtsNbr * hfdcan->Init.TxElmtSize * 4U);
if (hfdcan->msgRam.EndAddress > FDCAN_MESSAGE_RAM_END_ADDRESS) /* Last address of the Message RAM */
{
/* Update error code.
Message RAM overflow */
hfdcan->ErrorCode |= HAL_FDCAN_ERROR_PARAM;
/* Change FDCAN state */
hfdcan->State = HAL_FDCAN_STATE_ERROR;
return HAL_ERROR;
}
else
{
/* Flush the allocated Message RAM area */
for (RAMcounter = hfdcan->msgRam.StandardFilterSA; RAMcounter < hfdcan->msgRam.EndAddress; RAMcounter += 4U)
{
*(uint32_t *)(RAMcounter) = 0x00000000;
}
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Copy Tx message to the message RAM.
* @param hfdcan pointer to an FDCAN_HandleTypeDef structure that contains
* the configuration information for the specified FDCAN.
* @param pTxHeader pointer to a FDCAN_TxHeaderTypeDef structure.
* @param pTxData pointer to a buffer containing the payload of the Tx frame.
* @param BufferIndex index of the buffer to be configured.
* @retval none
*/
static void FDCAN_CopyMessageToRAM(const FDCAN_HandleTypeDef *hfdcan, const FDCAN_TxHeaderTypeDef *pTxHeader,
const uint8_t *pTxData, uint32_t BufferIndex)
{
uint32_t TxElementW1;
uint32_t TxElementW2;
uint32_t *TxAddress;
uint32_t ByteCounter;
/* Build first word of Tx header element */
if (pTxHeader->IdType == FDCAN_STANDARD_ID)
{
TxElementW1 = (pTxHeader->ErrorStateIndicator |
FDCAN_STANDARD_ID |
pTxHeader->TxFrameType |
(pTxHeader->Identifier << 18U));
}
else /* pTxHeader->IdType == FDCAN_EXTENDED_ID */
{
TxElementW1 = (pTxHeader->ErrorStateIndicator |
FDCAN_EXTENDED_ID |
pTxHeader->TxFrameType |
pTxHeader->Identifier);
}
/* Build second word of Tx header element */
TxElementW2 = ((pTxHeader->MessageMarker << 24U) |
pTxHeader->TxEventFifoControl |
pTxHeader->FDFormat |
pTxHeader->BitRateSwitch |
(pTxHeader->DataLength << 16U));
/* Calculate Tx element address */
TxAddress = (uint32_t *)(hfdcan->msgRam.TxBufferSA + (BufferIndex * hfdcan->Init.TxElmtSize * 4U));
/* Write Tx element header to the message RAM */
*TxAddress = TxElementW1;
TxAddress++;
*TxAddress = TxElementW2;
TxAddress++;
/* Write Tx payload to the message RAM */
for (ByteCounter = 0; ByteCounter < DLCtoBytes[pTxHeader->DataLength]; ByteCounter += 4U)
{
*TxAddress = (((uint32_t)pTxData[ByteCounter + 3U] << 24U) |
((uint32_t)pTxData[ByteCounter + 2U] << 16U) |
((uint32_t)pTxData[ByteCounter + 1U] << 8U) |
(uint32_t)pTxData[ByteCounter]);
TxAddress++;
}
}
/**
* @}
*/
#endif /* HAL_FDCAN_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
#endif /* FDCAN1 */