forked from Imagelibrary/rtems
* startup/bspstart.c: Added dummy implementation of firmware syscalls for use with QEMU. Dummy handler is installed if no pre-existing firmware handler is found.
749 lines
23 KiB
C
749 lines
23 KiB
C
/*
|
|
* BSP startup
|
|
*
|
|
* This routine starts the application. It includes application,
|
|
* board, and monitor specific initialization and configuration.
|
|
* The generic CPU dependent initialization has been performed
|
|
* before this routine is invoked.
|
|
*
|
|
* Author: W. Eric Norum <norume@aps.anl.gov>
|
|
*
|
|
* COPYRIGHT (c) 2005.
|
|
* On-Line Applications Research Corporation (OAR).
|
|
*
|
|
* The license and distribution terms for this file may be
|
|
* found in the file LICENSE in this distribution or at
|
|
* http://www.rtems.com/license/LICENSE.
|
|
*
|
|
* $Id$
|
|
*/
|
|
|
|
#include <bsp.h>
|
|
#include <rtems/libio.h>
|
|
#include <rtems/error.h>
|
|
#include <rtems/libcsupport.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
|
|
/*
|
|
* Location of 'VME' access
|
|
*/
|
|
#define VME_ONE_BASE 0x30000000
|
|
#define VME_TWO_BASE 0x31000000
|
|
|
|
/*
|
|
* CPU-space access
|
|
* The NOP after writing the CACR is there to address the following issue as
|
|
* described in "Device Errata MCF5282DE", Rev. 1.7, 09/2004:
|
|
*
|
|
* 6 Possible Cache Corruption after Setting CACR[CINV]
|
|
* 6.1 Description
|
|
* The cache on the MCF5282 was enhanced to function as a unified data and
|
|
* instruction cache, an instruction cache, or an operand cache. The cache
|
|
* function and organization is controlled by the cache control register (CACR).
|
|
* The CINV (Bit 24 = cache invalidate) bit in the CACR causes a cache clear.
|
|
* If the cache is configured as a unified cache and the CINV bit is set, the
|
|
* scope of the cache clear is controlled by two other bits in the CACR,
|
|
* INVI (BIT 21 = CINV instruction cache only) and INVD (BIT 20 = CINV data
|
|
* cache only). These bits allow the entire cache, just the instruction
|
|
* portion of the cache, or just the data portion of the cache to be cleared.
|
|
* If a write to the CACR is performed to clear the cache (CINV = BIT 24 set)
|
|
* and only a partial clear will be done (INVI = BIT 21 or INVD = BIT 20 set),
|
|
* then cache corruption may occur.
|
|
*
|
|
* 6.2 Workaround
|
|
* All loads of the CACR that perform a cache clear operation (CINV = BIT 24)
|
|
* should be followed immediately by a NOP instruction. This avoids the cache
|
|
* corruption problem.
|
|
* DATECODES AFFECTED: All
|
|
*
|
|
*
|
|
* Buffered writes must be disabled as described in "MCF5282 Chip Errata",
|
|
* MCF5282DE, Rev. 6, 5/2009:
|
|
* SECF124: Buffered Write May Be Executed Twice
|
|
* Errata type: Silicon
|
|
* Affected component: Cache
|
|
* Description: If buffered writes are enabled using the CACR or ACR
|
|
* registers, the imprecise write transaction generated
|
|
* by a buffered write may be executed twice.
|
|
* Workaround: Do not enable buffered writes in the CACR or ACR registers:
|
|
* CACR[8] = DBWE (default buffered write enable) must be 0
|
|
* ACRn[5] = BUFW (buffered write enable) must be 0
|
|
* Fix plan: Currently, there are no plans to fix this.
|
|
*/
|
|
#define m68k_set_cacr_nop(_cacr) asm volatile ("movec %0,%%cacr\n\tnop" : : "d" (_cacr))
|
|
#define m68k_set_cacr(_cacr) asm volatile ("movec %0,%%cacr" : : "d" (_cacr))
|
|
#define m68k_set_acr0(_acr0) asm volatile ("movec %0,%%acr0" : : "d" (_acr0))
|
|
#define m68k_set_acr1(_acr1) asm volatile ("movec %0,%%acr1" : : "d" (_acr1))
|
|
|
|
/*
|
|
* Read/write copy of cache registers
|
|
* Split instruction/data or instruction-only
|
|
* Allow CPUSHL to invalidate a cache line
|
|
* Disable buffered writes
|
|
* No burst transfers on non-cacheable accesses
|
|
* Default cache mode is *disabled* (cache only ACRx areas)
|
|
*/
|
|
uint32_t mcf5282_cacr_mode = MCF5XXX_CACR_CENB |
|
|
#ifndef RTEMS_MCF5282_BSP_ENABLE_DATA_CACHE
|
|
MCF5XXX_CACR_DISD |
|
|
#endif
|
|
MCF5XXX_CACR_DCM;
|
|
uint32_t mcf5282_acr0_mode = 0;
|
|
uint32_t mcf5282_acr1_mode = 0;
|
|
/*
|
|
* Cannot be frozen
|
|
*/
|
|
void _CPU_cache_freeze_data(void) {}
|
|
void _CPU_cache_unfreeze_data(void) {}
|
|
void _CPU_cache_freeze_instruction(void) {}
|
|
void _CPU_cache_unfreeze_instruction(void) {}
|
|
|
|
/*
|
|
* Write-through data cache -- flushes are unnecessary
|
|
*/
|
|
void _CPU_cache_flush_1_data_line(const void *d_addr) {}
|
|
void _CPU_cache_flush_entire_data(void) {}
|
|
|
|
void _CPU_cache_enable_instruction(void)
|
|
{
|
|
rtems_interrupt_level level;
|
|
|
|
rtems_interrupt_disable(level);
|
|
mcf5282_cacr_mode &= ~MCF5XXX_CACR_DIDI;
|
|
m68k_set_cacr_nop(mcf5282_cacr_mode | MCF5XXX_CACR_CINV | MCF5XXX_CACR_INVI);
|
|
rtems_interrupt_enable(level);
|
|
}
|
|
|
|
void _CPU_cache_disable_instruction(void)
|
|
{
|
|
rtems_interrupt_level level;
|
|
|
|
rtems_interrupt_disable(level);
|
|
mcf5282_cacr_mode |= MCF5XXX_CACR_DIDI;
|
|
m68k_set_cacr(mcf5282_cacr_mode);
|
|
rtems_interrupt_enable(level);
|
|
}
|
|
|
|
void _CPU_cache_invalidate_entire_instruction(void)
|
|
{
|
|
m68k_set_cacr_nop(mcf5282_cacr_mode | MCF5XXX_CACR_CINV | MCF5XXX_CACR_INVI);
|
|
}
|
|
|
|
void _CPU_cache_invalidate_1_instruction_line(const void *addr)
|
|
{
|
|
/*
|
|
* Top half of cache is I-space
|
|
*/
|
|
addr = (void *)((int)addr | 0x400);
|
|
asm volatile ("cpushl %%bc,(%0)" :: "a" (addr));
|
|
}
|
|
|
|
void _CPU_cache_enable_data(void)
|
|
{
|
|
#ifdef RTEMS_MCF5282_BSP_ENABLE_DATA_CACHE
|
|
rtems_interrupt_level level;
|
|
|
|
rtems_interrupt_disable(level);
|
|
mcf5282_cacr_mode &= ~MCF5XXX_CACR_DISD;
|
|
m68k_set_cacr_nop(mcf5282_cacr_mode | MCF5XXX_CACR_CINV | MCF5XXX_CACR_INVD);
|
|
rtems_interrupt_enable(level);
|
|
#endif
|
|
}
|
|
|
|
void _CPU_cache_disable_data(void)
|
|
{
|
|
#ifdef RTEMS_MCF5282_BSP_ENABLE_DATA_CACHE
|
|
rtems_interrupt_level level;
|
|
|
|
rtems_interrupt_disable(level);
|
|
mcf5282_cacr_mode |= MCF5XXX_CACR_DISD;
|
|
m68k_set_cacr(mcf5282_cacr_mode);
|
|
rtems_interrupt_enable(level);
|
|
#endif
|
|
}
|
|
|
|
void _CPU_cache_invalidate_entire_data(void)
|
|
{
|
|
#ifdef RTEMS_MCF5282_BSP_ENABLE_DATA_CACHE
|
|
m68k_set_cacr_nop(mcf5282_cacr_mode | MCF5XXX_CACR_CINV | MCF5XXX_CACR_INVD);
|
|
#endif
|
|
}
|
|
|
|
void _CPU_cache_invalidate_1_data_line(const void *addr)
|
|
{
|
|
#ifdef RTEMS_MCF5282_BSP_ENABLE_DATA_CACHE
|
|
/*
|
|
* Bottom half of cache is D-space
|
|
*/
|
|
addr = (void *)((int)addr & ~0x400);
|
|
asm volatile ("cpushl %%bc,(%0)" :: "a" (addr));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Use the shared implementations of the following routines
|
|
*/
|
|
void bsp_libc_init( void *, uint32_t, int );
|
|
void bsp_pretasking_hook(void); /* m68k version */
|
|
|
|
extern void bsp_fake_syscall();
|
|
|
|
/*
|
|
* The Arcturus boot ROM prints exception information improperly
|
|
* so use this default exception handler instead. This one also
|
|
* prints a call backtrace
|
|
*/
|
|
static void handler(int pc)
|
|
{
|
|
int level;
|
|
static volatile int reent;
|
|
extern char _RamSize[];
|
|
|
|
rtems_interrupt_disable(level);
|
|
if (reent++) bsp_reset(0);
|
|
{
|
|
int *p = &pc;
|
|
int info = p[-1];
|
|
int pc = p[0];
|
|
int format = (info >> 28) & 0xF;
|
|
int faultStatus = ((info >> 24) & 0xC) | ((info >> 16) & 0x3);
|
|
int vector = (info >> 18) & 0xFF;
|
|
int statusRegister = info & 0xFFFF;
|
|
int *fp;
|
|
|
|
printk("\n\nPC:%x SR:%x VEC:%x FORMAT:%x STATUS:%x\n", pc,
|
|
statusRegister,
|
|
vector,
|
|
format,
|
|
faultStatus);
|
|
fp = &p[-2];
|
|
for(;;) {
|
|
int *nfp = (int *)*fp;
|
|
if ((nfp <= fp)
|
|
|| ((char *)nfp >= _RamSize)
|
|
|| ((char *)(nfp[1]) >= _RamSize))
|
|
break;
|
|
printk("FP:%x -> %x PC:%x\n", fp, nfp, nfp[1]);
|
|
fp = nfp;
|
|
}
|
|
}
|
|
rtems_task_suspend(0);
|
|
rtems_panic("done");
|
|
}
|
|
|
|
/*
|
|
* bsp_start
|
|
*
|
|
* This routine does the bulk of the system initialisation.
|
|
*/
|
|
void bsp_start( void )
|
|
{
|
|
int i;
|
|
extern char _WorkspaceBase[];
|
|
extern char _RamBase[], _RamSize[];
|
|
extern unsigned long _M68k_Ramsize;
|
|
|
|
_M68k_Ramsize = (unsigned long)_RamSize; /* RAM size set in linker script */
|
|
|
|
/*
|
|
* Allocate the memory for the RTEMS Work Space. This can come from
|
|
* a variety of places: hard coded address, malloc'ed from outside
|
|
* RTEMS world (e.g. simulator or primitive memory manager), or (as
|
|
* typically done by stock BSPs) by subtracting the required amount
|
|
* of work space from the last physical address on the CPU board.
|
|
*/
|
|
|
|
/*
|
|
* Set up default exception handler
|
|
*/
|
|
for (i = 2 ; i < 256 ; i++)
|
|
if (i != (32+2)) /* Catch all but bootrom system calls */
|
|
*((void (**)(int))(i * 4)) = handler;
|
|
|
|
/*
|
|
* Qemu has no trap handler; install our fake syscall
|
|
* implementation if there is no existing handler.
|
|
*/
|
|
if ( 0 == *((void (**)(int))((32+2) * 4)) )
|
|
*((void (**)(int))((32+2) * 4)) = bsp_fake_syscall;
|
|
|
|
/*
|
|
* Need to "allocate" the memory for the RTEMS Workspace and
|
|
* tell the RTEMS configuration where it is. This memory is
|
|
* not malloc'ed. It is just "pulled from the air".
|
|
*/
|
|
|
|
Configuration.work_space_start = (void *)_WorkspaceBase;
|
|
|
|
/*
|
|
* Invalidate the cache and disable it
|
|
*/
|
|
m68k_set_acr0(mcf5282_acr0_mode);
|
|
m68k_set_acr1(mcf5282_acr1_mode);
|
|
m68k_set_cacr_nop(MCF5XXX_CACR_CINV);
|
|
|
|
/*
|
|
* Cache SDRAM
|
|
* Enable buffered writes
|
|
* As Device Errata SECF124 notes this may cause double writes,
|
|
* but that's not really a big problem and benchmarking tests have
|
|
* shown that buffered writes do gain some performance.
|
|
*/
|
|
mcf5282_acr0_mode = MCF5XXX_ACR_AB((uint32_t)_RamBase) |
|
|
MCF5XXX_ACR_AM((uint32_t)_RamSize-1) |
|
|
MCF5XXX_ACR_EN |
|
|
MCF5XXX_ACR_SM_IGNORE |
|
|
MCF5XXX_ACR_BWE;
|
|
m68k_set_acr0(mcf5282_acr0_mode);
|
|
|
|
/*
|
|
* Enable the cache
|
|
*/
|
|
m68k_set_cacr(mcf5282_cacr_mode);
|
|
|
|
/*
|
|
* Set up CS* space (fake 'VME')
|
|
* Two A24/D16 spaces, supervisor data acces
|
|
*/
|
|
MCF5282_CS1_CSAR = MCF5282_CS_CSAR_BA(VME_ONE_BASE);
|
|
MCF5282_CS1_CSMR = MCF5282_CS_CSMR_BAM_16M |
|
|
MCF5282_CS_CSMR_CI |
|
|
MCF5282_CS_CSMR_SC |
|
|
MCF5282_CS_CSMR_UC |
|
|
MCF5282_CS_CSMR_UD |
|
|
MCF5282_CS_CSMR_V;
|
|
MCF5282_CS1_CSCR = MCF5282_CS_CSCR_PS_16;
|
|
MCF5282_CS2_CSAR = MCF5282_CS_CSAR_BA(VME_TWO_BASE);
|
|
MCF5282_CS2_CSMR = MCF5282_CS_CSMR_BAM_16M |
|
|
MCF5282_CS_CSMR_CI |
|
|
MCF5282_CS_CSMR_SC |
|
|
MCF5282_CS_CSMR_UC |
|
|
MCF5282_CS_CSMR_UD |
|
|
MCF5282_CS_CSMR_V;
|
|
MCF5282_CS2_CSCR = MCF5282_CS_CSCR_PS_16;
|
|
MCF5282_GPIO_PJPAR |= 0x06;
|
|
}
|
|
|
|
uint32_t bsp_get_CPU_clock_speed(void)
|
|
{
|
|
extern char _CPUClockSpeed[];
|
|
return( (uint32_t)_CPUClockSpeed);
|
|
}
|
|
|
|
/*
|
|
* Interrupt controller allocation
|
|
*/
|
|
rtems_status_code
|
|
bsp_allocate_interrupt(int level, int priority)
|
|
{
|
|
static char used[7];
|
|
rtems_interrupt_level l;
|
|
rtems_status_code ret = RTEMS_RESOURCE_IN_USE;
|
|
|
|
if ((level < 1) || (level > 7) || (priority < 0) || (priority > 7))
|
|
return RTEMS_INVALID_NUMBER;
|
|
rtems_interrupt_disable(l);
|
|
if ((used[level-1] & (1 << priority)) == 0) {
|
|
used[level-1] |= (1 << priority);
|
|
ret = RTEMS_SUCCESSFUL;
|
|
}
|
|
rtems_interrupt_enable(l);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Arcturus bootloader system calls
|
|
*/
|
|
#define syscall_return(type, ret) \
|
|
do { \
|
|
if ((unsigned long)(ret) >= (unsigned long)(-64)) { \
|
|
errno = -(ret); \
|
|
ret = -1; \
|
|
} \
|
|
return (type)(ret); \
|
|
} while (0)
|
|
|
|
#define syscall_1(type,name,d1type,d1) \
|
|
type bsp_##name(d1type d1) \
|
|
{ \
|
|
long ret; \
|
|
register long __d1 __asm__ ("%d1") = (long)d1; \
|
|
__asm__ __volatile__ ("move.l %1,%%d0\n\t" \
|
|
"trap #2\n\t" \
|
|
"move.l %%d0,%0" \
|
|
: "=g" (ret) \
|
|
: "i" (SysCode_##name), "d" (__d1) \
|
|
: "d0" ); \
|
|
syscall_return(type,ret); \
|
|
}
|
|
|
|
#define syscall_2(type,name,d1type,d1,d2type,d2) \
|
|
type bsp_##name(d1type d1, d2type d2) \
|
|
{ \
|
|
long ret; \
|
|
register long __d1 __asm__ ("%d1") = (long)d1; \
|
|
register long __d2 __asm__ ("%d2") = (long)d2; \
|
|
__asm__ __volatile__ ("move.l %1,%%d0\n\t" \
|
|
"trap #2\n\t" \
|
|
"move.l %%d0,%0" \
|
|
: "=g" (ret) \
|
|
: "i" (SysCode_##name), "d" (__d1),\
|
|
"d" (__d2) \
|
|
: "d0" ); \
|
|
syscall_return(type,ret); \
|
|
}
|
|
|
|
#define syscall_3(type,name,d1type,d1,d2type,d2,d3type,d3) \
|
|
type bsp_##name(d1type d1, d2type d2, d3type d3) \
|
|
{ \
|
|
long ret; \
|
|
register long __d1 __asm__ ("%d1") = (long)d1; \
|
|
register long __d2 __asm__ ("%d2") = (long)d2; \
|
|
register long __d3 __asm__ ("%d3") = (long)d3; \
|
|
__asm__ __volatile__ ("move.l %1,%%d0\n\t" \
|
|
"trap #2\n\t" \
|
|
"move.l %%d0,%0" \
|
|
: "=g" (ret) \
|
|
: "i" (SysCode_##name), "d" (__d1),\
|
|
"d" (__d2),\
|
|
"d" (__d3) \
|
|
: "d0" ); \
|
|
syscall_return(type,ret); \
|
|
}
|
|
|
|
#define SysCode_reset 0 /* reset */
|
|
#define SysCode_program 5 /* program flash memory */
|
|
#define SysCode_gethwaddr 12 /* get hardware address */
|
|
#define SysCode_getbenv 14 /* get bootloader environment variable */
|
|
#define SysCode_setbenv 15 /* set bootloader environment variable */
|
|
#define SysCode_flash_erase_range 19 /* erase a section of flash */
|
|
#define SysCode_flash_write_range 20 /* write a section of flash */
|
|
syscall_1(int, reset, int, flags)
|
|
syscall_1(unsigned const char *, gethwaddr, int, a)
|
|
syscall_1(const char *, getbenv, const char *, a)
|
|
syscall_1(int, setbenv, const char *, a)
|
|
syscall_2(int, program, bsp_mnode_t *, chain, int, flags)
|
|
syscall_3(int, flash_erase_range, volatile unsigned short *, flashptr, int, start, int, end);
|
|
syscall_3(int, flash_write_range, volatile unsigned short *, flashptr, bsp_mnode_t *, chain, int, offset);
|
|
|
|
/* Provide a dummy-implementation of these syscalls
|
|
* for qemu (which lacks the firmware).
|
|
*/
|
|
|
|
#define __STR(x) #x
|
|
#define __STRSTR(x) __STR(x)
|
|
#define ERRVAL __STRSTR(EACCES)
|
|
|
|
/* reset-control register */
|
|
#define RCR "__IPSBAR + 0x110000"
|
|
|
|
asm(
|
|
"bsp_fake_syscall: \n"
|
|
" cmpl #0, %d0 \n" /* sysreset */
|
|
" bne 1f \n"
|
|
" moveb #0x80, %d0 \n"
|
|
" moveb %d0, "RCR" \n" /* reset-controller */
|
|
/* should never get here - but we'd return -EACCESS if we do */
|
|
"1: \n"
|
|
" cmpl #12, %d0 \n" /* gethwaddr */
|
|
" beq 2f \n"
|
|
" cmpl #14, %d0 \n" /* getbenv */
|
|
" beq 2f \n"
|
|
" movel #-"ERRVAL", %d0 \n" /* return -EACCESS */
|
|
" rte \n"
|
|
"2: \n"
|
|
" movel #0, %d0 \n" /* return NULL */
|
|
" rte \n"
|
|
);
|
|
|
|
|
|
/*
|
|
* 'Extended BSP' routines
|
|
* Should move to cpukit/score/cpu/m68k/cpu.c someday.
|
|
*/
|
|
|
|
rtems_status_code bspExtInit(void) { return RTEMS_SUCCESSFUL; }
|
|
int BSP_enableVME_int_lvl(unsigned int level) { return 0; }
|
|
int BSP_disableVME_int_lvl(unsigned int level) { return 0; }
|
|
|
|
/*
|
|
* 'VME' interrupt support
|
|
* Interrupt vectors 192-255 are set aside for use by external logic which
|
|
* drives IRQ1*. The actual interrupt source is read from the external
|
|
* logic at FPGA_IRQ_INFO. The most-significant bit of the least-significant
|
|
* byte read from this location is set as long as the external logic has
|
|
* interrupts to be serviced. The least-significant six bits indicate the
|
|
* interrupt source within the external logic and are used to select the
|
|
* specified interupt handler.
|
|
*/
|
|
#define NVECTOR 256
|
|
#define FPGA_VECTOR (64+1) /* IRQ1* pin connected to external FPGA */
|
|
#define FPGA_IRQ_INFO *((vuint16 *)(0x31000000 + 0xfffffe))
|
|
|
|
static struct handlerTab {
|
|
BSP_VME_ISR_t func;
|
|
void *arg;
|
|
} handlerTab[NVECTOR];
|
|
|
|
BSP_VME_ISR_t
|
|
BSP_getVME_isr(unsigned long vector, void **pusrArg)
|
|
{
|
|
if (vector >= NVECTOR)
|
|
return (BSP_VME_ISR_t)NULL;
|
|
if (pusrArg)
|
|
*pusrArg = handlerTab[vector].arg;
|
|
return handlerTab[vector].func;
|
|
}
|
|
|
|
static rtems_isr
|
|
fpga_trampoline (rtems_vector_number v)
|
|
{
|
|
/*
|
|
* Handle FPGA interrupts until all have been consumed
|
|
*/
|
|
int loopcount = 0;
|
|
while (((v = FPGA_IRQ_INFO) & 0x80) != 0) {
|
|
v = 192 + (v & 0x3f);
|
|
if (++loopcount >= 50) {
|
|
rtems_interrupt_level level;
|
|
rtems_interrupt_disable(level);
|
|
printk("\nTOO MANY FPGA INTERRUPTS (LAST WAS 0x%x) -- DISABLING ALL FPGA INTERRUPTS.\n", v & 0x3f);
|
|
MCF5282_INTC0_IMRL |= MCF5282_INTC_IMRL_INT1;
|
|
rtems_interrupt_enable(level);
|
|
return;
|
|
}
|
|
if (handlerTab[v].func) {
|
|
(*handlerTab[v].func)(handlerTab[v].arg, (unsigned long)v);
|
|
}
|
|
else {
|
|
rtems_interrupt_level level;
|
|
rtems_vector_number nv;
|
|
rtems_interrupt_disable(level);
|
|
printk("\nSPURIOUS FPGA INTERRUPT (0x%x).\n", v & 0x3f);
|
|
if ((((nv = FPGA_IRQ_INFO) & 0x80) != 0)
|
|
&& ((nv & 0x3f) == (v & 0x3f))) {
|
|
printk("DISABLING ALL FPGA INTERRUPTS.\n");
|
|
MCF5282_INTC0_IMRL |= MCF5282_INTC_IMRL_INT1;
|
|
}
|
|
rtems_interrupt_enable(level);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static rtems_isr
|
|
trampoline (rtems_vector_number v)
|
|
{
|
|
if (handlerTab[v].func)
|
|
(*handlerTab[v].func)(handlerTab[v].arg, (unsigned long)v);
|
|
}
|
|
|
|
static void
|
|
enable_irq(unsigned source)
|
|
{
|
|
rtems_interrupt_level level;
|
|
rtems_interrupt_disable(level);
|
|
if (source >= 32)
|
|
MCF5282_INTC0_IMRH &= ~(1 << (source - 32));
|
|
else
|
|
MCF5282_INTC0_IMRL &= ~((1 << source) |
|
|
MCF5282_INTC_IMRL_MASKALL);
|
|
rtems_interrupt_enable(level);
|
|
}
|
|
|
|
static void
|
|
disable_irq(unsigned source)
|
|
{
|
|
rtems_interrupt_level level;
|
|
|
|
rtems_interrupt_disable(level);
|
|
if (source >= 32)
|
|
MCF5282_INTC0_IMRH |= (1 << (source - 32));
|
|
else
|
|
MCF5282_INTC0_IMRL |= (1 << source);
|
|
rtems_interrupt_enable(level);
|
|
}
|
|
|
|
void
|
|
BSP_enable_irq_at_pic(rtems_vector_number v)
|
|
{
|
|
int source = v - 64;
|
|
|
|
if ( source > 0 && source < 64 ) {
|
|
enable_irq(source);
|
|
}
|
|
}
|
|
|
|
void
|
|
BSP_disable_irq_at_pic(rtems_vector_number v)
|
|
{
|
|
int source = v - 64;
|
|
|
|
if ( source > 0 && source < 64 ) {
|
|
disable_irq(source);
|
|
}
|
|
}
|
|
|
|
int
|
|
BSP_irq_is_enabled_at_pic(rtems_vector_number v)
|
|
{
|
|
int source = v - 64;
|
|
|
|
if ( source > 0 && source < 64 ) {
|
|
return ! ((source >= 32) ?
|
|
MCF5282_INTC0_IMRH & (1 << (source - 32)) :
|
|
MCF5282_INTC0_IMRL & (1 << source));
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
static int
|
|
init_intc0_bit(unsigned long vector)
|
|
{
|
|
rtems_interrupt_level level;
|
|
|
|
/*
|
|
* Find an unused level/priority if this is an on-chip (INTC0)
|
|
* source and this is the first time the source is being used.
|
|
* Interrupt sources 1 through 7 are fixed level/priority
|
|
*/
|
|
|
|
if ((vector >= 65) && (vector <= 127)) {
|
|
int l, p;
|
|
int source = vector - 64;
|
|
static unsigned char installed[8];
|
|
|
|
rtems_interrupt_disable(level);
|
|
if (installed[source/8] & (1 << (source % 8))) {
|
|
rtems_interrupt_enable(level);
|
|
return 0;
|
|
}
|
|
installed[source/8] |= (1 << (source % 8));
|
|
rtems_interrupt_enable(level);
|
|
for (l = 1 ; l < 7 ; l++) {
|
|
for (p = 0 ; p < 8 ; p++) {
|
|
if ((source < 8)
|
|
|| (bsp_allocate_interrupt(l,p) == RTEMS_SUCCESSFUL)) {
|
|
if (source < 8)
|
|
MCF5282_EPORT_EPIER |= 1 << source;
|
|
else
|
|
*(&MCF5282_INTC0_ICR1 + (source - 1)) =
|
|
MCF5282_INTC_ICR_IL(l) |
|
|
MCF5282_INTC_ICR_IP(p);
|
|
enable_irq(source);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
BSP_installVME_isr(unsigned long vector, BSP_VME_ISR_t handler, void *usrArg)
|
|
{
|
|
rtems_isr_entry old_handler;
|
|
rtems_interrupt_level level;
|
|
|
|
/*
|
|
* Register the handler information
|
|
*/
|
|
if (vector >= NVECTOR)
|
|
return -1;
|
|
handlerTab[vector].func = handler;
|
|
handlerTab[vector].arg = usrArg;
|
|
|
|
/*
|
|
* If this is an external FPGA ('VME') vector set up the real IRQ.
|
|
*/
|
|
if ((vector >= 192) && (vector <= 255)) {
|
|
int i;
|
|
static volatile int setupDone;
|
|
rtems_interrupt_disable(level);
|
|
if (setupDone) {
|
|
rtems_interrupt_enable(level);
|
|
return 0;
|
|
}
|
|
setupDone = 1;
|
|
rtems_interrupt_catch(fpga_trampoline, FPGA_VECTOR, &old_handler);
|
|
i = init_intc0_bit(FPGA_VECTOR);
|
|
rtems_interrupt_enable(level);
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Make the connection between the interrupt and the local handler
|
|
*/
|
|
rtems_interrupt_catch(trampoline, vector, &old_handler);
|
|
|
|
return init_intc0_bit(vector);
|
|
}
|
|
|
|
int
|
|
BSP_removeVME_isr(unsigned long vector, BSP_VME_ISR_t handler, void *usrArg)
|
|
{
|
|
if (vector >= NVECTOR)
|
|
return -1;
|
|
if ((handlerTab[vector].func != handler)
|
|
|| (handlerTab[vector].arg != usrArg))
|
|
return -1;
|
|
handlerTab[vector].func = (BSP_VME_ISR_t)NULL;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
BSP_vme2local_adrs(unsigned am, unsigned long vmeaddr, unsigned long *plocaladdr)
|
|
{
|
|
unsigned long offset;
|
|
|
|
switch (am) {
|
|
default: return -1;
|
|
case VME_AM_SUP_SHORT_IO: offset = 0x31FF0000; break; /* A16/D16 */
|
|
case VME_AM_STD_SUP_DATA: offset = 0x30000000; break; /* A24/D16 */
|
|
case VME_AM_EXT_SUP_DATA: offset = 0x31000000; break; /* A32/D32 */
|
|
}
|
|
*plocaladdr = vmeaddr + offset;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
rtems_bsp_reset_cause(char *buf, size_t capacity)
|
|
{
|
|
int bit, rsr;
|
|
size_t i;
|
|
const char *cp;
|
|
|
|
if (buf == NULL)
|
|
return;
|
|
if (capacity)
|
|
buf[0] = '\0';
|
|
rsr = MCF5282_RESET_RSR;
|
|
for (i = 0, bit = 0x80 ; bit != 0 ; bit >>= 1) {
|
|
if (rsr & bit) {
|
|
switch (bit) {
|
|
case MCF5282_RESET_RSR_LVD: cp = "Low voltage"; break;
|
|
case MCF5282_RESET_RSR_SOFT: cp = "Software reset"; break;
|
|
case MCF5282_RESET_RSR_WDR: cp = "Watchdog reset"; break;
|
|
case MCF5282_RESET_RSR_POR: cp = "Power-on reset"; break;
|
|
case MCF5282_RESET_RSR_EXT: cp = "External reset"; break;
|
|
case MCF5282_RESET_RSR_LOC: cp = "Loss of clock"; break;
|
|
case MCF5282_RESET_RSR_LOL: cp = "Loss of lock"; break;
|
|
default: cp = "??"; break;
|
|
}
|
|
i += snprintf(buf+i, capacity-i, cp);
|
|
if (i >= capacity)
|
|
break;
|
|
rsr &= ~bit;
|
|
if (rsr == 0)
|
|
break;
|
|
i += snprintf(buf+i, capacity-i, ", ");
|
|
if (i >= capacity)
|
|
break;
|
|
}
|
|
}
|
|
}
|